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Abstract 
 
 
Nanopore DNA analysis is an emerging technique that involves electrophoretically driving DNA 

molecules through a nano-scale pore in solution and monitoring the corresponding change in 

ionic pore current. This versatile approach permits the label-free, amplification-free analysis of 

charged polymers (single stranded DNA, double stranded DNA and RNA) ranging in length 

from single nucleotides to kilobase long genomic DNA fragments with subnanometer resolution. 

Recent advances in nanopores suggest that this low-cost, highly scalable technology could lend 

itself to the development of third generation DNA sequencing technologies, promising rapid and 

reliable sequencing of the human diploid genome for under $1000.  

 

Here, we report the development of versatile, nano-manufactured Al2O3 solid-state nanopores 

and nanopore arrays for rapid, label-free, single-molecule detection and analysis of DNA and 

protein. This nano-scale technology has proven to be reliable, affordable, and mass producible, 

and allows for integration with VLSI processes. A detailed characterization of nanopore 

performance in terms of electrical noise, mechanical robustness and materials analysis is 

provided, and the functionality of this technology in experimental DNA biophysics is explored. 

A framework for the application of this technology to medical diagnostics and sequencing is also 

presented. Specifically, studies involved the detection of DNA-protein complexes, a viable 

strategy in screening methylation patterns in panels of genes for early cancer detection, and the 

creation of lipid bilayer coated nanopore sensors, useful in creating hybrid biological/solid-state 

nanopores for DNA sequencing applications. 

 

The concept of a gated nanopore is also presented with preliminary results. The fabrication of 

this novel system has been enabled by the recent discovery of graphene, a highly versatile 

material with remarkable electrical and mechanical properties. Direct modulation of the 

nanopore conductance was observed through the application of potentials to the graphene gate. 

These exciting results suggest this technology could potentially be useful in slowing down or 

trapping a DNA molecule in the pore, thereby enabling solid-state nanopore sequencing.   
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Introduction         1 
 
 
 

The discovery of DNA as the blueprint of life in all living organisms is of fundamental 

importance in medicine and biology. DNA contains the instruction set that is used to encode 

RNA and proteins, the machinery that drives all cellular activity. Chemically, DNA consists of 

two long polymers composed of simple sub-units called nucleotides arranged in a double helix 

structure. Each nucleotide consists of a sugar-phosphate backbone attached to one of four types 

of molecules called bases, more specifically adenine, thymine, cytosine and guanine. It is the 

sequence of these four bases along the DNA backbone that encodes the genetic information that 

defines the various characteristics of an organism. The structure and function of DNA is 

discussed in greater detail in chapter 2. Due to the vast information content of DNA and its 

importance in regulating cellular behavior, widespread research is focused on the development of 

technologies applicable to DNA analysis and sequencing.  

Sequencing the human genome has helped further our understanding of disease, inheritance, and 

individuality. Genome sequencing has been critical in the identification of Mendelian disorders, 

genetic risk factors associated with complex human diseases,[1, 2] and continues to play an 

emerging role in therapeutics and personalized medicine. The growing need for cheaper, faster 

genome sequencing has prompted the development of new technologies that surpass 

conventional Sanger chain termination methods in terms of speed and cost.[3, 4] These novel 

second and third generation sequencing technologies, inspired by the $1000 genome challenge 

proposed by the National Institute of Health in 2004 (http://www.genome.gov/12513210), are 

expected to revolutionize genomic medicine. Nanopore DNA sequencing is one such technology 

that is currently poised to meet this grand challenge.[5]  

Nanopore DNA sequencing is attractive as it is a label-free, amplification-free single-molecule 

approach that can be scaled for high throughput DNA analysis. This technique typically requires 

low reagent volumes, benefits from relatively low cost and supports long read lengths, 
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Nanopore Sensors for Early Cancer Detection 
 

Cancer is a leading cause of death worldwide accounting for approximately 13% of all deaths in 

2004. According to estimates by the American Cancer Society (ACS), more than 12 million new 

cancer cases were expected in 2007 combined with an additional 7.6 million deaths world-wide 

(about 20,000 cancer related deaths per day). By 2050, the global burden associated with cancer 

is expected to grow to over 27 million new cases and 17.5 million cancer related deaths. This 

burgeoning problem is further compounded by inadequate cancer screening procedures. 

Conventional screening procedures rely on direct palpation, visual detection, imaging and biopsy 

analysis to detect malignancies. These techniques, however, are only effective after the tumor 

has reached a detectable size during which time cancerous cells are free to mature, proliferate 

and potentially metastasize in the body, presenting a danger to patients’ health. Also, the late 

presentation of symptoms in many cancer types further contributes to high cancer related 

mortality rates. To improve patient survival rates, novel strategies focused on early cancer 

detection at the genetic and epigenetic levels are needed.  

 

It is becoming more and more apparent that cancer is as much a disease of misdirected 

epigenetics as it is a disease of genetic mutations. Epigenetic alterations occur in the form of 

DNA methylation changes, an early and frequently observed event in carcinogenesis.[35] Loss of 

methylation (hypomethylation) in specific genes and elevated methylation levels 

(hypermethylation) in others have been associated with cancers of the prostate, breast, lung, head 

and neck and liver to name a few, and also correlate with disease severity and metastatic 

potential in many tumor types.[35-39] Interestingly, cancer-specific methylated DNA from most 

tumor types is present at very low concentrations in bodily fluids and biopsy specimens and also 

exists in the form of free-floating DNA shed by dead cancer cells.[35] A technology capable of 

detecting aberrant methylation patterns in specific genes extracted from the serum of cancer 

patients would be of immense clinical value.  

 

We establish a framework for the detection of robust cancer biomarkers (specifically DNA 

methylation patterns) using solid-state nanopores. Nanopore technology is well suited for gene 
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based methylation analysis and could be capable of screening small panels of hypermethylation 

markers specific to a variety of cancers. The power of this technique over conventional 

methylation analysis techniques lies in its ability to (1) detect target molecules at extremely low 

concentrations from minute sample volumes (essential in early cancer detection due to the low 

concentration of DNA shed by tumor cells in serum), (2) detect a combination of methylation 

aberrations across a variety of genes (important in monitoring progression and prognosis), (3) 

provide rapid methylation analysis at relatively low cost (small reagent volumes needed due to 

single molecule nature of this approach), and (4) eliminate cumbersome and expensive PCR, 

DNA sequencing and bisulfite conversion steps. Nanopore sensors, therefore, could potentially 

play an important role in early cancer detection, risk assessment, disease monitoring, 

chemoprediction and patient prognosis. 

 

1.2  Overview 

 

Chapter 2 is a comprehensive review of biological and solid-state nanopore systems. First, the 

state-of-the-art in biological nanopores is discussed. An introduction to solid-state nanopores 

including their fabrication, noise performance and DNA transport characteristics is next provided. 

Finally, the performance of chemically modified solid-state nanopores is discussed.  A summary 

of this chapter was recently published as a book chapter in Nanopores, Sensing and Fundamental 

Biological Interaction (Springer, 2011). 

 

Chapter 3 presents the development of highly sensitive, mechanically robust, Al2O3 nanopores 

for DNA detection. This work was featured on the cover of Advanced Materials.[30] The process 

described achieves high yield, greatly reduces fabrication complexity and results in structurally 

robust, low noise platforms for single molecule DNA analysis. Al2O3 nanopore sensors have all 

the advantages of existing SiO2 and Si3N4 architectures (size control with sub-nm precision, 

chemical modification and attachment of organosilanes) but also exhibit superior noise 

performance over their solid-state counterparts. This technology serves as a template to further 

explore the physics governing DNA transport and finds broad application in bio-nanotechnology. 
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Chapter 4 presents an in-depth study of the dynamics of nanopore formation in metal oxide thin 

films and the biophysics of single molecule transport through these nanopore channels.[31] The 

concepts of nanoscale surface charge engineering and nanopore metallization directly through 

electron beam based decompositional sputtering of Al2O3 films are introduced. This in-situ 

metallization process provides a potential means to create nano-scale metallic contacts in the 

pore region for manipulating surface charge and pore conductivity. Nano-crystalline surface 

enhanced DNA transport through these Al2O3 nanopores is also discussed.   

 

Chapter 5 presents the development of hybrid biological/solid-state nanopores that seek to 

combine the stability and top down fabrication of solid-state nanopores with the chemical 

selectivity of biological nanopores. The integration of stable phospholipid bilayers with large 

Al2O3 nanopores formed using focused ion beam milling processes is discussed. These 

phospholipid membranes on ALD Al2O3 formed high impedance GΩ seals, were stable for over 

50 hours, maintained lateral fluidity and may be well suited for the potential integration of 

biological nanopores.  

 

Chapter 6 summarizes new and unpublished data on the integration of graphene electrodes into 

an Al2O3 nanopore. The stability and pH response of these novel sensors is presented. 

Applications involving the detection of dsDNA and of estrogen-receptor/DNA complexes are 

discussed. Finally, preliminary data on the modulation of ionic current through the nanopore 

using the graphene gate is presented.  
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Theory and Literature Review      

 
 

2.1  Biological Nanopores 

 

Biological nanopores reconstituted into lipid bilayers present an attractive option for single 

molecule DNA analysis. Their versatility can be attributed to several factors: X-ray 

crystallographic information is available revealing pore structure with angstrom level resolution; 

techniques such as site directed mutagenesis can be used to tailor the physical and chemical 

properties of a pore; and remarkable heterogeneity is observed among pores in terms of size and 

composition. The biological cell contains various types of nanopores and nanochannels that 

regulate the flow of ions and molecules relevant to cellular processes such as intercellular 

communication and signaling between subcellular structures. Examples include gated, selective 

ion channels that connect the cell cytosol to the cell exterior; nuclear membrane pores that 

control the passage of biomolecules such as messenger RNA (mRNA) from the cell nucleus into 

the cytosol; proteins that are secreted across pores in the membranes of cell organelles; and 

viruses, which dump their genomes into cells via pores that insert into the cell membrane.[40] An 

example of a biological nanopore that is frequently used in in-vitro studies is the α-hemolysin 

channel. 

2.1.1  α-hemolysin 

 

α-hemolysin is a naturally occurring biological protein complex extracted from the bacterium 

Staphylococcus aureus that, when inserted into a lipid bilayer membrane, forms a ~1.5 nm 

diameter pore allowing the passage of ions and ssDNA. In vivo, bacterium Staphylococcus 

aureus secretes alpha-hemolysin monomers that bind to the outer membrane of host cells. These 

monomers self-assemble into seven subunit oligomers to form a water-filled transmembrane 

channel that facilitates the uncontrolled permeation of water, ions, and small organic molecules 

in and out of the host cell. The resulting discharge of vital molecules from the host cell, osmotic 

swelling and a loss in ionic gradient can result in irreversible cell damage and eventually cell 

2
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death (apoptosis). Apoptosis induced by the insertion of α-hemolysin into various cell types 

including rabbit erythrocytes, human erythrocytes, monocytes, and lymphocytes has been 

reported.[41, 42]  

 

In-vitro studies of DNA transport through biological pores have traditionally focused on α-

hemolysin as the transmembrane channel of choice. The structure of the heptameric α-hemolysin 

pore is shown in figure 3a (i). The total channel length is 10 nm and is comprised of a 5 nm 

vestibule that protrudes into the cis compartment and a 5 nm transmembrane domain embedded 

in the lipid bilayer[43]. At pH 7-9, α-hemolysin forms a relatively stable and reproducible non-

gating channel with less than 2% variation in open pore current under temperature stabilized 

conditions. The comparable inner channel diameter of α-hemolysin to ssDNA (diameter ~1.3 nm) 

suggests that less than one Debye length (~3 Å in 1 M KCl) separates the translocating 

biomolecule from the amino acid residues in the pore. Although dsDNA is too large to 

translocate through α-hemolysin, up to a 10 bp fragment can reside in the vestibule.[43] This 

makes α-hemolysin a very powerful tool for examining biomolecular interactions and the 

binding affinities of individual molecules at the single molecule level.   

 

In a landmark study, Kasianowicz demonstrated the ability to electrically detect individual 

ssDNA and ssRNA molecules using α-hemolysin nanopores embedded in planar phospholipid 

bilayers.[44] A plethora of studies have since followed elucidating the biophysics of single 

molecule transport through proteinaceous α-hemolysin. For example, Meller et al. examined the 

effects of polymer length on translocation velocity.[45] Polymers longer than the pore length were 

seen to translocate at constant speed, but short polymers exhibited a length dependent velocity. 

Studies by Mathe et al. revealed that α-hemolysin nanopore sensors are sensitive enough to 

differentiate between 3’ and 5’ threading of ssDNA in the pore with 5’ threading resulting in a 

twofold increase in translocation times relative to 3’ threading, attributed to the tilt reorientation 

of bases towards the 5’ end of the molecule.[46] Brun et al. demonstrated that biomolecule flux 

through proteinaceous α-hemolysin is highly dependent on the applied voltage, with the capture 

rate of ssDNA[47, 48] and small polyelectrolytes[49] following a simple Van’t Hoff-Arrhenius 

relationship. Henrickson further showed that the asymmetric structure of α-hemolysin promotes 

biomolecule entry from the cis side (side with the vestibule) as opposed to the trans side.[50] 
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Reduced biomolecule flux from the trans side was attributed to a combination of factors: (1) the 

high entropic barrier associated with the highly confined geometry of the β barrel on the trans 

side, and (2) electrostatic repulsion of DNA by the negatively charged asparatic acid residues 

located on the trans side. The unzipping of hair-pin DNA structures using α-hemolysin was 

observed by Vercoutere et al. for sufficiently short hairpins.[51] The authors demonstrated the 

ability to discriminate between 3 bp and 8 bp long hairpins with single base resolution.[51] Early 

results also demonstrated the ability of native α-hemolysin to distinguish between freely 

translocating RNA homopolymers of cytidylic and adenylic acid,[19] as well as poly(dA) and 

poly(dC) strands of ssDNA,[47] suggesting the potential emergence of α-hemolysin as a next-

generation DNA sequencing tool. The realization of such a tool, however, has proven 

challenging, primarily due to the remarkably high velocity with which ssDNA moves through the 

pore under typical experimental conditions (estimated at ~1 nucleotide/μ . At these timescales, 

as few as ~100 ions are available to correctly identify a translocating nucleotide, a daunting 

proposition given thermodynamic fluctuations (statistical variations in the number of charge 

carriers and position of the nucleotide in the pore) and the subtle chemical differences that exist 

among nucleotides. It has, therefore, proven nearly impossible to sequence freely translocating 

ssDNA using α-hemolysin.  

