

GENOME SCALE METABOLIC RECONSTRUCTION AND HYPOTHESIS TESTING IN THE METHANOGENIC ARCHAEON METHANOSARCINA ACETIVORANS C2A

BY

MATTHEW NICHOLAS BENEDICT

THESIS

Submitted in partial fulfillment of the requirements for the degree of Master of Science in Chemical Engineering in the Graduate College of the University of Illinois at Urbana-Champaign, 2011

Urbana, Illinois

Adviser:

Assistant Professor Nathan Price

Abstract

Methanosarcina acetivorans strain C2A is a marine methanogenic archaeon notable for its substrate utilization, genetic tractability, and novel energy conservation mechanisms. To help probe the implications of this organism's unique metabolism, we have constructed and manually curated a genome-scale metabolic model, iMB744, accounting for 744 of the 4540 predicted protein coding genes (16%) in the *M. acetivorans* genome. The reconstruction effort has identified key knowledge gaps and differences in the peripheral metabolism and central metabolism between methanogenic species. Using flux balance analysis, the model quantitatively predicts wild type phenotypes and is 96% accurate in knockout lethality predictions compared to currently available experimental data. Flux balance analysis was used to probe the mechanisms and energetics of byproduct formation and growth on carbon monoxide, and the nature of the reaction catalyzed by the soluble heterodisulfide reductase HdrABC in *M. acetivorans*. This work highlights the great utility of constraint-based modeling for identifying feasible solutions to biological questions and provides insights into the workings of the cell at the genome scale.

Table of Contents

Introduction	1
Materials and Methods	∠
Results	9
Discussion	21
Figures and Tables	23
References	29
Appendix A. Analysis of Model Gaps	41
Appendix B. Model Details	55
Appendix C. Experimental Validation Data	117

Introduction

Methanogenic archaea are unique in their ability to grow on low energy substrates such as acetic acid by splitting them into methane and other byproducts. Methanogens are a critical part of the global carbon cycle, consuming byproducts of other natural bioprocesses that would otherwise be recalcitrant in sulfate poor, anaerobic environments (11). They also play an important role in global warming, since methane is a greenhouse gas twenty times as potent as carbon dioxide (44) and methanogenesis is the primary mechanism for methane emission into the atmosphere (1).

Methanosarcina is the only known genus of methanogens with members that can utilize all of the known methanogenic pathways (acetoclastic, methylotrophic, hydrogenotrophic, and methyl reduction) (82). This metabolic diversity makes these species relatively permissive to metabolic and genetic manipulations compared to other methanogens. To help capitalize on this, the genomes of three Methanosarcina species have been sequenced (14, 19, 39). In addition, genetic manipulation tools have been developed for several of these species, including directed mutagenesis and constitutive promoters in Methanosarcina acetivorans (2, 34, 85, 87).

The constraint-based reconstruction and analysis (COBRA) strategy is a powerful paradigm for consolidating large amounts of metabolic knowledge and synthesizing that knowledge into quantitative phenotypic predictions (48, 55). To perform constraint-based analysis, it is necessary to reconstruct the metabolic network from the bottom up, beginning with a sequenced and

annotated genome and ending with a network of reactions and reaction-gene associations. Many metabolic reconstructions have been curated by hand and used to make useful predictions such as identification of putative drug targets and the design of novel strains for enhanced biofuel production (48, 77).

In recent years, there have been strong advances towards automating much of the reconstruction process (29), which are needed to continue the exponential increase in the number of genomescale metabolic models (45, 48). However, for study of methanogens, automated reconstructions are problematic, because their predictions tend to be overly homogenized and incomplete for organisms with highly specialized metabolism. Methanogens are well known for their unusual metabolic capabilities, which are in part derived from their unique ecological niche (13). Automatically predicted networks are also dependent on the completeness of reaction databases, which is more limited for archaea than it is for other domains of life. Hence, manual curation is necessary to obtain reliable predictions from metabolic models of these organisms.

M. acetivorans is notable for its substrate utilization. Unlike most other methanogens, it can grow and produce methane using methylated substrates, carbon monoxide or acetate, but it cannot grow with hydrogen as its primary energy source (66). Also unlike most methanogens, M. acetivorans is genetically tractable. Therefore, this organism offers opportunities to learn about novel energy conservation mechanisms. An independent reconstruction for M. acetivorans strain C2A has recently been reported (63). However, the previously reported reconstruction was primarily curated using an automated curation pipeline including the GapFind, GapFill, and

GrowMatch algorithms (33, 62). As a result, the published reconstruction maintains many of the disadvantages of other automated reconstructions mentioned previously. We present iMB744, a quantitative, genome-scale metabolic model of *M. acetivorans* resulting from a more literature-centric approach to model curation, as detailed in published protocols (77). As many literature sources as possible were integrated to generate a highly accurate list of metabolic reactions. Using constraint-based modeling, we have predicted growth phenotypes and probed possible hypotheses for the workings of incompletely understood parts of the *M. acetivorans* metabolic network. The analysis thus represents a successful application of the hypothesis-driven modeling approach.

Materials and Methods

Model Reconstruction

An initial list of potential reaction-gene associations in *Methanosarcina acetivorans* str. C2A was generated based on a union of data in the Kyoto Encyclopedia of Genes and Genomes (KEGG) (32), MetaCyc (12), the Model SEED reconstruction (29), the Transport Protein Analysis Database (TransportDB) (58), and UniProt (76). Reactions from the existing *Methanosarcina barkeri* str. Fusaro reconstruction (16) and the BiGG database (65) were added if there was sufficient evidence for their inclusion, based on sequence homology and/or literature-based curation, or to fill gaps in the annotation. Some gene suggestions from EFICAZ, which includes evidence from other bioinformatics tools like PFAM, were also incorporated (3). Gene associations were verified whenever possible using bidirectional BLASTP against archaeal protein products with experimentally verified functions (10). In case of conflicts, metabolic functions suggested from literature were chosen over those suggested in the databases, and inconsistent reactions were removed from the model.

Logical gene protein relationships (GPR) were constructed manually based on literature or database evidence. For example, genes annotated or characterized to be separate subunits of a complex were given an "AND" relationship. If there was no evidence of a protein complex catalyzing a reaction with multiple genes, the genes were all assigned an OR relationship.

All intracellular and transport reactions were computationally mass and charge balanced at a pH of 7 based on charges and formulas computed with ACD/Labs software (Version 12; Advanced Chemistry Development, Inc.). Charges and formulas are available in appendix B.

Construction of the Biomass Reaction

The biomass reaction is a sink on essential cell components that represents the consumption of molecular building blocks (such as amino acids and nucleotides) required for cell division. The biomass reaction for *Methanosarcina acetivorans* str. C2A was modified from the closest relative for which a biomass reaction had previously been built, *Methanosarcina barkeri* str. Fusaro (16). This biomass objective function was first expanded by incorporating more detailed carbohydrate data from *M. barkeri* (31) and adding methanofuran-B to the list of required cofactors (41). Then, coefficients for lipids were modified based on available data on the unique lipid composition of *M. acetivorans* (69). Nucleotide and amino acid coefficients specific to *M. acetivorans* were calculated based the published genome sequence according to established procedures (77). The coefficients of trace elements were assumed to be the same as those in the *M. barkeri* biomass equation.

Growth-associated maintenance was included in the biomass equation and was set to 65 mmol/gDW, similar to the *M. barkeri* and *E. coli* FBA models (15, 16), to account for energy costs for growth (such as production of macromolecules from biomass components). See appendix B for a listing of biomass components and ratios.

Flux Balance Analysis (FBA)

Exponential growth phenotypes were predicted using flux balance analysis (FBA), which has been previously reviewed (52). All reactions in the model were represented in a stoichiometric matrix, \mathbf{S} , in which each column represented a reaction and each row a metabolite. Hence, the entry (i,j) of \mathbf{S} contained the stoichiometric coefficient of metabolite i in reaction j.

If metabolite concentrations are assumed to be constant (steady state), conservation of mass requires that:

$$Sv = 0$$

where v is the vector of reaction fluxes (reaction rates). Because there were more reactions than metabolites in the model, multiple possible flux distributions were possible that all satisfied the mass balance.

Reaction fluxes were also constrained by setting minimum and maximum fluxes. In the current study, the reversibility of each reaction was determined based on literature, database evidence, and thermodynamic calculations. The flux through reversible reactions was unconstrained, while that of irreversible reactions was set to have a \mathbf{v}_{min} =0. Substrate uptake rates were set to experimentally measured values for purposes of simulations (see Appendix C for values and references). The reaction rate through the ATP maintenance reaction (ATPM) was set to 2.5 mmol/gDW/hr to account for upkeep energy costs. This value is somewhat lower than the

experimental value of 8.39 mmol/gDW/hr used in the current *E. coli* model, but it is close to that in the published *M. barkeri* model (16). Experimental data in *Methanosarcina mazei* suggests that it is a low value (57), which could be a reflection of its dependence on low-energy substrates for growth.

Under the assumption that the cell seeks to maximize its growth potential, the specific growth rate was predicted by maximizing the flux through the biomass reaction subject to the aforementioned constraints:

Subject to:

$$Sv = 0$$

$$\mathbf{v}_{\min} < \mathbf{v} < \mathbf{v}_{\max}$$

Reaction fluxes were predicted in mmol/gDW/hr, and growth rates were predicted in hr⁻¹. FBA problems were solved using the COBRA toolbox in MATLAB (4) linked to the GLPK linear program solver.

Defined high salt (HS) media without vitamin supplement was used for all simulations. The media composition is listed in appendix B and was defined from Sowers *et al.* (67).

Knockout lethality studies

To perform knockout lethality studies, every gene except those knocked out was assigned a

Boolean value of 1 (TRUE), and knocked out genes were assigned a value of 0 (FALSE). The Boolean gene protein relationships were evaluated for every reaction, and reactions with a GPR evaluating to FALSE were removed from the model. After modifying the network in this way, FBA to make a growth-no growth decision (growth was defined as a predicted v_{biomass}>10⁻⁵ hr⁻¹). Lethality predictions were compared to published gene knockout phenotype data (see Appendix C for references). For substrates with an unknown uptake rate (such as monomethylamine), the uptake rate was assumed to be 15 mmol/gDW/hr, similar to the calculated rate for growth on methanol (73), for purposes of FBA simulations.

Calculation of Potential ATP Yield

To calculate potential ATP yield during growth on CO, a linear programming problem identical to flux balance analysis was solved, but the flux through the non-growth associated maintenance (ATPM) reaction was maximized instead of the biomass equation. To force flux through a particular pathway, reactions involved with other ATP-generating pathways were constrained to have zero flux. For example, to calculate the ATP yield for acetogenesis, the HDR reaction involved in methanogenesis was constrained to have zero flux. The potential ATP yield was calculated by dividing the maximum flux through the ATP maintenance reaction by the CO uptake rate.

Results

Model Reconstruction

The metabolic network of *Methanosarcina acetivorans* was curated and validated as described in the methods and in Figure 1. After curation, the reconstruction has become a valuable knowledge base for the metabolism of this organism. In addition to reactions included in the model, reactions that were specifically excluded from the model due to literature or modeling evidence were also recorded. Complete lists of reactions included and gene-protein relationships can be found in Appendix B.

The metabolic network of *M. acetivorans* consists mostly of reactions required for synthesis of amino acids, nucleotides, and cofactors (Figure 1D). This was not surprising given relatively low nutritional requirements of this organism. There are still significant gaps in the knowledge of these pathways. For example, no homologues to currently known IMP dehydrogenase genes could be found in the genome of *M. acetivorans*, but the reaction catalyzed by this enzyme is predicted to be essential for nucleic acid synthesis. We have identified a number of other metabolic gaps that serve as potential targets for future experimentation (see Appendix A).

M. acetivorans is the second organism within the genus *Methanosarcina* to have a curated genome-scale metabolic model, after *M. barkeri* (16). Many of the differences between the published metabolic model of *M. barkeri* and the presented model of *M. acetivorans* are due to

new literature sources for novel metabolic paths unique to the archaea. For example, the published model of *M. barkeri* included the pentose phosphate pathway for synthesis of five-carbon sugars. However, the genes encoding for ribulose-5-phosphate 3-epimerase, transaldolase, and the two transketolase reactions in that pathway are apparently absent in many methanogens, including *M. barkeri* and *M. acetivorans*. Recently, an alternative pathway for synthesis of ribulose-5-phosphate was characterized in *Methanocaldococcus jannaschii* (25). The genes involved in that pathway had strong homology to genes in *M. acetivorans*. Therefore, the reactions in the pentose phosphate pathway were excluded from the metabolic model of *M. acetivorans*, and the new pathway was added to the model.

The *M. acetivorans* metabolic model accounts for key differences in methanogenesis pathways between *M. acetivorans* and *M. barkeri* (Figure 1B). These differences account for much of the variation in growth and secretion rates observed between these two species. Most notably, unlike *M. barkeri*, *M. acetivorans* cannot grow on H₂ and CO₂ and grows on CO using a completely different pathway that involves secretion of acetate, methylsulfides and formate (50, 60). *M. acetivorans* is also able to grow on dimethylsulfide, whereas *M. barkeri* can only perform methanogenesis from that substrate (74). The published model includes pathways to perform all of these functions.

The reconstructed network includes pathways for synthesizing most of the cofactors unique to methanogens (the exception is methanophenazine, which to the authors' knowledge has no proposed synthesis pathway in any organism). The coenzyme M, methanopterin, and F_{420}

biosynthesis pathways in *M. acetivorans* all appear to diverge from the pathways identified in *Methanocaldococcus*, based on the lack of sequence identity with biochemically verified gene products in that organism (Figure 2). For example, the gene responsible for synthesis of (S)-2-hydroxyglutaric acid in the *M. jannaschii* methanopterin biosynthesis pathway (MJ_1425) has no identity with any genes in *M. acetivorans*. An alternative pathway for coenzyme M synthesis has already been characterized in *M. acetivorans* and is included in the present model (21). Since no alternative pathways have yet been proposed for methanopterin or F₄₂₀ synthesis, the pathways from *Methanocaldococcus* were tentatively included and are likely targets for future model updates.

F420 Regeneration during Growth on Carbon Monoxide

Both M. acetivorans and M. barkeri grow on carbon monoxide by oxidizing it to CO_2 and subsequently reducing CO_2 to methane (17). In methanogens, the reduction of carbon dioxide to methane requires oxidation of two equivalents of coenzyme F_{420} . Therefore, to simulate growth on carbon monoxide, it was necessary to include a feasible mechanism for re-reducing coenzyme F_{420} . In CO-grown M. barkeri, reduced F_{420} is probably regenerated by generation of molecular hydrogen via the reverse action of Ech hydrogenase, followed by hydrogenation of oxidized F_{420} via the F_{420} -reducing hydrogenase, F_{420} is probably regenerated by generation of oxidized F_{420} via the F_{420} -reducing hydrogenase, F_{420} is probably regenerated by generation of oxidized F_{420} via the F_{420} -reducing hydrogenase, F_{420} is probably regenerated by generation of oxidized F_{420} via the F_{420} -reducing hydrogenase, F_{420} is probably regenerated by generation of oxidized F_{420} via the F_{420} -reducing hydrogenase, F_{420} is probably regenerated by generation of oxidized F_{420} via the F_{420} -reducing hydrogenase, F_{420} is probably regenerated by generation of oxidized F_{420} via the F_{420} -reducing hydrogenase, F_{420} is probably regenerated by generation of oxidized F_{420} via the F_{420} -reducing hydrogenase, F_{420} is probably regenerated by generation of oxidized F_{420} via the F_{420} -reducing hydrogenase, F_{420} is probably regenerated by generation of oxidized F_{420} via the F_{420} -reducing hydrogenase, F_{420} is probably regenerated by generation of oxidized F_{420} is probably regenerated by generation of F_{420} is probably regenerated by generation of F_{420} is probably regenerated by F_{420} is probably regenerated by F_{420} .

The current model postulates that F_{420} is regenerated by the combined action of F_{420} dehydrogenase (Fpo) and the Rnf complex (Figure 3A). In the proposed pathway, Rnf would reduce methanophenazine with ferredoxin, and subsequently, Fpo would run in reverse to reduce F_{420} . This hypothesis is consistent with the high levels of Fpo protein and transcript measured during growth on CO (35). The net generation of a proton gradient during regeneration of F_{420} (1 H^+/F_{420} regenerated) is reasonable since *M. barkeri* also generates a proton gradient during F_{420} regeneration through the action of Ech (83). Reverse action of Fpo has not been observed experimentally, but it is thermodynamically feasible in an environment containing excesses of oxidized F_{420} and reduced methanophenazine.

As an alternative hypothesis, we also tried to implement a F_{420} -ferredoxin oxioreductase reaction for the purposes of regenerating coenzyme F_{420} during growth on CO (7). In the presence of such a reaction, growth on CO was successfully predicted (data not shown). However, the presence of such a reaction was predicted to make a Δrnf mutant viable on acetate, contrary to experimental evidence (18). According to the model, a Δrnf mutant growing on acetate could survive with a lower growth rate by reducing coenzyme F_{420} with the putative oxioreductase and then conserving energy with Fpo and heterodisulfide reductase (Hdr). In reality, this alternative path might not produce enough ATP to make the cell viable on acetate, since Fpo probably does not pump as many proton equivalents across the cell membrane as Rnf. The wild type ATP yield during growth on acetate is only about 1 ATP/acetate (5).

Byproduct Formation Mechanisms and Energetics during Growth on CO

M. acetivorans produces acetate, formate, methane, and methylsulfides as byproducts when grown on carbon monoxide (in addition to CO₂) (50, 60). It is known that *M. acetivorans* produces acetate through the action of phosphoacetyltransferase (Pta) and acetate kinase (Ack) (60), but the mechanisms of formate and methylsulfide production are less clear. To probe the energetics of byproduct formation, it was necessary to hypothesize likely mechanisms for how they are produced.

It is currently unknown how or why *M. acetivorans* generates formate during growth on CO. One possibility is that it is produced as a byproduct of carbon monoxide dehydrogenase during growth on CO to prevent toxic CO accumulation in the cell (50, 61). The CO dehydrogenase enzyme from *Rhodospirillum rubrum* has been shown to create formate as a byproduct, and formate may formed by a similar mechanism in *M. acetivorans* (30, 61), although the physiological substrate for the reaction is still unknown. In order to investigate formate production, the following reaction was tentatively included in the model:

CODH3_SIDERXN: CO +
$$H_2O \rightarrow FORMATE + H^+$$

This reaction implies that formate production does not yield ATP.

Methylsulfides are only produced in small amounts during growth on CO (50). Therefore, it is unlikely that the path to produce them is a major source of ATP for the cell. The recently-characterized Mts enzymes may be partly responsible for production of dimethylsulfide in *M*.

acetivorans, although due to the very low ratio of dimethylsulfide production rate to the transcription level of these enzymes, the *in vivo* function of these enzymes remains unclear (49). Due to the similar structure of sulfide (HS⁻) and coenzyme M (C₂H₅O₃S₂), it is reasonable to hypothesize that methylsulfide (CH₄S) is formed from a reaction of Mtr. Under this hypothesis, the following reaction was added to the model for production of methylsulfide:

MSS:
$$MH_4SPT + HS^- + H^+ + 2Na^+ \rightarrow CH_4S + H_4SPT + 2Na^+(e)$$

Here, H₄SPT is tetrahydrosarcinopterin and MH₄SPT is its methylated version.

Under optimal growth conditions, flux balance analysis predicted that only methane would be produced. To investigate the cause of this prediction, the ATP potential was calculated for production of each byproduct per mole of CO consumed, as described in the methods. The ATP yield from methanogenesis (0.56 ATP/CO) was calculated to be significantly higher than that for acetogenesis (0.38 ATP/CO), methylsulfide production (0.33 ATP/CO), or formate generation (0 ATP/CO), which explains why FBA predicts only methanogenesis. It does not explain why all of these byproducts are produced or why acetogenesis is mandatory for growth on CO – these questions are explored in following sections.

Regulation of CO Levels in the M. acetivorans Cell

M. acetivorans encodes at least two complete carbon monoxide dehydrogenase (CODH) operons, and their relative expression during growth on CO may depend on the concentration of CO in the media (61). Since formate production may be a result of a side reaction of CODH, it is

tempting to speculate that the level of carbon monoxide in the cell is regulated by the balance of the levels of these proteins, one of which produces formate as a byproduct and one which does not. Flux balance analysis predicts that if the proposed mechanism for formate production is correct, reducing the flux through the primary reaction catalyzed by CODH leads to production of formate (Figure 3C). This indicates that such a balance could be a feasible mechanism for controlling CO toxicity in the cell.

Analysis of Acetogenesis during Growth on CO

The sodium-pumping methyltransferrase Mtr catalyzes the reversible transfer of methyl from methyl-tetrahydrosarcinopterin to methyl-Coenzyme M. Although this reaction is typically considered an essential part of the methanogenesis pathway, it is strongly down-regulated during growth on CO compared to other substrates (61). The observation of methanogenesis from CO despite the diminutive role of Mtr has inspired the hypothesized existence of a Mtr "bypass" reaction that performs the same reaction but does not generate a sodium gradient (17). Such a reaction could help balance the increased ATP potential with Mtr with a possible greater kinetic capacity without the sodium pump, hence permitting tolerance to a greater range of environmental CO concentrations (17). To test the effects of the bypass reaction on metabolism, the bypass was added to the network. Subsequently, flux balance analysis was used to predict whether acetogenesis would occur in a Δmtr strain during growth on CO. Only methanogenesis was predicted in the Δmtr strain, because the theoretical ATP yield of methanogenesis in a Δmtr strain was still predicted to be higher than that of acetogenesis (0.44 ATP/CO and 0.38 ATP/CO,

respectively). Therefore, even without Mtr, methanogenesis is more energetically favorable than acetogenesis.

It is unclear if inhibition of methanogenesis is the true cause of acetogenesis in *M. acetivorans* during growth on CO. Physiological evidence exists both supporting (60) and refuting (50) this hypothesis. If methanogenesis is indeed inhibited, it is unknown which reactions are inhibited. To probe possible causes of acetogenesis in *M. acetivorans*, flux balance analysis was used to predict acetate secretion rates after individually limiting each reaction's rate to within 80% of the wild type flux. The inhibition of certain methanogenic reactions (catalyzed by Hdr, Mcr, and Mrp) or the membrane-bound ATP synthase was predicted to lead to significant levels of acetate secretion (> 0.1 mmol/gDW/hr). However, inhibition of purine synthesis could also lead to acetogenesis (Figure 3B). This remained true at different levels of inhibition as well (data not shown). The identification of this potential explanation for acetogenesis during growth on CO highlights the power of a systems approach for generating hypotheses, which could be tested using genetic manipulations. A study based solely on the methanogenesis pathways would be less likely to identify this possibility.

Comparison of Predicted Growth Phenotypes to Experimental Data

Flux balance analysis was used to predict growth phenotypes for wild type strains of *Methanosarcina acetivorans* growing on acetate, methanol, and carbon monoxide, the three substrates for which growth and substrate uptake data are available (60, 68, 73). Predicted

growth rates were highly dependent on substrate uptake rates, which varied up to 100% depending on the data set used to perform the calculation (see Appendix C). It was possible to pick uptake rates within the experimentally feasible ranges for each substrate that matched the observed growth rates and growth yields within 20% (Table 1).

The rate of methanogenesis was predicted to be much lower during growth on methanol compared to experiment, which was partly because the predicted growth rate was lower than the experimentally determined values. However, the ratios of products are consistent with experimental data. When maximizing ATP yield during growth on methanol, the predicted ratio of methane to CO₂ produced was exactly 3:1, as would be expected to balance redox potentials in the cell (7). However, when optimizing for growth, the actual ratio of methane to CO₂ secreted was predicted in the model to be 3.8:1, because the carbon dioxide-fixing activity of carbon monoxide dehydrogenase/acetyl CoA synthase reduced the net secretion of carbon dioxide.

Comparison of knockout lethality predictions to available data indicates that the model correctly predicts the growth/no growth phenotypes of 60/63 knockout mutants correctly (Table 2). All of the incorrect predictions were cases in which genes were experimentally shown to be lethal but predicted to be nonlethal. A Δmch knockout strain was predicted to be viable on acetate, but this knockout is known to be lethal on that substrate (27). The mch gene is essential due to the need for M. acetivorans to reduce F_{420} for use in anabolic reactions such as the F_{420} -dependent glutamate synthase (56). However, another mechanism for reducing F_{420} is necessary for growth on CO, and flux balance analysis predicts that such a mechanism could also be used to reduce

 F_{420} during growth on acetate, therefore making *mch* nonessential. Further study is needed to resolve the tension between these experimental observations.

Two of the incorrect lethality predictions involved acetogenesis during growth on carbon monoxide. The genes encoding Pta and Ack are essential for growth on CO (60), presumably because without acetogenesis, the ATP generation capabilities are insufficient for growth. Flux balance analysis incorrectly predicts that a $\Delta pta\Delta ack$ mutant inhibited in methanogenesis can still grow by producing methylsulfides. The predicted pathway has a potential ATP yield of 0.33 ATP/CO. It is possible that the production of methylsulfides does not actually result in generation of a sodium gradient. In this case the ATP yield would only be 0.17 ATP/CO, insufficient to overcome the ATP maintenance requirement. It is also possible that the hypothesized mechanism is correct but kinetically limited. Only small quantities of methylsulfides are produced during growth on CO, despite the high level of mts genes presumably responsible for their production on that substrate (49).

Knockout lethality data enabled the exclusion of certain reactions whose genes had sequence similarity with genes in other organisms, but which catalyzed reactions that were inconsistent with physiological data in *M. acetivorans* itself. For example, *M. acetivorans* uses Ack and Pta to activate acetate to acetyl-CoA during acetoclastic methanogenesis, and cannot grow on acetate without the encoding genes (60). However, the *M. acetivorans* genome also encodes genes (MA3168 and MA3602) with high sequence identity to a complex in *Methanocaldococcus jannaschii* that catalyzes an alternative pathway for activating acetate (46). Including this

reaction would make Pta and Ack nonessential for growth on acetate. On this basis, the genes involved with the alternative pathway were assumed to be nonfunctional, and the reactions in the alternative pathway were excluded from the model.

Exploration of an Alternate Heterodisulfide Reductase (hdrABC) on Methanol

HdrABC is a soluble heterodisulfide reductase typically found in methanogens without cytochromes (70). Most methanogens with cytochromes, including *Methanosarcina* species, use a membrane-bound heterodisulfide reductase HdrDE instead of the soluble HdrABC to couple methanogenesis to ATP production (75). Therefore, the discovery that *M. acetivorans* encodes and uses both types of heterodisulfide reductase during growth on methyltrophic substrates was a surprise (7). Since the HdrABC complex is not a sodium or proton pump, it is unclear if the activity of this complex is coupled to ATP synthesis in *M. acetivorans*.

In *Methanothermobacter marburgensis*, a methanogen without cytochromes, HdrABC is coupled to ATP synthesis through its interaction with the MvhADG hydrogenase complex (70). The HdrABC/MvhADG complex in *M. marburgensis* uses an electron bifurcation mechanism, in which the electrons from two equivalents of molecular hydrogen are donated to ferredoxin and to the heterodisulfide (70). The reduced ferredoxin can then be used to generate ATP. *M. acetivorans* lacks the genes encoding the MvhADG complex, so it is likely that the HdrABC complex in that organism has a separate function. It has been suggested that *M. acetivorans* HdrABC may also use an electron bifurcation mechanism, splitting the electrons of two fully-

reduced ferredoxins between heterodisulfide and coenzyme F_{420} (7). Alternatively, the HdrABC may simply reduce heterodisulfide with ferredoxin, acting as a sink for excess ferredoxin produced during oxidation of methanol to CO_2 .

To test the electron bifurcation hypothesis in a genome-scale context, the phenotype of *M. acetivorans* was simulated with and without electron bifurcation in HdrABC. Two additional constraints were necessary to obtain reasonable predictions. Reactions catalyzed by Pta and Ack were disabled to prevent acetate secretion, which has not been observed during growth on methanol (36), and the flux through pyruvate-acetyl CoA oxioreductase was set to be equal to the wild-type value to prevent secretion of formate and other unobserved byproducts during growth on methanol (68). In the presence of Rnf, the simulations did not predict utilization of HdrABC regardless of mechanism. However, a \(\Delta nnf \) mutant was predicted to utilize HdrABC to oxidize ferredoxin. The mutant was predicted to grow 35% slower than the wild type without bifurcation and 20% slower with bifurcation (Figure 4B). A \(\Delta nnf \) mutant actually grows about 25% slower on methanol than the wild type (William Metcalf, unpublished data), so within experimental error it is difficult to tell which mechanism is correct. Further experiments could help elucidate the true mechanism.

Discussion

We have built and manually curated a computable genome-scale model of metabolism in *M. acetivorans*, only the third methanogen species to be reconstructed (after *M. barkeri* (16) and *M. jannaschii* (78)) and the second in the genus *Methanosarcina*. We have used flux balance analysis to probe incompletely understood pathways for ATP generation and product formation using carbon monoxide as a substrate. The simulations lend support to the hypothesis that the generation of both acetate and formate could come about as a result of the inhibitory effects of carbon monoxide in the cell. In particular, acetogenesis could be favored kinetically due to the relatively low potential of methanogenesis or purine synthesis under CO inhibition, while formate generation could result from regulation the relative transcription levels of multiple carbon monoxide dehydrogenase isozymes present in the cell. Therefore, flux balance analysis was useful to probe the effects of both metabolic and regulatory constraints on the metabolic network.

Flux balance analysis has also proven useful for testing alternate hypotheses in our study of the soluble heterodisulfide reductase. The possibility of electron bifurcation as a more likely mechanism for action of this enzyme opens up many interesting experimental questions, such as how the complex could have evolved to use different substrates in *M. acetivorans* than it does in *M. marburgensis*, a distantly related methanogen, or whether the HdrABC complex in *M. acetivorans* interacts with other metabolic complexes in the methanogenic pathways in a similar

way that *M. marburgensis* interacts with Mvh (70). Much work remains to be done to answer these questions and identify for sure whether the bifurcation mechanism is at work or not.

The reconstruction endeavor has led to significant insight resulting from the combination of data in numerous studies in the literature. It has also identified the presence and impact of gaps in the knowledge of this organism, helping to focus the continued experimental efforts towards understanding metabolism in this species. Due to the incomplete knowledge of this organism, the metabolic reconstruction necessarily involved several assumptions, such as the mechanism of regeneration for coenzyme F_{420} on CO, which may prove to be incorrect. As experimental data continues become available, the model will be continuously compared against experiment and provide novel hypothesis in an iterative process that lies at the heart of systems biology.

