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Cognitive Apprenticeship & Instructional Technology - 1

Abstract

In earlier times, practically everything was taught by apprenticeship: growing crops, running trades,
administering governments. Schools are a recent invention that use many fewer teaching resources.
But the computer enables us to go back to a resource-intensive mode of education, in a form we call
cognitive apprenticeship (Collins, Brown, & Newman, in press). Cognitive apprenticeship employs the
modelling, coaching, and fading paradigm of traditional apprenticeship, but with emphasis on cognitive
rather than physical skills. My basic thesis in this paper is that technology enables us to realize
apprenticeship learning environments that were either not possible or not cost effective before.

This paper addresses the questions: What kind of leverage do we derive from computer technology, and
what design criteria can we specify for building computational learning environments? We have
developed a tentative set of characteristics (Collins, Brown, & Newman, in press) we think
computational learning environments should have, based on analyzing what kinds of tutoring systems we
see emerging, what we have learned from studies such as Lampert (1986), Palincsar and Brown (1984),
Scardamalia, Bereiter, and Steinbach (1984), and Schoenfeld (1983, 1985), and what resource rich
learning environments (such as tennis coaches and graduate school instruction) are like.

This paper discusses six characteristics of cognitive apprenticeship for which technology provides
particular leverage. For each abstract characteristic I will address: (a) what the abstraction refers to,
(b) the implications technology has for realizing the abstraction in practice, (c) why realizing the
abstraction is of benefit to students, and (d) an example of a computer system that embodies the
abstraction.
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Cognitive Apprenticeship & Instructional Technology - 2

COGNITIVE APPRENTICESHIP AND INSTRUCTIONAL TECHNOLOGY

Situated Learning

Situated learning is the notion of learning knowledge and skills in contexts that reflect the way the
knowledge will be useful in real life. It is the sine qua non of apprenticeship. But it should be thought
of in the most general way. In the context of math skills, they might be taught in contexts ranging from
running a bank, or shopping in a grocery store, to inventing new theorems or finding new proofs. That
is, situated learning can incorporate situations from everyday life to the most theoretical endeavors
(Schoenfeld, in press).

The computer allows us to create environments that mimic situations in the real world that we cannot
otherwise realize in a classroom (or home). One approach is through microworlds, but also through
computer networks, data bases, graphing packages and text editors (Collins, 1986). There are inherent
dangers in microworlds, such as learning to make decisions based on a few variables rather than a rich
set of variables (Dreyfus & Dreyfus, 1986), but potentially the benefits far outweigh the risks.

Benefits of Situated Learning

Students learn conditions for applying knowledge. By learning arithmetic, for example, in representative
contexts such as grocery shopping or running a bank, the student ties the knowledge learned to specific
contexts. Then when they are in novel situations, for example, buying airline tickets or working in an
accounting department, they will be able to see how the knowledge learned might apply in these new
situations by analogy to the situations they learned about.

Situations foster invention. When students use their knowledge to deal with real problems and
situations, they are forced to make inventions to apply their knowledge (Lampert, 1986). Thus they are
learning how to use their knowledge flexibly to deal with novel situations.

Students see the implications of the knowledge. When learning is embedded in context, then its uses
are more apparent to students. They can actually see how the knowledge is used in different settings,
and what power it gives them to use the knowledge. It is not readily apparent to students how most of
what they learn in school might be used.

Context structures knowledge appropriate to its uses. When students learn things for school, they often
invoke suboptimal schemes for remembering the information. For example, they may infer that all
arithmetic word problems with the word "left" (e.g., "Mary had 7 apples. She gave 3 to John. How many
did she have left?") are subtraction problems (Schoenfeld, in press). Or they may memorize facts in a
rather rote way so that they can be retrieved for a test (e.g., the capital of Oregon is Salem: With the
oar in Oregon you can go sailing). When knowledge is learned in the contexts of its uses it is more
likely to be stored in a form that is usable in novel contexts.

These may be the central issues as to why transfer of knowledge is so difficult: By learning in multiple
contexts you learn different ways knowledge can be used, and begin to generalize on these ways. This
is opposed to the way we teach knowledge in an abstract way in schools now, which leads to strategies,
such as depending on the fact that everything in a particular chapter uses a single method, or storing
information just long enough to retrieve it for a test. Instead of trying to teach abstract knowledge and
how to apply it in contexts (as word problems are supposed to do), we advocate teaching in multiple
contexts and then trying to generalize across those contexts. In this way knowledge becomes both
specific and general.