 

 α-Hemolysin nanopores also hold tremendous value in the field of DNA sequencing. Stoddart 

recently demonstrated the ability to resolve individual nucleotides located in homopolymeric and 

heteropolymeric ssDNA immobilized in biological α-hemolysin.[52] Mitchell et al. showed that 

chemical labels attached to bases could be used to resolve individual bases in a translocating 

DNA strand.[53] Interestingly, blockage durations and amplitudes could be tuned by varying the 

chemistry, charge and size of these chemical tags, suggesting the possibility of base 

discrimination based on peptide labeling with application to DNA sequencing. Another novel 

nanopore-based sequencing approach was proposed by Cockcroft et al. that exploited the 

selective, base-by-base activity of DNA polymerase.[9] By anchoring a DNA/DNA-polymerase 

complex in the nanopore, the authors were able to electrically monitor single nucleotide primer 

extension events. Primer extensions were controlled by providing each nucleotide set 

sequentially and sequence information was extracted temporally.[9] The Bayley group recently 

demonstrated the ability to continuously resolve indigenous single nucleotides (dAMP, dCMP, 
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be feasible. Another interesting side note from this study was the ability to distinguish 5-

methylcytosine from the four other bases. This result holds tremendous value as it provides a 

rapid and cost-effective method to identify DNA methylation patterns in specific genes with 

broad application in epigenetics and cancer diagnostics.   

 

Although α-hemolysin has by far dominated the nanopore sequencing landscape, it is plausible 

that more efficient nanopore sequencing architectures will emerge. A structural drawback with α- 

hemolysin pertains to its ~5nm long cylindrical β barrel that accommodates up to ~10  

nucleotides at a time. The current modulation induced by these nucleotides dilutes the ionic 

signature specific to a single nucleotide in the 1.4 nm constriction. This limitation is overcome 

by a relatively new candidate in the nanopore sequencing arena, the channel protein 

Mycobacterium smegmatis porin A (MspA). MspA is an octameric protein channel that contains 

a single constriction of diameter ~1.2 nm with a channel length of ~0.5 nm, forming a funnel 

shape as shown in the structural cross section of figure 3b. Derrington et al. demonstrated the 

ability of genetically engineered MspA to discriminate between individual nucleotides with an 

impressive 3.5-fold enhancement in nucleotide separation efficiency over native α-hemolysin.[11] 

Interestingly, in experiments involving immobilized DNA, as few as three nucleotides within or 

near the constriction of MspA were seen to contribute to the pore current, a significant 

improvement over native α-hemolysin. The authors hypothesize that this could be further 

improved to perhaps a single nucleotide through site-specific mutagenesis, an obvious goal of 

future mutants. The application of MspA to de novo sequencing is not without challenges either. 

The speed of unimpeded ssDNA translocation through MspA still remains too fast to sequence 

ssDNA ‘on the fly.’ Strategies such as duplex interrupted (DI) nanopore sequencing which 

involves arresting the translocation of a molecule in the pore using DNA duplexes prior to 

nucleotide identification has shown preliminary success,[11] but the ability to convert and read 

large genomic fragments with high fidelity still remains to be seen.  

 

2.1.2  Bacteriophage phi29 Connector 

Another biological nanopore that is receiving much interest of late is the connector protein from 

the bacteriophage phi29 DNA packaging motor.[54] In bacteriophage phi29, linear dsDNA is 
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2.2  Solid-State Nanopores 

 

Despite the heterogeneity and remarkable sensitivity of biological nanopores, these sensors do 

exhibit some disadvantages. The delicate nature of the mechanically supporting lipid bilayer, the 

sensitivity of biological pores to experimental conditions (pH, temperature, salt concentration), 

and challenges associated with large scale array integration for high throughput DNA 

analysis/sequencing make the solid-state approach quite attractive. With advances in 

microfabrication techniques, solid-state nanopores are fast becoming an inexpensive and highly 

versatile alternative. Solid-state nanopores exhibit superior chemical, thermal, and mechanical 

stability over their biological counterparts and can be mass fabricated with sub-nanometer 

precision. The first reports of DNA sensing using solid-state nanopores emerged from the 

Golovchenko lab in early 2001. Nanopores were formed in thin SiN membranes using a custom 

built feedback controlled ion beam sculpting tool, a process that yielded true nanometer control 

over pore size.[56] Today, most groups prefer to use a focused convergent electron beam from a 

field emission gun (FEG) TEM to decompositionally sputter nanopores in thin insulating 

membranes, a technique that has evolved since the 1980s.[57] A review on the fabrication of 

solid-state nanopores and their applications in single molecule biophysics is provided by 

Dekker.[40] 

 

SiN has traditionally been the nanopore membrane material of choice due to its high chemical 

resistance and low mechanical stress, deposited via an optimized low pressure chemical vapor 

deposition process. This process, however, lacks thickness control in the sub-nanometer regime. 

To effectively probe the local structure of DNA with the resolution of an individual nucleotide, 

insulating membranes of sub-nanometer thickness are required. In working towards this goal, our 

group proposed forming nanopores in ultra-thin insulating Al2O3 membranes deposited via 

atomic layer deposition (ALD). The process conceived by Venkatesan et al. combined the atomic 

precision of ALD with the high chemical etch selectivity of Al2O3 to form mechanically robust 

membranes anchored on Si.[30] Nanopores were formed in 15 - 60 nm thick Al2O3 membranes 

using a focused convergent electron beam with sub-nanometer control over pore diameter. Two 

interesting phenomena were observed during pore formation: the dose-dependent conversion of 

Al2O3 to metallic Al, applicable to the direct ‘write’ of nanoscale electrodes in the pore, and the 
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controlled formation of α and γ nanocrystalline domains, permitting nano-scale surface charge 

engineering at the pore/fluid interface.[31] Controlling pore stoichiometry and surface charge 

density is important given the impact of these parameters on 1/f noise and DNA transport 

velocities. In line with these findings, slower DNA translocation was observed in Al2O3 

nanopores relative to SiN, attributed to strong electrostatic interactions between the positively 

charged Al2O3 surface and negatively charged DNA. This ALD based technique has been 

extended to form nanopores in membranes of thickness ≈5 nm, below which significant ion 

permeation through the membrane was observed. To achieve true atomic membrane thicknesses, 

a novel material system/approach is likely needed. These results will be reviewed in detail in 

chapters 3 and 4. 

 

Graphene perhaps is the solution. Graphene, an atomically thin sheet of carbon atoms densely 

packed into a two-dimensional honeycomb lattice, possesses remarkable mechanical, electrical 

and thermal properties.[58] The comparable thickness of a graphene monolayer to the 0.32-0.52 

nm spacing between nucleotides in ssDNA makes this material particularly attractive for 

electronic DNA sequencing.  The incorporation of graphene into nanopores was recently 

demonstrated by three groups.[59-61] In separate studies, the Golovchenko, Dekker, and Drndic 

labs reported on the electron-beam based fabrication of 5-25 nm diameter nanopores in 

suspended graphene films, prepared through either chemical vapor deposition (CVD) or 

exfoliation from graphite.[59-61]  

 

Nanopores were formed in as few as 1-2 monolayers of grapheme as shown in figure 5, these 

membranes exhibiting remarkable durability and insulating properties in high ionic strength 

solution.[59] Pore conductance was seen to scale linearly with pore diameter, indicative of pores 

formed in near infinitesimally thin membranes. An effective membrane thickness of ~0.6 nm 

was extracted. The translocation of dsDNA through graphene pores was demonstrated in all three 

studies with subtle fluctuations in the ionic current marking the transport of both folded and 

unfolded DNA structures.[59-61] DNA translocation velocities ranged anywhere from 10 to 100 

nts/µs, too fast for the electronic measurement of individual nucleotides. As a result, Garaj 

probed the theoretical spatial and geometric resolution of a graphene nanopore using 

computational analysis.[59] Pseudo-static simulations of dsDNA in a 2.4-nm diameter graphene 
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2.2.1  Nanopore Fabrication  

2.2.1.1 Fabrication of Single Nanopores 

 

There are four primary techniques available for the fabrication of single solid-state nanopores in 

thin Si3N4, SiO2 or polymer membranes. They are surface tension driven oxide reflow, ion beam 

sculpting, the track-etch method and electron beam based decompositional sputtering. Other 

direct fabrication techniques include focused ion beam (FIB) milling to achieve pore sizes as low 

as 10nm[62] and laser ablation methods capable of achieving sub 100nm pore diameters.[63, 64] 

  

Electron Beam Induced Oxide Reflow 

The oxide reflow technique involves the use of electron beam lithography to pattern large 40-

100nm holes in micro-machined silicon membranes. These pores are subsequently oxidized and 

shrunk to the sub-10nm range using a TEM. The TEM shrinking process, discovered by Storm et 

al.,[65] uses the high energy electron beam to locally fluidize the oxide surface in the vicinity of 

the nanopore causing the oxide to reflow in the direction that minimizes interstitial surface 

energy. For nanopores with diameter d < t, where t is the membrane thickness, nanopore 

shrinking was repeatedly observed. Schenkel et al. attributed this shrinking phenomenon to the 

build-up of a low-Z hydrocarbon layer in the nanopore during electron-beam irradiation.[66] 

Electron energy loss spectra (EELS) from the localized nanopore region, however, revealed the 

presence of only Si and O and the absence of C,[65] thereby confirming that oxide reflow is 

indeed the mechanism responsible for nanopore contraction. 

 

Ion Beam Sculpting  

The ion-beam sculpting process first developed by Li et al.[56] uses an energetic beam of Ar+ ions 

to form nanopores with dimensions as low as 1.5 nm in thin Si3N4 membranes. Contrary to what 

one would expect, a 3 keV Ar+ ion beam rastered continuously over a Si3N4 sample at room 

temperature resulted in ion assisted diffusion of atoms into the pore region resulting in nanopore 

shrinking as opposed to expansion. The flow of matter to the developing nanopore cite showed 

temperature dependence with a transition between pore opening and closing being consistently 

observed at ~5°C, under the ion-beam conditions used. Pore expansion was attributed to ion 
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sputter erosion at the pore edge, the dominant mechanism at low temperature and high ion flux. 

Pore closure was accredited to the formation of a stressed viscous surface layer at the lip of the 

nanopore. The reduced viscosity and/or enhanced stress owing to implantation or surface tension 

effects cause this layer to relax, thereby filling the nanopore. Feedback control was used to 

precisely sculpt nanopores of various sizes using this process.  

 

Track-Etch Method 

Conical nanopores are typically formed in micron-thick polymer films using the track etch 

method.[67-69] The fabrication process involves first bombarding a thin sheet of polymer material 

(polyethylene terephthalate, polyimide or polycarbonate) with a high energy beam of nuclear 

fission fragments or with a high energy ion beam from a MeV accelerator at normal or near 

normal incidence angle to the polymer substrate. The irradiated polymer membrane is then 

placed between two chambers of a conductivity cell and etched chemically from one side. 

Chemical etching of the damage track is done in a strong alkaline solution (pH ≈13) with high 

chlorine content at elevated temperatures (~ 50°C) using a solution such as sodium hypochlorite 

(NaOCl).[68] The other compartment of the conductivity cell is filled with 1M potassium iodide 

(KI) solution as a stopping medium for the OCl- ions of the etchant. As soon as the etchant 

completely penetrates the polymer film, iodide ions reduce OCl- to Cl- ions, thereby halting the 

etch process. The result is a tapered individual conical nanopore with pore diameter as low as 

~10 nm in the polymer membrane. 

 

Electron Beam Induced Sputtering 

Electron beam induced sputtering offers a rapid and reliable method to prototype nanometer 

sized pores using a TEM. This method involves the use of a focused convergent electron beam 

with sufficiently high current density to decompositionally sputter nanometer-sized pores in thin 

oxide or nitride membranes (thickness ≤ 60nm). An added benefit of this method is that it allows 

for the direct fabrication of nanopores and avoids the need for electron beam lithography steps.  

Kim et al. used high-resolution TEM to explain nanopore formation kinetics in Si3N4 as a 

balance between two competing processes: (a) material sputtering and (b) surface-tension-

induced shrinking.[70] Nanopores 4 to 8 nm in diameter were directly drilled using a JEOL 2010F 

field emission TEM with an accelerating voltage of 200 keV and a beam current density of 108 – 
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109 e nm−2. Kim et al. demonstrated that nanopore contraction could be achieved by slightly 

defocusing the e-beam, effectively reducing the beam intensity to ~106 e nm−2.[70] TEM 

tomography was used to map the three-dimensional structure of these solid-state nanopores. It 

was observed that the sidewalls of the sputtered pores were angled (approximately 65° to the 

horizontal), attributed to the intensity distribution of the e-beam around its focal point. Post-

drilling, pores formed an ‘hourglass’ structure with pore width being represented by the width of 

the narrowest constriction.[70, 71] Similarly, Heng et al. used a focused convergent electron beam 

to form nanopores in ultra-thin 10 nm Si3N4 membranes. The nanopore structure resembled a 

double cone structure with a cone angle of 10°.[72] Smeets et al. observed a cone angle of 45° for 

nanopores sputtered in composite SiO2/SiN/SiO2 membranes.[73] In all cases, nanopores formed 

directly through electron beam induced sputtering exhibited the ability to contract under a 

defocused electron beam. 

2.2.1.2 Fabrication of Nanopore Arrays 

 

Multiple methods exist for the formation of nanopore arrays. The track-etch method is one which 

has been used to produce commercially available nanopore arrays with diameters as low as 

~10nm and packing densities as high as 6x108 pores/cm2.[74] Nanopore arrays can also be 

fabricated through an anodization process of thin aluminum films. In one such process that we 

have previously explored, aluminum foil is first anodized in a 0.3 M oxalic acid solution at 5°C 

at a constant applied voltage of 40 V for 20 h.[75] The anodized aluminum is then etched in an 

aqueous mixture of phosphoric/chromic acid at 60°C. Any remaining Al in the pore region is 

dissolved using a saturated HgCl2 solution. We used this process to produce anodized aluminum 

oxide (AAO) membranes with a highly ordered network of nanopores (diameters = 75 nm, 

center-to-center distance = 105 nm), as shown in figure 6a. These nanopores can be further 

reduced in size through atomic layer deposition (ALD). Figure 6b shows an array of nanopores 

with final diameters of 15 ± 1 nm formed using a combination of anodization and ALD processes. 