Figures and Tables

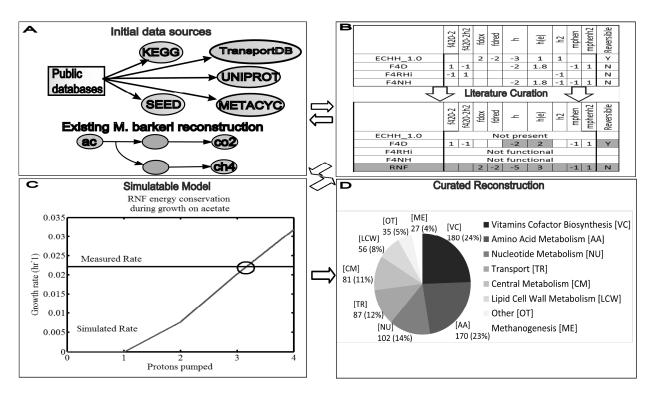


Figure 1. Overview of the reconstruction process for *Methanosarcina acetivorans* str. C2A. (A): Possible reactions and gene associations were pulled from the existing reconstruction of *Methanosarcina barkeri* str. Fusaro, a closely related methanogen, and several online databases, including Metacyc, BIGG, KEGG, the SEED, and Uniprot. (B): Reactions were added and removed based on a thorough literature review covering 289 of the reactions in the model. Shown are some key differences in energy conservation reactions between *M. acetivorans* and *M. barkeri*. (C) Growth was simulated using flux balance analysis, which seeks the physically realizable flux distribution that would yield the highest growth rate. (D) The final reconstruction contained reactions related to synthesis of essential biomass components, cell wall components, and methanogenesis, among others.

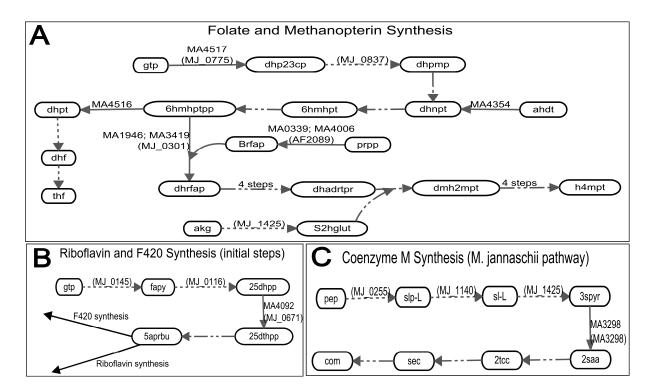


Figure 2. Apparent divergence of Methanopterin (A), Riboflavin/Coenzyme F₄₂₀ (B), and Coenzyme M (C) synthesis between *M. acetivorans* and other archaea. Metabolites are shown in circles with the ID given in the model (see supplemental material for complete names). Genes shown in parenthesis are biochemically verified, while the MA genes not in parentheses are the predicted *M. acetivorans* gene homologues, if any are present. Solid arrows () represent reactions with gene association in *M. acetivorans*, partially broken arrows () represent reactions biochemical evidence in other archaea (not in *M. acetivorans*) and no known gene association, and dotted arrows () represent reactions with verified gene associations in another organism, but no homologous genes are present in *M. acetivorans*. MA: *M. acetivorans*; MJ: *Methanocaldococcus jannaschii*; AF: *Archaeoglobus fulgidus*.

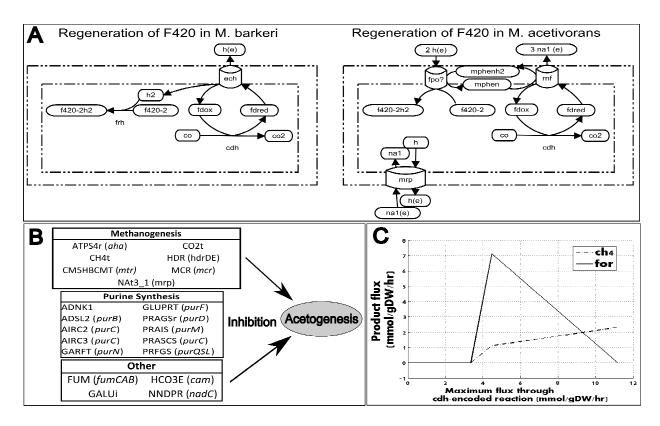


Figure 3. Analysis of growth of *M. acetivorans* on carbon monoxide. (A) Regeneration of coenzyme F₄₂₀ during growth on carbon monoxide for both *M. barkeri* (left) and proposed pathway for *M. acetivorans* (right). cdh: Carbon monoxide dehydrogenase; ech: ech hydrogenase; f420-2: Oxidized coenzyme F₄₂₀; f420-2h2: Reduced coenzyme F₄₂₀; fdox/fdred: oxidized and reduced ferredoxin; fpo: F₄₂₀ dehydrogenase; frh: F420-reducing hydrogenase; mphen/mphenh2: oxidized and reduced methanophenazine; mrp: Multiple resistance protein (Na+/H+ pump); rnf: *Rhodobacter* nitrogen fixation complex. (B) Inhibition of a range of reactions leads to predictions of acetogenesis during growth on CO, including reactions in late methanogenesis and reactions involved in purine biosynthesis. Reactions IDs are shown (with gene names in parenthesis if available) that led to greater than 0.01 mmol/gDW/hr production of acetate after being restricted to <80% of the optimal flux. (C) Flux balance analysis predicts that limitation of CO dehydrogenase activity leads to formate production.

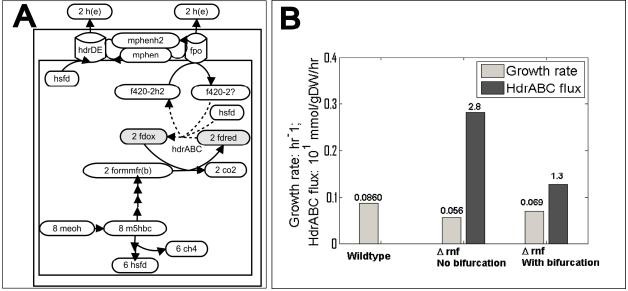


Figure 4: (A) Hypothesized bifurcation mechanism of the soluble heterodisulfide reductase HdrABC during growth on methylotrophic substrates in M. acetivorans. (B) Flux balance analysis predicts that HdrABC is not used when Rnf is available, but a Δrnf mutant is predicted to carry flux through HdrABC. The growth rate for the Δrnf was predicted to be about 20% less than wild type with bifurcation and 35% less without.

Table 1: Growth and secretion rates and yields of *M. acetivorans* on methanol, acetate, and carbon monoxide using experimentally feasible uptake rates (60, 68, 73). For simulations on CO, no additional constraints to Hdr or Cdh were assigned. All measured values are averaged across literature sources.

		Growt	h (hr ⁻¹)	Growth yield (gDW/mmol)		CH4 rate (mmol/gDW/hr)	
Substrate	Measured	Measured	Predicted	Measured	Predicted	Measured	Predicted
Acetate	7	0.023	0.021	2.4	3.0	4.9	6.6
Methanol	20	0.098	0.086	5.2	4	22	13.3
CO	11.6	0.029	0.030	2.5	2.6	0.4	2.3

Table 2: Knockout lethality predictions from FBA (L = lethal and N = nonlethal) and agreement with experimental results. (C): correct prediction; [X]: incorrect prediction. No marking means no experimental data is available for that knockout under those conditions. AC: acetate; DMA: dimethylamine; DMS: dimethylsulfide; MeOH: Methanol; MMA: monomethylamine; TMA: trimethylamine. See supplemental material for knockout data references.

Genotype		CO	DMA	DMS	MeOH	MMA	TMA
∆ack∆pta	L(C)	N[X]	N	N	N(C)	N	N
$\Delta atpDCIXBEFAG$	N (C)	N	N	N	N(C)	N(C)	N
$\Delta cooS1F$	N	N(C)	N	N	N	N	N
$\Delta cooS2$	N	N(C)	N	N	N	N	N
$\Delta hdrABC$	N (C)	N(C)	N	N	N(C)	N	N
$\Delta hdrED$	L(C)	N	L	L	L(C)	L	L(C)
Δmch	N [X]	L	L	L	L(C)	L	L
$\Delta mtaA1$	N (C)	N	N(C)	N	L(C)	N(C)	N(C)
$\Delta m ta B 1 C 1 \Delta m ta B 2 C 2 \Delta m ta B 3 C 3$	N (C)	N	N(C)	N	L(C)	N(C)	N(C)
$\Delta mtaA1\Delta mtaB1C1\Delta mtaB2C2\Delta mtaB3C3$	N [X]	N	N(C)	N	L(C)	N(C)	N(C)
$\Delta mtbA$	N (C)	N	L(C)	N	N(C)	L(C)	N(C)
$\Delta mtsD\Delta mtsF\Delta mtsH$	N (C)	N(C)	N	L(C)	N(C)	N	N(C)
$\Delta mts X \Delta mts Y$, X and Y two mts genes	N (C)	N(C)	N	N(C)	N(C)	N	N(C)
$\Delta rnfXCDGEABY$	L(C)	L	N(C)	N(C)	N(C)	N(C)	N(C)
$\Delta lysK$	N	N	N(C)	N	N(C)	N(C)	N(C)
$\Delta lysS$	N	N	N(C)	N	N(C)	N(C)	N(C)
Δmtr	L (C)	N	L	L	L(C)	L	L(C)
TOTAL CORRECT	11/13	5/6	7/7	3/3	15/15	8/8	11/11

References

- Anderson, B., K. Bartlett, S. Frolking, K. Hayhoe, J. Jenkins, W. Salas, and E. R. Report. 2010. Methane and Nitrous Oxide Emissions from Natural Sources.
 Environmental Protection Agency.
- Apolinario, E. E., K. M. Jackson, and K. R. Sowers. 2005. Development of a plasmid-mediated reporter system for in vivo monitoring of gene expression in the archaeon Methanosarcina acetivorans. Appl Environ Microbiol 71:4914-4918.
- 3. **Arakaki, A. K., Y. Huang, and J. Skolnick.** 2009. EFICAz2: enzyme function inference by a combined approach enhanced by machine learning. BMC Bioinformatics **10:**107.
- 4. **Becker, S. A., A. M. Feist, M. L. Mo, G. Hannum, B. Ø. Palsson, and M. J. Herrgard.**2007. Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox. Nat Protoc **2:**727-738.
- 5. **Bock, A. K., and P. Schonheit.** 1995. Growth of Methanosarcina barkeri (Fusaro) under nonmethanogenic conditions by the fermentation of pyruvate to acetate: ATP synthesis via the mechanism of substrate level phosphorylation. J Bacteriol **177:**2002-2007.
- 6. **Bose, A., M. A. Pritchett, and W. W. Metcalf.** 2008. Genetic analysis of the methanol-and methylamine-specific methyltransferase 2 genes of Methanosarcina acetivorans C2A.

 J Bacteriol **190:**4017-4026.
- 7. **Buan, N. R., and W. W. Metcalf.** 2010. Methanogenesis by Methanosarcina acetivorans involves two structurally and functionally distinct classes of heterodisulfide reductase.

 Mol Microbiol **75:**843-853.

- 8. **Buchenau, B., J. Kahnt, I. U. Heinemann, D. Jahn, and R. K. Thauer.** 2006. Heme biosynthesis in Methanosarcina barkeri via a pathway involving two methylation reactions. J Bacteriol **188**:8666-8668.
- 9. **Buchenau, B., and R. K. Thauer.** 2004. Tetrahydrofolate-specific enzymes in Methanosarcina barkeri and growth dependence of this methanogenic archaeon on folic acid or p-aminobenzoic acid. Arch Microbiol **182:**313-325.
- Camacho, C., G. Coulouris, V. Avagyan, N. Ma, J. Papadopoulos, K. Bealer, and T.
 L. Madden. 2009. BLAST+: architecture and applications. BMC Bioinformatics 10:421.
- 11. **Capone, D. G., and R. P. Kiene.** 1988. Comparison of Microbial Dynamics in Marine and Freshwater Sediments: Contrasts in Anaerobic Carbon Catabolism. Limnol Oceanogr **33:**725-749.
- 12. Caspi, R., T. Altman, J. M. Dale, K. Dreher, C. A. Fulcher, F. Gilham, P. Kaipa, A. S. Karthikeyan, A. Kothari, M. Krummenacker, M. Latendresse, L. A. Mueller, S. Paley, L. Popescu, A. Pujar, A. G. Shearer, P. Zhang, and P. D. Karp. 2010. The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res 38:D473-479.
- 13. **Deppenmeier, U.** 2002. The unique biochemistry of methanogenesis. Prog Nucleic Acid Res Mol Biol **71:**223-283.
- 14. Deppenmeier, U., A. Johann, T. Hartsch, R. Merkl, R. A. Schmitz, R. Martinez-Arias, A. Henne, A. Wiezer, S. Bäumer, C. Jacobi, H. Brüggemann, T. Lienard, A. Christmann, M. Bömeke, S. Steckel, A. Bhattacharyya, A. Lykidis, R. Overbeek, H.-P. Klenk, R. P. Gunsalus, H.-J. Fritz, and G. Gottschalk. 2002. The genome of

- Methanosarcina mazei: evidence for lateral gene transfer between bacteria and archaea. J Mol Microbiol Biotechnol **4:**453-461.
- 15. Feist, A. M., C. S. Henry, J. L. Reed, M. Krummenacker, A. R. Joyce, P. D. Karp, L. J. Broadbelt, V. Hatzimanikatis, and B. Ø. Palsson. 2007. A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information. Mol Syst Biol 3:121.
- 16. **Feist, A. M., J. C. M. Scholten, B. Ø. Palsson, F. J. Brockman, and T. Ideker.** 2006. Modeling methanogenesis with a genome-scale metabolic reconstruction of Methanosarcina barkeri. Mol Syst Biol **2:**2006.0004.
- 17. **Ferry, J. G.** 2008. CO in methanogenesis. Ann Microbiol **190:**257-269.
- 18. **Ferry, J. G., and D. J. Lessner.** 2008. Methanogenesis in Marine Sediments. Ann N Y Acad Sci **1125:**147-157.
- 19. Galagan, J. E., C. Nusbaum, A. Roy, M. G. Endrizzi, P. Macdonald, W. FitzHugh, S. Calvo, R. Engels, S. Smirnov, D. Atnoor, A. Brown, N. Allen, J. Naylor, N. Stange-Thomann, K. DeArellano, R. Johnson, L. Linton, P. McEwan, K. McKernan, J. Talamas, A. Tirrell, W. Ye, A. Zimmer, R. D. Barber, I. Cann, D. E. Graham, D. A. Grahame, A. M. Guss, R. Hedderich, C. Ingram-Smith, H. C. Kuettner, J. A. Krzycki, J. A. Leigh, W. Li, J. Liu, B. Mukhopadhyay, J. N. Reeve, K. Smith, T. A. Springer, L. A. Umayam, O. White, R. H. White, E. Conway de Macario, J. G. Ferry, K. F. Jarrell, H. Jing, A. J. L. Macario, I. Paulsen, M. Pritchett, K. R. Sowers, R. V. Swanson, S. H. Zinder, E. Lander, W. W. Metcalf, and B. Birren. 2002. The genome of M. acetivorans reveals extensive metabolic and physiological diversity. Genome Res

- **12:**532-542.
- 20. **Graham, D. E., M. Graupner, H. Xu, and R. H. White.** 2001. Identification of coenzyme M biosynthetic 2-phosphosulfolactate phosphatase. A member of a new class of Mg(2+)-dependent acid phosphatases. Eur J Biochem **268:**5176-5188.
- 21. **Graham, D. E., S. M. Taylor, R. Z. Wolf, and S. C. Namboori.** 2009. Convergent evolution of coenzyme M biosynthesis in the Methanosarcinales: cysteate synthase evolved from an ancestral threonine synthase. Biochem J **424**:467-478.
- 22. **Graham, D. E., H. Xu, and R. H. White.** 2002. Identification of coenzyme M biosynthetic phosphosulfolactate synthase: a new family of sulfonate-biosynthesizing enzymes. J Biol Chem **277:**13421-13429.
- 23. **Graupner, M., H. Xu, and R. H. White.** 2000. Identification of an archaeal 2-hydroxy acid dehydrogenase catalyzing reactions involved in coenzyme biosynthesis in methanoarchaea. J Bacteriol **182:**3688-3692.
- 24. **Grochowski, L. L., H. Xu, and R. H. White.** 2009. An iron(II) dependent formamide hydrolase catalyzes the second step in the archaeal biosynthetic pathway to riboflavin and 7,8-didemethyl-8-hydroxy-5-deazariboflavin. Biochemistry **48:**4181-4188.
- 25. **Grochowski, L. L., H. Xu, and R. H. White.** 2005. Ribose-5-phosphate biosynthesis in Methanocaldococcus jannaschii occurs in the absence of a pentose-phosphate pathway. J Bacteriol **187:**7382-7389.
- 26. **Guss, A. M., G. Kulkarni, and W. W. Metcalf.** 2009. Differences in hydrogenase gene expression between Methanosarcina acetivorans and Methanosarcina barkeri. J Bacteriol **191:**2826-2833.

- 27. **Guss, A. M., B. Mukhopadhyay, J. K. Zhang, and W. W. Metcalf.** 2005. Genetic analysis of mch mutants in two Methanosarcina species demonstrates multiple roles for the methanopterin-dependent C-1 oxidation/reduction pathway and differences in H(2) metabolism between closely related species. Mol Microbiol **55:**1671-1680.
- 28. **Heiden, S., R. Hedderich, E. Setzke, and R. K. Thauer.** 1994. Purification of a two-subunit cytochrome-b-containing heterodisulfide reductase from methanol-grown Methanosarcina barkeri. Eur J Biochem **221:**855-861.
- 29. Henry, C. S., M. DeJongh, A. A. Best, P. M. Frybarger, B. Linsay, and R. L. Stevens. 2010. High-throughput generation, optimization and analysis of genome-scale metabolic models. Nat Biotechnol 28:977-982.
- 30. Heo, J., L. Skjeldal, C. R. Staples, and P. W. Ludden. 2002. Carbon monoxide dehydrogenase from Rhodospirillum rubrum produces formate. J Biol Inorg Chem 7:810-814.
- 31. **Kandler, O., and H. Hippe.** 1977. Lack of peptidoglycan in the cell walls of Methanosarcina barkeri. Arch Microbiol **113:**57-60.
- 32. **Kanehisa, M., S. Goto, M. Furumichi, M. Tanabe, and M. Hirakawa.** 2010. KEGG for representation and analysis of molecular networks involving diseases and drugs. Nucleic Acids Res **38:**D355-360.
- 33. **Kumar, V. S., and C. D. Maranas.** 2009. GrowMatch: an automated method for reconciling in silico/in vivo growth predictions. PLoS Comput Biol **5:**e1000308.
- 34. **Lessner, D. J., L. Lhu, C. S. Wahal, and J. G. Ferry.** 2010. An engineered methanogenic pathway derived from the domains bacteria and archaea. MBio 1.

- 35. Lessner, D. J., L. Li, Q. Li, T. Rejtar, V. P. Andreev, M. Reichlen, K. Hill, J. J. Moran, B. L. Karger, and J. G. Ferry. 2006. An unconventional pathway for reduction of CO2 to methane in CO-grown Methanosarcina acetivorans revealed by proteomics.
 Proc Natl Acad Sci U S A 103:17921-17926.
- 36. Li, Q., L. Li, T. Rejtar, B. L. Karger, and J. G. Ferry. 2005. Proteome of Methanosarcina acetivorans Part II: comparison of protein levels in acetate- and methanol-grown cells. J Proteome Res 4:129-135.
- 37. **Liu, Y., R. H. White, and W. B. Whitman.** 2010. Methanococci use the diaminopimelate aminotransferase (DapL) pathway for lysine biosynthesis. J Bacteriol **192:**3304-3310.
- 38. Longstaff, D. G., R. C. Larue, J. E. Faust, A. Mahapatra, L. Zhang, K. B. Green-Church, and J. A. Krzycki. 2007. A natural genetic code expansion cassette enables transmissible biosynthesis and genetic encoding of pyrrolysine. Proc Natl Acad Sci U S A 104:1021-1026.
- 39. Maeder, D. L., I. Anderson, T. S. Brettin, D. C. Bruce, P. Gilna, C. S. Han, A. Lapidus, W. W. Metcalf, E. Saunders, R. Tapia, and K. R. Sowers. 2006. The Methanosarcina barkeri genome: comparative analysis with Methanosarcina acetivorans and Methanosarcina mazei reveals extensive rearrangement within methanosarcinal genomes. J Bacteriol 188:7922-7931.
- 40. Mahapatra, A., G. Srinivasan, K. B. Richter, A. Meyer, T. Lienard, J. K. Zhang, G. Zhao, P. T. Kang, M. Chan, G. Gottschalk, W. W. Metcalf, and J. A. Krzycki. 2007.
 Class I and class II lysyl-tRNA synthetase mutants and the genetic encoding of

- pyrrolysine in Methanosarcina spp. Mol Microbiol **64:**1306-1318.
- 41. **Mahlmann, A., U. Deppenmeier, and G. Gottschalk.** 1989. Methanofuran-B Is Required for Co2 Formation from Formaldehyde by Methanosarcina-Barkeri. Fems Microbiology Letters **61:**115-120.
- 42. Mavrodi, D. V., V. N. Ksenzenko, R. F. Bonsall, R. J. Cook, A. M. Boronin, and L. S. Thomashow. 1998. A seven-gene locus for synthesis of phenazine-1-carboxylic acid by Pseudomonas fluorescens 2-79. J Bacteriol 180:2541-2548.
- 43. Meuer, J., H. C. Kuettner, J. K. Zhang, R. Hedderich, and W. W. Metcalf. 2002.
 Genetic analysis of the archaeon Methanosarcina barkeri Fusaro reveals a central role for Ech hydrogenase and ferredoxin in methanogenesis and carbon fixation. Proc Natl Acad Sci U S A 99:5632-5637.
- 44. **Milich, L.** 1999. The role of methane in global warming: where might mitigation strategies be focused? Global Environmental Change **9:**179-201.
- 45. **Milne, C. B., P. J. Kim, J. A. Eddy, and N. D. Price.** 2009. Accomplishments in genome-scale in silico modeling for industrial and medical biotechnology. Biotechnol J **4:**1653-1670.
- 46. **Musfeldt, M., and P. Schönheit.** 2002. Novel type of ADP-forming acetyl coenzyme A synthetase in hyperthermophilic archaea: heterologous expression and characterization of isoenzymes from the sulfate reducer Archaeoglobus fulgidus and the methanogen Methanococcus jannaschii. J Bacteriol **184:**636-644.
- 47. **O'Brien, J. M., R. H. Wolkin, T. T. Moench, J. B. Morgan, and J. G. Zeikus.** 1984. Association of hydrogen metabolism with unitrophic or mixotrophic growth of

- Methanosarcina barkeri on carbon monoxide. J Bacteriol **158:**373-375.
- 48. **Oberhardt, M. A., B. Ø. Palsson, and J. A. Papin.** 2009. Applications of genome-scale metabolic reconstructions. Mol Syst Biol **5:**320.
- 49. **Oelgeschlager, E., and M. Rother.** 2009. In vivo role of three fused corrinoid/methyl transfer proteins in Methanosarcina acetivorans. Mol Microbiol **72:**1260-1272.
- 50. **Oelgeschläger, E., and M. Rother.** 2009. Influence of carbon monoxide on metabolite formation in Methanosarcina acetivorans. FEMS Microbiol Lett **292:**254-260.
- Opulencia, R. B., A. Bose, and W. W. Metcalf. 2009. Physiology and posttranscriptional regulation of methanol:coenzyme M methyltransferase isozymes in Methanosarcina acetivorans C2A. J Bacteriol 191:6928-6935.
- 52. **Orth, J. D., I. Thiele, and B. Ø. Palsson.** 2010. What is flux balance analysis? Nat Biotechnol **28:**245-248.
- Pfaltz, A., A. Kobelt, R. Huster, and R. K. Thauer. 1987. Biosynthesis of coenzyme F430 in methanogenic bacteria. Identification of 15,17(3)-seco-F430-17(3)-acid as an intermediate. Eur J Biochem 170:459-467.
- 54. **Porat, I., M. Sieprawska-Lupa, Q. Teng, F. J. Bohanon, R. H. White, and W. B. Whitman.** 2006. Biochemical and genetic characterization of an early step in a novel pathway for the biosynthesis of aromatic amino acids and p-aminobenzoic acid in the archaeon Methanococcus maripaludis. Mol Microbiol **62:**1117-1131.
- 55. **Price, N. D., J. L. Reed, and B. O. Palsson.** 2004. Genome-scale models of microbial cells: evaluating the consequences of constraints. Nat Rev Microbiol **2:**886-897.
- 56. Raemakers-Franken, P. C., R. J. Brand, A. J. Kortstee, C. Van der Drift, and G. D.

- **Vogels.** 1991. Ammonia assimilation and glutamate incorporation in coenzyme F420 derivatives of Methanosarcina barkeri. Antonie Van Leeuwenhoek **59:**243-248.
- 57. **Rajoka, M. I., R. Tabassum, and K. A. Malik.** 1999. Enhanced rate of methanol and acetate uptake for production of methane in batch cultures using Methanosarcina mazei. Bioresource Technology **67:**305-311.
- 58. **Ren, Q., K. Chen, and I. T. Paulsen.** 2007. TransportDB: a comprehensive database resource for cytoplasmic membrane transport systems and outer membrane channels. Nucleic Acids Res **35:**D274-279.
- 59. **Rother, M., P. Boccazzi, A. Bose, M. A. Pritchett, and W. W. Metcalf.** 2005. Methanol-dependent gene expression demonstrates that methyl-coenzyme M reductase is essential in Methanosarcina acetivorans C2A and allows isolation of mutants with defects in regulation of the methanol utilization pathway. J Bacteriol **187:**5552-5559.
- 60. **Rother, M., and W. W. Metcalf.** 2004. Anaerobic growth of Methanosarcina acetivorans C2A on carbon monoxide: an unusual way of life for a methanogenic archaeon. Proc Natl Acad Sci U S A **101**:16929-16934.
- 61. **Rother, M., E. Oelgeschläger, and W. M. Metcalf.** 2007. Genetic and proteomic analyses of CO utilization by Methanosarcina acetivorans. Arch Microbiol **188:**463-472.
- 62. **Satish Kumar, V., M. S. Dasika, and C. D. Maranas.** 2007. Optimization based automated curation of metabolic reconstructions. BMC Bioinformatics **8:**212.
- 63. **Satish Kumar, V., J. Ferry, and C. Maranas.** 2011. Metabolic reconstruction of the archaeon methanogen Methanosarcina Acetivorans. BMC Systems Biology **5:**28.
- 64. **Saum, R., K. Schlegel, B. Meyer, and V. Muller.** 2009. The F(1)F(O)ATP synthase

- genes in Methanosarcina acetivorans are dispensable for growth and ATP synthesis. Fems Microbiology Letters **300:**230-236.
- 65. **Schellenberger, J., J. O. Park, T. M. Conrad, and B. O. Palsson.** 2010. BiGG: a Biochemical Genetic and Genomic knowledgebase of large scale metabolic reconstructions. BMC Bioinformatics **11:**213.
- 66. **Sowers, K. R., S. F. Baron, and J. G. Ferry.** 1984. Methanosarcina acetivorans sp. nov., an Acetotrophic Methane-Producing Bacterium Isolated from Marine Sediments. Appl Environ Microbiol **47:**971-978.
- 67. **Sowers, K. R., J. E. Boone, and R. P. Gunsalus.** 1993. Disaggregation of Methanosarcina spp. and Growth as Single Cells at Elevated Osmolarity. Appl Environ Microbiol **59:**3832-3839.
- 68. **Sowers, K. R., M. J. Nelson, and J. G. Ferry.** 1984. Growth of acetotrophic, methane-producing bacteria in a pH auxostat. Curr Microbiol **11:**227-229.
- 69. Sprott, G. D., C. J. Dicaire, C. G. Choquet, G. B. Patel, and I. Ekiel. 1993.
 Hydroxydiether Lipid Structures in Methanosarcina spp. and Methanococcus voltae. Appl
 Environ Microbiol 59:912-914.
- 70. **Stojanowic, A., G. J. Mander, E. C. Duin, and R. Hedderich.** 2003. Physiological role of the F420-non-reducing hydrogenase (Mvh) from Methanothermobacter marburgensis. Arch Microbiol **180:**194-203.
- 71. **Storbeck, S., S. Rolfes, E. Raux-Deery, M. J. Warren, D. Jahn, and G. Layer.** 2010. A novel pathway for the biosynthesis of heme in Archaea: genome-based bioinformatic predictions and experimental evidence. Archaea **2010:**175050.

- 72. **Streit, W. R., and P. Entcheva.** 2003. Biotin in microbes, the genes involved in its biosynthesis, its biochemical role and perspectives for biotechnological production. Appl Microbiol Biotechnol **61:**21-31.
- 73. **Summer, H.** 2009. Improved approach for transferring and cultivating Methanosarcina acetivorans C2A (DSM 2834). Lett Appl Microbiol **48:**786-789.
- 74. **Tallant, T. C., and J. A. Krzycki.** 1997. Methylthiol:coenzyme M methyltransferase from Methanosarcina barkeri, an enzyme of methanogenesis from dimethylsulfide and methylmercaptopropionate. J Bacteriol **179:**6902-6911.
- 75. **Thauer, R. K., A. K. Kaster, H. Seedorf, W. Buckel, and R. Hedderich.** 2008. Methanogenic archaea: ecologically relevant differences in energy conservation. Nat Rev Microbiol **6:**579-591.
- 76. **The Uniprot, C.** 2010. The Universal Protein Resource (UniProt) in 2010. Nucleic Acids Res **38:**D142-148.
- 77. **Thiele, I., and B. Ø. Palsson.** 2010. A protocol for generating a high-quality genomescale metabolic reconstruction. Nat Protoc **5:**93-121.
- 78. **Tsoka, S., D. Simon, and C. A. Ouzounis.** 2004. Automated metabolic reconstruction for Methanococcus jannaschii. Archaea **1:**223-229.
- 79. **Vermeij, P., R. J. van der Steen, J. T. Keltjens, G. D. Vogels, and T. Leisinger.** 1996. Coenzyme F390 synthetase from Methanobacterium thermoautotrophicum Marburg belongs to the superfamily of adenylate-forming enzymes. J Bacteriol **178:**505-510.
- 80. **Vermeij, P., E. Vinke, J. T. Keltjens, and C. Van der Drift.** 1995. Purification and properties of coenzyme F390 hydrolase from Methanobacterium thermoautotrophicum

- (strain Marburg). Eur J Biochem 234:592-597.
- 81. Walker, C. J., and R. D. Willows. 1997. Mechanism and regulation of Mg-chelatase.