An excellent example of a computer-based situated learning environment based on a microworld is
Geography Search by Tom Snyder (Snyder & Palmer, 1986) which is one of five programs in the Search
Series by McGraw Hill. It teaches history, math, planning, and problem solving. In this simulated
microworld, groups of students sail ships from Europe to the New World about the time of Columbus,
in order to look for a treasure that is distributed around North and South America. Land and other
ships come into view on the screen when the ship nears them. Students have to calculate their route

Collins



Cognitive Apprenticeship & Instructional Technology - 3

using sextant and compass in the way sailors did of old. They must also keep track of food and supplies,
so they don't run out while they are at sea. So students are learning history and math in a context where
novel problems continually arise.

Another example of situated learning is the reconvening of the Constitutional Convention among school
students in the Boston area using a computer mail system (personal communication, William Fitzhugh).
Different schools represent different delegations (e.g., Delaware, Virginia). The students prepare by
reading about the concerns of their states in 1787. During the convention they will try to negotiate a
draft constitution to correct for the difficulties that were encountered with the Articles of Confederation.
A similar kind of convention could be held to cope with the modern day problems that have arisen with
the Constitution (e.g., the budget process, the advent of media and its expenses, the disagreements over
who controls foreign policy, the difficulties when Presidents are disabled for any reason). Government
and its structures become real in dealing with these kinds of questions.

History is typical of the information schools teach in a non-situated way. Schools try to pour in a lot
of facts and theories, and make no use of that knowledge other than recall. Computers give us
enormous power to create situated learning environments where students are learning about reading,
writing, math, science, and social studies in ways that reflect the kinds of activities they will need these
for.

Modelling and Explaining

Modelling is showing how a process unfolds and explaining involves giving reasons why it happens that
way. It is the showing and telling that is so characteristic of apprenticeship.

Two Kinds of Modelling Important for Education

Modelling of processes in the world. For example, one might show how electrons move in circuits
(Haertel, 1987), or how information coded in DNA is translated into protein molecules.

Modelling of expert performance. For example, in teaching reading, the teacher might read in one voice
and verbalize her thinking in another voice, like a slow motion movie. She could verbalize what is
confusing, what to do when you don't understand, any tentative hypotheses about what is meant and
what will come later, any evidence as it comes in about these hypotheses, her summaries and
integrations, her guesses as to the author's intentions, and evaluations of the structure and style of the
writing: in short, all the thoughts of a skilled reader (Collins & Smith, 1982).

The computer makes it possible to represent processes in ways books never could, and even in ways
people cannot. Computers can make the invisible visible: They let you see inside pipes or inside the
body, how current changes in circuits based on electron flow, where the center of mass for a group of
bodies is, how microscopic processes unfold. At the same time they can make tacit knowledge explicit,
by showing the strategies experts use to solve problems that students set for them. To the degree we
can develop good process models of expert performance, we can embed these in technology, where they
can be observed over and over for different details.

Computers can use multimedia, that is, animation, voice, text and graphics to characterize different
aspects of processes. Ways of integrating animation and voice are just beginning to be explored, but it
is clear that they have enormous potential for making things clearer. For example, it is possible to
highlight each component of a system while it is talked about. One can show both what happens and
what does not happen. We can render unto voice what verbal description best transmits (e.g., reasons
why, abstract ideas) and render unto animation what visual description best transmits (e.g., processes
and relations between components, concrete ideas). And we can achieve simultaneous presentation so
that what is seen happening on the screen can be explained orally without looking elsewhere. Eventually
much of the information in textbooks and libraries will be in this form.
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Benefits of Modelling

Seeing expert solutions to problems set by the student For the most part in school, students never see
how experts solve problems--they see only worked out solutions. Worked out solutions do not show the
false starts or dead ends that characterize real world problem solving. If students can pick problems that
raise issues in their mind, and watch how an expert computer program attacks the problem, then they
will have a genuinely new kind of learning experience.

Integrating what happens and why it happens. Demonstrations in class or process descriptions in text
have inherent limitations. Many demonstrations occur too fast to assimilate what is happening and why
it is happening. In books simultaneity can only be approximated with static diagrams and text
explanation. The ability to see what is happening, in slow motion if need be, and hear at the same time
a verbal explanation of why it is happening facilitates building an integrated understanding of processes.