Nanopore arrays with pore sizes as low as ~20nm have also been formed in SiO2 using electron 

beam lithography processes.[76] Kim et al. demonstrated that nanopore arrays could be fabricated 

by stepping a focused electron probe formed in a TEM over the sample surface.[71] Though the 
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is cation selective, exhibiting diode-like behavior in fluid with a preferential direction for the 

cation flow from the narrow entrance towards the wide opening of the pore. Siwy et al. further 

demonstrated some of the novel characteristics of this architecture by pumping ions against a 

concentration gradient using a fluctuating electric field applied across the membrane in the form 

of an AC voltage signal.[79] 

2.2.2.2 Nanopore Surface Charge Effects 

 

The effects of surface charge on pore conductance were investigated by Ho et al. using 

nanopores formed in 10 nm thick Si3N4 membranes.[81] At low electrolyte concentrations (≤10 

mM), pore conductivity was found to be much larger than bulk approximations calculated using 

the pore geometry. This conductance deviation was attributed to Debye layer overlap in the pore 

where the Debye length is comparable to or larger than the pore radius. Multiscale simulations of 

ion transport through these pores, coupled with experimental observations, confirmed the 

presence of fixed negative charges on the pore walls resulting in reduced ion mobility at the pore 

surface. 

Consistent with Ho’s results, Smeets et al.[73] found that for ~10 nm diameter SiO2 pores, the 

negative surface charge lining the pore walls dominates pore conductivity at salt concentrations 

below 100 mM KCl. Interestingly, a variable surface charge density in the pore was extracted as 

a function of electrolyte concentration in these experiments. In contrast, TiO2 nanopore 

conductance saturated at much lower electrolyte concentrations.[82, 83] Nam et al. extracted a 

surface charge density of ~0.005 mC/m2 in TiO2 pores, significantly lower than the charge 

density observed in SiO2 pores which is estimated at ~25-50 mC/m2.[82] The author suggested 

that this low charge density may be responsible for the extremely low KCl concentrations at 

which ionic conductance saturated. The surface charge characteristics of Si3N4 nanopores have 

also been studied by Wanunu and Meller and revealed only small changes in pore conductance 

with varying pH.[84]  

2.2.2.3 Manipulating Surface Charge in Nanopores 

 

Electrodes positioned in a nanopore may provide a novel method to manipulate pore 

conductance and surface charge characteristics. Nam et al. embedded a TiN gate electrode 
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directly in the nanopore and showed current rectification by applying potentials to the gate 

electrode.[82]  This gating behavior was only observed at very low salt concentrations (<10-3 M) 

where the effects of surface charge are dominant and Debye layer overlap in the nanopore is 

indeed expected. P-type unipolar behavior was observed suggesting that K+ ions are the majority 

carriers in these TiO2 based gated nanopores. Studies by Kalman et al. focused on integrating an 

Au electrode into a conical nanopore.[85] By modulating the electric potential applied to the gate, 

one alters the distribution of ions in the overlapping Debye layer in the pore and thus the 

potential distribution across the pore. Using this approach Kalman et al. were able to manipulate 

the current through the device from the rectifying behavior synonymous with conical nanopores, 

to a near linear type behavior as seen in structurally symmetric nanopores. The mechanism for 

this change in transport behavior was accredited to the enhancement of concentration 

polarization induced by the gate. The manipulation of surface charge through the chemical 

modification nanopores will be discussed in subsequent sections.  

2.2.2.4 Noise in Solid State Nanopores 

 

Electrical noise in ionic current measurements limits the utility of solid-state nanopore systems 

in widespread nucleic acid based diagnostics. Two dominant sources of noise have been 

documented in the literature: a low frequency current fluctuation with 1/f characteristics (flicker 

noise) and a high-frequency background noise component associated with the capacitance of the 

Si support chip (dielectric noise).[86-91] Minimizing these respective noise components is integral 

to improving the sensitivity and signal-to-noise ratio of nanopore sensors. 

 

1/f  Noise in Solid-State Nanopores 

1/f noise has been observed in many physical and biological systems. 1/f noise has been 

observed as fluctuations in the voltages or currents of semiconductors, the voltage across nerve 

membranes and synthetic membranes and in the resistance of aqueous ionic solutions.[92] The 

power spectrum, denoted by S(f), is proportional to the reciprocal of the frequency in a narrow 

bandwidth as illustrated in equation 1.  
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     20
tan

  where
f

tcons
fS          (1) 

 

Hoogerheide et al. studied the 1/f noise characteristics of Si3N4 nanopores as a function of pH 

and electrolyte ionic strength and concluded that 1/f noise originates from surface charge 

fluctuations at the nanopore surface.[87] The model presented was based on protonization of 

surface functional groups and was sensitive to a few tens of active surface groups in the 

nanopore. In contrast, Smeets et al. concluded that low frequency noise was predominantly due 

to the total number of charge carriers in the nanopore thereby following Hooge’s 

phenomenological relation, rather than on surface charge characteristics.[88, 89] Surface 

modifications, however, have been shown to significantly improve the 1/f noise characteristics of 

nanopores. Chen et al. used an atomic layer deposition process to coat Si3N4 nanopores with 

Al2O3 and saw significant reductions in 1/f noise.[93] Tabard-Cossa et al. demonstrated a 

significant reduction in 1/f noise by treating nanopore chips with piranha solution.[90] It is 

therefore likely that 1/f noise in nanopores is a combination of the two mechanisms described 

previously, that is, fluctuations in the total number of charge carriers in the nanopore coupled 

with a fluctuation in their mobilities due to trapping at surface states. By addressing the surface 

properties of solid-state nanopores, through either chemical surface treatment or material choice, 

improved noise performance may be achieved. 

 

Dielectric Noise 

Dielectric noise in nanopores is associated with the capacitance of the nanopore chip and scales 

linearly with frequency. Nanopores are typically fabricated in dielectric thin films such as SiO2 

or Si3N4, anchored on a conductive Si substrate. These dielectric materials are typically lossy and 

have a dissipation factor, D, associated with them. Smeets et al. extracted a dissipation factor of 

0.27 ± 0.07 for Si3N4 pores, strongly deviating from D = 0 for an ideal capacitor. The dielectric 

noise can be reduced by minimizing the capacitance of the substrate. To achieve this, the 

thickness of insulating layers on the Si substrate can be increased or the fluidic contact area on 

the chip can be minimized. Tabard-Cossa et al. selectively patterned PDMS on Si3N4 chips to 

reduce the fluidic contact area and thereby minimize dielectric noise.[90]  
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2.2.3.2 DNA Transport Studies 

 

The first demonstrations of DNA translocation through a solid-state nanopore were shown by Li 

et al.[56] Deep current blockades were observed as dsDNA was electrophoretically driven through 

nanopores formed in thin Si3N4 membranes using the ion beam sculpting process described 

earlier in chapter 2.  Further studies confirmed the dependence of dsDNA transport kinetics on 

bias voltage, DNA length and DNA conformation.[24] Li et al. further showed that by reducing 

the bias voltage by a factor of two, the dwell time of a DNA molecule in the nanopore could be 

approximately doubled.[24] Multiple configurations of the translocating molecule in the nanopore 

were also observed in these experiments attributed to dsDNA folding, a phenomenon observed 

primarily in large nanopores. Smaller ~3 nm pores, however, were shown to restrict the passage 

of folded molecules and promoted only the linear passage of unfolded molecules. Heng et al. 

demonstrated that by reducing nanopore diameter to below that of dsDNA, the electrophoretic 

separation of ssDNA from dsDNA could be achieved using a solid state nanopore.[94] Narrow ~2 

nm pores were seen to block the passage of dsDNA, permitting the passage of only ssDNA. Only 

by applying very high fields was dsDNA permeation through these narrow pores possible, 

attributed to stretching transitions that occur in dsDNA at forces exceeding 60 pN. Comer et al. 

further demonstrated that very narrow < 1.6 nm diameter synthetic nanopores could be 

effectively used to unzip hairpin DNA.[95] Different modes of hairpin DNA transport were 

observed in these experiments, the first mode referring to the unzipping of the double helix 

structure to form ssDNA and the second mode referring to the stretching/distortion of the double 

helix itself.  

 

Chang et al. studied the effect of buffer concentration on DNA translocation dynamics.[96] 

Current enhancements were observed in large SiO2 nanopores at low salt concentrations (100mM 

KCl) as opposed to the typical blockades that were observed at higher salt concentrations. A 

more rigorous study by Smeets et al. suggested that these current enhancements are due to 

counterion condensation on the DNA backbone, thereby locally increasing the concentration of 

counterions in the pore during DNA transport.[73] Current enhancements were observed at 

concentrations below 0.4 M, a phenomenon that seems localized to only large SiO2 nanopores. In 

biological alpha-hemolysin, Benner et al. demonstrated that current blockades were still 
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observed at low salt concentrations (300mM KCl) during the entry of dsDNA into the lumen of 

alpha-hemolysin.[97] Current blockades were also observed during the transport of dsDNA 

through Al2O3 nanopores in 100mM KCl salt.[31]  

 

Polymer velocity in the nanopore is also a key topic of interest. Translocation velocities of up to 

~30 bases/μs have been reported at relatively low bias voltages in Si3N4 nanopores.[28] Chen et al. 

observed similar translocation velocities in large Al2O3 coated Si3N4 nanopores estimated at ~27 

bases/μs.[25] Such high translocation velocities limit the utility of conventional nanopore 

technologies in high end DNA sensing and analysis applications including single nucleotide 

detection. Fologea demonstrated that by increasing electrolyte viscosity using glycerol and by 

decreasing temperature and bias voltage, an order of magnitude reduction in translocation 

velocity could be achieved.[28] Remarkably, even with these improvements, the translocation 

velocities through a solid state nanopore are still more than an order of magnitude faster than that 

in biological α-hemolysin.[25] Lubensky and Nelson accredited the slow translocation rates in α-

hemolysin to strong polymer interactions with the pore walls.[98] Storm showed that the dwell 

time, τ, of dsDNA molecules in a large ~10 nm SiO2 nanopore did not scale linearly with 

polymer length, L. In fact, τ scaled according to a simple power law where 27.1~ L .[27] This 

work suggested even with the high translocation velocities observed in nanopore experiments, it 

may indeed be possible to size long dsDNA using solid-state nanopores in a rapid and label-free 

manner. In contrast to bulk gel-electrophoresis methods, length separation using solid state 

nanopores allows each molecule to be screened individually.  

 

The kinetics of DNA transport through solid-state nanopores is also of interest from a polymer 

physics stand point. Storm suggested that the majority of events in larger nanopores were fast 

translocation events where the dwell time, tD, is significantly less than the characteristic 

relaxation time or Zimm time of the polymer.[27] The Zimm time, Zt , is an upper bound on the 

time taken by a polymer to reach an entropically and sterically favored state. For events where tD 

< tZ, the molecule was said to exhibit a frozen polymer configuration during transport hindered 

by only the hydrodynamic drag on the part of the molecule outside the pore.[27] The effects of 

specific polymer-pore interactions were unaccounted for in these studies. Wanunu et al. 

discussed the importance of surface interactions on dsDNA transport through Si3N4 nanopores.[29] 
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Studies performed using small 2.7 – 5 nm pores revealed an order of magnitude increase in dwell 

times as pore diameter was decreased from 5 to 2.7 nm. In addition, strong temperature 

dependence was observed confirming that surface interactions play an important role in polymer 

transport.  

 

2.3  Nanopore Applications outside DNA Sequencing 
 

 

The more immediate application for solid-state nanopores is likely in medical diagnostics. A 

nanopore based diagnostic tool could (1) detect target molecules at extremely low concentrations 

from minute sample volumes (perhaps shed DNA from tumor cells in patient serum), (2) 

simultaneously screen panels of biomarkers/genes (important in diagnosis, monitoring 

progression and prognosis), (3) provide rapid analysis at relatively low cost and, (4) eliminate 

cumbersome amplification and conversion steps such as PCR, bisulfite conversion, and Sanger 

sequencing. MicroRNA (miRNA) expression profiling is one application where solid-state 

nanopore technology could excel. The detection and accurate quantification of these cancer 

biomarkers will likely have important clinical implications, facilitating disease diagnosis, staging, 

progression, prognosis, and treatment response.[99, 100] Wanunu et al. recently demonstrated a 

nanopore based approach for the detection of specific microRNA sequences enriched from 

cellular tissue with sensitivities surpassing conventional micro-array technologies (figure 8a).[33] 

Another exciting prospect is the use of solid-state nanopores for epigenetic analysis, more 

specifically the detection of aberrant DNA methylation, an early and frequently observed event 

in carcinogenesis.[38] Hypo- and hypermethylation in the promoter sequences of specific genes 

serve as both robust cancer biomarkers (e.g. GSTP1 promoter hypermethylation observed in over 

90% of prostate cancer cases),[101] as well as indicators of disease severity and metastatic 

potential in many tumor types.[35, 38] Preliminary progress towards nanopore based methylation 

analysis has been demonstrated by the Timp and Drndic labs involving the detection of 

methylated[102] and hydroxymethylated DNA,[103] though this application is still in its infancy.  
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pathogens. An innovative approach involving the introduction of highly invasive peptide nucleic 

acid (PNA) probes was used to label target genomes with high affinity and sequence specificity, 

creating local bulges (P-loops) in the molecule (figure 8c).[106] Translocation of this labeled 

molecule resulted in secondary DNA-PNA blockade levels, effectively barcoding a target 

genome. While further studies are needed to determine the ultimate spatial resolution of this 

technique, this methodology could potentially enable the rapid, accurate, and amplification-free 

identification of small 5-10 kb viral genomes including hepatitis C, dengue and West Nile virus. 

 

2.4  Hybrid Biological/Solid-State Nanopores  
 

A major drawback of solid-state nanopore technology at present is the inability to chemically 

differentiate analytes of the same approximate size. This lack of chemical specificity can be 

overcome through surface modification of the pore via the attachment of specific recognition 

sequences and receptors, in essence forming a hybrid structure. Selective transport through 

functionalized solid-state nanopore arrays was previously demonstrated by restricting 

biomolecule passage based on molecular weight,[107] surface charge[108] and polarity.[109] More 

recently, focus has shifted to the attachment of specific recognition sequences or tethered 

receptors in the nanopore for target-specific molecular recognition. In drug screening and 

medicine, such a technique provides a means for label-free, real-time kinetic analysis of 

biomolecular interactions at the single molecule level including protein-protein, protein-DNA 

and receptor-ligand interactions. In fact, Lee et al. demonstrated that enantiomeric drug 

separations could be achieved using an antibody functionalized nanoporous array.[110] 

Functionalized nanopore channels can also help elucidate the mechanisms driving biological 

processes, including cell signaling and regulation and protein secretion across cellular 

membranes. Jovanovic-Talisman demonstrated that functionalized polycarbonate nanoporous 

arrays can reproduce the selectivity of nuclear pore complexes (NPCs), essential for trafficking 

specific macromolecules between the cell nucleus and cytoplasm.[111] Proteins referred to as 

phenylalanine-glycine (FG)-nucleoporins line the walls of these NPCs and facilitate the transient 

binding and passing of transport factors and their cargo-bound complexes while restricting the 

passage of proteins that fail to specifically bind to FG-nucleoporins.[112] Using nanopore 
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channels of the correct dimensions coated with FG-nucleoporins, Jovanovic-Talisman et al. were 

able to reproduce key features of nucleocytoplasmic transport, selectively discriminating against 

control proteins in favor of transport factors and transport factor cargo complexes. Kohli 

demonstrated that selective permeation through synthetic nanoporous membranes could be 

achieved using DNA hybridization as the selective transport mechanism.[113] In this specific 

example, a gold nanoporous array was functionalized using hairpin DNA with a thiol substituent 

at the 5’ end allowing it to be covalently attached to the inside walls of the array. The analyte of 

interest was 18 base long ssDNA which was either a perfect complement to the loop of the 

hairpin or contained a single base mismatch. Using optical bulk absorbance methods, Kohli 

demonstrated that single nucleotide polymorphisms could be detected using this chemically 

modified nanopore platform under optimal conditions.  