 Biochem J 327 (Pt 2):321-333.
- 82. **Welander, P. V., and W. W. Metcalf.** 2005. Loss of the mtr operon in Methanosarcina blocks growth on methanol, but not methanogenesis, and reveals an unknown methanogenic pathway. Proc Natl Acad Sci U S A **102:**10664-10669.
- 83. **Welte, C., C. Krätzer, and U. Deppenmeier.** 2010. Involvement of Ech hydrogenase in energy conservation of Methanosarcina mazei. FEBS J **277:**3396-3403.
- 84. **White, R. H.** 2001. Biosynthesis of the methanogenic cofactors. Vitam Horm **61:**299-337.
- 85. **Xu, H., R. Aurora, G. D. Rose, and R. H. White.** 1999. Identifying two ancient enzymes in Archaea using predicted secondary structure alignment. Nat Struct Biol **6:**750-754.
- 86. **Yokooji, Y., H. Tomita, H. Atomi, and T. Imanaka.** 2009. Pantoate kinase and phosphopantothenate synthetase, two novel enzymes necessary for CoA biosynthesis in the Archaea. J Biol Chem **284**:28137-28145.
- 87. **Zhang, J. K., A. K. White, H. C. Kuettner, P. Boccazzi, and W. W. Metcalf.** 2002. Directed mutagenesis and plasmid-based complementation in the methanogenic archaeon Methanosarcina acetivorans C2A demonstrated by genetic analysis of proline biosynthesis. J Bacteriol **184:**1449-1454.

Appendix A. Analysis of Model Gaps

Like any metabolic reconstruction, the presented reconstruction of *Methanosarcina acetivorans* contains gaps in the genome annotation due to an incomplete knowledge about its metabolism. Many of the pathways in the Bacteria domain differ from those in the Archaea, and much progress has been made illuminating those differences. However, as this supplemental shows, there is clearly more work to be done to completely understand metabolism in the Archaea, and particularly in *M. acetivorans*.

Presented here is a list of gaps in central metabolism of *M. acetivorans* as of the time of publication. The metabolites are all given the ID found in the metabolic model. Some of the pathways described here have other biochemical evidence such as carbon labeling, but the evidence was described in other organisms and no genes have been identified to carry out the proposed functions. Other pathways or reactions have known genes in other organisms but they have no significant sequence homology with any genes in *M. acetivorans*.

The genome of *Methanosarcina acetivorans* contains over 1000 ORFs annotated as hypothetical proteins. It is our hope that this list will be useful for assigning functions to some of them and furthering the general knowledge of archaeal metabolic functions.

Figure Key

The key to the figures in this section is shown in table A.1 below. If a gene product in another organism has been verified to perform the reaction, the gene locus is shown in parenthesis (e.g. (MJ_0001)). Any genes in *M. acetivorans* predicted to perform the same reaction are shown adjacent (no *M. acetivorans* gene is shown if there was no sequence similarity with the verified genes).

Table A.1. Key to model gap figures.

Color	Pattern	Meaning
Red		Genetic evidence suggests the genes needed to perform the reaction
		are not present in <i>M. acetivorans</i> .
Blue	_··-	No genes associated with the reaction are known, but there is
		evidence aside from genetic evidence for the pathway's existence in
		other organisms
Green	—	At least one gene associated with the reaction is predicted or known
		to be present in <i>M. acetivorans</i>

4-aminobenzoate Biosynthesis

4-aminobenzoate (4abz) is an intermediate required for synthesis of both folates and tetrahydromethanopterin according to the proposed pathways for each. *Methanosarcina barkeri* has to be supplemented with this compound to grow, but *M. acetivorans* does not. This could be because *M. acetivorans* does not require folates, while *M. barkeri* does (9). It could also be due to the ability of *M. acetivorans* but not *M. barkeri* to synthesize 4abz *de novo*.

The genes for the canonical pathway for 4abz synthesis in E. coli are apparently missing in

Methanosarcina. However, an alternative pathway has been proposed in Methanococcus maripalidus (which also lacks the canonical pathway) based on carbon labeling (54). No genes in this proposed pathway have been identified yet, so it is unknown if the pathway could exist in M. acetivorans. It has been added based on the lack of need to uptake 4abz from the medium.

4-aminobenzoic acid synthesis

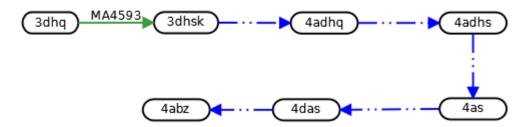


Figure A.1. Synthesis pathway for 4-aminobenzoic acid included in the *M. acetivorans* metabolic model.

Biotin Biosynthesis

Unlike in *Methanocaldococcus jannaschii*, none of the genes in the canonical pathway for biotin synthesis appear to be present in *M. acetivorans*. Except for the first reaction, suggested in a review by Robert White (84), the reactions listed here are all from KEGG. Note that many archaea do not possess these genes, and it has been suggested that *M. jannaschii* acquired them by lateral gene transfer from the bacteria (72).

Only the biotin synthase has (weak) homology with a *M. acetivorans* gene, and that gene has been suggested to have a role in pyrrolysine synthesis rather than biotin synthesis (38). It is

unknown if *M. acetivorans* actually synthesizes biotin - the pathway has been included under the assumption that it does.

Biotin Synthesis



Figure A.2. Synthesis pathway for biotin included in the *M. acetivorans* metabolic model.

Coenzyme A Biosynthesis

The canonical pathway for coenzyme A biosynthesis is different in the archaea than in the bacterial domain. Some work has already been done to unravel the pathway in the archaea (MM2281 and TK1686 encode novel archaeal reactions) (86). However, if *M. acetivorans* can synthesize (R)-pantothenate *de novo*, the pathway for doing so remains unknown, for the canonical genes for both of the known pathways seem to be missing (one pathway shown). The gene responsible for catalyzing the final step in the synthesis is also unknown.

Coenzyme A Synthesis

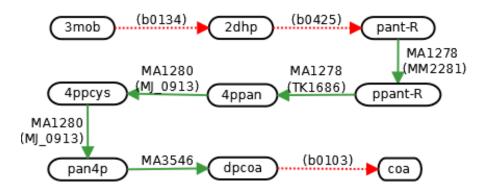


Figure A.3. Synthesis pathway for coenzyme A included in the *M. acetivorans* metabolic model.

Coenzyme F₃₉₀ Metabolism

Coenzyme F_{390} is a derivative of Coenzyme F_{420} that appears to function in a redox-sensing mechanism in methanogenic archaea (80). The coenzyme F_{390} synthetase has been characterized in *M. thermoautotrophicum* str. Marburg and has a strong homologue in *M. acetivorans* (79). However, although the Coenzyme F_{390} hydrolase enzyme has been purified (80), the gene encoding this enzyme is still unknown.

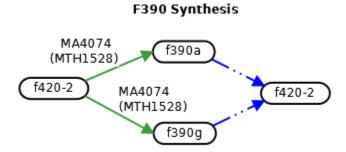


Figure A.4. Synthesis and degradation pathway for coenzyme F_{390} included in the *M. acetivorans* metabolic model.

Coenzyme F₄₂₀ and Riboflavin Biosynthesis

Both the canonical beginning of the pathway for riboflavin synthesis and the alternate pathway characterized in *M. jannaschii* (24) appear to be missing in *M. acetivorans*, based on lack of homology with characterized genes. The third step has a characterized gene in *M. jannaschii* and is homologous to a gene in *M. acetivorans* (E ~ 1E-40), and the fourth step has no known gene.

Riboflavin and F420 Synthesis (initial steps)

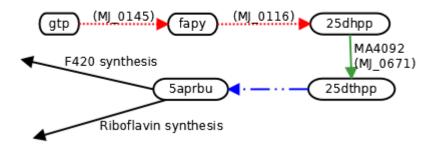


Figure A.5. The initial reactions involved in the synthesis pathways for coenzyme F_{420} and riboflavin included in the *M. acetivorans* metabolic model.

Coenzyme F₄₃₀ Biosynthesis

Coenzyme F_{430} is a nickel-containing coenzyme essential in some of the energy-conserving steps in methanogenesis (53). Coenzyme F_{430} synthesis has been studied relatively little compared to pathways for synthesis of the other methanogenic cofactors, but a potential pathway has been proposed for its synthesis from dihydrosirohydrochlorin in five steps (53). No genes were identified. The exact chemical structure of most of the intermediates is unknown except for $15,17^3$ -seco-F430- 17^3 -acid (sf430a), which was identified in *Methanobrevibacter arboriphilus* (53).

It has been suggested that genes annotated as magnesium chelatases may in fact be nickel chelatases involved in this pathway (81). This is especially possible since the heme synthesis pathway in the *Methanosarcina* is likely to be different from the canonical pathway (see "Heme biosynthesis"), and therefore Protoporphyrin IX, the usual precursor for magnesium chelatase, would not necessarily be synthesized.

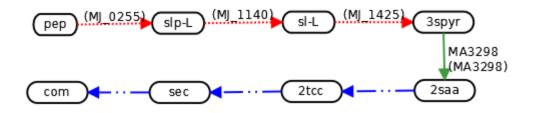


Figure A.6. Pathway for synthesis of coenzyme F_{430} included in the *M. acetivorans* metabolic model.

Coenzyme M Biosynthesis

Coenzyme M is one of the methyl carriers in the methanogenesis pathway. A coenzyme M synthesis pathway has been identified in *Methanocaldococcus jannaschii*, and the genes in the first part of the pathway have been characterized (20, 22, 23). The first part of this pathway seems to be missing from the *Methanosarcina*, and indeed, an alternative pathway has been characterized in *M. acetivorans*, and the genes involved have been identified (21). However, the genes responsible for the last steps in the pathway have not yet been identified. The main text displays the pathway as it exists in *M. jannaschii*. The pathways in *M. jannaschii* and in *M. acetivorans* are shown below.

Coenzyme M Synthesis (M. jannaschii pathway)

Coenzyme M Synthesis (M. acetivorans pathway)

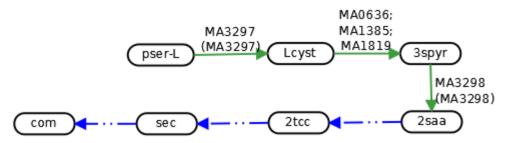


Figure A.7. Comparison of the coenzyme M biosynthesis pathway in *Methanocaldococcus jannaschii* and in *Methanosarcina acetivorans*. Only the *M. acetivorans* pathway was included in the metabolic model.

Folate and Methanopterin Biosynthesis

Most of the steps in folate and methanopterin biosynthesis have no characterized genes in the archaea. As discussed in the main text, even some of the genes that have been identified for these functions in *M. jannaschii* have no homologues in *Methanosarcina*. It is not clear how *Methanosarcina* synthesizes folates, but it is known that *Methanosarcina barkeri* possesses enzymes that depend on tetrahydrofolate for activity (9), and the same is assumed true of *M. acetivorans*. Therefore, there are likely novel enzymes and possibly a novel pathway to be discovered in this genus.

Most of the genes in the pathway have no gene association so it is difficult to tell the extent of the possible differences between the *Methanocaldococcus* and *Methanosarcina* synthesis pathways. However, even from those genes that are known, there are clear differences. The central part of the pathway seems to be the same but the initial synthesis and the addition of the hydroxyglutarate moiety to methanopterin apparently differ from the mechanisms in *Methanocaldococcus*. An alternate reaction for synthesis of dihydroneopterin (dhnpt) was suggested from KEGG, but the precursor metabolite for this reaction (ahdt) has no clear synthesis pathway in *M. acetivorans*, so this path seems more unlikely than that from *Methanocaldococcus*. It has been shown for completeness.

Previous work has suggested that there may be two pathways for synthesis of methanopterin in *M. barkeri*, one of which does not depend on synthesis of 4-aminobenzoate (4abz). However, the genetic evidence indicates that even if *M. acetivorans* has multiple synthesis pathways, they may *both* be different from that found in *M. jannaschii*. The nature of the differences between the pathways will become clearer as more genes in the pathway are identified and characterized.

Folate and Methanopterin Synthesis

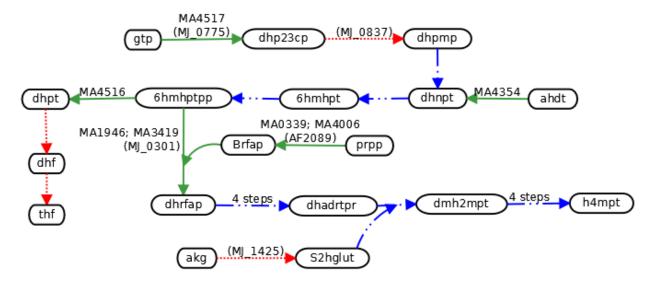


Figure A.8. Synthesis pathways for folate and methanopterin included in the *M. acetivorans* metabolic model.

Heme Biosynthesis

Since *Methanosarcina* is a genus of methanogens with cytochromes (28), it must have a way to synthesize heme. Many genes in the later part of the canonical protoheme synthesis pathway (from uroporphyrinogen III to protoheme) are missing. The one gene that KEGG suggests to be present in *M. acetivorans* (HemG) would encode a reaction requiring oxygen for function, although *M. acetivorans* is strictly anaerobic. Therefore, it is highly likely an alternative pathway exists for synthesis of heme in *Methanosarcina* and other cytochrome-containing methanogens. Although it is not fully characterized, an alternate pathway for heme (protoheme) synthesis has been suggested and partially characterized in *Methanosarcina barkeri*. The alternate pathway branches from precorrin 2 and involves SAM proteins (8). The only characterized genes which may be involved in the pathway are already annotated for their correct functions (71). Two different starts to the pathway have been suggested. In one possible pathway, precorrin-2 is

oxidized to sirohydrochlorin with PC2-DH and then proceeds to protoheme by an unknown set of reactions (71). In another, precorrin 2 is decarboxylated and synthesis of protoheme proceeds from there (8). The latter pathway is shown below.

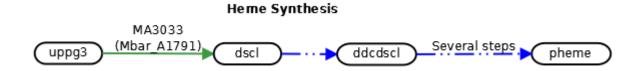


Figure A.9. Protoheme biosynthesis pathway included in the *M. acetivorans* metabolic model.

Lysine Biosynthesis

There are at least four known pathways for *de novo* lysine synthesis (37). The known genes involved in the pathways from thdp to 26dap-M appear to be missing in *M. acetivorans*. It has recently been reported that *M. jannaschii* utilizes the DapL pathway for lysine synthesis (37). One of the genes in this pathway has strong homology to a *M. acetivorans* gene, but one of them has no genes with significant sequence identity.

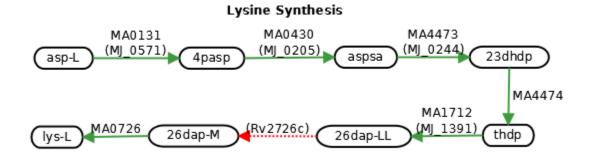


Figure A.10. Lysine biosynthesis pathway included in the *M. acetivorans* metabolic model.

Methanofuran Biosynthesis

The methanofuran biosynthesis pathway, as reported in metacyc, was incorporated in the model with no genetic evidence, except for the reaction TYRCBOX. The gene responsible for that reaction was characterized in *M. jannaschii* and has a strong sequence homology with *M. acetivorans* gene MA0006. The remainder are hypothetical reactions based on chemical identification of some of the intermediates in *M. jannaschii* (84).

Note that *M. barkeri* (and probably *M. acetivorans*) uses methanofuran (b), while Methanococci use methanofuran (a). According to the difference in these structures, *M. acetivorans* probably does not need to synthesize hexane-1,3,4,6-tetracarboxylate as an intermediate in methanofuran synthesis. Instead, it appears that the final steps would be the addition of two additional glutamate residues to 4-[N-gamma-L-glutamyl-gamma-L-glutamyl-)-p-(\(\beta\)-aminoethyl)phenoxymethyl]-2-(aminomethyl)furan .

Methanofuran (b) Synthesis

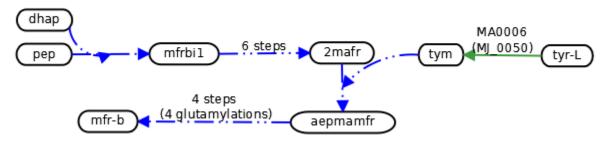


Figure A.11. The biosynthesis pathway for methanofuran(b) included in the *M. acetivorans* metabolic model.

Methanophenazine Biosynthesis

Unlike the other methanogenic cofactors, the authors are not aware of any proposed pathways for synthesis of methanophenazine in any organisms, including *M. acetivorans*. Even though quinones have not been found in methanogens, there are 14 genes annotated for functions in ubiquinone synthesis in *M. acetivorans*. On the other hand, *M. jannaschii*, which does not use methanophenazine in its methanogenic pathways, contains no genes annotated for ubiquinone synthesis functions (KEGG predicts three through clustering analysis, but none of them agrees with the annotation). It is possible that some of these genes in *M. acetivorans* are involved in the synthesis of methanophenazine, which performs a similar function to quinones in that organism. Phenazines are synthesized as antibiotics in many Bacteria and some genes are known (42), but no sequence homology was identified (with the exception of *phzF*, MA3532). Biochemical experimentation will be necessary to identify the genes and pathways actually involved.

Purine Synthesis

Although most of the genes for synthesis of purines are present, two critical enzymes seem to be missing in *Methanosarcina*: IMP dehydrogenase, and GMP kinase. Both of these enzymes are predicted to be present in *Methanocaldococcus* based on sequence homology. They have been included in the model because they perform critical functions in nucleic acid synthesis.

Purine Synthesis

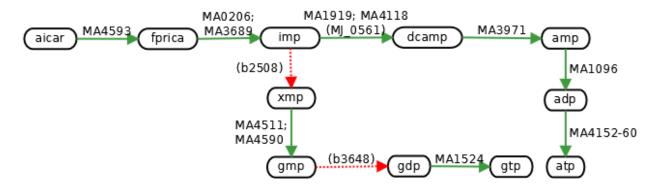


Figure A.12. Biosynthesis pathways for guanosine and adenosine triphosphates included in the *M. acetivorans* metabolic model.

Appendix B. Model Details

This appendix contains lists of metabolites (Table B.1.), reactions (Table B.2.), media components used to perform FBA simulations (Table B.3.), and the complete composition of the biomass equation used as an objective function in FBA simulations (Table B.4.).

Table B.1. List of metabolites in the *M. acetivorans* metabolic model.

Model ID	Met name	Charged Formula	Charge
10fthf	10-Formyltetrahydrofolate	C20H22N7O7	-1
13dpg	3-Phospho-D-glyceroyl phosphate	C3H4O10P2	-4
1pyr4m5c	1-Pyrroline-4-methyl-5-carboxylate	C6H8NO2	-1
1pyr5c	1-Pyrroline-5-carboxylate	C5H6NO2	-1
23dhdp	2,3-Dihydrodipicolinate	C7H6NO4	-1
23dhmb	(R)-2,3-Dihydroxy-3-methylbutanoate	C5H9O4	-1
23dhmp	(R)-2,3-Dihydroxy-3-methylpentanoate	C6H11O4	-1
24sf	2,4-substituted-furan	C6H4O7P	-3
25aics	(S)-2-[5-Amino-1-(5-phospho-D-ribosyl)imidazole-4-carboxamido]succinate	C13H15N4O12P	-4
25dhpp	2,5-Diamino-6-hydroxy-4-(5'-phosphoribosylamino)-pyrimidine	C9H14N5O8P	-2
25dthpp	2,5-diamino-6-ribitylamino-4(3H)- pyrimidinone 5'-phosphate	C9H16N5O8P	-2
26dap-LL	LL-2,6-Diaminoheptanedioate	C7H14N2O4	0
26dap-M	meso-2,6-Diaminoheptanedioate	C7H14N2O4	0
2ahbut	(S)-2-Aceto-2-hydroxybutanoate	C6H9O4	-1
2c25dho	2-Carboxy-2,5-dihydro-5-oxofuran-2-acetate	C7H4O6	-2
2cpr5p	1-(2-Carboxyphenylamino)-1-deoxy-D-ribulose 5-phosphate	C12H13NO9P	-3
2dhp	2-Dehydropantoate	C6H9O4	-1
2dr1p	2-Deoxy-D-ribose 1-phosphate	C5H9O7P	-2
2dr5p	2-Deoxy-D-ribose 5-phosphate	C5H9O7P	-2

Table B.1. (continued)

Model ID	Met name	Charged Formula	Charge
2frald	2-furaldehyde	C6H5O6P	-2
2h3moa	3-Hydroxy-3-methyl-2-oxobutanoic acid	C5H7O4	-1
2ins	2-Inosose	C6H10O6	0
2ippm	2-Isopropylmaleate	C7H8O4	-2
2mafr	2-methylamine-furan	C6H9NO5P	-1
	2-Methyl-4-amino-5-		
2mahmp	hydroxymethylpyrimidine diphosphate	C6H8N3O7P2	-3
2mop	2-Methyl-3-oxopropanoate	C4H5O3	-1
2obut	2-Oxobutanoate	C4H5O3	-1
2ood	2-oxooctanedioic acid	C8H10O5	-2
2pg	D-Glycerate 2-phosphate	C3H4O7P	-3
2pglyc	2-Phosphoglycolate	C2H2O6P	-3
2plac-L	2-phospho-L-lactate	C3H4O6P	-3
2ppoh	2-Propanol	C3H8O	0
2saa	2-sulfoacetaldehyde	C2H3O4S	-1
2tcc	2-(sulfomethyl)thiazolidine-4-carboxylic acid	C5H8NO5S2	-1
34hpp	3-(4-Hydroxyphenyl)pyruvate	C9H7O4	-1
35cgmp	3',5'-Cyclic GMP	C10H11N5O7P	-1
36dahx	(3S)-3,6-Diaminohexanoate	C6H15N2O2	1
3c2hmp	3-Carboxy-2-hydroxy-4-methylpentanoate	C7H10O5	-2
3c3hmp	3-Carboxy-3-hydroxy-4-methylpentanoate	C7H10O5	-2
3c4mop	3-Carboxy-4-methyl-2-oxopentanoate	C7H8O5	-2
3dhq	3-Dehydroguinate	C7H9O6	-1
3dhsk	3-Dehydroshikimate	C7H7O5	-1
34131	3 Denyarosimamate	0711703	
3h3mop	(R)-3-Hydroxy-3-methyl-2-oxopentanoate	C6H9O4	-1
	CDP-2-O-(3'-hydroxy)geranyl-3-O-geranyl-sn-		
3hcdgggp	glycerol	C52H85N3O14P2	-2
	2-O-(3'-hydroxy)geranyl-3-O-geranyl-sn-		
3hdgggp	glycerol	C43H73O7P1	-2
	2-O-(3'-hydroxy)geranyl-3-O-geranyl-sn-		
3hdgggps	glyceroserine	C46H79N1O9P1	-1

Table B.1. (continued)

Model ID	Met name	Charged Formula	Charge
	2-O-(3'-hydroxy)geranyl-3-O-geranyl-sn-		
3hdggpg	glycerol-1-phospho-3'-sn-glycerol	C46H80O9P1	-1
	2-O-(3'-hydroxy)geranyl-3-O-geranyl-sn-		
3hdggpgp	glycerol-1-phospho-3'-sn-glycerol phosphate	C46H79O12P2	-3
	2-O-(3'hydroxy)geranyl-3-O-geranyl-sn-		
3hdggpi	glycero-1-phospho-myo-inositol	C49H84O12P1	-1
	2-O-(3'-hydroxy)phytanyl-3-O-phytanyl-sn-		
3hdpgpe	glycero-l-phosphoethanolamine	C45H94O7N1P1	0
	2-O-(3'-hydroxy)phytanyl-3-O-phytanyl-sn-		
3hdpgpg	glycerol-1-phospho-3'-sn-glycerol	C46H94O9P1	-1
	2-O-(3'-hydroxyl)phytanyl-3-O-phytanyl-sn-	040110004304	
3hdpgpi	glycero-1-phospho-myo-inositol	C49H98O12P1	-1
21	2-O-(3'-hydroxy)phytanyl-3-O-phytanyl-sn-	C4CH02N4 C0D4	
3hdpgps	glycero-l-phosphoserine	C46H93N1O9P1	-1
3hfrdp	3-hydroxy-farnesyl diphosphate	C15H27O8P2	-3
2h aada		C20112E00D2	2
3hggdp	3-hydroxy-geranylgeranyl diphosphate	C20H35O8P2	-3
3hgrdp	3-hydroxy-geranyl diphsophate	C10H19O8P2	-3
3hmp	3-Hydroxy-2-methylpropanoate	C4H7O3	-1
3ig3p	C'-(3-Indolyl)-glycerol 3-phosphate	C11H12NO6P	-2
3mob	3-Methyl-2-oxobutanoate	C5H7O3	-1
3mop	(S)-3-Methyl-2-oxopentanoate	C6H9O3	-1
3ophb	3-Octaprenyl-4-hydroxybenzoate	C47H69O3	-1
3pg	3-Phospho-D-glycerate	C3H4O7P	-3
3php	3-Phosphohydroxypyruvate	C3H2O7P	-3
2	5.0 (4. Carla arradia d) 2. mb a anh a ahilimata	C10U0010D	
3psme	5-O-(1-Carboxyvinyl)-3-phosphoshikimate	C10H9O10P	-4
3spyr	3-Sulfopyruvate	C3H2O6S	-2
3uib	3-Ureidoisobutyrate	C5H9N2O3	-1
4abut	4-Aminobutanoate	C4H9NO2	0
4abutn	4-Aminobutanal	C4H10NO	1
4abz	4-Aminobenzoate	C7H6NO2	-1
4adhq	4-amino-3-dehydroquinic acid	C7H11NO5	0

Table B.1. (continued)

Model ID	Met name	Charged Formula	Charge
4adhs	4-amino-3-dehydroshikimate	C7H8NO4	-1
	4-Amino-5-hydroxymethyl-2-		
4ahmmp	methylpyrimidine	C6H10N3O	1
	4-Amino-2-methyl-5-		
4ampm	phosphomethylpyrimidine	C6H8N3O4P	-2
4as	4-aminoshikimate	C7H11NO4	0
	4-amino-3-dehydroxycyclohexa-1,5-diene-1-		
4das	carboxylate	C7H9NO3	0
	4-[N-γ-L-glutamyl-)-p-(β-		
	aminoethyl)phenoxy-methyl]-2-		
4gaepmamfr	(aminomethyl)furan	C19H26N3O5	1
	4-[N-γ-L-glutamyl-γ-L-glutamyl-)-p-(β-		
_	aminoethyl)phenoxy-methyl]-2-		
4ggaepmamfr	(aminomethyl)furan	C24H32N4O8	0
	4-[N-γ-L-glutamyl-γ-L-glutamyl-γ-L-glutamyl-)-		
4gggaepmamf	p-(β-aminoethyl)phenoxy-methyl]-2-		
r	(aminomethyl)furan	C29H38N5O11	-1
4hba	4-Hydroxy-benzyl alcohol	C7H8O2	0
4hbz	4-Hydroxybenzoate	C7H5O3	-1
4hphac	4-Hydroxyphenylacetate	C8H7O3	-1
4mhetz	4-Methyl-5-(2-hydroxyethyl)-thiazole	C6H9NOS	0
4mop	4-Methyl-2-oxopentanoate	C6H9O3	-1
4mpetz	4-Methyl-5-(2-phosphoethyl)-thiazole	C6H8NO4PS	-2
4pasp	4-Phospho-L-aspartate	C4H6NO7P	-2
4ppan	D-4'-Phosphopantothenate	C9H15NO8P	-3
4ppcys	N-((R)-4-Phosphopantothenoyl)-L-cysteine	C12H20N2O9PS	-3
4r5au	4-(1-D-Ribitylamino)-5-aminouracil	C9H16N4O6	0
56dthm	5,6-Dihydrothymine	C5H8N2O2	0
56dura	5,6-dihydrouracil	C4H6N2O2	0
	5-amino-1-(5-phospho-D-ribosyl)imidazole-4-		
5aizc	carboxylate	C9H11N3O9P	-3
5аор	5-Amino-4-oxopentanoate	C5H9NO3	0
5aprbu	5-Amino-6-(5'-phosphoribitylamino)uracil	C9H15N4O9P	-2
	5-Carboxyamino-1-(5-phospho-D-		
5c5pdriaz	ribosyl)imidazole	C9H11N3O9P	-3

Table B.1. (continued)

Model ID	Met name	Charged Formula	Charge
5caiz	5-phosphoribosyl-5-carboxyaminoimidazole	C9H11N3O9P	-3
5hbc	5-Hydroxybenzimidazolylcob(II)amide	C60H84CoN13O15P	0
5hbc_red	5-Hydroxybenzimidazolylcob(I)amide	C60H84CoN13O15P	-1
5hbzid	5-hydroxybenzimidazole	C7H6N2O	0
5mcyt	5-Methylcytosine	C5H7N3O	0
5mdr1p	5-Methylthio-5-deoxy-D-ribose 1-phosphate	C6H11O7PS	-2
5mdru1p	5-Methylthio-5-deoxy-D-ribulose 1-phosphate	C6H11O7PS	-2
5mta	5-Methylthioadenosine	C11H15N5O3S	0
5mthf	5-Methyltetrahydrofolate	C20H24N7O6	-1
5odhf2a	5-Oxo-4,5-dihydrofuran-2-acetate	C6H5O4	-1
5oxpro	5-Oxoproline	C5H6NO3	-1
5pmev	(R)-5-Phosphomevalonate	C6H10O7P	-3
5pr5hbz	N1-(5-Phospho-alpha-D-ribosyl)-5- hydroxybenzimidazole	C12H13N2O8P	-2
6ax	6-Aminohexanoate	C6H13NO2	0
6ax6ax	N-(6-Aminohexanoyl)-6-aminohexanoate	C12H24N2O3	0
6hmhpt	6-hydroxymethyl dihydropterin	C7H9N5O2	0
6hmhptpp	6-hydroxymethyl-dihydropterin pyrophosphate	C7H8N5O8P2	-3
6pthp	6-Pyruvoyl-5,6,7,8-tetrahydropterin	C9H12N5O3	1
7mhp	7-mercaptoheptanoic acid	C7H13O2S	-1
7mht	7-mercaptoheptanoylthreonine	C11H20NO4S	-1
7ohp	7-oxoheptanoic acid	C7H11O3	-1
8aonn	8-Amino-7-oxononanoate	C9H17NO3	0
aacald	Aminoacetaldehyde	C2H6NO	1
aacoa	Acetoacetyl-CoA	C25H36N7O18P3S	-4
ас	Acetate	C2H3O2	-1
acald	Acetaldehyde	C2H4O	0
ассоа	Acetyl-CoA	C23H34N7O17P3S	-4
acetol	Acetol	C3H6O2	0
acetone	Acetone	C3H6O	0
acg5p	N-Acetyl-L-glutamyl 5-phosphate	C7H9NO8P	-3
acg5sa	N-Acetyl-L-glutamate 5-semialdehyde	C7H10NO4	-1