Making visible parts of a process not normally seen. Because much of what we want students to learn
is not ordinarily seen, students must infer from end products and a few intermediate states how
processes unfold. By revealing these processes in detail, many more students will have a chance to
figure out what is happening.

I can illustrate modelling with a computer system called Summit (Feurzeig & White, 1984), designed for
teaching addition and subtraction. Summit combines visual animation with spoken explanation. The
system had two representations for addition and subtraction: the standard algorithm and a bin-model
representation, derived from Dienes (1960) blocks. In both representations students can pose problems
to the system to see what happens. Figure 1 illustrates how the system represents a simple addition
problem (2593+ 9) in the two representations.

[Insert Figure 1 about here.]

The bin model works as follows. Suppose that the ones bin has 3 icons in it and 9 more are added to
it. The model first displays all 12 icons, stacked one on top of the other, in the ones bin. Next, the
computer says, "Now there are too many ones. We have to take some to the tens." An empty box then
appears in between the ones and tens bins. Next 10 icons are removed from the ones bin, one at a time
and placed in the box. There is a counter displayed on the box. When there are 10 icons in the box,
the box becomes a tens icon, which is added to the tens bin. This in turn leads to an overflow in the
tens bin, and the process repeats itself.

Summit models the addition process for the standard algorithm in a similar way, saying: "Then we add
the ones. 3 plus 9 is 12, but 12 won't fit. So we write the 2 under the ones column, and take the 1 over
to the tens column," writing it just above the tens column. "Then we add the tens. 1 plus 9 is 10, but
10 won't fit. So we write 0 in the tens column, and take the 1 over to the hundreds column," and so on.
Each of the actions appears on the screen as the voice explains it.

There are other systems such as Sophie (Brown, Burton, & deKleer, 1982) and Quest (White &
Frederiksen, in press) in the electricity domain that not only model how a process unfolds, but how
experts troubleshoot a faulty system. In these systems students can see an expert troubleshooting
whatever faults they decide to set in the system. Thus, they can pick problems that are at the edge of
their own competence in order to see how to extend their troubleshooting strategies.

Coaching

Computer systems have the ability to patiently observe students as they try to carry out tasks, providing
hints or assistance when needed. This kind of personal attention is simply not feasible in most school
classrooms.

Not only is the computer patient, it can remember perfectly what the student did before. It can consider
multiple hypotheses about the difficulties the student is having (Burton, 1982), and it can observe over
a period of time in order to tell what problems the student is really having. Moreover, a computer
coach gives students a different perspective from which to understand their own performance.
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Benefits of Coaching

Coaching provides help directed at real difficulties. By observing students in a problem solving
situation, the coach can see what difficulties a particular student is having. Because teachers in school
rarely have a chance to observe student problem solving, most of the help they give is not really directed
at the problems students actually have.

Coaching provides help at critical times. Coaching provides help to students when they most need it:
when they are struggling with a task and are most aware of the critical factors guiding their decisions.
Thus they are in the best position to use any help given.

Coaching provides as much help as is needed to accomplish tasks. Coaching enables students to do
tasks they might not otherwise be able to complete. It gives them a sense that they can really do difficult
tasks. As they become more skilled, the coach's role can fade giving students more and more control
over execution of the task.

Coaching provides new eyeglasses for the student. Coaching can help students see the process from
an entirely different perspective. The coach can point out things that do not go as expected and explain
why. Furthermore, a coach can introduce new terms such as "forward chaining" and "thrashing" (see
below) that are critical to employing heuristic and metacognitive strategies.

The best example of a computer coach is the coach built by Burton and Brown (1982) for the computer
game "How the West Was Won." Originally developed as part of the Plato system, the game, which is
a variant on Chutes and Ladders, is designed to teach children basic arithmetic operations. It can be
played either by one person against the computer or by two people against each other. Figure 2 shows
a display of what the game board looks like to the players.

[Insert Figure 2 about here.]

The rules of the game are as follows: When it is a person's turn, they must form an arithmetic
expression from the three spinners using two different operations (e.g., 2 x 1+2), and after they have
formed such an expression they must input the value of the expression (in this case 4). If they
miscalculate, they lose their turn; if they are correct, they move forward on the board the number of
spaces calculated. The object is to reach the last town (which is 70) before your opponent, but to reach
the last town you must form an expression that lands you exactly on the town (i.e., you cannot overshoot
it). There are some special rules that make the game more challenging: (a) if you land on a town
(every 10 squares) you advance to the next town, (b) if you land at the beginning of one of the short cuts
(i.e., 5, 25, 44) you advance to the end of the shortcut (i.e., 13, 36, 54), and (c) if you land on your
opponent, you send her back two towns.