 

Various strategies have been implemented to chemically modify solid-state nanopores. Covalent 

attachment chemistries are generally preferred due to the stability and high packing density of 

self-assembled monolayers (SAM’s) on well prepared surfaces. A very common SAM 

preparation involves the reaction of molecules with a sulfhydryl termination group (-SH) with 

Au surfaces to form S-Au attachments to the surface. An extensive review on the formation of 

SAM’s on Au surfaces of varying curvatures is given Love et al.[114] In many cases, however, the 

surface of the nanopore may be an insulating oxide or nitride (SiO2, Si3N4, Al2O3). In these cases 

a covalent attachment chemistry specific to this insulating surface is required. Liquid phase 

silane based chemistries are the most commonly used technique to functionalize individual 

nanopores in such insulating membranes.[84, 115] While these surface chemistries have been 

characterized in detail on planar surfaces, questions still remain as to the exact packing density, 

molecular orientation and thickness of SAM’s in a highly confined environment that is a 

nanopore. In addition, nanopores formed via TEM decompositional sputtering processes 

typically exhibit high surface roughness, high surface curvature and a non-stoichiometric 

material composition due to selective material sputtering, as observed in SiO2 and Si3N4 

nanopores,[78, 116] further complicating the nanopore functionalization process. In these cases it is 

vital to thoroughly oxidize the surface through an extensive O2 plasma treatment or a liquid 

based treatment in 1:3 H2O2:H2SO4. Using such a process, Wanunu and Meller showed 

significant changes in the pH response of Si3N4 nanopores functionalized with various amine 
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terminated silane chemistries.[84] Ionic conductance measurements were used to monitor in-situ 

the formation of the SAM in the nanopore and to calculate the thickness of the molecular layer 

directly attached to the internal surface of nanopore. The calculated values suggested the upright 

orientation of the attached molecules on the nanopore surface. Note that, in this specific example, 

the entire membrane containing the nanopore was functionalized with the silane chemistry. 

 

For certain applications, however, it may be desirable to functionalize only the nanopore region 

itself. For example, in applications where the analyte of interest is present only at very low 

concentrations, a functionalized membrane may reduce the detection limits of the nanopore due 

to delocalized binding events on the membrane surface between immobilized receptors and the 

target species that do not translate to detectable changes in the output signal.[117] In addition, 

receptors immobilized on the membrane may also modulate the conductance of the nanopore 

even in the absence of the target species. Hofler et al. showed via coarse-grained molecular 

dynamics simulations that DNA anchored  on the membrane surface can electrically gate the 

nanopore if bound sufficiently close to the pore opening.[118] Thus a localized nanopore 

functionalization process is expected to be extremely useful. One such method involves the 

localized deposition of a tetraethylorthosilicate (TEOS) based oxide ring around the nanopore.[115] 

A focused ion beam was used to decompose the TEOS precursor near the Si nanopore surface, 

thereby reducing the diameter of the pore to a final diameter of between 25 and 30 nm. DNA 

probes were immobilized in the nanopore via a silane based chemistry thereby introducing local 

chemical functionality at the entrance of the nanopore without functionalizing the remainder of 

the membrane. SAM coatings may also help to reduce the speed of polymer translocation 

through nanopores. Kim et al. derivatized Al2O3 nanopore surfaces with 

aminopropyltriethoxysilane (APTES) resulting in a positively charged surface in pH 6.0 buffer, 

attractive to anionic dsDNA.[119] The resulting strong electrostatic polymer-pore interactions 

enabled the detection of short dsDNA molecules, typically under the detection limits of 

conventional solid state nanopore sensors.  

 

Chemical functionalization and its effect on the electrical properties of polymer nanopores was 

previously reported by Siwy and Howorka.[120] More recently, the impact of surface 

functionalization on the translocation dynamics of ssDNA through solid-state nanopores was 
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demonstrated.[121] A DNA hairpin functionalized SiO2 nanopore showed higher flux and smaller 

translocation times for the passage of perfect complementary (PC) ssDNA versus single base 

mismatch probes (1MM), a highly sensitive strategy for the detection of SNPs. Altering the 

surface chemistry of a pore can also facilitate the sensitive detection of proteins. Drawing 

inspiration from the lipid coated olfactory sensilla of insect antennae, the Mayer lab recently 

demonstrated the identification of proteins using fluid lipid bilayer coated SiN nanopores.[122] 

The incorporation of mobile ligands in the bilayer coating introduced chemical specificity into 

the pore, slowed the translocation of target proteins, prevented pores from clogging and 

eliminated non-specific binding, thereby resolving many issues inherent to solid-state nanopores. 

A lipid bilayer coated nanopore architecture (in either SiN[122] or Al2O3
[123]) also permits future 

integration with biological nanopores to form robust nanopore sequencing elements.  

 

The concept of a hybrid biological solid-state nanopore was recently advanced by Dekker and 

co-workers, through the direct insertion of genetically engineered α-hemolysin into 2.4-3.6 nm 

diameter SiN nanopores.[124] A simple yet elegant strategy was devised to control the orientation 

of α-hemolysin in the solid-state pore. By chemically linking a long dsDNA tail to α-hemolysin 

as shown in figure 9c, the entry of this engineered α-hemolysin channel into a SiN nanopore 

could be electrophoretically guided to form a coaxially aligned structure. Hybrid pore 

conductance and ssDNA translocation event durations were in good agreement with α-hemolysin 

embedded in lipid bilayers.[51] Interestingly, ssDNA blockage amplitudes through hybrid pores 

were significantly less than in α-hemolysin-bilayer systems, attributed to leakage currents around 

the body of the protein pore. Also, significant electrical noise was observed in hybrid structures. 

These parameters will likely need to be optimized in order to match the single nucleotide 

sensitivity of aminocyclodextrin modified α-hemolysin.[8] Nevertheless, this hybrid architecture 

opens up the exciting possibility of high throughput sequencing by coupling the single nucleotide 

recognition capabilities of either α-hemolysin or MspA, with wafer-scale arrays of individually 

addressed solid-state nanopores.  
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Nanopore Platform Development      3  
 
 
 

Understanding the biophysics of single molecule transport through solid-state nanopores is of 

fundamental importance in working towards the goal of DNA detection and genome sequencing 

using nanopore based sensors. Though solid-state nanopore technology shows much promise, the 

development of robust, reusable nanopore sensors that operate with the selectivity and elegance 

of biological nanopore systems still remains an elusive goal. At present, fabrication challenges 

(stress induced membrane deformation and mechanical failure in SiO2 structures),[96] limited 

nanopore lifetime, electrical noise[89, 90] and a lack of chemical specificity, limit the feasibility of 

solid-state nanopore technology in high end applications such as single nucleotide detection and 

DNA sequencing. Thus, there is a need for highly sensitive, mechanically robust nanopore 

sensors with well-defined surface charge properties for the detection of specific biological 

molecules (ssDNA, dsDNA, mRNA).  

 

3.1  SiO2 Nanopore Fabrication 

 

Our initial nanopore fabrication process involved first forming free-standing Si membranes 

(1500-2200 Å in thickness, cross sectional area of 60 x 60 μm2) in silicon-on-insulator wafers 

using optical lithography and tetra methyl ammonium hydroxide wet etch processes.[96] Next, 

~80 nm holes were formed in these pure 100 Si membranes using a focused ion beam with beam 

current set to 10 pA and a spot size of 10 nm. Examples of nanopores formed using this FIB 

based milling process are illustrated in figure 10. The ion milling process was monitored in real 

time using the end point monitor on the FIB tool; a sudden drop in the specimen current signified 

beam punch-through.  
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to occur when the pore radius, r, is less than half the membrane thickness, h (i.e. r < h/2).[65] 

Tailoring the pore radius to exploit this TEM based shrinking phenomena has proven to be very 

challenging due to the variability in pore diameter obtained using the FIB tool. The ion beam is 

focused several millimeters away from the edge of the membrane region to prevent 

damaging/milling the thin Si membrane during the ion beam focusing procedure. Traversing the 

beam to the membrane center often introduced a slight defocusing effect and in turn affected 

pore reproducibility. Due to these factors, pores are at times milled with radii greater than the 

critical radius, resulting in pores that expand rather than contract during TEM observation. 

 

Oxidation is also a critical step that precedes TEM based shrinking. Pores underwent wet 

oxidation at 900ºC for 20-25 minutes. This oxide layer acts as an insulating barrier shielding the 

electrolyte solution from the underlying conductive Si surface in DNA translocation experiments. 

Tilted SEM images of Si membranes after oxidation are illustrated in figures 12a and 12b. 

Membrane buckling is clearly evident in these images (4μm vertical displacement over a 60 μm 

span), suggesting that significant compressive stress is present in these thermally grown SiO2 

membranes. The result is extremely fragile, highly stressed membranes that frequently rupture. 

Fitch et al. studied the intrinsic stress and strain in thin films of SiO2 prepared by the thermal 

oxidation of crystalline silicon[125] and concluded that large intrinsic stress gradients exist in the 

layers of SiO2 in the vicinity of the Si/SiO2 interface. The residual intrinsic interfacial stress was 

calculated at 460 MPa and was independent of the growth temperature. This intrinsic stress was 

the result of mismatches in the molar volumes of Si and SiO2 at the interface. It was observed 

that overall compressive stress increases with decreasing temperature as shown in figure 12c.  

Thus, the buckling seen in our membranes is understandable and highlights the need for a low 

stress film deposition process. An Al2O3 membrane system, deposited using atomic layer 

deposition (ALD), is one of the options that we explored.  
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used to deposit 500 nm of low stress silicon nitride (SiN) as a passivation layer to help reduce 

device capacitance and electrical noise. Optical lithography and RIE were used to pattern 30 μm 

square membrane regions. A CF4 based etch recipe yielded very high SiN:Al2O3 etch selectivity 

(60:1). 300 μm deep, high aspect ratio (10:1) Si trenches were next formed on the wafer back 

side using the Bosch process (deep reactive ion etching tool), with very high etch selectivity to 

Al2O3 (Si:Al2O3 of 3000:1)[127, 128] as shown in figure 14a. 

 

Even with a significant over-etch in the DRIE, less than 10 nm of Al2O3 was removed resulting 

in a final membrane thickness of 60 nm. Nanopores of varying diameter (1 nm to 16 nm) were 

formed in free-standing Al2O3 membranes using a tightly focused electron beam from a JEOL 

2010F field emission gun transmission electron microscope (FEG-TEM) operated at 200kV. 

Decompositional sputtering has been demonstrated in SiO2
[129] and Si3N4

[71, 81] membranes but 

has not previously been reported in Al2O3 material systems. The precise thickness control and the 

high etch selectivities achieved using this fabrication process can potentially allow for the 

formation of ultra-thin membranes (thickness < 100 A). This is particularly useful in forming a 

solid state analog to the lipid bilayer (thickness ≈ 4-5 nm),[44] an important tool in better 

understanding the kinetics governing biomolecule transport through proteinaceous pores in 

cellular membranes. Our low temperature fabrication process is also compatible with 

metallization steps and is applicable to the formation of metal-oxide-semiconductor (MOS) 

capacitors. Simulation work by Gracheva et al.[16] on nanopores formed in MOS capacitors with 

thin SiO2 membranes (< 5 nm) reported the possibility of single nucleotide resolution with 

potential application to next generation DNA sequencing systems. This fabrication technique 

could help enable the possible realization of such structures. 

 

Mechanical stress in the fabricated structures was calculated using Stoney’s law.[130] Thermal 

annealing at 500˚C (30 minutes) was performed to help relax residual tensile film stress and to 

improve characteristic film strength.[131] Annealing temperatures were kept well below 800˚C, 

the transition temperature at which sharp increases in film stress were observed for tfilm > 60 nm, 

attributed to phase transitions from the amorphous to the polycrystalline state.[130] Katamreddy 

demonstrated that annealing ALD alumina films at 600ºC did not significantly change the 

amorphous properties of the film.[132] The amorphous structure of these Al2O3 membranes after 
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The hexagonal nanocrystallites labeled i,ii,iii are not oriented with the zone axis and thus crystal 

periodicity is not observed. In contrast, the nanocrystallite labeled iv shows regions of 

periodicity and clear lattice structure due to its partial alignment with the zone axis. Further 

examination of these regions revealed a lattice spacing of 2.28 Å (see electron intensity plot in 

inset of figure 16g) corresponding to γ-Al2O3 in its <111> crystal orientation. The damage 

mechanism in alumina during pore formation is attributed to the Knotek-Feibelman oxygen ion 

desorption mechanism.[133, 134] Oxygen is preferentially desorbed from the surface by core-level 

ionization processes during electron irradiation, forming high Al content regions and facetted 

metal Al clusters in the vicinity of the pore.[135] In ultra-high vacuum environments, the 

reoxidation of these facets is quenched allowing reactive aluminum to remain in its metallic state, 

thereby forming stable Al crystals. Metallic Al has a lattice spacing of 2.33 Å in its <111> 

crystal form. In low vacuum environments, however, as observed in these experiments, the high 

reactivity of metallic aluminum combined with chamber contamination (molecular oxygen and 

hydrocarbons) results  in reoxidation and the formation of γ-Al2O3 nanocrystallites.[134] The 

nucleation and growth of γ-Al2O3 nanocrystallites is likely due to a combination of thermal 

annealing and electron beam assisted diffusion processes. Al2O3 nanocrystallites in the more 

thermostable α phase (corundum) were not observed. Zywitzki et al. showed that intense ion 

bombardment can hinder the nucleation of the α phase.[136] Therefore, it is plausible that the use 

of a high energy, tightly focused electron beam may also hinder α phase nucleation in Al2O3 thin 

films. The presence of γ phase nanocrystallites significantly enhances the mechanical hardness of 

the local pore region with hardness values expected to range between 20-22 GPa.[136] This is 

significantly higher than the mechanical hardness of amorphous SiO2 and Si3N4 pores, thus 

resulting in mechanically stable Al2O3 nanopore sensors suitable for a variety of applications. 