Table B.1. (continued)

Model ID	Met name	Charged Formula	Charge
acgam1p	N-Acetyl-D-glucosamine 1-phosphate	C8H14NO9P	-2
acglu	N-Acetyl-L-glutamate	C7H9NO5	-2
achms	O-Acetyl-L-homoserine	C6H11NO4	0
acmana	N-Acetyl-D-mannosamine	C8H15NO6	0
acnam	N-Acetylneuraminate	C11H18NO9	-1
acon-C	cis-Aconitate	C6H3O6	-3
aconm	E-3-carboxy-2-pentenedioate 6-methyl ester	C7H6O6	-2
acon-T	trans-Aconitate	C6H3O6	-3
acorn	N2-Acetyl-L-ornithine	C7H14N2O3	0
acser	O-Acetyl-L-serine	C5H9NO4	0
actn-R	(R)-Acetoin	C4H8O2	0
actp	Acetyl phosphate	C2H3O5P	-2
adcobdam	Adenosyl cobyrinate diamide	C55H68CoN11O15	-4
adcobhex	adenosyl-cobyric acid	C55H76CoN15O11	0
ade	Adenine	C5H5N5	0
adn	Adenosine	C10H13N5O4	0
adocbi	Adenosyl cobinamide	C58H84CoN16O11	1
adocbip	Adenosyl cobinamide phosphate	C58H83CoN16O14P	-1
adocblhbi	Adenosylcobalamin-HBI	C70H96CoN18O18P	0
adp	ADP	C10H12N5O10P2	-3
adprib	ADP-ribose	C15H21N5O14P2	-2
aepmamfr	p-(β-aminoethyl)phenoxy-methyl-2- (aminomethyl)furan	C14H20N2O2	2
agdpcbi	Adenosine-GDP-cobinamide	C68H95CoN21O21P2	-1
and and	N. Acatul D. alugacaminul anahactidulin asital	CE711111111101CD1	1
agdpgpi	N-Acetyl-D-glucosaminyl archaetidylinositol	C57H111N1O16P1	-1
agm	Agmatine	C5H16N4	+
ah6p-D	D-arabino-Hex-3-ulose 6-phosphate;	C6H11O9P	-2
ahcys	S-Adenosyl-L-homocysteine	C14H20N6O5S	0
ahdt	2-Amino-4-hydroxy-6-(erythro-1,2,3- trihydroxypropyl)dihydropteridine triphosphate	C9H13N5O13P3	-3
aicar	5-Amino-1-(5-Phospho-D-ribosyl)imidazole-4-carboxamide	C9H13N4O8P	-2
air	5-amino-1-(5-phospho-D-ribosyl)imidazole	C8H12N3O7P	-2

Table B.1. (continued)

Model ID	Met name	Charged Formula	Charge
akg	2-Oxoglutarate	C5H4O5	-2
ala-B	beta-Alanine	C3H7NO2	0
alac-S	(S)-2-Acetolactate	C5H7O4	-1
ala-L	L-Alanine	C3H7NO2	0
alatrna	L-Alanyl-tRNA(Ala)	C3H6NOR	1
amet	S-Adenosyl-L-methionine	C15H23N6O5S	1
amob	S-Adenosyl-4-methylthio-2-oxobutanoate	C15H19N5O6S	0
amp	AMP	C10H12N5O7P	-2
anth	Anthranilate	C7H6NO2	-1
appl	1-Aminopropan-2-ol	C3H10NO	1
applp	D-1-Aminopropan-2-ol O-phosphate	C3H9NO4P	-1
aps	Adenosine 5'-phosphosulfate	C10H12N5O10PS	-2
arg-L	L-Arginine	C6H15N4O2	1
argsuc	N(omega)-(L-Arginino)succinate	C10H17N4O6	-1
argtrna	L-Arginyl-tRNA(Arg)	C6H14N4OR	2
asn-L	L-Asparagine	C4H8N2O3	0
asntrna	asparagine-tRNA(asn)	C4H7N2O2R	1
asntrna(asp)	aspartate-tRNA(asn)	C4H5NO3R	0
asp-L	L-Aspartate	C4H6NO4	-1
aspsa	L-Aspartate 4-semialdehyde	C4H7NO3	0
asptrna	L-Aspartyl-tRNA(Asp)	C4H5NO3R	0
athr-L	L-Allo-threonine	C4H9NO3	0
atp	ATP	C10H12N5O13P3	-4
atrz	Atrazine	C8H14CIN5	0
bamppald	beta-Aminopropion aldehyde	C3H8NO	1
biomass_met	Biomass		
Brfap	4-(B-D-ribofuranosyl)aminobenzene 5'- phosphate	C11H14NO7P	-2
btamp	Biotinyl-5'-AMP	C20H27N7O9PS	-1
btn	Biotin	C10H15N2O3S	-1
btnp	Biotin synthesis protein (uncharged)	R	0
btnp-s2	Biotin synthesis protein (charged)	Fe2S2R	2
ca2	Calcium	Ca	2
cala	N-Carbamoyl-beta-alanine	C4H7N2O3	-1
camp	cAMP	C10H11N5O6P	-1

Table B.1. (continued)

Model ID	Met name	Charged Formula	Charge
canhic	2 /2 Carbony 2 aminopropul) I histidina	C10U16N4O4	
caphis	2-(3-Carboxy-3-aminopropyl)-L-histidine	C10H16N4O4	0
carn	L-Carnosine	C9H15N4O3	1
cbasp	N-Carbamoyl-L-aspartate	C5H6N2O5	-2
cbi	Cobinamide	C48H72CoN11O8	0
cbl1	Cob(I)alamin	C62H88CoN13O14P	-1
cbl1hbi	Cob(I)alamin-HBI	C60H84CoN13O15P	-1
cbp	Carbamoyl phosphate	CH2NO5P	-2
cd2	Cadmium	Cd	2
cdgggp	CDP-2,3-digeranylgeranyl-sn-glycerol	C52H83N3O13P2	-2
cdp	CDP	C9H12N3O11P2	-3
cgly	Cys-Gly	C5H10N2O3S	0
ch4	methane	CH4	0
ch4s	Methanethiol	CH4S	0
chor	chorismate	C10H8O6	-2
cit	Citrate	C6H5O7	-3
citrac	Citraconic acid	C5H4O4	-2
citr-L	L-Citrulline	C6H13N3O3	0
cl	Chloride	Cl	-1
cmaphis	2-[3-Carboxy-3-(methylammonio)propyl]-L-histidine	C11H18N4O4	0
cmp	CMP	C9H12N3O8P	-2
cmpacna	CMP-N-acetylneuraminate	C20H29N4O16P	-2
СО	Carbon monoxide	СО	0
co1dam	Cob(I)yrinate a,c diamide	C45H56CoN6O12	-5
co2	CO2	CO2	0
co2dam	Cob(II)yrinate a,c diamide	C45H56CoN6O12	-4
coa	Coenzyme A	C21H32N7O16P3S	-4
cob	coenzyme b	C11H19N1O7P1S1	-3
cobalt2	Co2+	Co	2
cobya	Cobyrinate	C45H52CoN4O14	-6
codhpre6	cobalt-dihydro-precorrin 6	C44H47CoN4O16	-7
com	coenzyme m	C2H5O3S2	-1
copre2	cobalt-precorrin 2	C42H38N4O16Co	-8
copre3	cobalt-precorrin 3	C43H40CoN4O16	-8
copre4	cobalt-precorrin 4	C44H43CoN4O16	-7
copre5	cobalt-precorrin 5	C45H45CoN4O16	-7

Table B.1. (continued)

Model ID	Met name	Charged Formula	Charge
copre6	cobalt-precorrin 6	C44H44CoN4O16	-8
copre8	cobalt-precorrin 8	C45H51CoN4O14	-7
csn	Cytosine	C4H5N3O	0
ctp	СТР	C9H12N3O14P3	-4
cu2	Cu2+	Cu	2
cys-L	L-Cysteine	C3H7NO2S	0
cystrna	L-Cysteinyl-tRNA(Cys)	C3H6NOSR	1
cystrna(pser)	O-Phosphoseryl-tRNA(Cys)	C3H5NO5PR	-1
cytd	Cytidine	C9H13N3O5	0
dad-2	Deoxyadenosine	C10H13N5O3	0
dadp	dADP	C10H12N5O9P2	-3
damp	dAMP	C10H12N5O6P	-2
dann	7,8-Diaminononanoate	C9H21N2O2	1
datp	dATP	C10H12N5O12P3	-4
db4p	3,4-dihydroxy-2-butanone 4-phosphate	C4H7O6P	-2
dcamp	N6-(1,2-Dicarboxyethyl)-AMP	C14H14N5O11P	-4
dcdp	dCDP	C9H12N3O10P2	-3
dcmp	dCMP	C9H12N3O7P	-2
dctp	dCTP	C9H12N3O13P3	-4
dcyt	Deoxycytidine	C9H13N3O4	0
ddcdscl	12,18-didecarboxyprecorrin-2	C40H43N4O12	-5
ddhrb	7,8-didemethyl-8-hydroxy-5-deazariboflavin	C16H16N3O7	-1
dgdp	dGDP	C10H12N5O10P2	-3
dgggp	digeranylgeranylglyceryl phosphate	C43H71O6P1	-2
dgggps	2,3-di-O-geranylgeranyl-sn-glyceroserine	C46H77N1O8P1	-1
dggpg	2,3-di-O-geranyl-sn-glycerol-1-phospho-3'-sn-glycerol	C46H78O8P1	-1
dggpgp	2,3-di-O-geranyl-sn-glycerol-1-phospho-3'-sn-glycerol phosphate	C46H77O11P2	-3
dggpi	2,3-di-O-geranyl-sn-glycero-1-phospho-myo-inositol	C49H82O11P1	-1
dgmp	dGMP	C10H12N5O7P	-2
dgsn	Deoxyguanosine	C10H13N5O4	0
dgtp	dGTP	C10H12N5O13P3	-4

Table B.1. (continued)

Model ID	Met name	Charged Formula	Charge
dha	Dihydroxyacetone	C3H6O3	0
	7,8-dihydropterin-6-ylmethyl-1-(4-		
dhadr	aminophenyl)-1-deoxy-D-ribitol	C18H25N6O5	1
	7,8-dihydropterin-6-ylmethyl-1-(4-		
dhadrdar	aminophenyl)-1-deoxy-5-[1-A-D-ribofuranosyl	C22U22N6O1ED2	-2
dhadrdpr	5'-diphosphate]-D-ribitol	C23H32N6O15P2	-2
	7.0 dibundan atania Cudan athud 4.74		
dhadrp	7,8-dihydropterin-6-ylmethyl-1-(4-aminophenyl)-1-deoxy-D-ribitol 5'-phosphate	C18H24N6O8P	-1
инацр		C10112411000F	-1
	7,8-dihydropterin-6-ylmethyl-1-(4-aminophenyl)-1-deoxy-5-[1-A-D-ribofuranosyl		
dhadrpr	5'-phosphate]-D-ribitol	C23H32N6O12P	-1
апаагрі	5 phosphatej b fibitor	C2511521100121	
	7.0 dibuduantaria Culmathul 1./4		
	7,8-dihydropterin-6-ylmethyl-1-(4-aminophenyl)-1-deoxy-5-[1-A-D-ribofuranosyl		
dhadrtpr	5'-triphosphate]-D-ribitol	C23H32N6O18P3	-3
dhap	Dihydroxyacetone phosphate	C3H5O6P	-2
dhf	7,8-Dihydrofolate	C19H20N7O6	-1
dhlpro	Dihydrolipolprotein	C8H16NOS2R	0
dhnpt	Dihydroneopterin	C9H14N5O4	1
dhor-S	(S)-Dihydroorotate	C5H5N2O4	-1
dhp23cp	7,8-dihydronepterin 2':3'-cyclicphosphate	C9H12N5O6P	0
dhpmp	Dihydroneopterin monophosphate	C9H13N5O7P	-1
dhpt	Dihydropteroate	C14H14N6O3	0
	7,8-dihydropterin-6-ylmethyl-4-(B-D-		
dhrfap	ribofuranosyl) aminobenzene 5'-phosphate	C18H22N6O8P	-1
didp	dIDP	C10H11N4O10P2	-3
ditp	dITP	C10H11N4O13P3	-4
dkfp	6-deoxy-5-ketofructose 1-phosphate	C6H9O8P	-2
dkmp	6-deoxy-5-ketomannitol 1-phosphate	C6H11O8P	-2
dma	dimethylamine	C2H8N	1
dmh2mpt	didemethylated 7,8-dihydromethanopterin	C28H37N6O16P	-2
dmlz	6,7-Dimethyl-8-(1-D-ribityl)lumazine	C13H18N4O6	0

Table B.1. (continued)

Model ID	Met name	Charged Formula	Charge
dmpp	Dimethylallyl diphosphate	C5H9O7P2	-3
dms	Dimethyl sulfide	C2H6S	0
dna_met	Biomass – DNA component		
dnad	Deamino-NAD+	C21H24N6O15P2	-2
	3,7-dideoxy-D-threo-hepto-2-amino-6-		
dohau	ulosonate	C7H13O5N	0
dohdu	3,7-dideoxy-D-threo-hepto-2,6-diulosonate	C7H9O6	-1
dpcoa	Dephospho-CoA	C21H33N7O13P2S	-2
	2,3-O-phytanyl-sn-glycero-1-	CATHOAOCNADA	0
dpgpe	phosphoethanolamine	C45H94O6N1P1	0
dpgpg	2,3-di-O-phytanyl-sn-glycerol-1-phospho-3'-sn-glycerol	C46H94O8P1	-1
dpgpi	2,3-O-phytanyl-sn-glycero-1-phospho-myo-inositol	C49H98O11P1	-1
dpgps	2,3-O-phytanyl-sn-glycero-1-phosphoserine	C46H93N1O8P1	-1
drib	Deoxyribose	C5H10O4	0
dscl	dihydrosirohydrochlorin (precorrin 2)	C42H41N4O16	-7
dtbt	Dethiobiotin	C10H17N2O3	-1
dtdp	dTDP	C10H13N2O11P2	-3
dtdp4d6dg	dTDP-4-dehydro-6-deoxy-D-glucose	C16H22N2O15P2	-2
dtdp4d6dm	dTDP-4-dehydro-6-deoxy-L-mannose	C16H22N2O15P2	-2
dtdpglu	dTDPglucose	C16H24N2O16P2	-2
dtdprmn	dTDP-L-rhamnose	C16H24N2O15P2	-2
dtmp	dTMP	C10H13N2O8P	-2
dttp	dTTP	C10H13N2O14P3	-4
dudp	dUDP	C9H11N2O11P2	-3
dump	dUMP	C9H11N2O8P	-2
duri	Deoxyuridine	C9H12N2O5	0
dutp	dUTP	C9H11N2O14P3	-4
dxyl5p	1-deoxy-D-xylulose 5-phosphate	C5H9O7P	-2
e4p	D-Erythrose 4-phosphate	C4H7O7P	-2
eig3p	D-erythro-1-(Imidazol-4-yl)glycerol 3- phosphate	C6H9N2O6P	-2
etha	Ethanolamine	C2H8NO	1
etoh	Ethanol	C2H6O	0

Table B.1. (continued)

Model ID	Met name	Charged Formula	Charge
f1p	D-Fructose 1-phosphate	C6H11O9P	-2
f390a	coenzyme F390 (adenosine)	C39H43N10O24P2	-5
f390g	coenzyme F390 (guanosine)	C39H42N10O25P2	-6
f420-0	coenzyme ferredoxin 420-0	C19H19N3O12P	-3
f420-1	coenzyme ferredoxin 420-1	C24H25N4O15P	-4
f420-2	coenzyme ferredoxin 420-2 (oxidized)	C29H31N5O18P	-5
f420-2h2	coenzyme ferredoxin 420-2 (reduced)	C29H34O18N5P1	-4
f420-3	coenzyme ferredoxin 420-3	C34H37N6O21P	-6
f420-4	coenzyme ferredoxin 420-4	C39H43N7O24P	-7
f420-5	coenzyme ferredoxin 420-5	C44H49N8O27P	-8
f420-6	coenzyme ferredoxin 420-6	C49H55N9O30P	-9
f420-7	coenzyme ferredoxin 420-7	C54H61N10O33P	-10
f430	coenzyme F430	C42H46N6NiO13	-4
f430p1	coenzyme 430 precursor 1	C42H43N6NiO14	-5
f430p2	coenzyme F430 precursor 2	C42H45N6NiO14	-5
f430p3	coenzyme f430 precursor 3	C42H47N6NiO14	-5
f6p	D-Fructose 6-phosphate	C6H11O9P	-2
fad	Flavin adenine dinucleotide oxidized	C27H31N9O15P2	-2
fald	Formaldehyde	CH2O	0
fapy	2-amino-5-formylamino-6-ribosylamino- 4(3H)-pyrimidinone 5'-monophosphate (FAPy)	C10H14N5O9P	-2
fc1p	L-Fuculose 1-phosphate	C6H11O8P	-2
fcd	Flavin cytosine dinucleotide oxidized	C26H31N7O16P2	-2
fdox	ferredoxin (oxidized) 2[4Fe-4S]	Fe8S8X	3
fdp	D-Fructose 1,6-bisphosphate	C6H10O12P2	-4
fdred	ferredoxin (reduced) 2[4Fe-4S]	Fe8S8X	2
fe2	Fe2+	Fe	2
fe3	Fe3+	Fe	3
fgam	N2-Formyl-N1-(5-phospho-D-ribosyl)glycinamide	C8H13N2O9P	-2
fgd	Flavin guanosine dinucleotide oxidized	C27H31N9O16P2	-2
fmettrna	N-Formylmethionyl-tRNA	C6H9NO2SR	0
fmn	FMN	C17H19N4O9P	-2
fol	Folate	C19H17N7O6	-2
for	Formate	CH102	-1

Table B.1. (continued)

Model ID	Met name	Charged Formula	Charge
formh4spt	formyltetrahydrosarcinapterin	C36H49N7O20P1	-3
formmfr(b)	formylmethanofuran b	C35H43N6O15	-3
fpram	2-(Formamido)-N1-(5-phospho-D-ribosyl)acetamidine	C8H15N3O8P	-1
fprica	5-Formamido-1-(5-phospho-D-ribosyl)imidazole-4-carboxamide	C10H13N4O9P	-2
frdp	Farnesyl diphosphate	C15H25O7P2	-3
fru	D-Fructose	C6H12O6	0
fum	Fumarate	C4H2O4	-2
g1p	D-Glucose 1-phosphate	C6H11O9P	-2
g3p	Glyceraldehyde 3-phosphate	C3H5O6P	-2
g6p	D-Glucose 6-phosphate	C6H11O9P	-2
gal1p	alpha-D-Galactose 1-phosphate	C6H11O9P	-2
galactan	Galactan (poly-glycogen)	C6H10O5	0
gald	Glyceraldehyde	C3H6O3	0
gam1p	D-Glucosamine 1-phosphate	C6H13NO8P	-1
gam6p	D-Glucosamine 6-phosphate	C6H13NO8P	-1
gar	N1-(5-Phospho-D-ribosyl)glycinamide	C7H14N2O8P	-1
gcald	Glycolaldehyde	C2H4O2	0
gdp	GDP	C10H12N5O11P2	-3
gdpddman	GDP-4-dehydro-6-deoxy-D-mannose	C16H21N5O15P2	-2
gdpfuc	GDP-L-fucose	C16H23N5O15P2	-2
gdpgpi	glucosaminyl archaetidyl-myo-inositol	C55H110N1O15P1	0
gdpmann	GDP-D-mannose	C16H23N5O16P2	-2
gdpofuc	GDP-4-oxo-L-fucose	C16H21N5O15P2	-2
ggdp	Geranylgeranyl diphosphate	C20H33O7P2	-3
gggp	(S)-3-O-geranylgeranylglyceryl phosphate	C23H39O6P1	-2
glc-D	D-Glucose	C6H12O6	0
glcn	D-Gluconate	C6H11O7	-1
glnam	N-Glycoloyl-neuraminate;	C11H18NO10	-1
glnamcmp	CMP-N-glycoloylneuraminate;	C20H29N4O17P	-2
gln-L	L-Glutamine	C5H10N2O3	0
glntrna	L-Glutaminyl-tRNA	C5H9N2O2R	1
glu1sa	L-Glutamate 1-semialdehyde	C5H10NO3	1
glu5p	L-Glutamate 5-phosphate	C5H8NO7P	-2
glu5sa	L-Glutamate 5-semialdehyde	C5H9NO3	0

Table B.1. (continued)

Model ID	Met name	Charged Formula	Charge
glu-L	L-Glutamate	C5H8NO4	-1
glutrna	L-Glutamyl-tRNA(Glu)	C5H7NO3R	0
glutrna(gln)	L-glutaminyl-tRNA(gln)	C5H7NO3R	0
glx	Glyoxylate	C2H1O3	-1
gly	Glycine	C2H5NO2	0
glyald	D-Glyceraldehyde	C3H6O3	0
glyb	Glycine betaine	C5H11NO2	0
glyc	Glycerol	C3H8O3	0
glyc1p	Glycerol 1-phosphate	C3H7O6P	-2
glyclt	Glycolate	C2H3O3	-1
glycogen	glycogen	C6H10O5	0
glyc-R	(R)-Glycerate	C3H5O4	-1
glytrna	Glycyl-tRNA(Gly)	C2H4NOR	1
gmp	GMP	C10H12N5O8P	-2
grdp	Geranyl diphosphate	C10H17O7P2	-3
gsn	Guanosine	C10H13N5O5	0
gthox	Oxidized glutathione	C20H30N6O12S2	-2
gthrd	Reduced glutathione	C10H16N3O6S	-1
gtp	GTP	C10H12N5O14P3	-4
gua	Guanine	C5H5N5O	0
h	H+	Н	1
h2	H2	H2	0
h2acon-C	cis-(homo)2aconitate	C8H7O6	-3
h2mpt	7,8-dihydromethanopterin	C30H41N6O16P	-2
h2o	H2O	H2O	0
h2o2	Hydrogen peroxide	H2O2	0
h2s	Hydrogen sulfide	H2S	0
h3acon-C	cis-(homo)3aconitate	С9Н9О6	-3
h4mpt	5,6,7,8-tetrahydromethanopterin	C30H43N6O16P	-2
h4spt	tetrahydrosarcinapterin	C35H49N7O19P1	-3
hacon-C	cis-homoaconitate	C7H5O6	-3
hacon-T	trans-homoaconitate	C7H5O6	-3
hatrz	Hydroxyatrazine	C8H15N5O	0
hcarn	Homocarnosine	C10H17N4O3	1
hcit	2-Hydroxybutane-1,2,4-tricarboxylate	C7H7O7	-3
hco3	Bicarbonate	CHO3	-1
hcys-L	L-Homocysteine	C4H9NO2S	0

Table B.1. (continued)

Model ID	Met name	Charged Formula	Charge
he2thpp	2-(alpha-Hydroxyethyl)thiamine diphosphate;	C14H20N4O8P2S	-2
hepdp	all-trans-Heptaprenyl diphosphate	C35H57O7P2	-3
hgbam	Hydrogenobyrinate a,c diamide	C45H59N6O12	-3
his-L	L-Histidine	C6H9N3O2	0
hisp	L-Histidinol phosphate	C6H11N3O4P	-1
hista	Histamine	C5H10N3	1
histd	L-Histidinol	C6H12N3O	1
histrna	L-Histidyl-tRNA(His)	C6H8N3OR	1
hmbil	Hydroxymethylbilane	C40H38N4O17	-8
hmgcoa	Hydroxymethylglutaryl-CoA	C27H39N7O20P3S	-5
hom-L	L-Homoserine	C4H9NO3	0
hpglu	Tetrahydropteroyltri-L-glutamate	C24H34N8O12	0
hphaccoa	4-Hydroxyphenylacetyl-CoA	C29H38N7O18P3S	-4
•	Hydroxypyruvate	C3H3O4	-1
hpyr hsfd	heterodisulfide	C13H22N1O10P1S3	-1
	sym-Homospermidine	C8H24N3	3
hspmd hxan		C5H4N4O	0
	Hypoxanthine Iminoaspartate	C4H4NO4	-1
iasp ibcoa	Isobutyryl-CoA	C25H38N7O17P3S	-1
icit	Isocitrate	C6H5O7	-3
id3acald	Indole-3-acetaldehyde	C10H9NO	-5
idp	IDP	C10H11N4O11P2	-3
ihcit-T	threo-isohomocitrate	C7H7O7	-3
ile-L	L-Isoleucine	C6H13NO2	-5
iletrna	L-Isoleucyl-tRNA(Ile)	C6H12NOR	1
imacp	3-(Imidazol-4-yl)-2-oxopropyl phosphate	C6H7N2O5P	-2
imp	IMP	C10H11N4O8P	-2
ind3ac	Indole-3-acetate	C10H8NO2	-1
indaccoa	S-2-(indol-3-yl)acetyl-CoA	C31H39N8O17P3S	-4
indole	Indole	C8H7N	0
indpyr	Indolepyruvate	C11H8NO3	-1
inost	myo-Inositol	C6H12O6	0
ins	Inosine	C10H12N4O5	0
ipdp	Isopentenyl diphosphate	C5H9O7P2	-3
ipp	isopentyl phosphate	C5H9O4P	-2

Table B.1. (continued)

Model ID	Met name	Charged Formula	Charge
itp	ITP	C10H11N4O14P3	-4
k	potassium	K	1
lac-D	D-Lactate	C3H5O3	-1
lac-L	L-Lactate	C3H5O3	-1
lald-L	L-Lactaldehyde	C3H6O2	0
Lcyst	L-cysteate	C3H6NO5S	-1
leu-L	L-Leucine	C6H13NO2	0
leutrna	L-Leucyl-tRNA(Leu)	C6H12NOR	1
lgt-S	(R)-S-Lactoylglutathione	C13H20N3O8S	-1
lipid_met	Biomass – lipid component		
lppg	lactyl-(2)-diphospho-(5')-guanosine	C13H16N5O13P2	-3
Ipro	Lipoylprotein	C8H14NOS2R	0
lys-L	L-Lysine	C6H15N2O2	1
lystrna	L-Lysine-tRNA (Lys)	C6H14N2OR	2
m3hdp	methyl-3-hydroxyl diphosphate	C5H11O8P2	-3
m5hbc	Co-Methyl-Co-5- hydroxybenzimidazolylcobamide	C61H87CoN13O15P	0
mal-L	L-Malate	C4H4O5	-2
man1p	D-Mannose 1-phosphate	C6H11O9P	-2
man6p	D-Mannose 6-phosphate	C6H11O9P	-2
mcom	methylcoenzyme m	C3O3S2H7	-1
menylh4spt	methenyl-tetrahydrosarcinapterin	C36H48N7O19P1	-2
meoh	Methanol	CH4O1	0
mercppyr	Mercaptopyruvate	C3H3O3S	-1
methf	5,10-Methenyltetrahydrofolate	C20H20N7O6	-1
met-L	L-Methionine	C5H11NO2S	0
mettrna	L-Methionyl-tRNA (Met)	C5H10NOSR	1
mev-R	(R)-Mevalonate	C6H11O4	-1
mfr(b)	Methanofuran b	C34H44N6O14	-2
mfrbi1	methanofuran intermediate 1	C6H9O13P2	-5
mfrbi2	methanofuran intermediate 2	C6H8O9P	-3
mfrbi3	methanofuran intermediate 3	C6H6O8P	-3
mfrbi4	phosphate ester of dihydrofuran : methanofuran biosynthesis intermediate 4	C6H6O8P	-3
mg2	magnesium	Mg	2
mh4spt	N5-methyl-tetrahydrosarcinapterin	C36H51N7O19P1	-3

Table B.1. (continued)

Model ID	Met name	Charged Formula	Charge
mhnalu	5-Methyltetrahydropteroyltri-L-glutamate	C25H36N8O12	0
mhpglu mi3p-D	1D-myo-Inositol 3-phosphate	C6H11O9P	-2
ט-קצוווו	·	CONTION	-2
mleneh4spt	N5,N10-methylene-5,6,7,8- tetrahydromethanopterin	C36H49N7O19P1	-3
mlthf	5,10-Methylenetetrahydrofolate	C20H22N7O6	-1
	Methylamine	C1H6N	1
mma	· · · · · · · · · · · · · · · · · · ·	C4H4O4	-2
mmal	Methylmalonate	C4H4U4	-2
mmh2mpt	monomethylated 7,8-dihydromethanoterin	C29H39N6O16P	-2
mn2	Mn2+	Mn	2
mobd	Molybdate	MoO4	-2
mphen	methanophenazine (oxidized)	C37N2O1H50	0
mphenh2	methanophenazine (reduced)	C37N2O1H52	0
msa	Malonate semialdehyde	C3H3O3	-1
mthgxl	Methylglyoxal	C3H4O2	0
n2	nitrogen	N2	0
na1	Sodium	Na	1
nabl	N-epsilon-acetyl-beta-lysine	C8H16N2O3	0
nac	Nicotinate	C6H4NO2	-1
nad	Nicotinamide adenine dinucleotide	C21H26N7O14P2	-1
nadh	Nicotinamide adenine dinucleotide - reduced	C21H27N7O14P2	-2
nadp	Nicotinamide adenine dinucleotide phosphate	C21H25N7O17P3	-3
	Nicotinamide adenine dinucleotide		
nadph	phosphate - reduced	C21H26N7O17P3	-4
nh4	Ammonium	H4N	1
ni2	nickel	Ni	2
nicrns	Nicotinate D-ribonucleoside	C11H13NO6	0
nicrnt	Nicotinate D-ribonucleotide	C11H12NO9P	-2
nmn	NMN	C11H14N2O8P	-1
no2	Nitrite	NO2	-1
o2	02	02	0
o2-	Oxygen radical	02	-1
oaa	Oxaloacetate	C4H2O5	-2
octdp	all-trans-Octaprenyl diphosphate	C40H65O7P2	-3

Table B.1. (continued)