These special rules make it advantageous to consider many possible different moves, which would
require trying out different arithmetic expressions and calculating their values. But students playing the
Plato game do not consider alternative moves: They tend, instead, to lock onto a particular strategy,
such as multiplying the largest number times the sum of the other two numbers, which gives them the
largest value they can make. Thus, they do not play very well or learn much arithmetic without
coaching.

To remedy this situation, Burton and Brown (1982) built a computer coach that observes students as
they play the game and gives them hints or advice at critical moments. The computer coach rank orders
every possible move a player might make given the three spinner values. The rank order is constructed
with respect to how far ahead of your opponent any move leaves you. This gives the coach a way to
evaluate the effectiveness of any move.

The coach observes the players' moves by looking at certain "issues," for example, whether the student
knows to land on towns or on the opponent when it is effective to do so, whether the student knows to
use parentheses or the minus sign or the divide sign when it is effective to do so. If the student
systematically fails to make moves that require understanding of any of these issues, then the coach will
notice the pattern. The coach will then intervene with a hint about a particular issue when that issue
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is particularly salient to making a good move; that is, when the student's move is much inferior to the
best move possible, taking into account that issue. The intervention by the tutor occurs just after the
student's move: The system points out how using parentheses or a short cut, for example, would
improve the player's position, and gives the student a chance to retake their turn. Thus the coach tries
to expand the student's awareness of how they might play the game more successfully.

There are other examples of computer coaches that help students when they are carrying out tasks. For
example, Anderson, Boyle, and Reiser (1985) have developed computer coaches for plane geometry and
computer programming that pose problems to students and offer advice when the student takes a step
in working the problem that reflects a common misunderstanding or error. Similarly, the PROUST
system of Johnson and Soloway (1985) recognizes common errors students make in computer
programming, and gives advice as to what the problem is. Computer coaches make it possible for
students to spend their learning time actively carrying out tasks and projects, receiving personal help or
guidance when they need it.

Reflection on Performance

Reflection refers to students looking back over what they did and analyzing their performance. There
are four ways of permitting students to reflect on their performance (Collins & Brown, 1988): (a)
imitation, (b) replay, (c) abstracted replay, and (d) spatial reification. These can be illustrated in the
context of tennis. Imitation occurs when a tennis coach shows you how you swing your racquet, perhaps
contrasting it with the way you should swing it. Replay occurs when he videotapes your swing, which you
can compare to videotapes of experts. An abstracted replay might be constructed by using reflective tape
on critical points--the elbows, wrist, end of racquet, etc.--so that the student can see how these points
move with respect to each other in a videotaped replay. A spatial reification might be a plot of the
trajectory of these points moving through space. In general, students should be given multiple views,
and be able to compare their performance to expert performance. Technology makes the last three
forms of reflection possible, so this is a genuinely new teaching method emerging out of technology.

Benefits of Reflection

What the student did becomes an object of study. The students begin to see their performance on tasks
as data to be analyzed. They may never have taken what they did before seriously: Reflection
encourages them to think about their processes from the point of view of how they might be different,
and what changes would lead to improved performance.

Students can compare their performance to others'. Reflection lets students see how different students
and more expert performers carry out the same task. This encourages them to form hypotheses about
what aspects of a process are critical to successful and unsuccessful performance.

Abstractions about the process can be used for characterizing strategies. It is possible to describe
various heuristics and metacognitive strategies (Schoenfeld, 1985) in terms of the process the student
is reflecting on. For example, in working geometry problems (see below), it is possible to characterize
forward chaining as working from the givens and backward chaining as working from the statement to
be proved. A good heuristic strategy is to start forward chaining from each of the givens to see what
they imply, and then switch to backward chaining to work out the problem solution.

Spatial reification permits comparison of multiple performances to form abstractions. If students can
see a process laid out in graphic form, then they can compare different people's approaches and try to
characterize what aspects of the process are critical to expert vs. novice performance. The spatial
representation permits them to see and even measure aspects of the process that are not apparent in
a replay.