 

3.2.2  Fabrication of Al2O3 Nanopore Arrays 

 

Nanopore arrays can also be formed in thin, mechanically robust Al2O3 membranes using FIB 

based milling processes. Arrays were formed using a FEI DB235 FIB system at an accelerating 

potential of 30 keV and 10 pA beam current. Figures 17a and 17b show ~200 nm diameter 
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This thickness dependent mapping shows a tapering towards the pore center which appears dark 

as electrons traversing the center of the pore undergo minimal inelastic scattering events 

(corresponds to zero loss peak in EELS spectra). In contrast, thick regions induce more inelastic 

scattering, appearing light in the EFTEM image. Assuming the pore is symmetric based on IV 

characteristics, the thickness tapering observed strongly suggests an angled double cone structure. 

Note in particular that pore geometry and conductance are heavily dependent on material 

systems, membrane thicknesses and TEM sputtering conditions (spot size and electron dose) as 

observed by Ho et al. and Smeets et al., extracting a wide range of cone angles (10˚ in 10 nm  

thick Si3N4 pores[81] and 45˚ in 60 nm SiO2/SiN/SiO2 stacks[73]) for different topologies.  

 

The high frequency noise performance of Al2O3 nanopores shows significant improvements over 

existing Si3N4 technologies. Noise power spectra (1 M KCl, 120 mV) for three Al2O3 nanopores 

of varying diameter (4.5 nm, 6.5 nm, 9.6 nm) are shown in Figure 18c. The low frequency noise 

performance of these nanopores is consistent with that observed in Al2O3 coated Si3N4 

structures.[93] 1/f noise reduction in Al2O3 coated structures relative to Si3N4 nanopores was 

attributed to the passivation of non-ideal surface properties including surface charge.[93] The 

process reported here allows for the fabrication of low 1/f noise structures in a simple and highly 

integrated manner. More importantly, high frequency (f >10 kHz) spectral noise components 

were attenuated by an order of magnitude relative to Si3N4 and Al2O3 coated Si3N4 structures.[89, 

93] The noise performance is on par with the state of the art in Si3N4 technology reported by 

Tabard-Cossa et al.[90] Noise reduction was attributed to a decrease in device capacitance 

(measured at 20 ± 5 pF, as compared to device capacitance in Si3N4 structures, which were 

measured in excess of 300 pF[89]), a direct advantage of our reported fabrication process. The 

result is decreased high frequency noise, high signal-to-noise ratio and enhanced sensitivity 

during DNA translocation experiments. Further enhancements to noise performance could be 

achieved through device optimization coupled with fluidic isolation techniques using PDMS.[90] 

Noise reduction and characterization is the subject of a future publication. With ongoing research 

in the reduction of 1/f flicker noise through surface passivation techniques, the possibility of 

single base resolution using solid state nanopores could become a reality. Coupled with 
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techniques for imparting chemical selectivity in the nanopore, this could be the first step towards 

a nanopore based sequencing device. 

 

3.2.4  Preliminary DNA Transport Studies 

 
To demonstrate the functionality of Al2O3 nanopores as biomolecule sensors, dsDNA 

translocation experiments were performed using 5kbp dsDNA through 5-5.5 nm diameter 

nanopores in 1 M KCl at 500 mV. Open pore conductance was measured through a series of I-V 

sweeps prior to the introduction of dsDNA and results were in good agreement with the proposed 

conductance model. No translocation events/current blockades were seen prior to the 

introduction of dsDNA as shown by the negative control experiment (left inset of figure 19a). 

Upon introduction of 5 kbp dsDNA at a concentration of 6 nM into the cis chamber, deep current 

blockades were observed with excellent signal-to-noise ratio. Figure 16a shows unadjusted 

current blockade data low-pass filtered at 100 kHz. The right inset of figure 19a represents a 

typical event observed during translocation experiments. The event dwell-time, tD, the open pore 

current, io, and the blocked pore current level, ib, are all indicated in the inset. Blockage ratio, Br, 

as a function of the cross sectional diameter of B-form dsDNA (dDNA = 2.2 nm) and pore 

diameter is given by equation 1.  

 

                  (2) 

 

Measured blockage ratios, Br = ib/io, versus event dwell-times for n = 1178 events are plotted in 

figure 19b. A single blockade level is observed, Br = 0.20 ± 0.04, with a mode value of 0.17. The 

results are in excellent agreement with simple geometric arguments that predict Br = 0.17 (17% 

of open pore current blocked) for dsDNA translocating through a 5.3 nm pore. 
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Figure 19 (a) Typical current blockades seen in a 5.3 nm Al2O3 pore after the addition of 5 kbp dsDNA at a 

concentration of 6 nM at 500 mV. (Left Inset) Negative control: pore current prior to the introduction of DNA is 

steady, no blockades are seen. (Right Inset) Typical current blockade with annotations. (b) Blockage ratio (Br) vs. 

event dwell time (tD) for n = 1178 events. Primarily a single blockade level with Br = 0.17 is seen. (Inset) 

Corresponding event dwell time histogram with time constant t = 1.97 ± 0.2 ms. Broad dwell time distribution with 

large time constant suggests that events are indeed DNA translocations.[30]  

 

 

Pore size was chosen to promote unfolded DNA entry into the pore and the absence of secondary 

populations at higher blockage ratios suggests that the folding of linear 5 kbp dsDNA fragments 

may not be significant in Al2O3 pores of diameter ≈ 5 nm. Wanunu et al. demonstrated the 

existence of only a single blockade level in Si3N4 pores of diameter 4 nm using 8 kbp dsDNA.[29] 

The inset of figure 19b is a dwell time histogram with tP denoting the peak location (most 

probable translocation time), where tP = 200 μs. A mono-exponential decay function with a time 

constant of t = 1.97 ± 0.2 ms is fitted to the dwell time distribution. As the vast majority of 

events are spread over the tail of the distribution, the mean dwell time (μ = 3.73 ms) is heavily 

weighted by the time-constant t rather than short events (tD < tP). The fitted time constant is in 

good agreement with time scales associated with DNA translocation in Si3N4 pores of similar 

size (~4 nm) using 6 kbp dsDNA fragments in 1 M KCl.[29] These slow time scales suggest that 

the majority of current blockades observed are indeed DNA translocation events involving 

significant interactions with the pore surface as opposed to DNA collisions (rapid interaction 
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without translocation) which typically have been shown to occur on much faster time scales of 

the order of τ ≈ 100 μs.[29]
 

 

3.3  Chapter Summary 

 

In summary, this chapter presented the development and characterization of highly sensitive, 

mechanically robust, Al2O3 nanopores for DNA detection. The process described achieves high 

yield, greatly reduces fabrication complexity and results in structurally robust, low noise 

platforms for single molecule analysis. Al2O3 nanopore sensors have all the advantages of 

existing SiO2 and Si3N4 architectures (size control with sub-nm precision, chemical modification 

and attachment of organosilanes) but also exhibit superior noise performance over their solid-

state counterparts. An order of magnitude reduction in high frequency noise (f >10 kHz) was 

observed relative to Si3N4 structures. Interestingly, a new phenomenon was witnessed during 

nanopore formation, i.e., the localized crystallization and facetted grain growth of hexagonal γ-

Al2O3 nanocrystallites in the vicinity of the nanopore. The nucleation and growth of γ phase 

nanocrystallites was attributed to thermal annealing and electron beam assisted diffusion, thereby 

enhancing the local hardness of the nanopore. This phenomenon will be discussed in more detail 

in chapter 4. Finally, the detection of single molecules using this new architecture was 

demonstrated (5 kbp dsDNA) with signal-to-noise performance being on par with the state of the 

art in solid-state nanopore technology. Results suggest that nanopores in high k-dielectric 

materials such as Al2O3, with unique surface properties indeed function as highly sensitive 

biomolecule detection platforms, an alternative to well established SiO2 and Si3N4 systems. This 

technology serves as a template to further explore the physics governing DNA transport. Such 

studies provide fundamental insight into the mechanisms driving biological processes including 

cell signaling and regulation using gated, selective ion channels, RNA translation using nuclear 

membrane pores, protein secretion across cellular membranes and viral infection by phages. This 

technology finds broad application in bio-nanotechnology. 
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Surface Enhanced Al2O3 Nanopore    
Sensors for DNA Analysis      
  
 
 
In this chapter, we discuss the impact of material selection on the kinetics of DNA transport and 

present a qualitative model describing the nanopore formation process in Al2O3. Drastic changes 

in the material properties of the nanopore were observed during its nucleation and expansion, 

significantly impacting the sensitivity of these nano-scale single molecule sensors. Prolonged 

electron beam irradiation resulted in changes in the local stoichiometry and morphology of the 

pore from an amorphous, stoichiometric structure (O to Al ratio of 1.5 as expected in 

stoichiometric Al2O3) to a hetero-phase, crystalline, structure with a nonstoichiometric O to Al 

ratio of ~0.6. Preferential phase transformations from γ, α, κ and δ-Al2O3 nanocystallites to 

purely γ and α-phases were observed with increasing electron dose. Precise control over phase 

transformations in Al2O3 systems by varying electron dose provides a novel method to engineer 

surface charge at the nanopore/fluid interface. Direct metallization of the irradiated region was 

also observed with prolonged electron beam exposure, attributed to the preferential desorption of 

O and the aggregation of metallic Al clusters as confirmed through nanoarea electron diffraction 

(NED) and electron energy loss spectroscopy (EELS) in the TEM. This in-situ metallization 

process can possibly be used to fabricate a single nano-scale metallic contact directly in the 

nanopore. An applied potential to this contact would allow the direct manipulation of localized 

electric field gradients thereby affecting surface charge and pore conductivity, perhaps even 

enabling the electrostatic capture of charged biomolecules in the nanopore.  

 

The translocation of dsDNA through these nanometer sized alumina pores revealed average 

translocation velocities that were an order of magnitude less than that observed in Si3N4 and SiO2 

systems under similar conditions, attributed to strong DNA-nanopore interactions. At present, 

high DNA translocation velocities (~30 bases/μs)[25] limit the utility of conventional SiO2 and 

Si3N4 based nanopore technologies in high end DNA sensing and analysis applications including 

single nucleotide detection. In addition, the detection of these fast translocation events requires 

high bandwidth measurements which in turn reduces the signal-to-noise ratio in DNA detection 

4
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experiments. Thus, a nanopore architecture with an intrinsic ability to interact with DNA to 

reduce biomolecule transport velocities is highly desirable. Electron beam irradiated Al2O3 

nanopore sensors provide such a capability. Two distinct polymer-pore interaction mechanisms 

influenced DNA translocation kinetics: electrostatic binding of anionic DNA to the positively 

charged nanopore surface enhanced by γ and α-Al2O3 nanocrystallite formation, and 

hydrophobic polymer-pore interactions promoted by the relatively high surface roughness of 

electron beam irradiated Al2O3. Our results confirm that nanopores formed in metal-oxide 

systems indeed provide a viable and highly functional alternative to conventional nanopore 

sensors, serving as effective tools for high-throughput single-molecule DNA analysis.  

4.1  Device Characterization and Overview 

 

The solid-state nanopore fabrication process used herein builds on prior work.[30] Low stress, 

mechanically stable, 45 ± 5 nm thick, amorphous Al2O3 membranes were formed using standard 

micro and nanofabrication processes as described in chapter 3. The inset of Figure 20a is a TEM 

cross section of a ~40 nm membrane after release (Region 3). Metal was sputtered on both sides 

of the membrane during TEM sample preparation as shown by regions 1, 2, 4, 5 for stability 

during cross sectioning. Energy dispersive x-ray spectroscopy (EDS) confirmed that the 

membrane contained only Al and O as shown in Figure 20a. Figure 20b is a TEM image of a 7 

nm nanopore formed in this 45 ± 5 nm thick membrane using TEM decompositional sputtering 

process. The shot noise in the pore region confirmed that the electron beam has completely 

sputtered through the membrane. After fabrication, nanopore chips were O2 plasma treated and 

immediately mounted between two compartments of a Delrin flow cell into which 1 M KCl with 

10 mM Tris-HCl, pH 7.5 was introduced. Immediate wetting and ionic conduction through the 

pore was observed. In addition, linear current-voltage (IV) characteristics at different electrolyte 

concentrations (1 M, 100 mM and 10 mM) were observed for all pores measured. The linear IV 

characteristics of a 5 nm pore in 1 M, 100 mM and 10 mM KCl electrolyte are shown in Figure 

20c. Figure 20d is a schematic representation of DNA translocation through a nanopore under an 

applied bias. DNA translocation studies involved the use of 5 kbp dsDNA (NoLimitsTM) from 

Fermantas Inc. with dsDNA being inserted into the chamber containing the anode (negative 

terminal) at a final concentration of 6 nM in 100 mM KCl, 10 mM Tris-HCl, pH 7.5 electrolyte. 
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varying diameter. The sputtering process in Al2O3 is attributed to the Coulomb explosion 

displacement of atoms based on the Knotek-Feibelman electron-stimulated desorption 

mechanism.[133] The generation of positively charged oxygen ions results in a repulsive lattice 

potential forcing O+ ions to either desorb from the surface (surface dissociated mechanisms) or to 

move to interstitial sites, thereby creating Frenkel pairs within the bulk of the material (volume 

dissociated mechanisms). This decompositional sputtering process was used to form nanopores 

ranging in diameter from 2 to 30 nm. The intensity profiles of the various electron probes used in 

these experiments are illustrated in figure 21a normalized with respect to the maximum peak 

intensity of the 3.9 nm probe. The inset of figure 21a is a TEM image of a 3.2 nm probe, light 

areas indicating regions of maximum electron intensity located at the center of the probe and 

darker areas indicating less intense regions located in the tail of the probe. Comparative probe 

analysis revealed that larger probe sizes exhibited higher peak intensities and a broader 

Gaussian-Lorentzian profile and were more suited for forming larger nanopores with diameters 

in the range of 10 – 30 nm. Such platforms are applicable for single molecule protein analysis 

and the detection of large analytes. In contrast, smaller probes (2.7 nm and 3.2 nm) exhibited 

lower peak intensity and a narrower profile, ideal for the high precision fabrication of 2 – 10 nm 

pores in Al2O3. These structures were well suited for ssDNA, dsDNA and RNA single molecule 

analysis.  