Model ID	Met name	Charged Formula	Charge
ohepa	2-oxoheptanedioic acid	C7H8O5	-2
ohexa	2-oxohexanedioic acid	C6H6O5	-2
orn	Ornithine	C5H13N2O2	1
orot	Orotate	C5H3N2O4	-1
orot5p	Orotidine 5'-phosphate	C10H10N2O11P	-3
osuc	Oxalosuccinate	C6H3O7	-3
oxa	Oxalate	C2O4	-2
pac	Phenylacetic acid	C8H7O2	-1
pan4p	Pantetheine 4'-phosphate	C11H21N2O7PS	-2
pant-R	(R)-Pantoate	C6H11O4	-1
рар	Adenosine 3',5'-bisphosphate	C10H11N5O10P2	-4
paps	3'-Phosphoadenylyl sulfate	C10H11N5O13P2S	-4
рер	Phosphoenolpyruvate	C3H2O6P	-3
phaccoa	Phenylacetyl-CoA	C29H38N7O17P3S	-4
phe-L	L-Phenylalanine	C9H11NO2	0
pheme	protoheme	C34H30FeN4O4	-2
phetrna	L-Phenylalanyl-tRNA(Phe)	C9H10NOR	1
phom	O-Phospho-L-homoserine	C4H8NO6P	-2
phpyr	Phylloquinone	C9H7O3	-1
phydp	Phytyl diphosphate	C20H39O7P2	-3
pi	Phosphate	HO4P	-2
pmcoa	Pimeloyl-CoA	C28H41N7O19P3S	-5
pnto-R	(R)-Pantothenate	C9H16NO5	-1
polyacgal	Poly-N-acetylgalactosamine	C8H13NO5	0
polyglcur	Poly-D-glucuronate	C6H7O6	-1
рра	Propionate (n-C3:0)	C3H5O2	-1
ppant-R	4-phosphopantoate	C6H10O7P	-3
ррар	Propanoyl phosphate	C3H5O5P	-2
ppbng	Porphobilinogen	C10H13N2O4	-1
ppcoa	Propanoyl-CoA	C24H36N7O17P3S	-4
pphn	Prephenate	C10H8O6	-2
ррі	Diphosphate	HO7P2	-3
рррі	Inorganic triphosphate	HO10P3	-4
pram	5-Phospho-beta-D-ribosylamine	C5H11NO7P	-1
pran	N-(5-Phospho-D-ribosyl)anthranilate	C12H13NO9P	-3
prbamp	1-(5-Phosphoribosyl)-AMP	C15H19N5O14P2	-4
prbatp	1-(5-Phosphoribosyl)-ATP	C15H19N5O20P4	-6

Table B.1. (continued)

Model ID	Met name	Charged Formula	Charge
	1-(5-Phosphoribosyl)-5-[(5-		
	phosphoribosylamino)methylideneamino]imi		
prfp	dazole-4-carboxamide	C15H21N5O15P2	-4
	5-[(5-phospho-1-deoxyribulos-1-		
nrln	ylamino)methylideneamino]-1-(5- phosphoribosyl)imidazole-4-carboxamide	C15H21N5O15P2	4
prlp pro-L	L-Proline	C5H9NO2	-4
protein_met	Biomass – protein component	CSH9NO2	0
	L-Prolyl-tRNA(Pro)	C5H8NOR	1
protrna	L-PTOTYI-TRINA(PTO)	COHONON	<u>_</u>
prpp	5-Phospho-alpha-D-ribose 1-diphosphate	C5H8O14P3	-5
psd5p	Pseudouridine 5'-phosphate	C9H11N2O9P	-2
pser-L	O-Phospho-L-serine	C3H6NO6P	-2
ptrc	Putrescine	C4H14N2	2
pydx5p	Pyridoxal 5'-phosphate	C8H8NO6P	-2
pyr	Pyruvate	C3H3O3	-1
pyr-L	L-pyrrolysine	C12H21N3O3	0
pyrtrna	trna(pyr-L)	C12H20N3O2R	1
quln	Quinolinate	C7H3NO4	-2
r15bp	D-Ribose 1,5-bisphosphate	C5H8O11P2	-4
r2mmal	D-Citramalate	C5H6O5	-2
r5hbzi	N1-(alpha-D-ribosyl)-5-hydroxybenzimidazole	C12H14N2O5	0
r5p	alpha-D-Ribose 5-phosphate	C5H9O8P	-2
rb15bp	D-Ribulose 1,5-bisphosphate	C5H8O11P2	-4
Rh2cit	(R)-(homo)2citrate	C8H9O7	-3
Rh3cit	(R)-(homo)3citrate	C9H11O7	-3
rib-D	D-Ribose	C5H10O5	0
ribflv	Riboflavin	C17H20N4O6	0
rna_met	Biomass – RNA component		
rnam	N-Ribosylnicotinamide	C11H15N2O5	1
ru5p-D	D-Ribulose 5-phosphate	C5H9O8P	-2
S2hglut	(S)-2-Hydroxyglutarate	C5H6O5	-2
scl	sirohydrochlorin	C42H40N4O16	-6
sec	sulfoethylcysteine	C5H10NO5S2	-1
ser-L	L-Serine	C3H7NO3	0

Table B.1. (continued)

Model ID	Met name	Charged Formula	Charge
sertrna	L-Seryl-tRNA(Ser)	C3H6NO2R	1
sf430a	15,17-seco-F430-17-acid	C42H47N6NiO14	-5
Shcit	S-homocitrate	C7H7O7	-3
sheme	Siroheme	C42H36FeN4O16	-8
skm	Shikimate	C7H9O5	-1
skm5p	Shikimate 5-phosphate	C7H8O8P	-3
sl26da	N-Succinyl-LL-2,6-diaminoheptanedioate	C11H16N2O7	-2
sl2a6o	N-Succinyl-2-L-amino-6-oxoheptanedioate	C11H12NO8	-3
so3	Sulfite	03S	-2
so4	Sulfate	O4S	-2
succ	Succinate	C4H4O4	-2
succoa	Succinyl-CoA	C25H35N7O19P3S	-5
suchms	O-Succinyl-L-homoserine	C8H12NO6	-1
sucsal	Succinic semialdehyde	C4H5O3	-1
thdp	2,3,4,5-Tetrahydrodipicolinate	C7H8NO4	-1
thf	5,6,7,8-Tetrahydrofolate	C19H22N7O6	-1
thm	Thiamin	C12H17N4OS	1
thmmp	Thiamin monophosphate	C12H16N4O4PS	-1
thmpp	Thiamine diphosphate	C12H16N4O7P2S	-2
thr-L	L-Threonine	C4H9NO3	0
thrp	L-Threonine O-3-phosphate	C4H8NO6P	-2
thrtrna	L-Threonyl-tRNA(Thr)	C4H8NO2R	1
thym	Thymine	C5H6N2O2	0
thymd	Thymidine	C10H14N2O5	0
tih2cit	(-)threo-iso(homo)2citrate	C8H9O7	-3
tih3cit	(-)threo-iso(homo)3citrate	C9H11O7	-3
tma	trimethylamine	C3H10N	1
trace_met	Biomass – trace component		
trdox	Oxidized thioredoxin	X	0
trdrd	Reduced thioredoxin	XH2	0
trnaala	tRNA(Ala)	R	0
trnaarg	tRNA(Arg)	R	0
trnaasn	tRNA(Asn)	R	0
trnaasp	tRNA(Asp)	R	0
trnacys	tRNA(Cys)	R	0

Table B.1. (continued)

Model ID	Met name	Charged Formula	Charge
trnagln	tRNA(Gln)	R	0
trnaglu	tRNA (Glu)	R	0
trnagly	tRNA(Gly)	R	0
trnahis	tRNA(His)	R	0
trnaile	tRNA(IIe)	R	0
trnaleu	tRNA(Leu)	R	0
trnalys	tRNA(Lys)	R	0
trnamet	tRNA(Met)	R	0
trnaphe	tRNA(Phe)	R	0
trnapro	tRNA(Pro)	R	0
trnaser	tRNA(Ser)	R	0
trnathr	tRNA(Thr)	R	0
trnatrp	tRNA(Trp)	R	0
trnatyr	tRNA(Tyr)	R	0
trnaval	tRNA(Val)	R	0
trp-L	L-Tryptophan	C11H12N2O2	0
trptrna	L-Tryptophanyl-tRNA(Trp)	C11H11N2OR	1
tsul	Thiosulfate	03S2	-2
tym	Tyramine	C8H12NO	1
tyr-L	L-Tyrosine	C9H11NO3	0
tyrtrna	L-Tyrosyl-tRNA(Tyr)	C9H10NO2R	1
uaccg	UDP-N-acetyl-3-O-(1-carboxyvinyl)-D-glucosamine	C20H26N3O19P2	-3
	UDP-N-acetyl-D-glucosamine	C17H25N3O17P2	-2
uacgam uacmam	UDP-N-acetyl-D-mannosamine	C17H25N3O17P2	-2
uamr	UDP-N-acetylmuramate	C20H28N3O19P2	-3
udp	UDP	C9H11N2O12P2	-3
udpacgal	UDP-N-acetyl-D-galactosamine	C17H25N3O17P2	-2
udpg	UDPglucose	C15H22N2O17P2	-2
udpgal	UDPgalactose	C15H22N2O17P2	-2
udpglcur	UDP-D-glucuronate	C15H19N2O18P2	-3
ump	UMP	C9H11N2O9P	-2
unknown_cbl1 deg	unknown degradation product of cbl1 for adocbl-HBI synthesis	C14H16N2O6P1	-1
unknown_rbfd		51 11101120011	
eg	unknown riboflavin degradation product	C10H14N2O5	0
uppg3	Uroporphyrinogen III	C40H36N4O16	-8

Table B.1. (continued)

Model ID	Met name	Charged Formula	Charge
ura	Uracil	C4H4N2O2	0
urea	Urea	CH4N2O	0
uri	Uridine	C9H12N2O6	0
utp	UTP	C9H11N2O15P3	-4
val-L	L-Valine	C5H11NO2	0
valtrna	L-Valyl-tRNA(Val)	C5H10NOR	1
wo4	Tungstenate	WO4	-2
xan	Xanthine	C5H4N4O2	0
xmp	Xanthosine 5'-phosphate	C10H11N4O9P	-2
xtp	XTP	C10H11N4O15P3	-4
xtsn	Xanthosine	C10H12N4O6	0
xu5p-D	D-Xylulose 5-phosphate	C5H9O8P	-2
zn2	Zinc	Zn	2

Table B.2. List of reactions and gene associations (GPR) in the *M. acetivorans* metabolic model.

Reaction ID	Reaction	GPR
	23dhmb[c] + nadp[c] <=> h[c] +	
2H3MOAOX	nadph[c] + 2h3moa[c]	MA3790
	2mop[c] + h2o[c] + nad[c] -> (2) h[c] +	
2MOPRED	mmal[c] + nadh[c]	MA2860
	2obut[c] + he2thpp[c] -> 2ahbut[c] +	
2OBUTHE2THPPTRX	thmpp[c]	(MA1354 and MA1958)
	gtp[c] + lac-L[c] -> 2plac-L[c] + gdp[c] +	
2PLS	h[c]	
4ABZt2r	4abz[e] + h[e] <==> 4abz[c] + h[c]	
4ASD	4as[c]> h2o[c] + 4das[c]	
	4adhs[c] + (2) h[c] + nadh[c]> nad[c] +	
4DHSD	4as[c]	
4DHSS	4adhq[c]> 4adhs[c] + h2o[c] + h[c]	
	(2) h[c] + (2) 5hbc_red[c] -> (2) 5hbc[c]	
5HBCOX	+ h2[c]	
	atp[c] + fdred[c] + h2o[c] + 5hbc[c] ->	/NAA0450 og NAA0840 og
5HBCR	adp[c] + fdox[c] + h[c] + pi[c] + 5hbc red[c]	(MA0150 or MA0849 or MA4360)
STIDEN	ribflv[c] -> unknown_rbfdeg[c] +	WA4300)
5HBZIDS	5hbzid[c]	
0.122.20	7ohp[c] + cys-L[c] + h[c] + nadh[c] ->	
7MHS	7mhp[c] + nad[c] + ser-L[c]	
711115	7mhp[c] + atp[c] + thr-L[c] -> 7mht[c] +	
7MHTS	adp[c] + h[c] + pi[c]	
7	4abut[c] + akg[c] <=> glu-L[c] +	
ABTA	sucsal[c]	MA2859
ACACT1	(2) accoa[c] <=> aacoa[c] + coa[c]	MA4042
	adocbip[c] + gtp[c] + h[c] -> agdpcbi[c]	
ACBIPGT	+ ppi[c]	MA0938
	atp[c] + coa[c] + ppa[c] <=> adp[c] +	
ACCOAL2r	pi[c] + ppcoa[c]	(MA3168 and MA3602)
ACGK	acglu[c] + atp[c] -> acg5p[c] + adp[c]	MA4515
	accoa[c] + glu-L[c] -> acglu[c] + coa[c] +	
ACGS	h[c]	(MA3564 or MA4339)
ACKr	ac[c] + atp[c] <=> actp[c] + adp[c]	MA3606
ACLDC	$alac-S[c] + h[c] \rightarrow actn-R[c] + co2[c]$	MA3744

Table B.2. (continued)

Reaction ID	Reaction	GPR
ACIC		(MA1354 or MA1958 or MA3792) and (MA3791 or
ACLS	h[c] + (2) pyr[c] -> alac-S[c] + co2[c]	MA3854)
A CAIDLYC	acnam[c] + pi[c] <=> h2o[c] + pep[c] +	NAA 2767
ACNPLYS	acmana[c] amet[c] + acon-T[c] -> ahcys[c] +	MA3767
ACONMT	aconm[c]	MA1801
ACONTa	cit[c] <=> acon-C[c] + h2o[c]	MA0250
ACONTb	icit[c] <=> acon-C[c] + h2o[c]	MA0250
ACOTA	acg5sa[c] + glu-L[c] -> acorn[c] + akg[c]	MA0119
ACP1(FMN)	fmn[c] + h2o[c] -> pi[c] + ribflv[c]	MA2649
	acser[c] + trdrd[c] + tsul[c] -> ac[c] +	
ACSERHS	cys-L[c] + h[c] + so3[c] + trdox[c]	(MA2715 or MA2720)
ACt2r	ac[e] + h[e] <==> ac[c] + h[c]	MA4008
ACTNt2r	actn-R[e] + h[e] <==> actn-R[c] + h[c]	
	13dpg[c] + h2o[c] -> 3pg[c] + h[c] +	
ACYP	pi[c]	MA3367
ACYP_2	actp[c] + h2o[c] -> ac[c] + h[c] + pi[c]	MA3367
ADCBHBIR	adocblhbi[c] + h2o[c] -> adn[c] + h[c] + 5hbc_red[c]	
ADCL2	4das[c]> h2o[c] + 4abz[c] + h[c]	
ADCPS1	adcobhex[c] + appl[c] + atp[c] -> adocbi[c] + adp[c] + h[c] + pi[c]	MA0941
ADCPS2	adcobhex[c] + applp[c] + atp[c] -> adocbip[c] + adp[c] + h[c] + pi[c]	MA0941
ADCYRS	adcobdam[c] + (4) atp[c] + (4) gln-L[c] + (4) h2o[c] -> adcobhex[c] + (4) adp[c] + (4) glu-L[c] + (4) h[c] + (4) pi[c]	MA3250
ADD	ade[c] + h[c] + h2o[c] -> hxan[c] + nh4[c]	MA2310
ADK1	amp[c] + atp[c] <=> (2) adp[c]	MA1096
ADK2	amp[c] + pppi[c] <=> adp[c] + ppi[c]	MA1096
ADK3	amp[c] + gtp[c] <=> adp[c] + gdp[c]	MA1096
ADK4	amp[c] + itp[c] <=> adp[c] + idp[c]	MA1096
ADKd	damp[c] + datp[c] <==> (2) dadp[c]	MA1096
ADNCYC	atp[c] -> camp[c] + ppi[c]	MA4044
ADNK1	adn[c] + atp[c] -> adp[c] + amp[c] + h[c]	MA1373

Table B.2. (continued)

Reaction ID	Reaction	GPR
	adocbi[c] + h2o[c] -> adcobhex[c] +	
ADOCBIAH	appl[c]	MA1623
	agdpcbi[c] + r5hbzi[c] -> adocblhbi[c] +	
ADOCBLS2	gmp[c] + h[c]	MA0939
	adprib[c] + h2o[c]> amp[c] + (2) h[c] +	
ADPRDP	r5p[c]	MA0113
ADPT	amp[c] + ppi[c] <=> ade[c] + prpp[c]	MA0717
ADSK	atp[c] + aps[c] -> adp[c] + h[c] + paps[c]	MA4246
ADSL1	dcamp[c] -> amp[c] + fum[c]	MA3971
ADSL2	25aics[c] <=> aicar[c] + fum[c]	MA3971
ADSS	asp-L[c] + gtp[c] + imp[c] -> dcamp[c] + gdp[c] + (2) h[c] + pi[c]	(MA1919 or MA4118)
AGAIAGT	dpgpi[c] + uacgam[c] -> agdpgpi[c] + h[c] + udp[c]	MA0798
AGAID	agdpgpi[c] + h2o[c] -> ac[c] + gdpgpi[c]	MA0990
AGMT	agm[c] + h2o[c] -> ptrc[c] + urea[c]	MA3986
AGPR	acg5p[c] + h[c] + nadph[c] -> acg5sa[c] + nadp[c] + pi[c]	MA3566
AH6PI	ah6p-D[c] <=> f6p[c]	MA1384
AHC	ahcys[c] + h2o[c] -> adn[c] + hcys-L[c]	MA1275
AHGDx	S2hglut[c] + nad[c] <=> akg[c] + h[c] + nadh[c]	
AHMMPS	air[c] + nadh[c] + (2) h[c] -> 4ahmmp[c] + gcald[c] + pi[c] + nad[c]	(MA0261 or MA1790 or MA4329)
AHSERL2	achms[c] + h2s[c] -> ac[c] + h[c] + hcys- L[c]	MA2715
AICART	10fthf[c] + aicar[c] <=> fprica[c] + thf[c]	MA4012
AIRCr	air[c] + co2[c] <==> 5aizc[c] + h[c]	MA1376
AIRC2	air[c] + atp[c] + hco3[c] -> adp[c] + h[c] + pi[c] + 5caiz[c]	(MA0428 or MA1376 or MA4063)
AIRC3	5aizc[c] <=> 5caiz[c]	(MA0428 or MA1376 or MA4063)
AKACAL	accoa[c] + h2o[c] + ohexa[c] -> Rh2cit[c] + coa[c] + h[c]	MA3342
AKGCAL	accoa[c] + akg[c] -> coa[c] + h[c] + hacon-T[c]	MA3342
AKP1	ahdt[c] + (3) h2o[c] -> dhnpt[c] + (2) h[c] + (3) pi[c]	MA4354

Table B.2. (continued)

Reaction ID	Reaction	GPR
AKPCAL	accoa[c] + h2o[c] + ohepa[c] -> Rh3cit[c] + coa[c] + h[c]	MA3342
AKSCAL	2ood[c] + accoa[c] + h2o[c] -> glyc-R[c] + pmcoa[c]	
AKSDC	2ood[c] + h[c] -> 7ohp[c] + co2[c]	
ALACCBX	he2thpp[c] + pyr[c] -> alac-S[c] + thmpp[c]	(MA1354 and MA1958)
ALACt2r	alac-S[e] + h[e] <==> alac-S[c] + h[c]	
ALAt4r	ala-L[e] + na1[e] <==> ala-L[c] + na1[c]	MA2837
ALATA_L	akg[c] + ala-L[c] <=> glu-L[c] + pyr[c]	MA0636
ALATRS	ala-L[c] + atp[c] + trnaala[c] -> amp[c] + ppi[c] + alatrna[c]	MA0194
ALCD19x	glyald[c] + h[c] + nadph[c] -> glyc[c] + nadp[c]	MA2630
ALCD19y	glyald[c] + h[c] + nadph[c] -> glyc[c] + nadp[c]	(MA0403 or MA1901)
ALCD20x	<pre>nad[c] + 2ppoh[c] <=> h[c] + nadh[c] + acetone[c]</pre>	MA2630
ALCD20y	<pre>nadp[c] + 2ppoh[c]</pre>	(MA0403 or MA1901)
ALCD22_L_f420_	lald-L[c] + f420-2[c] + h[c] <=> mthgxl[c] + f420-2h2[c]	
ALCD2x	etoh[c] + nad[c] <=> acald[c] + h[c] + nadh[c]	MA2630
ALCD2y	etoh[c] + nadp[c] <=> acald[c] + h[c] + nadph[c]	(MA0403 or MA1901)
ALDD1	fald[c] + h2o[c] + nad[c] -> for[c] + (2) h[c] + nadh[c]	MA0417
ALDD20x	h2o[c] + id3acald[c] + nad[c] -> (2) h[c] + ind3ac[c] + nadh[c]	MA2860
ALDD2x	acald[c] + h2o[c] + nad[c] <=> ac[c] + (2) h[c] + nadh[c]	MA2860
ALDD31	<pre>aacald[c] + h2o[c] + nad[c]> nadh[c] + gly[c] + (2) h[c]</pre>	MA2860
ALKP	dhap[c] + h2o[c] -> dha[c] + pi[c]	MA4354
ALR2_f420_	mthgxl[c] + f420-2h2[c] -> f420-2[c] + acetol[c] + h[c]	(MA0422 or MA2291 or MA2292 or MA2756)
AMAOTr	<pre>amet[c] + 8aonn[c] <=> amob[c] + dann[c]</pre>	

Table B.2. (continued)

Reaction ID	Reaction	GPR
	air[c] + h2o[c] + nad[c] -> 4ampm[c] +	
AMPMS2	(2) for[c] + (3) h[c] + nadh[c]	MA1790
AMPTASECG	cgly[c] + h2o[c] -> cys-L[c] + gly[c]	(MA1605 or MA2653)
ANPRT	ppi[c] + pran[c] <=> anth[c] + prpp[c]	MA2989
	chor[c] + gln-L[c] -> anth[c] + glu-L[c] +	
ANS	h[c] + pyr[c]	(MA2986 and MA2987)
	chor[c] + nh4[c] -> anth[c] + h[c] +	,
ANS2	h2o[c] + pyr[c]	(MA2986 and MA2987)
A O V C #	ala-L[c] + h[c] + pmcoa[c] <=> co2[c] +	
AOXSr APAT2	coa[c] + 8aonn[c] akg[c] + ala-B[c] <=> glu-L[c] + msa[c]	MA2859
APATZ	appl[c] + atp[c] -> adp[c] + applp[c] +	WA2839
APPLP	h[c]	MA0940
ARGDC	$arg-L[c] + h[c] \rightarrow agm[c] + co2[c]$	(MA3012 or MA3496)
ARGDr	arg-L[c] + h2o[c] <=> citr-L[c] + nh4[c]	MA0792
ARGSL	argsuc[c] <=> arg-L[c] + fum[c]	MA1318
	asp-L[c] + atp[c] + citr-L[c] -> amp[c] +	
ARGSS	argsuc[c] + h[c] + ppi[c]	MA2142
	arg-L[c] + atp[c] + trnaarg[c] -> amp[c]	
ARGTRS	+ ppi[c] + argtrna[c]	MA0043
	4pasp[c] + h[c] + nadph[c] -> aspsa[c] +	
ASADi	nadp[c] + pi[c]	MA0430
ASD	dpgps[c] + h[c] -> co2[c] + dpgpe[c]	MA0115
ASNN	asn-L[c] + h2o[c] -> asp-L[c] + nh4[c]	MA1317
ACNICA	asp-L[c] + atp[c] + gln-L[c] + h2o[c] <=>	(**************************************
ASNS1	amp[c] + asn-L[c] + glu-L[c] + h[c] + ppi[c]	(MA0051 or MA1966)
ASNTRS2-1	trnaasn[c] + atp[c] + asp-L[c]> amp[c] +	MA1684
ASIVINSZ-1	ppi[c] + asntrna(asp)[c] asntrna(asp)[c] + gln-L[c] + atp[c] +	WA1064
	h2o[c]> adp[c] + pi[c] + h[c] + glu-L[c] +	(MA4522 and MA4523 and
ASNTRS2-2	asntrna[c]	MA4524)
ASP1DC	asp-L[c] + h[c] -> ala-B[c] + co2[c]	MA1949
	asp-L[c] + cbp[c] -> cbasp[c] + h[c] +	
ASPCT	pi[c]	(MA4501 and MA4502)
ASPKi	asp-L[c] + atp[c] -> 4pasp[c] + adp[c]	MA0131
ACDO2.	asp-L[c] + nad[c] -> h[c] + iasp[c] +	NAA0050
ASPO2x	nadh[c] asp-L[c] + nadp[c] -> h[c] + iasp[c] +	MA0958
ASPO2y	asp-t(c) + nadp(c) -> n(c) + lasp(c) + nadph(c)	MA0958
7.01 02y	Πααριτίο]	1417 10000

Table B.2. (continued)

Reaction ID	Reaction	GPR
		(MA0636 or MA1385 or
ASPTA	akg[c] + asp-L[c] <=> glu-L[c] + oaa[c]	MA1819)
	asp-L[c] + atp[c] + trnaasp[c] -> amp[c]	
ASPTRS	+ ppi[c] + asptrna[c]	MA1684
	dggpg[c] + (8) h[c] + (8) nadph[c] ->	(MA0691 or MA0692 or
ATGH	dpgpg[c] + (8) nadp[c]	MA1484)
	dggpi[c] + (8) h[c] + (8) nadph[c] ->	(MA0691 or MA0692 or
ATIH	dpgpi[c] + (8) nadp[c]	MA1484)
	aicar[c] + atp[c] + for[c] -> adp[c] +	
ATPFORTRX	fprica[c] + pi[c]	(MA0206 or MA3689)
ATPHs	atp[c] + h[c] + h2o[c] -> $itp[c] + nh4[c]$	
ATPM	atp[c] + h2o[c] -> $adp[c] + h[c] + pi[c]$	MA3706
ATPPRT	ppi[c] + prbatp[c] <=> atp[c] + prpp[c]	MA0217
	atp[c] + h[c] + h2o[c]> adp[c] + (2) h[e]	
ATPS1	+ pi[c]	(MA1678 or MA2833)
		(MA4152 and MA4153 and
		MA4154 and MA4155 and
		MA4156 and MA4157 and
	(4) $h[e] + adp[c] + pi[c] <=> (3) h[c] +$	MA4158 and MA4159 and
ATPS4r	atp[c] + h2o[c]	MA4160)
	dgggps[c] + (8) h[c] + (8) nadph[c] ->	(MA0691 or MA0692 or
ATSH	dpgps[c] + (8) nadp[c]	MA1484)
5.4.00	atp[c] + btn[c] + h[c] -> btamp[c] +	1440676
BACCL	ppi[c]	MA0676
	bamppald[c] + h2o[c] + nad[c] -> ala-	
BAMPPALDOX	B[c] + (2) h[c] + nadh[c]	MA2860
BLAT	36dahx[c] + accoa[c] -> coa[c] + h[c] + nabl[c]	MA3978
BMt	biomass_met[c]> biomass_met[e]	IVIA3370
DIVIL		
BRFAPS	4abz[c] + h[c] + prpp[c] -> Brfap[c] + co2[c] + ppi[c]	(MA0339 or MA4006)
טווו או ט	(2) h2s[c] + (2) fe2[c] + (2) fdox[c] +	(MA4000)
	btnp[c] -> (2) fdred[c] + (4) h[c] + btnp-	
BSPRR	s2[c]	
	btn[e] + atp[c] + h2o[c]> btn[c] +	(MA4340 and (MA4341 or
BTNabc	adp[c] + pi[c] + h[c]	MA4342) and MA4343)

Table B.2. (continued)

Reaction ID	Reaction	GPR
BTNt2i	btn[e] + h[e]> btn[c] + h[c]	MA4340
	dtbt[c] + btnp-s2[c] + (2) fdox[c] -> btn[c]	
	+ (2) fe2[c] + h2s[c] + btnp[c] + (2)	
BTS5	fdred[c]	
_	atp[c] + ca2[e] + h2o[c]> adp[c] +	
CA2abc	ca2[c] + h[c] + pi[c]	MA4082
CAT	(2) h2o2[c] -> (2) h2o[c] + o2[c]	MA0972
		(MA2008 or MA2817 or
CAt6	ca2[c] + na1[e] <==> ca2[e] + na1[c]	MA3021)
	atp[c] + cbi[e] + h2o[c]> adp[c] + cbi[c]	(MA4604 and MA4605 and
CBlabc	+ h[c] + pi[c]	MA4606)
	atp[c] + cbi[c] + h[c] -> adocbi[c] +	
CBIAT	pppi[c]	MA2084
	atp[c] + cbl1[e] + h2o[c]> adp[c] +	(MA4604 and MA4605 and
CBL1abc	cbl1[c] + h[c] + pi[c]	MA4606)
	atp[c] + cbl1hbi[e] + h2o[c]> adp[c] +	(MA4604 and MA4605 and
CBL1HBlabc	cbl1hbi[c] + h[c] + pi[c]	MA4606)
	atp[c] + cbl1hbi[c] + h[c] ->	
CBLAT2	adocblhbi[c] + pppi[c]	MA2084
CBLD	cbl1[c] -> cbi[c] + unknown_cbl1deg[c]	
	(2) $atp[c] + gln-L[c] + h2o[c] + hco3[c]$	
	> (2) adp[c] + cbp[c] + glu-L[c] + (2) h[c] +	(
CBPS	pi[c]	(MA2143 and MA2144)
	atp[c] + cd2[c] + h2o[c]> adp[c] +	(MA0549 or MA3366 or
CD2abc1	cd2[e] + h[c] + pi[c]	MA3632)
CD3+4	cd2[c] + h[e] + k[e] <=> cd2[e] + h[c] +	NAA4447
CD2t4	k[c]	MA1117
CDCCCDD3	cdgggp[c] + glyc1p[c] -> cmp[c] +	(1,4,4,0,2,6,4, 0,7,1,4,4,0,6,2,6,1)
CDGGGPP3	dggpgp[c] + h[c]	(MA0264 or MA0525)
CDCCCDD4	3hcdgggp[c] + glyc1p[c] -> 3hdggpgp[c]	(NAA0264 or NAA0525)
CDGGGPP4	+ cmp[c] + h[c]	(MA0264 or MA0525)
CDGGGS	ctp[c] + dgggp[c] + h[c] -> cdgggp[c] + ppi[c]	MA2010
CD0003		1417.12010
CDGGGS2	3hdgggp[c] + ctp[c] + h[c] -> 3hcdgggp[c] + ppi[c]	MA2010
CD00032		14172010
CDGGGSAT	cdgggp[c] + ser-L[c] -> cmp[c] + dgggps[c] + h[c]	MA0116
CDGGGAI		IVII.OTTO
CDGGGSAT2	3hcdgggp[c] + ser-L[c] -> 3hdgggps[c] + cmp[c] + h[c]	MA0116
CDUUUSATZ	cinp[c] · n[c]	IAIUOTTO

Table B.2. (continued)