A good example of a spatial reification that permits reflection on a process is the problem solving trace
that Anderson, Boyle, & Reiser's (1985) Geometry Tutor constructs as the student works a problem.
Figure 3 shows three views of the screen as a student works a problem. Initially in the top view the
student sees a screen with the givens at the bottom and the statement to be proved at the top. In the
middle screen the student has worked part way through the problem, working both forward from the
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givens and backwards from the statement to be proved. The third screen shows the final problem
solution, along with various dead ends (e.g., < MDB = < MCA) that the student never used in the proof.

[Insert Figure 3 about here.]

As Anderson, Boyle, Farrel, and Reiser (1984) point out, geometry proofs are usually presented in a
fundamentally misleading way. Proofs on paper appear to be linear structures that start from a set of
givens and proceed step by step (with a justification for each step) to the statement to be proved. But
this is not how proofs are constructed by mathematicians or by anybody else. The process of
constructing proofs involves an interplay between forward chaining from the givens and backward
chaining from the goal statement. Yet, the use of paper and its properties encourage students to write
proofs as if they were produced only by forward chaining--starting with the givens at the top of the page
and working downward to the goal in a two column linear format (left column for the derived
statements, right column for the logical justifications). If students infer that they should construct proofs
this way, they will fail at any long proof. Properly designed computational learning environments can
encourage students to proceed in both directions, moving forward, exploring the givens, and moving
backwards, finding bridges to the goals.

The representation in Geometry Tutor is an abstraction of the problem solving process in terms of a
"problem space." The system shows the states in the problem space that the student reached and the
operators used to reach each of those states. Simply seeing the steps toward a solution reified in this
way helps to create a problem space as a mental entity in its own right. This, in turn, makes it possible,
for both teachers and students, to characterize problem-solving strategies in terms of abstractions that
refer to the properties concretely manifested in the reified problem space. For example, in geometry it
is a good strategy to forward chain at the beginning of a problem in order to understand the implications
of the givens. Similarly, if you are stuck backward chaining, and do not see a way to connect your
backward chain to any of the givens, then either go back to forward chaining or go back to the goal state
again and try backward chaining along a different path.

Videotape first made systematic reflection on performance possible. The computer extends this to
abstracted replays and reifications that highlight critical aspects of performance. In this way, students
can analyze their performance from different perspectives and compare themselves to other students and
experts.

Articulation

Articulation refers to methods for forcing students to explain and think about what they are doing, that
is, making their tacit knowledge explicit. There are two ways that computers provide leverage for
encouraging students to articulate their knowledge. First, computers make it possible for students to
actually build their theories or ideas into artifacts that can be tested and revised. One challenge for their
fellow students might be to show the limitations or failures of these theories. Second, computers can
provide tools and settings where students try to articulate their ideas to other students, as in the
Constitutional Convention convened on an electronic network in Boston (see Situated Learning).

Benefits of Articulation

Making tacit knowledge explicit. When knowledge is tacit, it can only be used in contexts that elicit the
knowledge automatically, that is, that call up the knowledge because they are very similar to the
conditions in which the knowledge was acquired. By forcing students to articulate their knowledge, it
generalizes the knowledge from a particular context so that it can be used in other circumstances.

Making knowledge more available to be recruited in other tasks. Knowledge that is articulated as part
of a set of interconnected ideas becomes more easily available. For example, if students acquire the idea
of "thrashing" in problem solving (i.e., the concept of moving through a problem space without getting
closer to the goal), then they can learn to recognize thrashing when they see it in different circumstances
and develop strategies for dealing with it when it occurs.
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Comparing strategies across contexts. When strategies are articulated, students can begin to see how
the same strategies apply in different contexts. For example, the strategy of decomposing complex
problems into simpler problems takes the form of writing subroutines in computer programming, and
proving lemmas in geometry.

Articulation for other students promotes insight into alternative perspectives. If students try to explain
an idea (or problem) to other students, then they begin to see the idea from the other students'
perspectives. If they get responses from other students, they can see what difficulties other students have
with the idea and how other people view the same issue (as will occur with the Constitutional
Convention mentioned above).