 

Figure 21b is a plot of pore diameter versus electron beam exposure time for over 50 nanopores 

formed in 45 ± 5 nm thick Al2O3 membranes. Three stages were identified during nanopore 

formation: I, Pore Nucleation, II, Rapid Expansion and III, Controlled Growth. A critical beam 

current density in excess of 2.6x106 A/m2 was required for nanopore nucleation in these 

membranes as shown in figure 21b. This is in good agreement with threshold current densities 

extracted by Salisbury et al. in experiments involving electron beam sputtered anodized 

alumina.[57] Below this threshold, topographical damage corresponding to the cleaving of Al-O 

bonds (bond dissociation energy of 513 kJ/mol)[31] was observed but electron momentum was 

insufficient to induce an embryonic nanopore structure. Pore contraction mechanisms were also 

seen to dominate at low beam current densities, possibly due to surface tension driven oxide 

reflow, generation/recombination of closely spaced Frenkel pairs[138] and mass transport of 
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4.3  Electron Beam Induced Crystallization 

4.3.1  Electron Diffraction 

 

NED was used to understand the structural phase transformation of the membrane material 

around the pore. Figure 22 shows the evolution of the structure of the amorphous membrane 

during the three stages of pore formation. Figure 22a shows a NED pattern from the amorphous 

membrane prior to exposure to the intense convergent electron beam. The inset shows the 50 nm 

coherent parallel electron probe with probe intensity set sufficiently low as to not alter the 

morphology of the nanopore. Beam current density in NED mode was ~5.4x103 A/m2, more than 

three orders of magnitude less than in convergent beam mode. The presence of diffuse rings and 

the absence of distinct rings or discrete spot reflections in figure 22a confirms the lack of 

crystalline phase in the amorphous alumina membrane.  

 

Figure 22b shows an indexed NED pattern from a ~14 nm pore formed after 3 minutes of 

sputtering with a 3.9 nm convergent electron probe. The NED pattern is typical of pore 

formation in stage II of figure 22b. Discrete spot reflections of α and/or γ phase Al2O3 are visible, 

confirming the formation of nanocrystalline clusters of preferred phases. Reflection 1 (marked 

by green circle) exhibits six-fold symmetry and a d-spacing of 1.16 Å, which is indicative of 

either α or γ-Al2O3. Reflections 2 (marked by blue circle) and 3 (marked by red circle) have d-

spacings of 0.67 Å and 0.58 Å respectively which again matches both α and γ-phase Al2O3. In α-

Al2O3, Al3+ cations are octahedrally coordinated with average Al-O bond lengths of 1.92 Å.[139] 

γ-Al2O3 typically exhibits a cubic defect-spinel type structure with average Al-O bond lengths of 

1.89 Å.[140] Reflections 4 and 5 (marked with squares) were significantly weaker and correspond 

to the nucleation of δ and/or κ phase nanocrystallites. The presence of multiple heterogeneous 

phases with varying bond lengths and co-ordinations indicates that an irregular density of 

exposed Al-O groups exist at the pore surface which in turn corresponds to an irregular surface 

charge distribution in a hydrated nanopore. This irregular charge distribution is expected to 

strongly impact DNA translocation kinetics. The diffraction pattern of figure 19b confirms that 

initial electron beam exposure to the amorphous material nucleates several crystal phases. 
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spectrum decreases due to material removal at the pore nucleation site resulting in fewer 

scattering events. The formation of this plasmon peak at ~15 eV corresponds to plasmon 

excitations in metallic Al. Comparison to references shows no Al oxides have plasmon peaks at 

15 eV.[141] This result confirms that Al-rich regions are formed at and near the pore edge due to 

the preferential desorption of O. 

 

To confirm the presence of Al rich nanocrystals, core loss edge EELS was acquired before and 

after pore formation as shown in figure 20b. Prior to pore formation, the Al L2,3 edge exhibits a 

sharp L3 peak at 75 eV while the L2 peak appears as a small shoulder (shown by i). Following the 

edge, there is a broad peak located at 99 eV. This is consistent with Al L-edges acquired from 

amorphous Al2O3.
[140] After pore formation, the L2,3 edge appears more intense indicating that 

there are more unoccupied states in the Al 3d band. In addition, the Al L2,3 edge is chemically 

shifted to 72 eV and the L3 / L2 splitting is more distinct with both edges displaying similar 

intensity (shown by ii). The post-edge is rounder and the magnitude of the slope is greater. A 

comparison of the post-edge to references shows that the EELS spectrum after pore formation is 

a linear combination of spectra acquired from metallic Al and γ-Al2O3.
[133, 140]  Berger et al. 

obtained similar EELS spectra during the formation of trenches and slots in amorphous Al2O3 

and Na-β Al2O3 systems.[133] The O K edge located at 537 eV did not change significantly after 

sputtering the pore as seen in figure 23c. Compositional variations were calculated by the k-

factor[142] method and revealed that the O to Al ratio in the local nanopore region decreased from 

1.5 before pore formation to ~0.6 after pore formation. This result confirms that the sputtering 

process preferentially desorbs oxygen, leaving behind Al-rich nanocrystals resulting in a partially 

metalized nanopore. Similar phenomena were observed in electron-beam hole drilling 

experiments conducted in Na-β Al2O3.
[142] Coupled with studies by Berger et al. demonstrating 

the formation of continuous Al regions and “plugs” in electron-beam irradiated metal β-

aluminas,[133] in theory it should be possible to form a single nano-scale metallic contact within 

the nanopore using the method outlined in this work. Interfacing with electrodes patterned using 

electron beam lithography techniques is also possible by rastering the focused electron probe 

over regions adjacent to and overlapping the metal contacts and the pore. A nanopore with an 

embedded electrode could be used to manipulate electric field gradients in the pore and actively 

modulate surface charge and pore conductivity. Simulation work by Lagerqvist et al. 
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demonstrated the ability to achieve single nucleotide resolution by employing a nanopore sensor 

with embedded transverse sensing electrodes, with potential application to nanopore-based DNA 

sequencing.[14] With further characterization, the nano-scale metallization process reported here 

could help enable the possible realization of such a structure. 

4.4  Nanopore Expansion Kinetics 

 

The morphological transition of the pore from amorphous Al2O3 to a hetero-phase, Al rich 

structure as confirmed through NED and EELS in turn affects subsequent pore expansion 

kinetics. Amorphous Al2O3 is sputtered primarily via volume dissociated mechanisms exhibiting 

rapid and abrupt mass-loss, attributed to the displacement of metallic Al and the formation of 

oxygen gas bubbles due to anion aggregation.[143], [144] This mechanism explains the rapid pore 

expansion initially observed (stage II of figure 21b). With continued electron beam irradiation, 

the amorphous Al2O3 support transitions into a hybrid polycrystalline-metallic structure (O to Al 

ratio of ~0.6). Mass loss in this Al-rich, polycrystalline system (stage III of figure 21b) is 

consistent with the Coulomb explosion displacement of atoms in Na-β Al2O3 systems. These 

hybrid systems are typically sputtered through surface dissociated sputter mechanisms 

characterized by steady and continuous loss of material from the surface, resulting in lower 

sputter rates, Al aggregation and the absence of O2 bubble formation.[133, 143] The decreased yet 

constant expansion rate observed in stage III of figure 21b is consistent with this result. Mochel 

et al. also reported steady, constant growth rates during the formation of nanometer sized holes 

in metal β-aluminas.[145] The absence of a sharp pre-peak at ~532 eV in the O K edge spectrum 

of figure 23c furthermore confirms that O2 bubble formation and volume dissociated mechanisms 

are less dominant in stage III. These results provide further insight into the lithographic 

properties of self-developing materials such as metal halides and metal oxides and are applicable 

to the rapid development of high precision nanopore arrays in these material systems for the 

detection of ssDNA, dsDNA, RNA and small proteins. 
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Table 2 Summary of results involving electrical sensing of 5 kbp dsDNA through a ~7 nm nanopore at voltages of 

100 mV, 300 mV and 500 mV. tD: Dwell time (time biomolecule resides in the pore), Br: Blockage ratio (percentage 

of open pore current that blocked during DNA translocation), n: Biomolecule flux (total number of events during 5 

minutes of recording), R: Capture rate (average number of translocation events per second) . 

 
V [mV] 100 300 500 

I (open pore) [nA] 0.23 0.7 1.2 
μ(tD) [ms] 3.5 ± 10.8 1.3 ± 4.3 0.8 ± 1.9 

t1 [ms] 0.48 ± 0.05 0.35 ± 0.01 0.28 ± 0.02 
t2 [ms] 2.0 ± 0.7 2.9 ± 1.3 2.6 ± 2.2 

μ(Br) [%] 0.42 0.32 0.28 
n [events] 1421 1954 5351 

R [Hz] 4.7 6.5 17.9 
 
 

 

The results clearly indicate that average dwell times decrease with increasing voltage. As 

expected, an increase in the applied voltage results in an increase in the electrophoretic driving 

force experienced by the DNA molecule during transit, resulting in higher translocation 

velocities and shorter dwell times. This voltage dependent behavior has been independently 

observed in biological α-hemolysin nanopores[45] and Si3N4
[25] systems and serves as a 

complementary method to gel-electrophoresis to verify DNA transport through nanometer sized 

pores. A threshold voltage of 70 mV was observed in translocation experiments below which 

current blockades were not observed, suggesting the presence of a significant activation/entropic 

barrier associated with dsDNA transport through nanopores formed in Al2O3 membranes. In 

addition, biomolecule flux, n, and capture rate, R, increased exponentially with increasing 

voltage. Brun et al. also observed exponential increases in capture rate with increasing voltage 

during the transport of small polyelectrolytes through proteinaceous pores with capture rates 

following a simple Van’t Hoff-Arrhenius relationship.[49] Similar trends were observed in 

experiments involving ssDNA passage through α-hemolysin.[47, 48]  

 

Interestingly, mean dwell-times at an applied bias of 100 mV yielded a translocation velocity of 

~1.4 nucleotides/μs, more than an order of magnitude slower than dsDNA translocation through 

Si3N4 nanopores (~30 nucleotides/μs) at similar biases,[28] but an order of magnitude faster than 

single stranded DNA translocation through α-hemolysin.[25] Lubensky and Nelson accredited the 
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without translocation.[147] Such fast translocations are probable in larger ~7 nm pores via 

translocation through the central pore region where the effects of surface binding sites and 

surface charge are significantly screened. Fast translocation events were not observed in smaller 

~5 nm Al2O3 nanopores suggesting that pore size and Debye layer thickness indeed play an 

important role in regulating the velocity of DNA transport.[30] t1 timescales are also significantly 

faster than the characteristic relaxation time or Zimm time of 5 kbp dsDNA in 100 mM salt. The 

Zimm time, Zt , is an upper bound on the time taken by a polymer to reach an entropically and 

sterically favored state and is given by T.k0.4ηt B
3

gz R [27] Given solvent viscosity 

mPas1η   and polymer radius of gyration μm0.4L2lR pg  at a persistence length of 

nm50lp   for dsDNA in 100 mM KCl buffer, we calculate ms7t z  . As Z1 tt  , polymers 

exhibit a rigid or “frozen” polymer configuration in the pore during t1 translocation events and 

thus interact minimally with the pore walls. This rigid rod-like behavior is consistent with 

modeling results by Berezhkovskii et al. that predict decreasing dwell-times and narrower event 

distributions with increasing applied force for the transport of rod-like macromolecules through 

nanochannels.[148] To reach a configuration that permits such fast translocations, polymers likely 

undergo coil-stretch transitions prior to entering the pore. In a positively charged nanopore as is 

the case here at pH 7.5 (isoelectric point of Al2O3 ~ 9)[93], the electro-osmotic flow (EOF) is 

oriented in the same direction as polymer translocation resulting in an absorbing region around 

the nanopore comparable in size to Rg of the polymer. Within this absorbing region, the velocity 

gradient of the fluid is larger than the critical velocity gradient necessary for coil-stretching.[149] 

Molecules entering this region undergo coil-stretch transitions that help to elongate the molecule 

and reduce the entropic barrier associated with translocation, thereby allowing for fast 

translocations. The fast translocation events observed in these experiments are consistent with 

timescales (μ(tD) ≈ 162 μs) associated with the transport of 6557 bp dsDNA through much larger 

~10 nm SiO2 nanopores.[27] 

 

The longer time scale, t2, is associated with DNA translocations involving significant interactions 

with the nanopore. We observed similar phenomena in small ~5 nm Al2O3 nanopores, 

characterized by a monoexponential decay in dwell time histograms with time constants 

consistent with t2 timescales (1.97 ± 0.2 ms).[30] Polymer-pore interactions were also reported in 
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small 2.7 – 5 nm Si3N4 nanopores.[147] The origins of these interactions are hydrophobic and/or 

electrostatic in nature and are dependent partially on the material properties of the pore 

(stoichiometry, morphology and surface roughness). NED and EELS confirmed the formation of 

hetero-phase crystalline domains (in particular γ and α-phases) of varying bond lengths and co-

ordinations in the nanopore region, resulting in non-uniform distributions of exposed Al-O 

groups at the pore surface. In a hydrated nanopore, these surface sites react with adsorbed water 

to form protonated hydroxyl groups at pH 7.5, resulting in a net positive, non-homogeneous 

surface charge density across the pore. The existence of crystalline domains of varying charge 

density is likely as α-Al2O3 and γ-Al2O3 both exhibit different points-of-zero-charge (pzc’s), 

estimated at pH 9.1 and pH 8.5 in monovalent salt solution.[150, 151] In addition, the Zeta 

potentials of these materials measured in pH 7.5 electrolyte are ~50 mV and ~25 mV 

respectively,[152, 153] and thus these charged domains are expected to interact differently with 

anionic DNA. Alterations to pore stoichiometry due to the preferential desorption of O and the 

aggregation of Al is also expected to result in a distribution of equilibrium constants (pK’s) for 

the protonizable chemical sites across the pore. The resulting electrostatic interactions/binding 

between the non-homogeneous, net positively charged nanopore surface and anionic DNA is one 

factor contributing to the slow translocation velocities observed in these experiments. Modeling 

results by Kejian et al. confirmed that polymer translocation velocities in a solid-state nanopore 

are heavily dependent on zeta potential and surface charge.[154] Furthermore, studies by Kim et al. 

on nanopores derivatized with aminopropyltriethoxysilane relied on electrostatic binding events 

between the positively charged aminated surface and the negatively charged DNA backbone to 

slow down DNA transport through the pore.[119]  

 

The strong electrostatic binding observed in our experiments was not reported in SiO2 and Si3N4, 

likely as these systems exhibit a net negatively charged surface at pH 7.5 resulting from the 

deprotonation of surface silanol groups.[87] Furthermore, a comparison of the surface charge 

density of Si3N4 and γ-Al2O3 surfaces at pH 7.5 (in monovalent salt solution at concentration 

1x10-4 M) revealed a charge density that is approximately six times higher in γ-Al2O3 (50 mC/m2) 

than in Si3N4 (8 mC/m2) systems.[73, 150] Thus, polymer-pore interactions involving electrostatic 

binding events are expected to be more prominent in Al2O3 nanopores. Hydrophobic interactions 

between DNA bases and the pore surface may also be prevalent in Al2O3 nanopore systems. 
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Simulation work by Aksimentiev et al. reported on such a phenomena in Si3N4, resulting in 

biomolecule adhesion and even partial unzipping of dsDNA during transport leading to increased 

dwell times in the pore.[155] Such interactions may be enhanced in Al2O3 systems as the material 

undergoes significant surface roughening during e-beam irradiation as seen through irregular 

faceting and thickness variations across the pore region, thereby increasing the surface area 

available for hydrophobic polymer-pore interactions. Electron beam induced surface roughening 

during hole formation is particularly prominent in α-Al2O3 systems.[134] Given the 

hydrophobic/electrostatic interaction mechanisms described here and the comparability of Zt  

and t2 timescales, it is expected that t2 translocation events likely involve surface dependent 

polymer-pore interactions, resulting in polymer relaxation and conformational change during 

translocation. Such polymer translocation events may be modeled as a series of thermally 

activated barrier hops over small energy barriers of varying height as opposed to single barrier 

crossing events.[147] Our results clearly suggest that Al2O3 nanopore sensors serve as highly 

functional platforms for single molecule DNA analysis with the capability to regulate the rate of 

DNA transport through complex surface interactions. 