Reaction ID	Reaction	GPR
	cdgggp[c] + inost[c] -> cmp[c] +	
CDGGIPT	dggpi[c] + h[c]	MA0525
	3hcdgggp[c] + inost[c] -> 3hdggpi[c] +	
CDGGIPT2	cmp[c] + h[c]	MA0525
	f390a[c] + h2o[c] -> amp[c] + f420-2[c]	
CF3Ha	+ (2) h[c]	
CF3Hg	f390g[c] + h2o[c] -> f420-2[c] + gmp[c] + h[c]	
CISIIg	atp[c] + f420-2[c] + h[c] -> f390a[c] +	
CF3Sa	ppi[c]	MA4074
CF3Sg	f420-2[c] + gtp[c] -> f390g[c] + ppi[c]	MA4074
CH2ACH	h2acon-C[c] + h2o[c] <=> tih2cit[c]	(MA3085 and MA3751)
СНЗАСН	h2o[c] + h3acon-C[c] <=> tih3cit[c]	(MA3085 and MA3751)
CH4St	ch4s[e] <==> ch4s[c]	
CH4t	ch4[c] <=> ch4[e]	
CHACH	h2o[c] + hacon-C[c] <=> ihcit-T[c]	(MA3085 and MA3751)
CHORM	chor[c] <=> pphn[c]	MA1377
CHORS	3psme[c] -> chor[c] + pi[c]	MA0550
CHRPL	chor[c] -> 4hbz[c] + pyr[c]	(MA2986 and MA2987)
Clt	cl[e] <==> cl[c]	MA3609
	com[c] + m5hbc[c]> mcom[c] +	
СМ5НВСМТ	5hbc_red[c] + h[c]	
CMLDC	2c25dho[c] + h[c] -> co2[c] + 5odhf2a[c]	(MA0409 or MA2469)
	acnam[c] + ctp[c] <=> cmpacna[c] +	
CMPSAS	ppi[c]	MA3766
CO2t	co2[c] <=> co2[e]	
		(MA0393 or MA0869 or
		MA1748 or MA3552) and
		(MA0394 or MA0870 or
Coahs	atp[c] + cobalt2[e] + h2o[c]> adp[c] +	MA1747 or MA3551) and
CORALT+F	cobalt2[c] + h[c] + pi[c]	MA3553
COBALTt5	cobalt2[c] <==> cobalt2[e] $ 7mht[c] + atp[c] -> adp[c] + cob[c] +$	MA1721
COBS	h[c]	MA0339
	atp[c] + cobalt2[c] + h2o[c] + hgbam[c]	(MA0346 or MA0384 or
COCHL	-> adp[c] + co2dam[c] + (4) h[c] + pi[c]	MA0385 or MA0872)

Table B.2. (continued)

Reaction ID	Reaction	GPR
CODH2	co[c] + (2) fdox[c] + h2o[c] -> co2[c] + (2) fdred[c] + (2) h[c]	((MA1016 or MA3860 or MA4399) and (MA1011 or MA3865)) or (MA3283 and (MA1309 or MA3282))
CODH3	co[c] + coa[c] + mh4spt[c] -> h4spt[c] + accoa[c]	((MA1012 or MA3864) and (MA1014 or MA3862) and (MA1015 or MA3861))
CODH2_SIDERXN	co[c] + h2o[c]> for[c] + h[c]	(MA1011 or MA3865) and (MA1016 or MA3860 or MA4399)
CODHr	accoa[c] + (2) fdox[c] + h2o[c] + h4spt[c] <=> co2[c] + coa[c] + (2) fdred[c] + (2) h[c] + mh4spt[c]	(MA1016 or MA3860 or MA4399) and (MA1015 or MA3861) and (MA1014 or MA3862) and (MA1013 or MA3863) and (MA1012 or MA3864) and (MA1011 or MA3865)
COMS	h2o[c] + sec[c] -> com[c] + nh4[c] + pyr[c]	
COt	co[c] <=> co[e]	
CPC2MT	amet[c] + copre2[c] -> ahcys[c] + copre3[c] + h[c]	MA4262
СРСЗМТ	amet[c] + copre3[c] -> ahcys[c] + copre4[c]	MA4259
CPC4MT	amet[c] + copre4[c] -> ahcys[c] + copre5[c] + h[c]	MA4261
CPC5MT	amet[c] + copre5[c] + h2o[c] -> acald[c] + ahcys[c] + copre6[c] + (2) h[c]	MA0521
СРС6МТ	(2) amet[c] + codhpre6[c] -> (2) ahcys[c] + co2[c] + copre8[c] + (2) h[c]	MA0520
CPC6R	copre6[c] + nadph[c] + (2) h[c] -> codhpre6[c] + nadp[c]	
CPC8MM	copre8[c] + h[c] -> cobya[c]	MA4258
CS	cit[c] + coa[c] + h[c] <=> accoa[c] + h2o[c] + oaa[c]	MA0249

Table B.2. (continued)

Reaction ID	Reaction	GPR
CSND	csn[c] + h[c] + h2o[c]> nh4[c] + ura[c]	MA2341
	$ctp[c] + ribflv[c] \rightarrow cdp[c] + fmn[c] +$	
CTPRIBFLVTX	h[c]	MA0547
	atp[c] + nh4[c] + utp[c] -> adp[c] +	
CTPS1	ctp[c] + (2) h[c] + pi[c]	MA3279
CTPS2	atp[c] + gln-L[c] + h2o[c] + utp[c] ->	MA3279
CIF32	adp[c] + ctp[c] + glu-L[c] + (2) h[c] + pi[c] atp[c] + cu2[e] + h2o[c]> adp[c] +	WAS279
Cuabc	cu2[c] + h[c] + pi[c]	MA1342
	atp[c] + cu2[c] + h2o[c]> adp[c] +	
Cut1	cu2[e] + h[c] + pi[c]	(MA0166 or MA1342)
	atp[c] + co1dam[c] + h[c] ->	
CYRDAAT	adcobdam[c] + pppi[c]	MA2084
CYRDAR	(2) co2dam[c] + nadh[c] -> (2) co1dam[c] + h[c] + nad[c]	
CINDIN	(2) atp[c] + cobya[c] + (2) gln-L[c] +	
	h2o[c] -> (2) adp[c] + co2dam[c] + (2)	(MA0106 or MA1431 or
CYRDAS	glu-L[c] + h[c] + ppi[c]	MA3626)
	cys-L[c] + h2o[c] -> h2s[c] + nh4[c] +	,
CYSDS	pyr[c]	MA2532
CVCC	acser[c] + h2s[c] -> ac[c] + cys-L[c] +	NAA 2720
CYSSr	h[c]	MA2720
CYSt2r	cys-L[e] + h[e] <==> cys-L[c] + h[c]	(
CYSTA	akg[c] + cys-L[c] <==> glu-L[c] +	(MA0636 or MA1385 or MA1819)
CISIA	mercppyr[c]	WA1819)
CYSTRS	atp[c] + cys-L[c] + trnacys[c] -> amp[c] + ppi[c] + cystrna[c]	MA0749
CYTDK1	atp[c] + cytd[c]> adp[c] + cmp[c] + h[c]	MA1373
CYTK1	atp[c] + cmp[c] <=> adp[c] + cdp[c]	MA1104
CYTK2	atp[c] + dcmp[c] -> adp[c] + dcdp[c]	MA1104
CYTK5	ctp[c] + dcmp[c] <=> cdp[c] + dcdp[c]	MA1104
DADK	atp[c] + damp[c] <=> adp[c] + dadp[c]	MA1096
DAPDC	26dap-M[c] + h[c] -> co2[c] + lys-L[c]	MA0726
DAPE	26dap-LL[c] <==> 26dap-M[c]	
	glu-L[c] + thdp[c] + h2o[c]> akg[c] +	
DAPNH4T	26dap-LL[c]	MA1712
	datp[c] + h[c] + h2o[c] -> ditp[c] +	
DATPHs	nh4[c]	
DB4PS	ru5p-D[c] -> db4p[c] + for[c] + h[c]	MA0548

Table B.2. (continued)

Reaction ID	Reaction	GPR
	atp[c] + co2[c] + dann[c] <=> adp[c] +	
DBTSr	dtbt[c] + (3) h[c] + pi[c]	
	$dcmp[c] + h[c] + h2o[c] \rightarrow dump[c] +$	
DCMPDA	nh4[c]	(MA0136 or MA0137)
	dctp[c] + h[c] + h2o[c] -> dutp[c] +	
DCTPD	nh4[c]	MA0440
DGGGPS	ggdp[c] + gggp[c] -> dgggp[c] + ppi[c]	MA0961
DCCCDC3	3hggdp[c] + gggp[c] -> 3hdgggp[c] +	1440064
DGGGPS2	ppi[c]	MA0961
DGGPGP	dggpgp[c] + h2o[c] -> dggpg[c] + pi[c]	MA1569
DCCDCD3	3hdggpgp[c] + h2o[c] -> 3hdggpg[c] +	NAA4560
DGGPGP2	pi[c]	MA1569
DOLVADOV	(2) $fdox[c] + g3p[c] + h2o[c] -> 3pg[c] +$	2444744
DGLY3POX	(2) fdred[c] + (3) h[c]	MA1714
DGLYOX	glyald[c] + h2o[c] + nad[c]> glyc-R[c] + (2) h[c] + nadh[c]	MA2860
DHAD1	23dhmb[c] -> 3mob[c] + h2o[c]	(MA1802 or MA3373)
DHAD2	23dhmp[c] -> 3mop[c] + h2o[c]	(MA1802 or MA3373)
	nad[c] + thdp[c] <=> 23dhdp[c] + h[c] +	,
DHDPRx	nadh[c]	MA4474
	nadp[c] + thdp[c] <=> 23dhdp[c] + h[c]	
DHDPRy	+ nadph[c]	MA4474
	$aspsa[c] + pyr[c] \rightarrow 23dhdp[c] + (2)$	
DHDPS	h2o[c]	MA4473
	dhf[c] + h[c] + nadph[c] <=> nadp[c] +	
DHFR	thf[c]	
	atp[c] + dhpt[c] + glu-L[c]> adp[c] +	
DHFS	dhf[c] + h[c] + pi[c]	
DHNPA2	dhnpt[c] -> 6hmhpt[c] + gcald[c] + h[c]	
	dhor-S[c] + f420-2[c] + h[c] <=> f420-	
DHORD7	2h2[c] + orot[c]	(MA0583 and MA0584)
DHORTS	dhor-S[c] + h2o[c] <=> cbasp[c] + h[c]	MA0892
DHPCPH	$dhp23cp[c] + h2o[c] \rightarrow dhpmp[c] + h[c]$	
	4abz[c] + 6hmhptpp[c] + h[c] -> dhpt[c]	
DHPS2	+ ppi[c]	MA3516
	6hmhptpp[c] + Brfap[c] + h[c] ->	
DHPS3	dhrfap[c] + ppi[c]	(MA1946 or MA3419)
DHQAT	3dhq[c] + nh4[c]> 4adhq[c] + h2o[c]	
DHQD	3dhq[c] <=> 3dhsk[c] + h2o[c]	MA4593

Table B.2. (continued)

Reaction ID	Reaction	GPR
DHQS2	dohdu[c] -> 3dhq[c]	MA4592
	amet[c] + caphis[c] -> ahcys[c] +	
DIPS	cmaphis[c] + h[c]	MA1370
	aspsa[c] + dkfp[c] + nadh[c] + h[c] ->	
DKFPASPL	dohau[c] + g3p[c] + nad[c]	MA4591
DKFPR	dkfp[c] + h[c] + nadh[c]	
DKFPS2	mthgxl[c] + fdp[c] <=> dkfp[c] + g3p[c]	(MA2666 or MA3889)
DKFPS3	f1p[c] + mthgxl[c] <=> dkfp[c] + gald[c]	(MA2666 or MA3889)
DMAMT	dma[c] + h[c] + 5hbc_red[c] -> mma[c] + m5hbc[c]	(MA0146 and (MA0532 or MA0933 or MA2425) and (MA0527 or MA0934 or MA2424) and (MA0150 or MA0849 or MA4360))
DMAt	h[e] + dma[e] <==> h[c] + dma[c]	MA0143
DMATT	dmpp[c] + ipdp[c] -> grdp[c] + ppi[c]	MA0606
DMATT2	ipdp[c] + m3hdp[c] -> 3hgrdp[c] + ppi[c]	MA0606
DMHDRFS	34hpp[c] + 4r5au[c] + h2o[c] + (2) nadp[c] -> ddhrb[c] + (3) h[c] + (2) nadph[c] + nh4[c] + oxa[c]	((MA1490 or MA1489) and MA1491)
DMSt	dms[e] <==> dms[c]	
dna_met	(0.58) datp[c] + (0.44) dctp[c] + (0.44) dgtp[c] + (0.59) dttp[c] <=> (2.05) ppi[c] + dna_met[c]	
DNADDP	dnad[c] + h2o[c] -> amp[c] + (2) h[c] + nicrnt[c]	MA1439
DNMPPA	dhpmp[c] + h2o[c] -> dhnpt[c] + pi[c]	
DOHDUS	dohau[c] + h2o[c] + nad[c] -> dohdu[c] + h[c] + nadh[c] + nh4[c]	MA4592
DPCOAK	atp[c] + dpcoa[c] -> adp[c] + coa[c] + h[c]	
DPR	h[c] + nadph[c] + 2dhp[c] -> nadp[c] + pant-R[c]	
DRBK	atp[c] + drib[c]> 2dr5p[c] + adp[c] + h[c]	MA1373
DROPPRx	25dhpp[c] + h[c] + nadh[c] -> 25dthpp[c] + nad[c]	MA4092

Table B.2. (continued)

Reaction ID	Reaction	GPR
	25dhpp[c] + h[c] + nadph[c] ->	
DROPPRy	25dthpp[c] + nadp[c]	MA4092
	25dthpp[c] + h[c] + h2o[c] -> 5aprbu[c]	
DRTPPD	+ nh4[c]	
DTMPK	atp[c] + dtmp[c] <=> adp[c] + dtdp[c]	MA4433
DURIPP	duri[c] + pi[c] -> 2dr1p[c] + ura[c]	MA3242
DUTPDP	dutp[c] + h2o[c] -> dump[c] + h[c] + ppi[c]	MA0440
ENO	2pg[c] <=> h2o[c] + pep[c]	MA1672
ETHAt6	etha[e] + h[e] <==> etha[c] + h[c]	MA0143
ETHALO		IVIAU143
	(2) atp[c] + dscl[c] + (2) gln-L[c] + (2) h2o[c] + ni2[c] -> (2) adp[c] + f430p1[c]	
F430S1	+ (2) glu-L[c] + (4) h[c] + (2) pi[c]	(MA0877 or MA0882)
1.13001	f430p1[c] + h[c] + nadh[c] -> f430p2[c]	(1111110077 01 111110002)
F430S2	+ nad[c]	
	f430p2[c] + h[c] + nadh[c] -> f430p3[c]	
F430S3	+ nad[c]	
F430S4	f430p3[c] -> sf430a[c]	
F430S5	h[c] + sf430a[c] -> f430[c] + h2o[c]	
		(MA1494 and MA1495 and
		MA1496 and MA1497 and
		MA1498 and MA1499 and
		MA1500 and MA1501 and MA1502 and MA1503 and
		MA1504 and MA1505 and
	f420-2h2[c] + h[c] + mphen[c] -> f420-	MA1506 and (MA1507 or
F4D	2[c] + (2) h[e] + mphenh2[c]	MA1509) and MA3732)
	(2) f420-2h2[c] + o2[c] <=> (2) f420-	
F4H2O	2[c] + (2) h2o[c] + (2) h[c]	MA3381
	f420-2h2[c] + menylh4spt[c] <=> f420-	
F4MTSPD	2[c] + (2) h[c] + mleneh4spt[c]	MA4430
	f420-2h2[c] + mleneh4spt[c] <=> f420-	
F4MTSPR	2[c] + mh4spt[c] + h[c]	MA3733
	fald[c] + h4spt[c]> mleneh4spt[c] +	
FAE	h2o[c]	MA3006
FAPH	fapy[c] + h2o[c]> for[c] + 25dhpp[c] +	

Table B.2. (continued)

Reaction ID	Reaction	GPR
	h[c]	
FBA	fdp[c] <=> dhap[c] + g3p[c]	(MA0439 or MA4591)
FBA2	f1p[c] <=> dhap[c] + glyald[c]	(MA0439 or MA4591)
FBP	fdp[c] + h2o[c] -> f6p[c] + pi[c]	MA1152
FBP2	fdp[c] + h2o[c]> pi[c] + f1p[c]	
FCLPA	fc1p[c] -> dhap[c] + lald-L[c]	MA0263
FE2abc	atp[c] + fe2[e] + h2o[c]> adp[c] + fe2[c] + h[c] + pi[c]	(MA3477 and (MA3478 or MA3479))
FE3abc	atp[c] + fe3[e] + h2o[c]> adp[c] + fe3[c] + h[c] + pi[c]	(MA1230 or MA1231 or MA1232 or MA3357) and (MA1233 or MA3358) and (MA1234 or MA3359)
FEDCabc	atp[c] + (2) cit[e] + fe3[e] + h2o[c]> adp[c] + (2) cit[c] + fe3[c] + h[c] + pi[c]	((MA0950 and MA0951 and MA0952) or (MA2148 and MA2149 and MA2150))
FMFD_b_	co2[c] + (2) fdred[c] + h[c] + mfr(b)[c] <=> (2) fdox[c] + formmfr(b)[c] + h2o[c]	((MA0304 and MA0305 and MA0306 and MA0307 and MA0308 and MA0309) or (MA4174 and MA4175 and MA4176 and MA4177 and (MA4178 or MA1241)) or (MA0835 and MA0834 and MA0833 and MA0832) or (MA2877 and MA2878 and MA2879 and MA2880 and MA2881 and MA2882) or (MA0671 and MA0381 and MA0382))
	formmfr(b)[c] + h[c] + h4spt[c] <=>	
FMFTSPFT_b_	formh4spt[c] + mfr(b)[c]	MA0010
FMNAT	atp[c] + fmn[c] + h[c]> fad[c] + ppi[c]	MA1820
FMNAT_CTP_	ctp[c] + fmn[c] + h[c]> fcd[c] + ppi[c]	MA1820

Table B.2. (continued)

Reaction ID	Reaction	GPR
FMNAT_GTP_	gtp[c] + fmn[c] + h[c]> fgd[c] + ppi[c]	MA1820
FOLR2	fol[c] + nadph[c] + (2) h[c] -> dhf[c] + nadp[c]	
FOLt	fol[e] + h[e] <==> fol[c] + h[c]	
FORt	for[c] + h[c] <=> for[e] + h[e]	
TORC	101[6] 1 11[6] 1-7 101[6] 1 11[6]	(MA1831 or MA3723 or
FRTT	frdp[c] + ipdp[c] -> ggdp[c] + ppi[c]	MA4150 or MA4402)
FRTT2	3hfrdp[c] + ipdp[c] -> 3hggdp[c] + ppi[c]	(MA1831 or MA3723 or MA4150 or MA4402)
FUM	mal-L[c] <=> fum[c] + h2o[c]	(MA1001 or (MA2497 and MA2498))
G1PACT	accoa[c] + gam1p[c] -> acgam1p[c] + coa[c] + h[c]	MA3025
G1PDH	glyc1p[c] + nad[c] -> dhap[c] + h[c] + nadh[c]	MA3686
G1PTT	dttp[c] + g1p[c] + h[c] -> dtdpglu[c] + ppi[c]	(MA2183 or MA3022 or MA3777)
G1SATi	glu1sa[c] -> 5aop[c] + h[c]	MA0581
G5SADr	glu5sa[c] <=> 1pyr5c[c] + h[c] + h2o[c]	
G5SD2	glu5p[c] + h[c] + nadh[c] -> glu5sa[c] + nad[c] + pi[c]	MA4100
GALT	gal1p[c] + h[c] + utp[c] <==> ppi[c] + udpgal[c]	MA3680
GALTNS	udpgal[c] -> galactan[c] + h[c] + udp[c]	
GALUi	g1p[c] + h[c] + utp[c]	MA4459
GAPD	g3p[c] + nad[c] + pi[c] <=> 13dpg[c] + h[c] + nadh[c]	(MA1018 or MA3345)
GARFT	10fthf[c] + gar[c] <=> fgam[c] + h[c] + thf[c]	(MA0316 or MA3522)
GCALDDr	gcald[c] + h2o[c] + nad[c] <=> glyclt[c] + (2) h[c] + nadh[c]	MA2860
GCALDt	gcald[e] <==> gcald[c]	
GCC	dhlpro[c] + nad[c] -> h[c] + lpro[c] + nadh[c]	MA1652
GF4GL_0	f420-0[c] + glu-L[c] + gtp[c] -> f420-1[c] + gdp[c] + h[c] + pi[c]	(MA0135 or MA3512)
GF4GL_1	f420-1[c] + glu-L[c] + gtp[c] -> f420-2[c] + gdp[c] + h[c] + pi[c]	(MA0135 or MA3512)

Table B.2. (continued)

Reaction ID	Reaction	GPR
GF4GL 2	f420-2[c] + glu-L[c] + gtp[c] -> f420-3[c] + gdp[c] + h[c] + pi[c]	(MA0135 or MA3512)
_	f420-3[c] + glu-L[c] + gtp[c] -> f420-4[c]	
GF4GL_3	+ gdp[c] + h[c] + pi[c]	(MA0135 or MA3512)
GF4GL_4	f420-4[c] + glu-L[c] + gtp[c] -> f420-5[c] + gdp[c] + h[c] + pi[c]	(MA0135 or MA3512)
GF4GL_5	f420-5[c] + glu-L[c] + gtp[c] -> f420-6[c] + gdp[c] + h[c] + pi[c]	(MA0135 or MA3512)
GF4GL_6	f420-6[c] + glu-L[c] + gtp[c] -> f420-7[c] + gdp[c] + h[c] + pi[c]	(MA0135 or MA3512)
GF6PTA	f6p[c] + gln-L[c] -> gam6p[c] + glu-L[c]	MA3023
GGDPRED	ggdp[c] + (3) h[c] + (3) nadph[c] -> (3) nadp[c] + phydp[c]	MA1484
GGGPS	ggdp[c] + glyc1p[c] -> gggp[c] + ppi[c]	MA3969
GHMT2	gly[c] + h2o[c] + mlthf[c] <=> ser-L[c] + thf[c]	MA3520
GKadp_	adp[c] + glc-D[c] -> amp[c] + g6p[c] + h[c]	(MA3562 or MA3563)
GK1	atp[c] + gmp[c] <=> adp[c] + gdp[c]	
GLCGSD	h2o[c] + glycogen[c] -> glc-D[c]	(MA1190 or MA4050)
GLCNt2r	glcn[e] + h[e] <==> glcn[c] + h[c]	MA0021
GLCP	pi[c] + glycogen[c] -> g1p[c]	(MA0905 or MA1874 or MA2628)
GLCS2	udpg[c] -> h[c] + udp[c] + glycogen[c]	MA3679
GLNS	atp[c] + glu-L[c] + nh4[c] -> adp[c] + gln-L[c] + h[c] + pi[c]	MA4216
GLNTRAT	atp[c] + gln-L[c] + h2o[c] + glutrna(gln)[c] -> adp[c] + glu-L[c] + h[c] + pi[c] + glntrna[c]	(MA1317 and MA2862 and MA4522 and MA4523 and MA4524)
GLU5K	atp[c] + glu-L[c] -> adp[c] + glu5p[c]	MA4101
GLUDC	glu-L[c] + h[c] -> 4abut[c] + co2[c]	MA1949
GLUDxi	akg[c] + h[c] + nadh[c] + nh4[c]> glu- L[c] + h2o[c] + nad[c]	MA3169
GLUDyi	akg[c] + h[c] + nadph[c] + nh4[c]> glu- L[c] + h2o[c] + nadp[c]	MA3169
GLUPRT	gln-L[c] + h2o[c] + prpp[c] -> glu-L[c] + ppi[c] + pram[c]	MA3193

Table B.2. (continued)

Reaction ID	Reaction	GPR
GLUS_F420_	akg[c] + f420-2h2[c] + gln-L[c] -> f420- 2[c] + (2) glu-L[c] + h[c]	(MA3787 or MA4216 or MA4217 or MA4218)
GLUt2r	glu-L[e] + h[e]> glu-L[c] + h[c]	MA2961
GLUt4	glu-L[e] + na1[e]> glu-L[c] + na1[c]	MA2961
GLUTRR	glutrna[c] + (2) h[c] + nadph[c] -> glu1sa[c] + nadp[c] + trnaglu[c]	MA0577
GLUTRS	atp[c] + glu-L[c] + trnaglu[c]> amp[c] + glutrna[c] + ppi[c]	MA0587
GLUTRS_Gln_	atp[c] + glu-L[c] + trnagln[c] -> amp[c] + ppi[c] + glutrna(gln)[c]	MA0587
GLXO1	h2o[c] + nad[c] + glx[c] <=> nadh[c] + (2) h[c] + oxa[c]	MA2860
GLYALDOX	(2) fdox[c] + glyald[c] + h2o[c] -> (2) fdred[c] + glyc-R[c] + (3) h[c]	(MA2962 or MA3989)
GLYBabc	atp[c] + glyb[e] + h2o[c]> adp[c] + glyb[c] + h[c] + pi[c]	(MA2145 and MA2146 and MA2147)
GLYCDx	glyc[c] + nad[c]> dha[c] + h[c] + nadh[c]	MA0591
GLYOX	lgt-S[c] + h2o[c]> gthrd[c] + h[c] + lac- D[c]	MA2320
GLYt4r	gly[e] + na1[e]> gly[c] + na1[c]	MA2837
GLYTRS	atp[c] + gly[c] + trnagly[c] -> amp[c] + ppi[c] + glytrna[c]	MA0097
GMAND	gdpmann[c] <=> gdpddman[c] + h2o[c]	(MA1173 or MA1174)
GMPS	atp[c] + nh4[c] + xmp[c] -> amp[c] + gmp[c] + (2) h[c] + ppi[c]	(MA4511 and MA4590)
GMPS2	atp[c] + gln-L[c] + h2o[c] + xmp[c] -> amp[c] + glu-L[c] + gmp[c] + (2) h[c] + ppi[c]	(MA4511 and MA4590)
GRTT	grdp[c] + ipdp[c] -> frdp[c] + ppi[c]	(MA0606 or MA1831 or MA3723 or MA4150 or MA4402)
GRTT2	3hgrdp[c] + ipdp[c] -> 3hfrdp[c] + ppi[c]	(MA0606 or MA1831 or MA3723 or MA4150 or MA4402)
GSNK	atp[c] + gsn[c]> adp[c] + gmp[c] + h[c]	MA1373
GTHOr	gthox[c] + h[c] + nadph[c] -> (2) gthrd[c] + nadp[c]	(MA1019 or MA4013)

Table B.2. (continued)

Reaction ID	Reaction	GPR
	gtp[c] + (3) h2o[c]> fapy[c] + (2) pi[c] +	
GTPCHIII	(2) h[c]	
	gtp[c] + h2o[c]> for[c] + ppi[c] +	
GTPCHIV	dhp23cp[c]	MA4517
GTPHs	gtp[c] + h[c] + h2o[c] -> $nh4[c] + xtp[c]$	
GUACYC	gtp[c] -> 35cgmp[c] + ppi[c]	MA4044
GUAD	gua[c] + h[c] + h2o[c] -> nh4[c] + xan[c]	MA3407
GUAPRT	gmp[c] + ppi[c] <=> gua[c] + prpp[c]	MA0717
	f420-2h2[c] + h2mpt[c] -> f420-2[c] +	
H2MPTR	h4mpt[c] + h[c]	
H2Ot	h2o[e] <=> h2o[c]	
H2St	h2s[e] <==> h2s[c]	
H2td	h2[c] <=> h2[e]	
	atp[c] + glu-L[c] + h4mpt[c] -> adp[c] +	
H4MPTGL_atp_	h[c] + h4spt[c] + pi[c]	MA3268
	glu-L[c] + gtp[c] + h4mpt[c] -> gdp[c] +	
H4MPTGL_gtp_	h[c] + h4spt[c] + pi[c]	MA3268
H4MPTS10	dhadrp[c] + h2o[c] -> dhadr[c] + pi[c]	
	dhadr[c] + prpp[c] -> dhadrpr[c] +	
H4MPTS11	ppi[c]	
	atp[c] + dhadrpr[c] -> adp[c] +	
H4MPTS12	dhadrdpr[c]	
LIANADTCA 2	atp[c] + dhadrdpr[c] -> adp[c] +	
H4MPTS13	dhadrtpr[c] S2hglut[c] + dhadrtpr[c] -> dmh2mpt[c] +	
H4MPTS14	ppi[c] + unaurtpr[c] -> unini2mpt[c] +	
	amet[c] + dmh2mpt[c] -> ahcys[c] +	
H4MPTS15	h[c] + mmh2mpt[c]	
111111111111111111111111111111111111111	amet[c] + mmh2mpt[c] -> ahcys[c] +	
H4MPTS16	h[c] + h2mpt[c]	
	dhrfap[c] + f420-2h2[c] -> dhadrp[c] +	
H4MPTS9	f420-2[c] + h[c]	
	3hdpgps[c] + h[c] -> 3hdpgpe[c] +	
HASD	co2[c]	MA0115
	3hdggpg[c] + (7) h[c] + (7) nadph[c] ->	(MA0691 or MA0692 or
HATGH	3hdpgpg[c] + (7) nadp[c]	MA1484)
	3hdggpi[c] + (7) h[c] + (7) nadph[c] ->	(MA0691 or MA0692 or
HATIH	3hdpgpi[c] + (7) nadp[c]	MA1484)

Table B.2. (continued)