We can illustrate articulation by a computer program called Robot Odyssey developed by the Learning
Company. In it, students first learn how to wire robots to behave in different ways when they sense
different conditions. The robots have bumpers that detect when objects or walls are encountered on
different sides, and sensors that detect the direction of particular objects in the vicinity of the robot. The
robots have thrusters that can send them in different directions and grabbers to pick up objects.
Students can wire these robots in very complicated patterns to move around, explore, and pick up or
avoid different objects. Thus, students can construct robots that behave in complicated ways, and turn
them loose in the world to see what happens. The challenge of Robot Odyssey is to use the robots to
navigate through a complicated maze, as in an Adventure game, where there are puzzles to solve and
enemies to avoid in order to come through successfully. This then is the test of how well students have
wired their robots, or more generally how deep their understanding is of how to build intelligent artifacts
to deal with different situations.

Wiring robots is just one of many such enterprises. In languages like Logo (Goldenberg & Feurzeig,
1987), students can write programs that, for example, take any noun and generate a plural for it, or
transform input sentences in active voice to passive voice. Thus students can articulate their grammatical
theories in forms that can be tested out.

In an entirely different vein, Sharples (1980) has developed a Fantasy game kit that allows students to
create computer Adventure games for other students to play (where they explore caves looking for
treasure, avoid monsters, and try to find the way out). This forces students to articulate their images
of different caverns in a series of caves, and pose problems for others that are solvable but challenging.

These examples illustrate some of the different ways computers can be used to foster articulation by
students. While articulation is often encouraged by teachers in schools, computational articulation
requires even more explicitness.

Exploration

Exploration involves pushing students to try out different hypotheses, methods and strategies to see their
effects. This puts students in control of problem solving, but they need to learn how to explore
productively. The computer provides powerful tools that allow students to explore hypotheses and
solutions (i.e., problem spaces) faster, so they don't become frustrated.

Benefits of Exploration

Learning how to set achievable goals. Many students set goals for themselves that are either too easily
achievable or impossible to achieve (Atkinson, 1964). Studies of successful artists (Getzels &
Csikszentmihalyi, 1976) have identified problem finding as the most critical skill for success. And yet
very little effort in school goes into teaching students how to set reasonable goals and to revise their
goals as they proceed deeper into a problem. Instead school emphasizes giving students well-defined
tasks, unlike anything in the real world.

Learning how to form and test hypotheses. One of the major goals of inquiry teachers (Collins &
Stevens, 1982, 1983) is to teach students how to formulate hypotheses, rules, or theories and then how
to test out whether they are correct. Making sense out of the world around us requires these skills, and
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unless students practice forming and testing hypotheses in many different domains with the help of
expert guidance, they will not learn to do so effectively.

Students will make discoveries on their own. When students are put into an environment where they
are making and testing hypotheses, they get a sense of what it is like to be a scientist. They will feel the
joy of generating their own ideas and seeing if they are correct. They may even discover genuinely novel
ideas. But even when they come up with old ideas, they will at least sense where the ideas came from
and why they are important.

We can illustrate the potential for exploration with the science laboratories developed by TERC
(Mokros & Tinker, 1987). In one laboratory students can detect how far a moving object is from a
sensor, and plot velocity, distance, and acceleration. This enables them to discover Galileo's laws of
falling objects. Or they can conduct experiments with balls hitting other balls to see how changes in
direction affect velocity. There are many different phenomena that students can investigate, and with
the immediate graphic plotting they can test out many different ideas quickly.

Another example of an exploratory computer-based environment is the economics simulation called
Smithtown developed by Shute and Bonar (1986). In Smithtown, students can manipulate different
variables, such as the price of coffee, to see how they affect other variables, such as the amount sold.
They then are encouraged to try to figure out the various laws that relate the different variables. Thus
they are discovering basic economic relationships. Similarly, students with a music or painting program
can compose works quickly, and with much less effort. Hence, they can explore many different
techniques and see how effective they are. Computers provide powerful tools for exploration (Papert,
1980), and we are just beginning to investigate their potential.

Conclusion

As technology becomes cheaper, it gives us the capability to realize resource intensive education once
again. In particular, technology allows us to return to a kind of apprenticeship centered around
modelling, coaching, and fading in situations that reflect the kinds of uses that the knowledge gained
might be used. Moreover, technology enables us to create environments where new methods of
learning--that is, reflection, articulation, and exploration--are possible. This raises the question of what
form education should take, given the capabilities and limitations of the technologies that are developing.
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Figure 1. Bin model representation of 2593 and standard representation of
the addition problem 2593 + 9 in Summit (from Feurzeig & White, 1984).
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The numbers are
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Figure 2. Screen used in "How the West was Won" game (from Burton &
Brown, 1982).
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