4.6  Al2O3 Nanopore Functionalization 

 

An exciting prospect emerging from this work is the potential modification of nanocrystalline 

Al2O3 nanopores with various surface chemistries to further enhance the sensitivity and chemical 

specificity of these nano-scale sensors. Liquid-phase silane based chemistries are well 

characterized on Al2O3 surfaces, forming high density, mechanically stable, self-assembled 

monolayers (SAMs) and are commonly used to chemically modify anodic aluminum oxide 

(AAO) nanoporous arrays.[156-158] This functionalization strategy is also applicable to the 

chemical modification of individual nanocrystalline Al2O3 nanopore sensors. Preliminary studies 

on silanized ALD Al2O3 surfaces confirm the formation of stable SAMs, verified through x-ray 

photoelectron spectroscopy, contact angle and fluorescence measurements as shown in Figure 26.   
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functionalized AAO template studies with the single molecule detection capabilities of single 

nanocrystalline Al2O3 nanopore sensors, a new family of highly sensitive, chemically selective 

nanopore sensors can be developed and tailored for specific bio-sensing applications. In drug 

screening and medicine, such technologies would provide a means to study the label-free, real-

time kinetic analysis of biomolecular interactions at the single molecule level including protein-

protein, protein-DNA and receptor-ligand interactions. 

 

4.7  Chapter Summary 

 

In summary, this chapter presented the development of nanocrystalline surface enhanced Al2O3 

nanopore sensors for high throughput DNA analysis. Nanopore formation through electron beam 

based decompositional sputtering of amorphous Al2O3 transformed the local nanostructure and 

morphology of the pore from an amorphous, stoichiometric structure (O to Al ratio of 1.5) to a 

hetero-phase crystalline structure with O to Al ratio of ~0.6. Preferential phase transformations 

from γ, α, κ and δ-Al2O3 to purely γ and α-phases were observed with increasing electron dose. 

Dose-dependent control over phase transformations at the nanopore/fluid interface is highly 

desirable as it provides a novel method to engineer surface charge in the nanopore. The evolving 

nanostructure of the pore also affected nanopore expansion kinetics; rapid, abrupt mass loss 

observed in the amorphous state and steady material removal in the polycrystalline/metallic state, 

attributed to transitions from volume to surface dissociated sputtering mechanisms. In addition, 

sputtering induced the direct metallization of the pore region as confirmed through EELS and 

NED. This in-situ metallization process provides a potential means to create nano-scale metallic 

contacts in the pore region for manipulating surface charge and pore conductivity. 

 

DNA transport studies revealed an order of magnitude reduction in translocation velocities (~1.4 

nucleotides/μs) in comparison to Si3N4 and SiO2 architectures, attributed to strong electrostatic 

binding events between anionic DNA and the positively charged nanopore surface. These 

complex surface interactions are enhanced in Al2O3 due to high surface charge density, the 

nucleation of α, γ-Al2O3 nanocrystallites and high surface roughness. The enhanced sensitivity 

and favorable surface characteristics of Al2O3 nanopore sensors suggest that this metal-oxide 
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platform may indeed prove to be a viable and functional alternative to conventional Si3N4 and 

SiO2 based nanopore systems, ideal for the detection and analysis of ssDNA, dsDNA, RNA 

secondary structures and small proteins.  
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Lipid Bilayer Coated Al2O3 Nanopore Sensors 
 
 
 
Solid-state nanopore sensors are highly versatile platforms for the rapid, label-free electrical 

detection and analysis of single molecules, applicable to next generation DNA sequencing. The 

versatility of this technology allows for both large scale device integration and interfacing with 

biological systems. In this chapter we report on the development of a hybrid biological solid-

state nanopore platform that incorporates a highly mobile lipid bilayer on a single solid-state 

Al2O3 nanopore sensor, for the potential reconstitution of ion channels and biological nanopores. 

Such a system seeks to combine the superior electrical, thermal, and mechanical stability of 

Al2O3 solid-state nanopores with the chemical specificity of biological nanopores. Bilayers on 

Al2O3 exhibit higher diffusivity than those formed on TiO2 and SiO2 substrates, attributed to the 

presence of a thick hydration layer on Al2O3, a key requirement to preserving the biological 

functionality of reconstituted membrane proteins. Molecular dynamics simulations demonstrate 

that the electrostatic repulsion between the dipole of the DOPC headgroup and the positively 

charged Al2O3 surface may be responsible for the enhanced thickness of this hydration layer. 

Lipid bilayer coated Al2O3 nanopore sensors exhibit excellent electrical properties and enhanced 

mechanical stability (GΩ seals for over 50 hours), making this technology ideal for use in ion 

channel electrophysiology, the screening of ion channel active drugs and future integration with 

biological nanopores such as α-hemolysin and MspA for rapid single molecule DNA sequencing. 

This technology can find broad application in bio-nanotechnology. 

5.1  Introduction to Lipid Bilayers 
 

Biological membranes form the physical barrier between the interior of cells and their 

extracellular environments and play an important role in cellular structure and function. These 

membranes consist of a variety of integral and peripheral membrane proteins (receptors, 

transporters, ion channels, pumps, lipid metabolic enzymes, nuclear porins) and carbohydrates 

embedded in a fluid lipid bilayer matrix, the interactions of these membrane proteins with their 

environment facilitating vital cellular processes such as membrane trafficking and intracellular 

signaling. The ability of membrane proteins to regulate cellular activity also makes them an ideal 

5
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target for drug development, with cell membrane receptors, largely G protein-coupled receptors 

and enzymes, constituting over 70% of all current drug targets.[161] The functional role of 

membrane proteins is typically investigated using supported phospholipid bilayers (SPBs), an in-

vitro analog to the biological cell membrane. SPBs are continuous lipid membranes formed on 

hydrophilic substrates containing a 10-20 Å trapped interfacial water layer, essential to 

preserving the long range fluidity and functionality of the bilayer.[162, 163] SPBs have been used to 

study cell-cell interactions, cell growth and adhesion, and multivalent receptor-ligand binding 
[8][8], for controlled drug release; as well as they also find application in electro-optical biosensors, 

drug discovery and biocatalysis.[164] In addition, these model biomimetic systems are 

mechanically more robust than freestanding black lipid membranes (BLMs) and can be 

integrated with surface-specific analytical techniques such as atomic force microscopy (AFM) 

and nuclear magnetic resonance (NMR).  

 

The two most common techniques to form SPBs on hydrophilic substrates are the Langmuir-

Blodgett transfer technique,[165] and the vesicle adsorption and rupture method.[166, 167] The latter 

is more versatile, allows for the incorporation of membrane proteins during vesicle preparation 

and has been traditionally used to form SPBs on quartz, glass, mica and metal oxides such as 

TiO2 and SrTiO2. The vesicle rupture process is highly dependent on surface electrostatics[168] 

and van der Waals forces.[169] High adhesion energies result in vesicle rupture, bilayer stiction 

and a loss of lateral fluidity, as seen with bilayers formed on chromium and indium tin oxide 

substrates,[170] making these SPBs incompatible with membrane protein integration. In contrast, 

low surface adhesion energy on substrates such as Al2O3 prevents vesicle rupture from occurring 

resulting in intact, stable, supported vesicle layers (SVLs).[171, 172]  A variety of strategies have 

been used to increase surface adhesion energy to induce bilayer formation on Al2O3 including 

surface functionalization,[173] preparation of charged lipid compositions,[174] and the addition of 

fusigenic agents such as polyethylene glycol.[175] These strategies, however, require additional 

processing steps, chemically modify the surface characteristics of Al2O3 and potentially mask the 

desired optical and electrical properties of the substrate.  

 

Here, we report the formation of highly fluid, defect-free lipid bilayers on unmodified Al2O3 

surfaces through vesicle fusion and apply this technique to form high impedance, fluid lipid 
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bilayers on single Al2O3 nanopore sensors. Suspending fluid lipid bilayers on Al2O3 solid-state 

sensors opens up new possibilities, allowing for the reconstitution of single ion channels, the 

sensitive screening of ion channel active drugs, and the insertion of chemically selective 

biological nanopore channels such as α-hemolysin and MspA for DNA sequencing. 

Proteinaceous mutant α-hemolysin and MspA nanopores are currently capable of discriminating 

individual nucleotides, making way for a single molecule sequencing approach.[8, 11] The use of 

these biological nanopores as commercial diagnostic sensors, however, is limited by the lack of 

mechanical stability of the lipid membranes into which they are inserted. Biointerfacing highly 

sensitive, mechanically stable Al2O3 nanopores with fluid lipid bilayers for protein channel 

insertion provides a robust solution, an important first step in the development of hybrid 

biological solid-state nanopores, applicable to medical diagnostics, drug screening and DNA 

sequencing.  

 

We demonstrate first the formation of fluid lipid bilayers on planar atomic layer deposited (ALD) 

Al2O3 surfaces, a material system previously deemed incompatible with bilayer formation. 

Vesicle rupture on Al2O3 occurs exclusively in the presence of high osmotic pressure and Ca2+, 

resulting in bilayers that exhibit significantly higher lateral fluidity than those formed on planar 

SiO2 and TiO2 substrates. Molecular dynamics simulations show an association of the lateral 

fluidity with an enhanced separation between the DOPC bilayer and the Al2O3 surface, and 

furthermore attribute this phenomenon to electrostatic repulsion between the lipid headgroup and 

the positively charged Al2O3 surface. Bilayer formation on single Al2O3 nanopores successfully 

stopped the voltage driven transport of ions through the solid-state pore, resulting in a GΩ seal 

comparable in impedance to that of conventional BLMs. In addition, bilayer coated Al2O3 

nanopores were stable in ionic solution for in excess of 50 hours, significantly more stable than 

BLMs (typical lifetime 6-10 hours). These results confirm that a positively charged Al2O3 solid-

state nanopore interface is well suited for the formation of high impedance, highly mobile, 

mechanically stable lipid bilayers for potential biointegration with chemically sensitive protein 

channels.  
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5.2  Materials and Methods 
 

5.2.1  Materials 
 

The lipids used in these experiments were 1,2-di(cis-9-octadecenoyl)-sn-glycero-3-

phosphocholine, 3-sn-phosphatidylcholine (DOPC) purchased, dissolved in chloroform, from 

Avanti Polar Lipids (Alabaster, AL) and Texas Red dihexadecanoyl-phosphoethanolamine (TR-

DHPE), purchased from Invitrogen (California, USA) in the anhydrous power form. An 

alternative fluorescent lipid was also used in experiments, 1-palmitoyl-2-6-[(7-nitro-2-1,3-

benzoxadiazol-4-yl)amino]hexanoyl-sn-glycero-3-phosphocholine (NBD-PC), also purchased, 

dissolved in chloroform, from Avanti Polar Lipids (Alabaster, AL). Unless otherwise noted, all 

experiments were conducted in buffer solutions consisting of 1 M KCl, 10 mM Tris-base, 5 mM 

CaCl2 or 1 M KCl, 10 mM Tris-base, 5 mM EDTA adjusted to pH 8.0 using NaOH. High purity, 

deionized water (18 MΩ.cm) from a MilliPore MilliQ system (Bedford, MA) was used in all 

experiments. 

 

5.2.2  Vesicle and Surface Preparation 
 

Large unilamellar vesicles were prepared using the following protocol. Briefly, DOPC in 

chloroform was mixed with 1 mol % TR-DHPE and dried under a steady stream of N2, followed 

by overnight desiccation under vacuum to remove any excess chloroform. Lipids were then 

hydrated in DI water at 4ºC to a final concentration of 1mg/ml. The large multilammelar vesicles 

obtained were extruded 31 times through a 400 nm pore size polycarbonate membrane filter 

(Avanti Mini-Extruder from Avanti Polar Lipids). Where stated, 1 mol % NBD-PC fluorescent 

lipid was substituted in place of 1 mol % TR-DHPE in certain vesicle preparations. Vesicles 

were generally used within 1-3 days of preparation.  

 

Planar Al2O3 surfaces were prepared by first cleaning glass cover slips (Corning) in 1:1 

H2SO4:H2O2 for 15 minutes followed by atomic layer deposition of 200 Å of Al2O3 using a 
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Cambridge Nanotech Savannah 200 reactor operated at 250°C. TiO2 surfaces were prepared 

using the same cleaning process followed by deposition of 250 Å of TiO2 using a Lesker PVD 75 

sputter system at an RF power of 300W at 25°C. SiO2 surfaces were used as is. The material 

composition of these surfaces was confirmed using X-ray photoelectron spectroscopy (XPS). 

Surface roughness and surface uniformity were studied using AFM.  

5.2.3  Vesicle Fusion and Bilayer Formation 
 

Prior to vesicle fusion, all surfaces were treated in a 100 W O2 plasma for 1 minute to render the 

surfaces hydrophilic and immediately bonded to a PDMS microfluidic channel with a volume of 

9 μl. Within 20 minutes of the O2 surface treatment, vesicles were introduced into the 

microfluidic system and incubated on the various surfaces for 2 hours at room temperature. 

Following incubation, a 10 min DI rinse at a flow rate of 5 μl/min was used to remove any 

excess vesicles and surface debris resulting in the presence of high density SVLs on Al2O3 and 

TiO2 surfaces. To transition SVLs on planar Al2O3 and TiO2 to SPBs, a 10 min perfusion using 1 

M KCl, 10 mM Tris, 5 mM CaCl2, pH 8.0 buffer at a high flow rate of 10 μl/min was used 

resulting in the formation of highly fluid bilayers on all surfaces examined. Excess Ca2+ 

following bilayer formation was removed by rinsing with 1 M KCl, 10 mM Tris-base, 5 mM 

EDTA, pH 8.0. This same process was used to form fluid lipid bilayers on Al2O3 nanopore 

sensors. 