Reaction ID	Reaction	GPR
HATSH	3hdgggps[c] + (7) h[c] + (7) nadph[c] -> 3hdpgps[c] + (7) nadp[c]	(MA0691 or MA0692 or MA1484)
HBZOPT	4hbz[c] + octdp[c] <=> 3ophb[c] + ppi[c]	MA0961
HCARNHYD	4abut[c] + his-L[c] + h[c] -> h2o[c] + hcarn[c]	MA2653
HCITS	accoa[c] + akg[c] + h2o[c] -> coa[c] + h[c] + hcit[c]	MA3342
HCO3E	co2[c] + h2o[c] <=> h[c] + hco3[c]	MA2536
HDR	(2) h[c] + hsfd[c] + mphenh2[c] -> cob[c] + com[c] + (2) h[e] + mphen[c]	(MA0526 or MA0688) and MA0687
HDR-2	(4) fdred[c] + f420-2[c] + hsfd[c] + (5) h[c] -> (4) fdox[c] + com[c] + cob[c] + f420-2h2[c]	(MA2868 or MA3128) and (MA3126 or MA4237) and (MA3127 or MA4236) and MA2867
HETZK	4mhetz[c] + atp[c] -> 4mpetz[c] + adp[c] + h[c]	MA2723
HEX7	$atp[c] + fru[c] \rightarrow adp[c] + f6p[c] + h[c]$	MA1840
HIBD	3hmp[c] + nad[c] <=> 2mop[c] + h[c] + nadh[c]	MA0614
HISTD	h2o[c] + histd[c] + (2) nad[c] -> (3) h[c] + his-L[c] + (2) nadh[c]	MA3201
HISTP	h2o[c] + hisp[c] -> histd[c] + pi[c]	MA0219
HISTRS	atp[c] + his-L[c] + trnahis[c] -> amp[c] + ppi[c] + histrna[c]	MA0943
HKt	atp[c] + h2o[c] + k[e]> adp[c] + h[e] + k[c] + pi[c]	MA3999
HMBS	h2o[c] + (4) ppbng[c] -> hmbil[c] + (4) nh4[c]	MA0582
HMGCOARi	(2) h[c] + hmgcoa[c] + (2) nadph[c] -> coa[c] + mev-R[c] + (2) nadp[c]	MA3073
HMGCOASi	coa[c] + h[c] + hmgcoa[c] -> aacoa[c] + accoa[c] + h2o[c]	MA4041
HMPK1	4ahmmp[c] + atp[c] -> 4ampm[c] + adp[c] + (2) h[c]	MA3197
HPACt2r	4hphac[e] + h[e] <==> 4hphac[c] + h[c]	
НРРК2	6hmhpt[c] + atp[c] -> 6hmhptpp[c] + amp[c] + h[c]	

Table B.2. (continued)

Reaction ID	Reaction	GPR
	h[c] + hpyr[c] + nadh[c] -> glyc-R[c] +	
HPYRRx	nad[c]	MA1334
	$h[c] + hpyr[c] + nadph[c] \rightarrow glyc-R[c] +$	
HPYRRy	nadp[c]	MA1334
	hom-L[c] + nad[c] <=> aspsa[c] + h[c] +	
HSDx	nadh[c]	MA2572
	hom-L[c] + nadp[c] <=> aspsa[c] + h[c]	
HSDy	+ nadph[c]	MA2572
	accoa[c] + hom-L[c] -> achms[c] +	
HSERTA	coa[c]	MA2714
	atp[c] + hom-L[c] -> adp[c] + h[c] +	
HSK	phom[c]	
HSPMS	(2) ptrc[c] -> hspmd[c] + nh4[c]	MA1636
HSTPT	akg[c] + hisp[c] <=> glu-L[c] + imacp[c]	(MA0118 or MA0942)
HXPRT	hxan[c] + prpp[c] -> imp[c] + ppi[c]	MA1687
	icit[c] + nadp[c] <=> h[c] + nadph[c] +	
ICITRED	osuc[c]	MA4265
	gln-L[c] + prlp[c] <=> aicar[c] + eig3p[c]	
IG3PS	+ glu-L[c] + h[c]	(MA0541 and MA0913)
IGPDH	eig3p[c] -> h2o[c] + imacp[c]	MA0219
	2cpr5p[c] + h[c] <=> 3ig3p[c] + co2[c] +	
IGPS	h2o[c]	MA2992
ILEt2r	h[e] + ile-L[e] <==> h[c] + ile-L[c]	(MA3437 and MA3438)
ILETA	akg[c] + ile-L[c] <=> 3mop[c] + glu-L[c]	MA4349
	atp[c] + ile-L[c] + trnaile[c] -> amp[c] +	
ILETRS	ppi[c] + iletrna[c]	MA2431
IMPC	h2o[c] + imp[c] <=> fprica[c]	MA4012
	h2o[c] + imp[c] + nad[c] -> h[c] +	
IMPD	nadh[c] + xmp[c]	
IND3ACt2r	h[c] + ind3ac[c] <==> h[e] + ind3ac[e]	
INDPYRD	h[c] + indsac[c] <> ri[e] + indsac[e] h[c] + indpyr[c] -> co2[c] + id3acald[c]	MA0594
וויטר זעט	inost[c] + nad[c] -> co2[c] + nadacaid[c] +	IVIAUJJ4
INS2D	2ins[c] 2ins	MA4448
INSK	atp[c] + ins[c]> adp[c] + h[c] + imp[c]	MA1373
111311		
	[] (2) (1) (1) (1)	((MA1022 or MA1727 or
IOD	coa[c] + (2) fdox[c] + indpyr[c] <=>	MA1982) and (MA1023 or
IOR	co2[c] + (2) fdred[c] + h[c] + indaccoa[c]	MA1726))

Table B.2. (continued)

Reaction ID	Reaction	GPR
IOR2	coa[c] + (2) fdox[c] + phpyr[c] <=> co2[c] + (2) fdred[c] + h[c] + phaccoa[c]	(((MA1022 or MA1727 or MA1982) and (MA1023 or MA1726)) or (MA2909 and MA2910 and MA2911))
IOR3	34hpp[c] + coa[c] + (2) fdox[c] <=> co2[c] + (2) fdred[c] + h[c] + hphaccoa[c]	((MA1022 or MA1727 or MA1982) and (MA1023 or MA1726))
IPDDI3x	f420-2[c] + (2) h[c] + ipdp[c] + nadh[c] - > dmpp[c] + f420-2h2[c] + nad[c]	MA0604
IPDDI3y	f420-2[c] + (2) h[c] + ipdp[c] + nadph[c] -> dmpp[c] + f420-2h2[c] + nadp[c]	MA0604
IPDPH IPMD IPPK	<pre>ipdp[c] + h2o[c] <=> m3hdp[c] 3c2hmp[c] + nad[c]</pre>	(MA0201 or MA3748) MA0603
IPPMIa	3c2hmp[c] <=> 2ippm[c] + h2o[c]	(MA0202 or MA1223) and (MA1393 or MA0642 or MA4415)
IPPMIb	2ippm[c] + h2o[c] <=> 3c3hmp[c]	(MA0202 or MA1223) and (MA1393 or MA0642 or MA4415)
IPPS	3mob[c] + accoa[c] + h2o[c] -> 3c3hmp[c] + coa[c] + h[c]	MA4615
KARA1	23dhmb[c] + nadp[c] <=> alac-S[c] + h[c] + nadph[c]	MA3790
KARA2	2ahbut[c] + h[c] + nadph[c] <=> 23dhmp[c] + nadp[c]	MA3790
KCCt Kt2r	cl[c] + k[c]> cl[e] + k[e] h[e] + k[e] <==> h[c] + k[c]	MA4506 (MA1527 or MA1550 or MA2034 or MA2218 or MA2448 or MA3398)
LCAD	h2o[c] + lald-L[c] + nad[c]> (2) h[c] + lac-L[c] + nadh[c]	(MA2860 or MA4086)
LCYSTAT	Lcyst[c] + akg[c] <==> 3spyr[c] + glu-L[c]	(MA0636 or MA1385 or MA1819)
LCYSTS	pser-L[c] + so3[c] + h[c]> Lcyst[c] + pi[c]	MA3297

Table B.2. (continued)

Reaction ID	Reaction	GPR
LEUt2r	h[e] + leu-L[e] <==> h[c] + leu-L[c]	(MA3437 and MA3438)
LEUTA	akg[c] + leu-L[c]	MA4349
LEUTRS	atp[c] + leu-L[c] + trnaleu[c] -> amp[c] + ppi[c] + leutrna[c]	MA1611
lipid_met	(0.005) dpgpg[c] + (0.214) 3hdpgpg[c] + (0.027) dpgpi[c] + (0.287) 3hdpgpi[c] + (0.005) dpgpe[c] + (0.057) 3hdpgpe[c] + (0.011) dpgps[c] + (0.244) 3hdpgps[c] + (0.148) gdpgpi[c] <=> lipid_met[c]	
LPFPLT	ddhrb[c] + lppg[c] -> f420-0[c] + gmp[c] + h[c]	MA0714
LPPGS	2plac-L[c] + gtp[c] + h[c] -> lppg[c] + ppi[c]	MA1488
LYSAM	lys-L[c] -> 36dahx[c]	MA3979
LYSt3r	h[e] + lys-L[c] <==> h[c] + lys-L[e]	MA2108
LYSTRS	atp[c] + lys-L[c] + trnalys[c] -> amp[c] + ppi[c] + lystrna[c]	(MA0534 or MA0760)
MAN1PT	gtp[c] + h[c] + man1p[c]	MA3140
MAN1PT2r	gdp[c] + h[c] + man1p[c] <=> gdpmann[c] + pi[c]	MA3781
MAN6PI	man6p[c] <=> f6p[c]	MA3781
MCMMT	meoh[c] + 5hbc_red[c] + h[c]> h2o[c] + m5hbc[c]	((MA0455 or MA1616 or MA4392) and (MA0456 or MA1617 or MA4391) and MA4379 and (MA0150 or MA0849 or MA4360))
MCR	cob[c] + mcom[c] -> ch4[c] + hsfd[c]	(MA4546 and MA4547 and MA4548 and MA4549 and MA4550)
MDH	mal-L[c] + nad[c] <=> h[c] + nadh[c] + oaa[c]	MA0819
MDHy	mal-L[c] + nadp[c] <=> h[c] + nadph[c] + oaa[c]	MA0819
ME1_rev	mal-L[c] + nad[c] <=> co2[c] + nadh[c] + pyr[c]	MA1735
ME2	mal-L[c] + nadp[c] -> co2[c] + nadph[c] + pyr[c]	MA1735

Table B.2. (continued)

Reaction ID	Reaction	GPR
MEOHt2	meoh[e] <==> meoh[c]	
METAT	atp[c] + h2o[c] + met-L[c] -> amet[c] + pi[c] + ppi[c]	(MA0216 or MA0962)
METGL	h2o[c] + met-L[c] -> 2obut[c] + ch4s[c] + nh4[c]	MA2532
METS	5mthf[c] + hcys-L[c] -> met-L[c] + thf[c]	(MA0053 or MA0054 or MA3549)
METTRS	<pre>atp[c] + met-L[c] + trnamet[c] -> amp[c] + ppi[c] + mettrna[c]</pre>	MA4046
MEVK1	atp[c] + mev-R[c] -> 5pmev[c] + adp[c] + h[c]	MA0602
MFRS1	dhap[c] + pep[c] + h2o[c] -> mfrbi1[c]	
MFRS2	mfrbi1[c] -> mfrbi2[c] + pi[c]	
MFRS3	mfrbi2[c] -> mfrbi3[c] + h2o[c]	
MFRS4	mfrbi3[c] -> mfrbi4[c]	
MFRS5	mfrbi4[c] -> 24sf[c] + h2o[c]	
MFRS6	24sf[c] + atp[c] + nadh[c] + h[c] -> 2frald[c] + adp[c] + pi[c] + nad[c]	
MFRS7	2frald[c] + glu-L[c] -> 2mafr[c] + akg[c]	
MFRS8	tym[c] + 2mafr[c] -> aepmamfr[c] + pi[c]	
MFRS9	<pre>aepmamfr[c] + glu-L[c] -> 4gaepmamfr[c] + h2o[c]</pre>	
MFRS10	4gaepmamfr[c] + glu-L[c] -> 4ggaepmamfr[c] + h2o[c]	
MFRS11	4ggaepmamfr[c] + glu-L[c] -> 4gggaepmamfr[c] + h2o[c] 4gggaepmamfr[c] + glu-L[c] -> mfr(b)[c] +	
MFRBS	h2o[c]	
MG2abc	atp[c] + h2o[c] + mg2[e] -> adp[c] + h[c] + mg2[c] + pi[c]	MA1721
MGSA2	g3p[c]> mthgxl[c] + pi[c]	MA4607
MGt5	mg2[c] <==> mg2[e]	MA1721
MHPGLUT	hcys-L[c] + mhpglu[c] -> hpglu[c] + met-L[c]	(MA0053 or MA0054 or MA3549)
MHPGLUT2	<pre>ahcys[c] + h[c] + mhpglu[c]> amet[c] + hpglu[c]</pre>	(MA0053 or MA0054 or MA3549)
MI3PP	h2o[c] + mi3p-D[c] -> inost[c] + pi[c]	MA3344
MI3PS	g6p[c] -> mi3p-D[c]	(MA0075 or MA2253)

Table B.2. (continued)

Reaction ID	Reaction	GPR
MMAMT	h[c] + mma[c] + 5hbc_red[c] -> nh4[c] + m5hbc[c]	((MA0144 or MA2972) and (MA0145 or MA2971) and MA0146 and (MA0150 or MA0849 or MA4360))
MMAt	h[e] + mma[e] <==> h[c] + mma[c]	MA0143
MNabc	atp[c] + h2o[c] + mn2[e]> adp[c] + h[c] + mn2[c] + pi[c]	(MA0023 and MA0024 and MA0025)
MOBDabc MOHMT	atp[c] + h2o[c] + mobd[e]> adp[c] + h[c] + mobd[c] + pi[c] 3mob[c] + h2o[c] + mlthf[c] -> thf[c] + 2dhp[c]	(MA0280 and MA0281 and MA0282) or (MA0323 and MA0324 and MA0325) or (MA1235 and MA1236 and MA1237) or (MA2280 and MA2281 and MA2282)
MSS	mh4spt[c] + h2s[c] + (2) na1[c] -> ch4s[c] + h4spt[c] + (2) na1[e]	
MTAP	5mta[c] + pi[c] -> 5mdr1p[c] + ade[c]	MA1409
МТСММТ	dms[c] + h[c] + 5hbc_red[c] -> ch4s[c] + m5hbc[c]	(MA0859 or MA4384 or MA4558) and (MA0150 or MA0849 or MA4360)
MTHFC	h2o[c] + methf[c] <=> 10fthf[c]	MA3519
MTHFD2i	mlthf[c] + nad[c] -> methf[c] + nadh[c] + h[c]	MA3519
MTHFR2	h[c] + mlthf[c] + nadh[c]> 5mthf[c] + nad[c]	MA3514
MTHFR3	h[c] + mlthf[c] + nadph[c] -> 5mthf[c] + nadp[c]	MA3514
MTR_BYPASS	h[c] + mh4spt[c] + 5hbc_red[c]> h4spt[c] + m5hbc[c]	
MTRI	5mdr1p[c] <==> 5mdru1p[c]	MA0076
MTSPC	formh4spt[c] + h[c] <=> h2o[c] + menylh4spt[c]	MA1710

Table B.2. (continued)

Reaction ID	Reaction	GPR
MTSPCMMT	h[c] + mh4spt[c] + (2) na1[c] + 5hbc_red[c] <=> h4spt[c] + (2) na1[e] + m5hbc[c]	((MA0150 or MA0849 or MA4360) and MA0269 and MA0270 and MA0271 and MA0272 and MA0273 and MA0274 and MA0275 and MA0276)
N2tr	n2[e] <==> n2[c]	
Naabc	atp[c] + h2o[c] + na1[c]> adp[c] + h[c] + pi[c] + na1[e]	(MA2433 and MA2434 and MA2435 and MA2436 and MA2438 and MA2439 and MA2440 and MA2441)
NACUP	nac[e]> nac[c]	
NADDP	h2o[c] + nad[c] -> amp[c] + (2) h[c] + nmn[c] atp[c] + nad[c] -> adp[c] + h[c] +	MA1439
NADK	nadp[c]	MA3343
NADS1	atp[c] + dnad[c] + nh4[c] -> amp[c] + h[c] + nad[c] + ppi[c]	(MA1030 or MA3526 or MA3715)
NADS2	atp[c] + dnad[c] + gln-L[c] + h2o[c] -> amp[c] + glu-L[c] + h[c] + nad[c] + ppi[c]	(MA1030 or MA3526 or MA3715)
NaKt_1	atp[c] + h2o[c] + k[e] + na1[c]> adp[c] + h[c] + k[c] + na1[e] + pi[c]	MA4378
NAPRTr	nicrnt[c] + ppi[c]	MA2533
NAt3_1	h[e] + na1[c] <==> h[c] + na1[e]	((MA4566 and MA4567 and MA4568 and MA4569 and MA4570 and MA4572 and MA4665) or MA2633)
N.B.A.III.	carn[c] + h2o[c] -> ala-B[c] + his-L[c] +	
NBAHH	h[c]	MA2653
NCCt	na1[e] + cl[c]> na1[c] + cl[e]	MA4506
NDPK1	atp[c] + gdp[c] <=> adp[c] + gtp[c]	MA1524
NDPK10	atp[c] + didp[c] <=> adp[c] + ditp[c]	MA1524

Table B.2. (continued)

Reaction ID	Reaction	GPR
NDPK2	atp[c] + udp[c] <=> adp[c] + utp[c]	MA1524
NDPK3	atp[c] + cdp[c] <=> adp[c] + ctp[c]	MA1524
NDPK4	atp[c] + dtdp[c] <=> adp[c] + dttp[c]	MA1524
NDPK5	atp[c] + dgdp[c] <=> adp[c] + dgtp[c]	MA1524
NDPK6	atp[c] + dudp[c] <=> adp[c] + dutp[c]	MA1524
NDPK7	atp[c] + dcdp[c] <=> adp[c] + dctp[c]	MA1524
NDPK8	atp[c] + dadp[c] <=> adp[c] + datp[c]	MA1524
NDPK9	atp[c] + idp[c] <=> adp[c] + itp[c]	MA1524
NH4t	nh4[e] <=> nh4[c]	((MA3917 or MA3918) and MA4207)
Nlabc	atp[c] + h2o[c] + ni2[e]> adp[c] + h[c] + ni2[c] + pi[c]	(MA3455 and (MA3456 or MA3457) and (MA3458 or MA4673))
NIT_n1p4 NIt5 NMNAT NMNHYD NN5HBPRT	(16) atp[c] + (8) fdred[c] + (16) h2o[c] + n2[c] -> (16) adp[c] + (8) fdox[c] + (6) h[c] + h2[c] + (2) nh4[c] + (16) pi[c] ni2[c] <==> ni2[e] atp[c] + h[c] + nmn[c] <=> nad[c] + ppi[c] h2o[c] + nmn[c] -> pi[c] + rnam[c] nicrnt[c] + 5hbzid[c] -> h[c] + nac[c] + 5pr5hbz[c]	((MA1208 and MA1209 and MA1210) or ((MA1205 or MA1213 or MA1633 or MA2032 or MA3627 or MA3895) and (MA1212 or MA1214 or MA3896) and (MA1211 or MA1215 or MA3897) and MA3898 and MA3899 and MA4195 and MA3900 and MA3901 and (MA2717 or MA3265)) or (MA1217 and MA1216 and MA1218 and (MA1219 or MA1631) and (MA1220 or MA1632))) MA1721 MA3731 MA0104

Table B.2. (continued)

Reaction ID	Reaction	GPR
	atp[c] + h[c] + nicrnt[c] <=> dnad[c] +	
NNAT	ppi[c]	MA3731
	(2) $h[c] + prpp[c] + quln[c] -> co2[c] +$	
NNDPR	nicrnt[c] + ppi[c]	(MA0322 or MA0955)
NT5C	h2o[c] + nicrnt[c] <=> nicrns[c] + pi[c]	MA0104
NTD1	dump[c] + h2o[c]> duri[c] + pi[c]	MA0104
NTD10	h2o[c] + xmp[c] -> pi[c] + xtsn[c]	MA0104
NTD11	$h2o[c] + imp[c] \rightarrow ins[c] + pi[c]$	MA0104
NTD2	h2o[c] + ump[c] -> pi[c] + uri[c]	MA0104
NTD3	dcmp[c] + h2o[c] -> $dcyt[c] + pi[c]$	MA0104
NTD4	$cmp[c] + h2o[c] \rightarrow cytd[c] + pi[c]$	MA0104
NTD5	dtmp[c] + h2o[c] -> $pi[c] + thymd[c]$	MA0104
NTD6	damp[c] + h2o[c]	MA0104
NTD7	amp[c] + h2o[c] -> adn[c] + pi[c]	MA0104
NTD8	dgmp[c] + h2o[c] <=> dgsn[c] + pi[c]	MA0104
NTD9	gmp[c] + h2o[c] -> gsn[c] + pi[c]	MA0104
NTP1	atp[c] + h2o[c] -> $adp[c] + h[c] + pi[c]$	MA3706
	datp[c] + h2o[c] -> dadp[c] + h[c] +	
NTP2	pi[c]	MA3706
NTP3	gtp[c] + h2o[c] -> $gdp[c] + h[c] + pi[c]$	MA3706
	$dgtp[c] + h2o[c] \rightarrow dgdp[c] + h[c] +$	
NTP4	pi[c]	MA3706
NTP5	ctp[c] + h2o[c] -> cdp[c] + h[c] + pi[c]	MA3706
NTP6	dctp[c] + h2o[c] -> dcdp[c] + h[c] + pi[c]	MA3706
NTP7	h2o[c] + utp[c] -> h[c] + pi[c] + udp[c]	MA3706
NTDO	dutp[c] + h2o[c] -> dudp[c] + h[c] +	1442706
NTP8	pi[c]	MA3706
NTP9	dttp[c] + h2o[c] -> dtdp[c] + h[c] + pi[c]	MA3706
NTPP11	h2o[c] + xtp[c] -> h[c] + ppi[c] + xmp[c]	MA3706
NTPTP1	dgtp[c] + h2o[c]> dgsn[c] + pppi[c]	MA0713
NTRIR2x	(5) h[c] + (3) nadh[c] + no2[c] -> (2) h2o[c] + (3) nad[c] + nh4[c]	(MA0685 or MA3167)
NTRIR2y	(5) h[c] + (3) nadh[c] + no2[c] -> (2) h2o[c] + (3) nad[c] + nh4[c]	(MA0685 or MA3167)
OCBT	cbp[c] + orn[c] -> citr-L[c] + h[c] + pi[c]	MA3310
OCTDPSYN	hepdp[c] + ipdp[c] -> octdp[c] + ppi[c]	MA4150
OMCDC	3c4mop[c] + h[c] -> 4mop[c] + co2[c]	INIVATOR
OMPDC		MA0060
OIVIPUC	$h[c] + orot5p[c] \rightarrow co2[c] + ump[c]$	MA0969

Table B.2. (continued)

Reaction ID	Reaction	GPR
	akg[c] + coa[c] + (2) fdox[c] -> co2[c] +	
OORr	(2) fdred[c] + succoa[c] + h[c]	(MA3075 and MA3076)
	5oxpro[c] + atp[c] + (2) h2o[c] -> adp[c]	
ОРАН	+ glu-L[c] + h[c] + pi[c]	MA2300
ORNCD	orn[c] <=> nh4[c] + pro-L[c]	MA3252
ORNDC	h[c] + orn[c] -> co2[c] + ptrc[c]	MA2728
ORNTAC	acorn[c] + glu-L[c] <=> acglu[c] + orn[c]	MA3564
		(MA0919 or MA2520 or
ORPT	orot5p[c] + ppi[c] <=> orot[c] + prpp[c]	MA3307)
OSUCCL	$h[c] + osuc[c] \rightarrow akg[c] + co2[c]$	MA4265
	(0.63) protein_met[c] + (0.24)	
	rna_met[c] + (0.04) dna_met[c] + (0.05)	
	lipid_met[c] + (0.04) trace_met[c] +	
	(0.01) carb_met[c] + (65) atp[c] + (65)	
overall	h2o[c] <=> biomass_met[c] + (65) h[c] + (65) adp[c] + (65) pi[c]	
OXADC	h[c] + oxa[c] -> co2[c] + for[c]	MA2076
UNADC		WAZU70
P5CRx	nad[c] + pro-L[c] <=> 1pyr5c[c] + (2) h[c] + nadh[c]	(MA0152 or MA4102)
	nadp[c] + pro-L[c] <=> 1pyr5c[c] + (2)	
P5CRy	h[c] + nadph[c]	(MA0152 or MA4102)
	atp[c] + coa[c] + pac[c] -> amp[c] +	
PACCOAL	phaccoa[c] + ppi[c]	(MA2244 or MA3853)
	4hphac[c] + atp[c] + coa[c] -> amp[c] +	
PACCOAL2	ppi[c] + hphaccoa[c]	(MA2244 or MA3853)
	atp[c] + coa[c] + ind3ac[c] -> amp[c] +	
PACCOAL3	indaccoa[c] + ppi[c]	(MA2244 or MA3853)
PACt2r	h[e] + pac[e] <==> h[c] + pac[c]	
	paps[c] + trdrd[c] -> (2) h[c] + pap[c] +	
PAPSR	so3[c] + trdox[c]	MA2894
	atp[c] + hco3[c] + pyr[c] -> adp[c] +	
PC	h[c] + oaa[c] + pi[c]	(MA0674 and MA0675)
PFKadp_	$adp[c] + f6p[c] \rightarrow amp[c] + fdp[c] + h[c]$	MA3563
PGAMS	uacgam[c] ->polyacgal[c] + h[c] + udp[c]	
PGAMT	gam6p[c] -> gam1p[c]	MA3024
	3pg[c] + nad[c] <=> 3php[c] + h[c] +	
PGCD	nadh[c]	MA0592
PGLCURS	udpglcur[c] -> polyglcur[c] + h[c] + udp[c]	

Table B.2. (continued)

Reaction ID	Reaction	GPR
PGI	g6p[c] <=> f6p[c] MA0821	
PGK	3pg[c] + atp[c] <=> 13dpg[c] + adp[c]	(MA2669 or MA3592)
PGLYCP	2pglyc[c] + h2o[c] -> glyclt[c] + pi[c]	MA3544
PGM	2pg[c] <=> 3pg[c]	(MA0132 or MA2400 or MA2671 or MA4007)
PGMT	g1p[c] <=> g6p[c]	(MA0451 or MA2665)
PHEMES	ddcdscl[c] + fe2[c] + (3) nad[c]> (2) ac[c] + (2) co2[c] + (3) nadh[c] + (4) h[c] + pheme[c]	
PHETA1	akg[c] + phe-L[c] <=> glu-L[c] + phpyr[c]	(MA0636 or MA1385 or MA1819)
PHETRS	atp[c] + phe-L[c] + trnaphe[c] -> amp[c] + ppi[c] + phetrna[c]	(MA0171 and MA1956)
Plabc	atp[c] + h2o[c] + pi[e]> adp[c] + h[c] + (2) pi[c]	(MA0887 and MA0888 and MA0889 and MA0890) or (MA3093 and MA3094 and MA3095)
PIt	pi[e] + h[e]> pi[c] + h[c]	(MA2935 or MA3014)
PMANM	man6p[c] <=> man1p[c]	(MA0241 or MA2665)
PMDPHT	5aprbu[c] + h2o[c] -> 4r5au[c] + pi[c]	
РМРК	4ampm[c] + atp[c] -> 2mahmp[c] + adp[c]	MA3197
PMVD	5pmev[c] + h[c]> co2[c] + h2o[c] + ipp[c]	MA0601
PNTOt2	h[e] + pnto-R[e] <==> h[c] + pnto-R[c]	
РОК	atp[c] + pant-R[c] -> adp[c] + ppant- R[c] + h[c]	MA1278
POR2	accoa[c] + co2[c] + (2) fdred[c] + h[c] <=> coa[c] + (2) fdox[c] + pyr[c]	(MA0032 and (MA0031 or MA2407) and MA0033 and MA0034)
POR3	co2[c] + (2) fdred[c] + h[c] + ppcoa[c] - > 2obut[c] + coa[c] + (2) fdox[c] h2o[c] + ppi[c] -> h[c] + (2) pi[c]	((MA0032 and (MA0031 or MA2407) and MA0033 and MA0034) or (MA2909 and MA2910 and MA2911))

Table B.2. (continued)

Reaction ID	Reaction	GPR
PPA2	h2o[c] + pppi[c]> h[c] + pi[c] + ppi[c]	(MA0083 or MA2351)
PPA_1	h2o[c] + ppi[c]> h[e] + (2) pi[c]	MA3880
PPA_3 PPAKr	h2o[c] + ppi[c] + na1[c]> na1[e] + (2) pi[c] + h[c] adp[c] + ppap[c] <=> atp[c] + ppa[c]	MA3879 MA3606
PPBNGS	(2) 5aop[c] -> h[c] + (2) h2o[c] + ppbng[c]	MA0578
PPC	co2[c] + h2o[c] + pep[c]> h[c] + oaa[c] + pi[c]	MA2690
PPCDC	$4ppcys[c] + h[c] \rightarrow co2[c] + pan4p[c]$	MA1280
PPDK	atp[c] + pi[c] + pyr[c] -> amp[c] + h[c] + pep[c] + ppi[c]	MA0608
PPK2	atp[c] + ppi[c] -> adp[c] + pppi[c]	MA0081
PPKr	atp[c] + pi[c] <=> ppi[c] + adp[c]	MA0081
PPNCL2	4ppan[c] + ctp[c] + cys-L[c] -> 4ppcys[c] + cmp[c] + h[c] + ppi[c]	MA1280
PPND	nad[c] + pphn[c] <=> 34hpp[c] + co2[c] + nadh[c]	MA4595
PPNDH	h[c] + pphn[c] <=> co2[c] + h2o[c] + phpyr[c]	MA3150
PPS	atp[c] + h2o[c] + pyr[c] -> amp[c] + (2) h[c] + pep[c] + pi[c]	(MA2458 or MA2667 or MA3408)
PPTS	ppant-R[c] + ala-B[c] + atp[c]> amp[c] + ppi[c] + h[c] + 4ppan[c]	MA1278
PRAGSr	atp[c] + gly[c] + pram[c] -> adp[c] + gar[c] + h[c] + pi[c]	MA3309
PRAIi	pran[c] <=> 2cpr5p[c]	MA2988
PRAIS	atp[c] + fpram[c] -> adp[c] + air[c] + (2) h[c] + pi[c]	MA0130
PRAMPC	h2o[c] + prbamp[c] -> prfp[c]	MA0908
PRASCS	5aizc[c] + asp-L[c] + atp[c] <=> 25aics[c] + adp[c] + h[c] + pi[c]	MA4063
PRATPP	h2o[c] + prbatp[c] -> h[c] + ppi[c] + prbamp[c] dscl[c] + (2) h[c]> (2) co2[c] +	MA1392
PRE2DC	dsci[c] + (2) ii[c]> (2) co2[c] +	
PRFGS	$atp[c] + fgam[c] + gln-L[c] + h2o[c] -> \\ adp[c] + fpram[c] + glu-L[c] + h[c] + pi[c]$	(MA1963 or MA1964) and MA4055
PRMICIi	prfp[c] -> prlp[c]	(MA0218 or MA4435)

Table B.2. (continued)

Reaction ID	Reaction	GPR
PROabc	atp[c] + h2o[c] + pro-L[e]> adp[c] + h[c] + pi[c] + pro-L[c]	(MA2145 and MA2146 and MA2147)
PROt4	na1[e] + pro-L[e]> na1[c] + pro-L[c]	(MA0279 or MA1316)
protein_met	(0.4) arg-L[c] + (0.85) leu-L[c] + (0.62) ser-L[c] + (0.62) ala-L[c] + (0.65) gly[c] + (0.36) pro-L[c] + (0.49) thr-L[c] + (0.62) val-L[c] + (0.66) ile-L[c] + (0.4) asn-L[c] + (0.48) asp-L[c] + (0.11) cys-L[c] + (0.23) gln-L[c] + (0.71) glu-L[c] + (0.15) his-L[c] + (0.59) lys-L[c] + (0.4) phe-L[c] + (0.33) tyr-L[c] + (0.21) met-L[c] + (0.09) trp-L[c] <=> protein_met[c]	
	atp[c] + pro-L[c] + trnapro[c] -> amp[c]	
PROTRS	+ ppi[c] + protrna[c]	MA3886
PRPPP	h2o[c] + prpp[c] -> h[c] + pi[c] + r15bp[c]	MA2851
FNFFF	atp[c] + r5p[c] <=> amp[c] + h[c] +	WIAZ831
PRPPS	prpp[c]	MA1167
PSCVT	pep[c] + skm5p[c] <=> 3psme[c] + pi[c]	MA4544
PSERT	akg[c] + pser-L[c] <=> 3php[c] + glu-L[c]	MA2304
PSP_L	h2o[c] + pser-L[c] -> pi[c] + ser-L[c]	(MA0678 or MA4428 or MA4429)
PTAr	accoa[c] + pi[c] <=> actp[c] + coa[c]	MA3607
PTHPS	ahdt[c] -> 6pthp[c] + pppi[c]	(MA0956 or MA4196)
PTPATi	atp[c] + h[c] + pan4p[c] <=> dpcoa[c] + ppi[c]	MA3546
PYDXS	gln-L[c] + g3p[c] + r5p[c]> (3) h2o[c] + pi[c] + pydx5p[c] + glu-L[c] + h[c]	(MA1566 and MA1567)
PYK	$atp[c] + pyr[c] \rightarrow adp[c] + h[c] + pep[c]$	MA3890
PYRDC	h[c] + pyr[c] -> acald[c] + co2[c]	MA0594
PYRFALDC	pyr[c] + fald[c] + h[c]> acetol[c] + co2[c]	(MA3791 and MA3792)
PYRS-1	amet[c] + 1pyr5c[c]> 1pyr4m5c[c] + ahcys[c] + h[c] MA0154	
PYRS-2	1pyr4m5c[c] + lys-L[c] + atp[c]> pyr- L[c] + adp[c] + pi[c] + h[c]	MA0153
PYRt2	h[e] + pyr[e] <==> h[c] + pyr[c]	
PYRTHMPPTRX	pyr[c] + thmpp[c] + h[c] <=> he2thpp[c] + co2[c]	(MA1354 or MA1958 or MA3792) and MA3791

Table B.2. (continued)

Reaction ID	Reaction	GPR
PYRTRS	<pre>pyr-L[c] + atp[c] + trnaala[c] -> amp[c] + ppi[c] + pyrtrna[c]</pre>	MA0155
QULNS	dhap[c] + iasp[c] -> (2) h2o[c] + pi[c] + quln[c] + h[c]	MA0959
R00430	gtp[c] + pyr[c] -> gdp[c] + pep[c]	MA3890
R01411	5mcyt[c] + h2o[c] <=> nh4[c] + thym[c]	MA2559
R01986	4abutn[c] + h2o[c] + nadp[c] -> 4abut[c] + (2) h[c] + nadph[c]	MA2860
R02549	4abutn[c] + h2o[c] + nad[c] -> 4abut[c] + (2) h[c] + nadh[c]	MA2860
R03896	r2mmal[c] <=> citrac[c] + h2o[c]	(MA0202 or MA1223) and MA1393
R04215	ctp[c] + glnam[c] <=> glnamcmp[c] + ppi[c]	MA3766
R05680	glyc1p[c] + nadp[c] -> dhap[c] + h[c] + nadph[c]	MA3686
R07405	5c5pdriaz[c] <=> 5aizc[c]	MA1376
R08576	pser-L[c] + trnacys[c] + atp[c]> cystrna(pser)[c] + amp[c] + ppi[c]	MA0090
R2MMALSYN	accoa[c] + h2o[c] + pyr[c] -> coa[c] + r2mmal[c] + h[c]	MA3793
RBFSa	4r5au[c] + db4p[c] <=> dmlz[c] + (2) h2o[c] + pi[c]	(MA1817 and MA1818)
RBFSb	(2) dmlz[c] -> 4r5au[c] + ribflv[c]	(MA1817 and MA1818)
RBK	atp[c] + rib-D[c]	MA1373
RBPC	co2[c] + h2o[c] + rb15bp[c] <=> (2) 3pg[c] + (2) h[c] MA4555	
RBPI	r15bp[c] -> rb15bp[c]	MA2851
RH2CD	Rh2cit[c] <=> h2acon-C[c] + h2o[c]	(MA3085 and MA3751)
RH3CD	Rh3cit[c] <=> h2o[c] + h3acon-C[c]	(MA3085 and MA3751)
RIBFLVt2	h[e] + ribflv[e]> h[c] + ribflv[c]	
rna_met	(0.48) atp[c] + (0.42) ctp[c] + (0.5) gtp[c] + (0.6) utp[c] <=> (2) ppi[c] + rna_met[c]	
RNDR1	adp[c] + trdrd[c] -> dadp[c] + h2o[c] + trdox[c]	MA1665
RNDR2	gdp[c] + trdrd[c] -> dgdp[c] + h2o[c] + trdox[c]	MA1665
RNDR3	cdp[c] + trdrd[c] -> dcdp[c] + h2o[c] +	MA1665

Table B.2. (continued)

Reaction ID	Reaction	GPR
	trdox[c]	
	trdrd[c] + udp[c] -> dudp[c] + h2o[c] +	
RNDR4	trdox[c]	MA1665
		(MA0658 and MA0659 and
	(2) h[c] + (3) na1[c] + (2) fdred[c] +	MA0660 and MA0661 and
	mphen[c]> (3) na1[e] + (2) fdox[c] +	MA0662 and MA0663 and
RNF	mphenh2[c]	MA0664 and MA0665)
	$atp[c] + trdrd[c] \rightarrow datp[c] + h2o[c] +$	
RNTR1	trdox[c]	MA0072
	gtp[c] + trdrd[c] -> dgtp[c] + h2o[c] +	
RNTR2	trdox[c]	MA0072
DNITDO	ctp[c] + trdrd[c] -> dctp[c] + h2o[c] +	N44.0072
RNTR3	trdox[c]	MA0072
RNTR4	trdrd[c] + utp[c] -> dutp[c] + h2o[c] + trdox[c]	MA0072
RPI	r5p[c] <=> ru5p-D[c]	MA1683
RU5PS	fald[c] + ru5p-D[c] <=> ah6p-D[c]	MA4608
Rxn name	#N/A	GPR
RZ5PP2	h2o[c] + 5pr5hbz[c] -> pi[c] + r5hbzi[c]	MA0940
CADTO	atp[c] + gtp[c] + h2o[c] + so4[c] ->	N4A3C90
SADT2	aps[c] + gdp[c] + pi[c] + ppi[c] akg[c] + sl26da[c]	MA3680
SDPTA	sl2a6o[c]	MA0119
351 171	2tcc[c] + h[c] + nadh[c] -> nad[c] +	WWW.GIIS
SECS	sec[c]	
SERAT	accoa[c] + ser-L[c] <=> acser[c] + coa[c]	(MA2721 or MA3442)
	atp[c] + ser-L[c] + trnaser[c] -> amp[c]	
SERTRS	+ ppi[c] + sertrna[c]	MA4048
SHCD	Shcit[c] <=> h2o[c] + hacon-C[c]	(MA3085 and MA3751)
	cobalt2[c] + dscl[c] -> copre2[c] + (3)	
SHCHCC	h[c]	MA3631
SHCHD2	dscl[c] + nad[c] -> nadh[c] + scl[c]	MA0576
SHCHF	fe2[c] + scl[c] -> (4) h[c] + sheme[c]	MA0576
	nadp[c] + skm[c] <=> 3dhsk[c] + h[c] +	
SHK3Dr	nadph[c]	MA4594
	$atp[c] + skm[c] \rightarrow adp[c] + h[c] +$	
SHKK	skm5p[c]	(MA1378 or MA3237)

Table B.2. (continued)

Reaction ID	Reaction	GPR
	h2s[c] + suchms[c] <==> h[c] + hcys-L[c] +	
SHSL2r	succ[c]	MA2715
SMTZS	2saa[c] + cys-L[c] -> 2tcc[c] + h2o[c]	
SO4t2	so4[e] + h[e]> so4[c] + h[c]	MA1999
SPDC	3spyr[c] + h[c] -> 2saa[c] + co2[c]	MA3298
SPODM	(2) h[c] + (2) o2-[c] -> h2o2[c] + o2[c]	MA2422
SSALx	h2o[c] + nad[c] + sucsal[c] <=> (2) h[c] + nadh[c] + succ[c]	(MA0705 or MA1355)
SSALy	h2o[c] + nadp[c] + sucsal[c] <=> (2) h[c] + nadph[c] + succ[c]	(MA0705 or MA1355)
		(MA0280 and MA0281 and
		MA0282) or (MA0323 and MA0324 and MA0325) or (MA1235 and MA1236 and
SULabc	atp[c] + h2o[c] + so4[e] -> adp[c] + h[c] + pi[c] + so4[c]	MA1237) or (MA2280 and MA2281 and MA2282)
SULR2	h2s[c] + (3) f420-2[c] + (3) h2o[c] + h[c] <=> (3) f420-2h2[c] + so3[c]	(MA3439 or MA4520)
TDP	h2o[c] + thmpp[c] -> h[c] + pi[c] + thmmp[c]	MA3706
TDPDRE	dtdp4d6dg[c] -> dtdp4d6dm[c]	(MA1909 or MA3780)
TDPDRR	dtdp4d6dm[c] + h[c] + nadph[c] -> dtdprmn[c] + nadp[c] MA3778	
TDPGDH	dtdpglu[c] -> dtdp4d6dg[c] + h2o[c]	(MA2186 or MA3779)
THACH	h2o[c] + hacon-T[c] <=> Shcit[c]	
THMabc	atp[c] + h2o[c] + thm[e]> adp[c] + h[c] + pi[c] + thm[c]	
THRA2i	athr-L[c] -> acald[c] + gly[c]	MA3520
THRAr	thr-L[c] <=> acald[c] + gly[c]	MA3520
THRPD	$h[c] + thrp[c] \rightarrow applp[c] + co2[c]$ MA0941	
THRPS	atp[c] + thr-L[c] -> adp[c] + h[c] + thrp[c]	
THRS	h2o[c] + phom[c] -> pi[c] + thr-L[c]	MA1610
THRTRS	atp[c] + thr-L[c] + trnathr[c] -> amp[c] + ppi[c] + thrtrna[c]	MA2896

Table B.2. (continued)

Reaction ID	Reaction	GPR
THZPSN	atp[c] + cys-L[c] + tyr-L[c] + dxyl5p[c] -> 4mpetz[c] + ala-L[c] + amp[c] + co2[c] + h[c] + h2o[c] + ppi[c] + 4hba[c]	(MA0236 or MA2718 or MA3264) and MA0255 and MA1466
TIH2CD	nad[c] + tih2cit[c] -> co2[c] + nadh[c] + ohepa[c]	MA3748
TIH3CD	nad[c] + tih3cit[c] -> 2ood[c] + co2[c] + nadh[c]	MA3748
TIHCD	ihcit-T[c] + nad[c] -> co2[c] + nadh[c] + ohexa[c]	MA3748
TMAMT	tma[c] + 5hbc_red[c] + h[c] -> dma[c] + m5hbc[c]	(MA0150 or MA0849 or MA4360) and (MA0528 or MA0932) and (MA0529 or MA0931) and (MA4379 or MA0146)
TMAt2	h[e] + tma[e] <==> h[c] + tma[c]	MA0530
TMDK1	atp[c] + thymd[c] -> adp[c] + dtmp[c] + h[c]	MA4433
TMDPP	pi[c] + thymd[c] -> 2dr1p[c] + thym[c]	MA3242
TMDS	<pre>dump[c] + mlthf[c] <=> dhf[c] + dtmp[c]</pre>	MA4543
TMKr	atp[c] + thm[c] <=> adp[c] + h[c] + thmmp[c]	
TMPKr	atp[c] + thmmp[c] -> adp[c] + thmpp[c]	MA0069
TMPPP	2mahmp[c] + 4mpetz[c] + h[c] -> ppi[c] + thmmp[c]	MA2722
TPI	g3p[c] <=> dhap[c]	MA4607
trace_met	(0.243) ptrc[c] + (0.044) hspmd[c] + (0.0009) accoa[c] + (0.00006) coa[c] + (0.0204) nad[c] + (0.00093) nadh[c] + (0.00093) nadp[c] + (0.00371) nadph[c] + (0.00003) succoa[c] + (0.00929) amp[c] + (0.191) com[c] + (0.00037) f420-2[c] + (0.00028) f420-3[c] + (0.00371) f420-4[c] + (0.00279) f420-5[c] + (0.00009) f420-6[c] + (0.00001) f420-7[c] + (0.219) h4spt[c] + (0.044) adocblhbi[c] + (0.019) f430[c] + (0.00464) cob[c] + (0.00093) thf[c] + (0.00005) f390a[c] + (0.00005) f390g[c] + (0.191) mfr(b)[c] <=>	

Table B.2. (continued)

Reaction ID	Reaction	GPR	
	trace_met[c]		
	h[c] + nadph[c] + trdox[c] -> nadp[c] +		
TRDR	trdrd[c]	MA1368	
	3ig3p[c] + ser-L[c] <=> g3p[c] + h2o[c]	MA2990 and (MA2991 or	
TRPS1	+ trp-L[c]	MA3198)	
TRPS2	indole[c] + ser-L[c] -> h2o[c] + trp-L[c]	(MA2991 or MA3198)	
TRPS3	3ig3p[c] <=> g3p[c] + indole[c]	MA2990	
TRPt2r	trp-L[c] + h[c] <=> trp-L[e] + h[e]	MA1417	
TRPTA	akg[c] + trp-L[c] <=> glu-L[c] + indpyr[c]	MA0925	
	atp[c] + trp-L[c] + trnatrp[c] -> amp[c]		
TRPTRS	+ ppi[c] + trptrna[c]	MA0172	
TYRCBOX	h[c] + tyr-L[c] -> co2[c] + tym[c]	MA0006	
		(MA0636 or MA1385 or	
TYRTA	akg[c] + tyr-L[c] <=> 34hpp[c] + glu-L[c]	MA1819)	
TVDTDC	atp[c] + tyr-L[c] + trnatyr[c] -> amp[c] +	NAA0045	
TYRTRS	ppi[c] + tyrtrna[c]	MA0815	
UAG2EMA	h2o[c] + uacgam[c] <=> h[c] + udp[c] +		
UAUZEIVIA	acmana[c]	(NAA110F or NAA4460 or	
UAG4E	uacgam[c] <==> udpacgal[c]	(MA1185 or MA4460 or MA4464)	
UAUHL	acgam1p[c] + h[c] + utp[c] -> ppi[c] +	IVINTTUT/	
UAGDP	acgam[c] + n[c] + utp[c] -> ppi[c] +	MA3025	
5551	220000000000000000000000000000000000000	(MA1185 or MA4460 or	
UDPG4E	JDPG4E udpg[c] <=> udpgal[c]		
	h2o[c] + (2) nad[c] + udpg[c] <=> (3)	MA4464)	
UDPGDr	h[c] + (2) nadh[c] + udpg[cur[c]	MA4457	
UMPK	atp[c] + ump[c] <=> adp[c] + udp[c]	MA0372	

Table B.2. (continued)

Reaction ID	Reaction	GPR
	unknown_cbl1deg[e] <==>	
UNK_CBL1DEGt	unknown_cbl1deg[c]	
	unknown_rbfdeg[e] <==>	
UNK_RBFDEGt	unknown_rbfdeg[c]	
	(2) amet[c] + uppg3[c] -> (2) ahcys[c] +	
UPP3MT	dscl[c] + h[c]	MA3033
UPP3S	hmbil[c] -> h2o[c] + uppg3[c]	MA3034
URIDK2r	atp[c] + dump[c] <=> adp[c] + dudp[c]	MA4433
VALt2r	h[e] + val-L[e] <==> h[c] + val-L[c]	(MA3437 and MA3438)
VALTA	akg[c] + val-L[c] <=> 3mob[c] + glu-L[c]	MA4349
	atp[c] + val-L[c] + trnaval[c] -> amp[c] +	
VALTRS	ppi[c] + valtrna[c]	MA3052
	3mob[c] + coa[c] + (2) fdox[c] -> co2[c]	(MA2909 and MA2910 and
VOR	+ (2) fdred[c] + ibcoa[c] + h[c]	MA2911)
	wo4[e] + atp[c] + h2o[c]> adp[c] + h[c]	(MA0280 and MA0281 and
WO4abc	+ pi[c] + wo4[c]	MA0282)
XPPT	prpp[c] + xan[c] -> ppi[c] + xmp[c]	MA4581
YUMPS	r5p[c] + ura[c] <=> h2o[c] + psd5p[c]	(MA0208 and MA3271)
	zn2[c] + h[e] + k[e] <=> zn2[e] + h[c] +	
ZN2t4	k[c]	MA1117
	atp[c] + h2o[c] + zn2[e]> adp[c] + h[c]	(MA0023 and MA0024 and
ZNabc	+ pi[c] + zn2[c]	MA0025)
	atp[c] + zn2[c] + h2o[c]> adp[c] + h[c] +	(MA0549 or MA3366 or
Znabc2	pi[c] + zn2[e]	MA3632)

Table B.3. Minimal (High Salt) media used for FBA simulations of the M. acetivorans model. Required and optional refer to whether the component is predicted to be essential based on FBA simulations.

Model ID	Name	Turned on in simulations
ni2	Nickel	Yes (required)
nh4	Ammonia	Yes (required)
pi	Phosphate	Yes (required)
h2s	Hydrogen sulfide	Yes (required)
h2o	Water	Yes (required)
h	Proton (H+)	Yes (required)
cobalt2	Cobalt	Yes (required)
cu2	Copper	Yes (optional)
fe2	Iron(II)	Yes (optional)
hco3	Bicarbonate	Yes (optional)
na1	Sodium	Yes (optional)
mg2	Magnesium	Yes (optional)
cl	Chlorine	Yes (optional)
k	Potassium	Yes (optional)
mn2	Manganese	Yes (optional)
mobd	molybdate	Yes (optional)
ac	Acetate	User's choice (Carbon source)
со	Carbon monoxide	User's choice (Carbon source)
dma	Dimethylamine	User's choice (Carbon source)
dms	Dimethylsulfide	User's choice (Carbon source)
meoh	Methanol	User's choice (Carbon source)
mma	Monomethylamine	User's choice (Carbon source)
tma	Trimethylamine	User's choice (Carbon source)
bo3	Borate	No
cys-L	cysteine	No
seo3	Selenium	No
so4	Sulfate	No
wo4	tungestenate	No
4abz	4-aminobenzoic acid	No
btn	Biotin	No
cbl1	Vitamin B12	No
fol	Folic acid	No
lipoate	alpha-Lipoic acid	No
nac	Nicotinic acid	No

Table B.3. (continued)

Model ID	Name	Turned on in simulations
	(Calcium)	
pnto-R	pantothenate	No
pydxn	Pyrodoxine (HCl)	No
ribflv	Riboflavin	No
thm	Thiamine (HCl)	No

Table B.4. Biomass objective function used in the *M. acetivorans* model. The "Overall" component was the actual function that was maximized – the individual components of the overall biomass reaction were further broken down into synthesized subunits shown in the other rows of the table.

Component	Reaction
Overall	(0.63) protein_met + (0.24) rna_met + (0.04) dna_met + (0.05) lipid_met + (0.01) carbo_met + (0.04) trace_met> biomass_met
DNA	(0.58) datp + (0.44) dctp + (0.44) dgtp + (0.59) dttp> (2.05) ppi + dna_met
RNA	(0.48) atp + (0.42) ctp + (0.5) gtp + (0.6) utp> (2) ppi + rna_met
	(0.4) arg-L + (0.85) leu-L + (0.62) ser-L + (0.62) ala-L + (0.65) gly + (0.36) pro-L + (0.49) thr-L + (0.62) val-L + (0.66) ile-L + (0.4) asn-L + (0.48) asp-L + (0.11) cys-L + (0.23) gln-L + (0.71) glu-L + (0.15) his-L + (0.59) lys-L + (0.4) phe-L + (0.33) tyr-L +
PROTEIN	(0.21) met-L + (0.09) trp-L> protein_met
LIPID	(0.005) dpgpg + (0.214) 3hdpgpg + (0.027) dpgpi + (0.287) 3hdpgpi + (0.005) dpgpe + (0.057) 3hdpgpe + (0.011) dpgps + (0.244) 3hdpgps + (0.148) gdpgpi> lipid_met
CARBOHYDRATE	(1.27) glycogen + (0.06) galactan + (2.49) polyacgal + (1.6) polyglcur> carb_met
	(0.243) ptrc + (0.044) hspmd + (0.0009) accoa + (0.00006) coa + (0.0204) nad + (0.00093) nadh + (0.00093) nadp + (0.00371) nadph + (0.00003) succoa + (0.00929) amp + (0.191) com + (0.00037) f420-2 + (0.00028) f420-3 + (0.00371) f420-4 + (0.00279) f420-5 + (0.00009) f420-6 + (0.00001) f420-7 + (0.219) h4spt + (0.044) adocblhbi + (0.019) f430 + (0.00464) cob + (0.00093) thf + (0.00005)
SOLUBLE POOL	f390a + (0.00005) f390g + (0.191) mfr(b)> trace_met

Appendix C. Experimental Validation Data

This Appendix lists the experimental data cited in the Main Text that was used to validate the model, along with the references for such data.

Table C.1. Growth and secretion rate data and references.

Quantity	Carbon source	Value	Units	Source
Specific growth rate	СО	0.029	hr^-1	(60)
Specific growth rate	Acetate	0.023	hr^-1	(27, 66)
Specific growth rate	Acetate	0.012-0.015	hr^-1	(7)
Specific growth rate	Acetate	0.033	hr^-1	(68)
Specific growth rate	Methanol	0.098	hr^-1	(27)
Specific growth rate	Methanol	0.1-0.12	hr^-1	(7)
Specific growth rate	Methanol	0.058-0.064	hr^-1	(51)
Specific growth rate	TMA	0.077	hr^-1	(7)
Growth yield	Acetate	2.400	gDW/mol acetate	(66)
Growth yield	Acetate	2.400	g DW/mol acetate	(68)
Growth yield	Methanol	4.8-5.6	gDW/mol meoH	(73)
Growth yield	СО	2.500	gDW/mol CO	(60)
Acetate uptake rate	Acetate	9.630	mmol/gDW/hr	(27, 66)
Acetate uptake rate	Acetate	3-10	mmol/gDW/hr	(68)
Methanol uptake rate	Methanol	17.5-20.4	mmol/gDW/hr	(73)
CO uptake rate	СО	4.5-9.4	mmol/gDW/hr	(60)
CO uptake rate	СО	11.600	mmol/gDW/hr	(60)
Methane secretion	Acetate	3.06-6.8	mmol CH4/gDW/hr	(7)
Methane secretion	Acetate	2.64-3.12	mmol CH4/gDW/hr	(34)
Methane secretion	Methanol	18.1-26.5	mmol CH4/gDW/hr	(73)
Methane secretion	СО	0.36-0.48	mmol CH4/gDW/hr	(50)
Acetate secretion	СО	0.38-0.42	mmol ac/gDW/hr	(50)
Formate secretion	CO	1.7-1.9	mmol for/gDW/hr	(50)
DMS secretion	СО	0.0027- 0.0034	mmol dms/gDW/hr	(50)

Table C.2. Gene knockout lethality data used to validate the model, with references. "Genes in model": YES means the genes are included with at least one reaction in the model (the reactions associated with the appropriate gene(s) are shown in parenthesis).

Genotype	Genes in model	Carbon source	Result	Reference
 ΔackΔpta	YES (ACKr, PTAr)	Acetate	Lethal	(60)
ΔackΔpta	YES (ACKr, PTAr)	со	Lethal	(60)
ΔackΔpta	YES (ACKr, PTAr)	Methanol	Viable	(60)
ΔatpDCIXBEFAG	YES (Naabc)	Methanol	Viable	(64)
ΔatpDCIXBEFAG	YES (Naabc)	TMA	Viable	(64)
ΔatpDCIXBEFAG	YES (Naabc)	Acetate	Viable	(64)
ΔcooS1F	YES (CODH2)	со	Viable	(61)
ΔcooS2	YES (CODH2)	со	Viable	(61)
ΔhdrABC	YES (HDR-2)	Methanol	Viable	(7)
ΔhdrABC	YES (HDR-2)	TMA	Viable	(7)
ΔhdrABC	YES (HDR-2)	Acetate	Viable	(7)
ΔhdrED	YES (HDR)	Acetate	Lethal	(7)
ΔhdrED	YES (HDR)	Methanol	Lethal	(7)
ΔhdrED	YES (HDR)	TMA	Lethal	(7)
Δmch	YES (MTSPC)	Acetate	Lethal	(27)
Δmch	YES (MTSPC)	Methanol	Lethal	(27)
Δmch::ech+	NO (ECH not in WT)	МеОН	Lethal	(27)
Δmch::ech+	NO (ECH not in WT)	MeOH/H2/CO2	Viable	(27)
ΔmtaA1	YES (TMAMT, MCMMT)	Methanol	Lethal	(6)
ΔmtaA1	YES (TMAMT, MCMMT)	Acetate	Viable	(6)
ΔmtaA1	YES (TMAMT, MCMMT)	ММА	Viable	(6)
ΔmtaA1	YES (TMAMT, MCMMT)	DMA	Viable	(6)
ΔmtaA1	YES (TMAMT, MCMMT)	TMA	Viable	(6)
ΔmtaA2	NO	Methanol	Viable	(6)
ΔmtaA2	NO	Acetate	Viable	(6)
ΔmtaA2	NO	MMA	Viable	(6)
ΔmtaA2	NO	DMA	Viable	(6)

Table C.2. (continued).				
Genotype	Genes in model	Carbon source	Result	Reference
ΔmtaA2	NO	TMA	Viable	(6)
ΔmtaB1C1ΔmtaB2C2ΔmtaB3C3	YES (MCMMC)	Methanol	Lethal	(6)
ΔmtaB1C1ΔmtaB2C2ΔmtaB3C3	YES (MCMMC)	Acetate	Viable	(6)
∆mtaB1C1∆mtaB2C2∆mtaB3C3	YES (MCMMC)	MMA	Viable	(6)
ΔmtaB1C1ΔmtaB2C2ΔmtaB3C3	YES (MCMMC)	DMA	Viable	(6)
ΔmtaB1C1ΔmtaB2C2ΔmtaB3C3	YES (MCMMC)	TMA	Viable	(6)
Δ mta A 1 Δ mta B 1 C 1 Δ mta B 2 C 2 Δ mta B 3 C 3	YES (MCMMC)	Methanol	Lethal	(6)
Δ mta A 1 Δ mta B 1 C 1 Δ mta B 2 C 2 Δ mta B 3 C 3	YES (MCMMC)	ММА	Viable	(6)
Δ mta A 1 Δ mta B 1 C 1 Δ mta B 2 C 2 Δ mta B 3 C 3	YES (MCMMC)	DMA	Viable	(6)
Δ mta A 1 Δ mta B 1 C 1 Δ mta B 2 C 2 Δ mta B 3 C 3	YES (MCMMC)	TMA	Viable	(6)
Δ mta A 1 Δ mta B 1 C 1 Δ mta B 2 C 2 Δ mta B 3 C 3	YES (MCMMC)	Acetate	Lethal	(6)
ΔmtbA	YES (MMAMT, DMAMT, TMAMT)	Acetate	Viable	(6)
Δ mtb A	YES (MMAMT, DMAMT, TMAMT)	TMA	Viable	(6)
ΔmtbA	YES (MMAMT, DMAMT, TMAMT)	Methanol	Viable	(6)
ΔmtbA	YES (MMAMT, DMAMT, TMAMT)	DMA	Lethal	(6)
ΔmtbA	YES (MMAMT, DMAMT, TMAMT)	ММА	Lethal	(6)
Δ mtsD Δ mtsF Δ mtsH	YES (MTCMMT)	TMA	Viable	(49)
Δ mtsD Δ mtsF Δ mtsH	YES (MTCMMT)	Methanol	Viable	(49)
Δ mtsD Δ mtsF Δ mtsH	YES (MTCMMT)	Acetate	Viable	(49)
Δ mtsD Δ mtsF Δ mtsH	YES (MTCMMT)	со	Viable	(49)
Δ mts $X\Delta$ mts Y , X and Y any two mts genes	YES (MTCMMT)	DMS	Viable	(49)
Δ mtsD Δ mtsF Δ mtsH	YES (MTCMMT)	DMS	Lethal	(49)
ΔrnfXCDGEABY	YES (RNF)	Acetate	Lethal	(18)
ΔrnfXCDGEABY	YES (RNF)	Methanol	Viable	(7)
ΔrnfXCDGEABY	YES (RNF)	DMS	Viable	(7)
ΔrnfXCDGEABY	YES (RNF)	MMA	Viable	(7)
ΔrnfXCDGEABY	YES (RNF)	DMA	Viable	(7)
ΔrnfXCDGEABY	YES (RNF)	TMA	Viable	(7)
ΔlysK	YES (LYSTRS)	Methanol	Viable	(40)
ΔlysK	YES (LYSTRS)	TMA	Viable	(40)
ΔlysK	YES (LYSTRS)	DMA	Viable	(40)

Table C.2. (continued).				
Genotype	Genes in model	Carbon source	Result	Reference
ΔlysK	YES (LYSTRS)	ММА	Viable	(40)
ΔlysS	YES (LYSTRS)	Methanol	Viable	(40)
ΔlysS	YES (LYSTRS)	TMA	Viable	(40)
ΔlysS	YES (LYSTRS)	DMA	Viable	(40)
ΔlysS	YES (LYSTRS)	MMA	Viable	(40)
Δmtr	YES (MTSPCMMT)	Acetate	Lethal	(59)
∆mtr	YES (MTSPCMMT)	Methanol	Lethal	(59)
Δmtr	YES (MTSPCMMT)	TMA	Lethal	(59)