5.2.4  Fluorescence Recovery After Photobleaching (FRAP) 
 

Fluorescence imaging and FRAP measurements were conducted on a Zeiss LSM 710 

Multiphoton Confocal Microscope equipped with a 561 nm 2 mW laser. Diffusion coefficients 

were determined by momentarily bleaching a spot of diameter ~50 μm containing fluorescently 

labeled lipids using a laser beam from a 2.5 W mixed gas Ar+/Kr+ laser (Stabilite 2018, Spectra 

Physics). Samples were irradiated at 568.2 nm with 100 mW of power for several seconds. The 

photobleached spot was measured as a function of time using time-lapse imaging and 

subsequently processed using Zen 2008 and ImageJ software. The fluorescence intensity of the 

bleached spot was determined after background subtraction and normalization. Using the method 
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of Kapitza with minor corrections for the finite bleach time,[176] the diffusion coefficients of the 

dye-labeled lipids on the various surfaces examined were determined.  

 

5.2.5  Molecular Dynamics Simulations   
 

Simulations of lipid–surface interactions: 

 

Atomic-scale models of four solid-state membranes, having surface charge densities of –1, 0, +1, 

or +2 e/nm2 and each containing a nanopore, were created by the methods described in the 

supplementary information. To neutralize the –1, +1, and +2 e/nm2 surfaces, 280 K+ ions, 280 

Cl– ions, and 560 Cl– ions were added within 0.5 nm of the surfaces. Subsequently, a lipid 

bilayer consisting of 292 DOPC lipids was added to fill the xy plane above each of the four 

differently charged solid-state surfaces; the headgroups of the lipids in the nearest leaflet of 

bilayer were on average separated from the surfaces by 1.0 nm. The solid-state membrane and 

lipids were then immersed in water molecules and 1.0 M KCl solution to form complete systems 

of ~220,000 atoms, which each measured about 23.2 nm along the z axis after equilibration at 1 

atm of pressure. 

 

Following energy minimization, the four systems were then simulated using NAMD[177] with a 2 

fs timestep, multiple timestepping, particle-mesh Ewald electrostatics,[178] and periodic boundary 

conditions along all three axes. The SETTLE algorithm[179]  was used to enforce the rigidity of 

water molecules; the RATTLE algorithm[180]  enforced rigidity of all other covalent bonds 

involving hydrogen atoms. Interactions among the lipids, water, and ions were computed using 

the CHARMM27 force field.[181] The interactions between atoms of the system and the silicon 

and oxygen atoms of the membrane were calculated using the force field of Cruz-Chu et al.,[182] 

except that the charges of some oxygen atoms were modified as discussed above. Lennard-Jones 

interactions and explicit pairwise electrostatic forces were computed with a smooth 0.7–0.8 nm 

cutoff. The pressure was maintained at 1 atm using a Nosé–Hoover Langevin piston pressure 

control[183]; the temperature was maintained at 295 K by applying a Langevin thermostat 

(damping constant of 1 ps–1) to the atoms of the solid-state membrane only. To maintain the area 

of per lipid at 0.72 nm2, the pressure control modified the system size only along the z 
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direction.[184] The generation of the solid-state membrane and lipid diffusivity calculations are 

described in the supplementary material. 

 

5.3  Results and Discussion 
 

5.3.1  Bilayer Formation on Al2O3 Surfaces  
 

Lipid bilayers were formed on planar Al2O3 surfaces through the fusion and rupture of 400 nm 

extruded DOPC vesicles containing 1 mol % Texas Red DHPE fluorescently labeled lipid. 

Vesicles were formed by rehydration of a lipid cake in DI water as described in the experimental 

section. Figure 27a is a schematic of the microfluidic setup used in these experiments. Surfaces 

were O2 plasma treated for 1 min at 100 W prior to vesicle incubation with surface hydrophilicity 

being confirmed through contact angle measurements (supplementary material). The incubation 

of vesicles on planar Al2O3 surfaces in the presence of DI water alone resulted in the formation 

of high density, immobile SVLs confirmed by the lack of fluorescence recovery seen in the 

photobleached spot (figure 27b) in fluorescence recovery after photobleaching (FRAP) 

experiments.[185] This result is consistent with previous reports that suggest Al2O3 is 

incompatible with bilayer formation due to low vesicle-substrate adhesion energy, resulting in 

the formation of intact, stable SVLs.[171, 172] To induce the formation of fluid lipid bilayers on 

Al2O3 following vesicle incubation, surfaces were perfused in a 1 M KCl, 10 mM Tris, 5 mM 

CaCl2, pH 8.0 solution followed by a 1 M KCl, 10 mM Tris, 5 mM EDTA, pH 8.0 solution to 

remove any excess Ca2+ (flow rates of 10 μl/min). The presence of DI inside the vesicle versus 

high ionic strength solution outside (1 M KCl) induced an osmotic gradient across the vesicle 

membrane. Osmotic pressure and the presence of Ca2+ in turn induced the transition of a high 

density SVL on Al2O3 to a highly fluid lipid bilayer as shown in the line profiles of figure 27c. 

Ca2+ is known to bridge the negatively charged phosphate groups in DOPC,[186] while 

accelerating vesicle adsorption on metal oxide surfaces.[187] Osmotic pressure has also been 

reported to cause compressive stress and vesicle deformation, resulting in stress induced rupture 

and bilayer formation.[167] Fluorescence recovery as a function of time on Al2O3 is illustrated in 

figure 28a.  
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in contact mode under high force (> 50 nN), sufficient to scrape through the bilayer as 

demonstrated by Kumar and Hoh.[189] The area encapsulating the scribed region was then 

reimaged at low force in tapping mode resulting in the AFM scan shown in figure 29b. A line 

profile through the scribed region revealed a step height of 6.5 ± 1 nm, corresponding to the 

thickness of a single bilayer. DOPC bilayers formed on Si3N4 and mica typically exhibit 

thicknesses of 4.6 nm[190] and 5.6 nm respectively, confirmed through fluid AFM studies. The 

increased DOPC bilayer thickness on Al2O3 suggests the possible presence of a thicker hydration 

layer. NMR studies using phosphatidylcholine lipids in anodic aluminum oxide (AAO) templates 

confirmed the existence of a substantially thick, 3 nm trapped water layer between the bilayer 

and the alumina substrate,[191] in comparison to the 1 nm water hydration layer typically reported 

on SiO2. It is likely that this thick hydration layer reduces lipid-substrate interactions, resulting in 

the enhanced bilayer fluidity observed on Al2O3. Note that these AFM height measurements also 

exclude the possibility of stacked bilayers on Al2O3 which typically result in step heights of >10 

nm.[163] 

 

5.3.3  The Influence of Surface Charge 
 

To examine the role of surface electrostatics on surface hydration, a series of molecular 

dynamics simulations were carried out. The simulation protocols are described in detail in the 

experimental methods, the general methodology is reviewed by Aksimentiev et al. Briefly, an 

atomistic model of an amorphous solid-state membrane was created, which contained a nanopore 

to permit the passage of water and ions in and out of the interfacial water layer. Surfaces of 

differing charge densities (–1, 0, +1, and +2 e/nm2) were generated by shifting the charge on 

oxygen atoms at the membrane surface. This ensured that the positions of atoms of the solid-state 

surface were identical in all simulations, thereby eliminating the effects of surface roughness 

while probing only electrostatic effects. The simulated charge densities were consistent with 

reported values for SiO2 and Al2O3. Hydrated SiO2 surfaces typically exhibit a surface charge 

density of –1 e/nm2 at pH 8.0 due to the deprotonation of surface silanol groups, in contrast to 

ALD Al2O3 surfaces which have been shown to carry a positive charge under similar conditions 

with charge densities in excess of +1 e/nm2. The four complete systems, each consisting of a 
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DOPC bilayer, water, ions, and a solid-state membrane containing a nanopore, were simulated to 

observe the evolution of both the DOPC bilayer and the interfacial water layer as a function of 

time.  

 

Figure 31 illustrates the position of the DOPC bilayer relative to the solid-state membrane at 

various time points during the simulation for the negatively charged (–1 e/nm2) and positively 

charged (+2 e/nm2) surfaces. An initial lipid-surface separation of 1.0 nm was assumed at the 

start of each simulation. Within 15 ns, the DOPC bilayer was seen to make contact with the 

negatively charged (–1 e/nm2) surface, followed by complete collapse of the bottom bilayer 

leaflet by t = 100 ns, leaving only scattered pockets of interfacial water with a density of ~14 

molecules/nm2. In contrast, the bilayer receded from the positively charged surface at t = 15 ns 

and continued receding through to t = 100 ns. Figure 31b plots the average separation between 

the DOPC bilayer and the substrate as a function of time for each simulated system. For charge 

densities of 0 and -1 e/nm2, the average separation between the DOPC bilayer and the surface 

diminished rapidly in comparison to positively charged surfaces (+1 and +2 e/nm2) which 

showed a slow increase in lipid–surface separation. The surface charge dependent motion of the 

bilayer on -1, 0 and +2 e/nm2 surfaces is illustrated in the movies provided in the supplementary 

material.  
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Our results suggest that the thickness of the hydration layer is dependent on electrostatic 

interactions between the surface and the DOPC head group. For an isolated DOPC bilayer, the 

headgroup of the lipid has an electric dipole moment pointing outward from the bilayer surface 

due to the equilibrium orientation of the positively charged choline group and negatively charged 

phosphate group.[184] We calculate a dipole moment of 2.9 ± 0.2 Debye normal to the surface for 

a DOPC headgroup in an isolated bilayer, in agreement with Siu et al.[184] Thus, the bilayer 

should be attracted to bare or negative surfaces, and repelled from positively charged surfaces, 

which is consistent with the bilayer motion seen in figure 31b. Figure 32c shows the average 

electric dipole of the DOPC headgroup along the direction normal to the bilayer. For bilayer-

surface separations > 0.4 nm, this dipole maintained the isolated value of 2.9 ± 0.2 Debye. For 

smaller separations, the charge of the surface causes a change in the conformation of the 

headgroup moieties and, consequently, a change in the electric dipole moment of the headgroup. 

When the DOPC bilayer is forced < 0.3 nm from a positively charged surface, the dipole moment 

of the headgroup is reversed. This conformational change is likely not energetically favorable 

and explains the repulsion of the bilayer from the positively charged surface in charge reversal 

simulations. Interestingly, DOPC bilayers also showed an attraction to neutrally charged surfaces 

in our simulations. This is because annealing the model membranes results in the migration of 

negatively charged oxygen atoms to the surface, giving the neutral surface a negative surface 

dipole which in turn electrostatically attracts the bilayer. The simulated surfaces used in these 

studies do not serve as precise models of experimental SiO2 and Al2O3 surfaces, which would be 

difficult to create given the lack of knowledge about the atomic structure of the surfaces and their 

interactions with DOPC lipids. The simulations were intended to show that differences in the 

surface charge properties of the two materials may be predominantly responsible for differences 

in hydration layer thickness. The equilibrium separation between an SiO2 surface and a DOPC 

bilayer has been reported to be ~1.0 nm, while our simulations showed a much smaller 

equilibrium separation. This discrepancy could be due to topographic features of the surface such 

as surface roughness, affecting the measured separation. Furthermore, the relatively small size of 

the MD system (105 nm2) may have suppressed long-range fluctuations of the lipid surface, 

which would also contribute to a larger measured separation in experiments. 
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We also investigated the effect of lipid-surface separation on the diffusion kinetics of the lipids 

in both the upper and lower (nearer to the surface) bilayer leaflets. The diffusivity values were 

calculated using a protocol similar to Siu et al.[184] Figure 31c shows that the lipid diffusivity in 

the plane of the bilayer increases with increasing lipid-surface separation in all simulations. Both 

leaflets showed this trend, although the diffusivity was observed to be considerably less in the 

lower leaflet. These results suggest that DOPC bilayers in equilibrium above a positively charged 

surface should show higher lipid diffusivities than those above negatively charged surfaces due 

to a larger lipid-surface separation. Diffusivities of 1.1 ± 0.2 and 6.4 ± 0.8 µm2/s for lower and 

upper leaflets were calculated respectively from simulations of the –1 e/nm2 surface at times >50 

ns. For the +2 e/nm2 surface at times >50 ns, we obtained much larger values for these 

diffusivities: 7.2 ± 2.2 and 11.9 ± 2.5 e/nm2 respectively. The diffusivity determined here for 

large lipid-surface separations agrees well with previous MD simulations.[184] Quantitative 

comparisons between the lipid diffusion coefficients calculated in simulations and those 

measured in our experiments are complicated by the fact that diffusivity was measured 

experimentally by observing the motion of TR-DHPE, whose bulky fluorophore likely reduced 

its diffusivity with respect to the DOPC lipids surrounding it. Differences in the surface 

roughness of the simulated and experimental surfaces, and the presence of the pore in 

simulations, could also contribute to differences in the measured and simulated diffusivities.  

5.3.4  Al2O3 Nanopore Fabrication and Characterization  
 

The solid-state nanopore fabrication process used herein builds on work from chapters 3 and 4. 

Briefly, a Si support chip containing a single low-stress, mechanically stable 45 ± 5-nm-thick 

amorphous Al2O3 membrane was fabricated using standard microfabrication processes as 

described in the materials and methods. A schematic of the nanopore chip is shown in figure 33a. 

TEM cross sectional analysis and energy dispersive X-ray spectroscopy (EDS) confirmed the 

thickness and composition (containing only Al and O) of free-standing membranes as shown in 

figure 33b. Nanopores of varying diameter were formed in these Al2O3 membranes using a 

focused electron beam from a JEOL JEM2010F field-emission TEM operated at 197 kV. Figure 

33c shows a schematic of the pore formation process along with TEM phase contrast images of 5 

nm, 7 nm and 9 nm diameter nanopores used in these experiments.  
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vesicle fusion and rupture is shown by the black curve of figure 35a. Pore resistance in 1 M KCl, 

10 mM Tris, pH 8.0 electrolyte is estimated at several hundred kΩ to 1 MΩ. Following vesicle 

fusion and rupture, the pore impedance significantly increases into the GΩ range consistent with 

the formation of a defect-free, pore spanning lipid bilayer. Figure 35a also compares the 

impedance of a bilayer grafted Al2O3 nanopore sensor with the impedance of traditional painted 

BLMs and solid state membranes containing no nanopore. The impedance of all three systems is 

comparable and in the GΩ range. DC measurements revealed a resistance of ~9 GΩ for bilayer 

grafted Al2O3 nanopores in comparison to BLM and solid-state membrane resistances of 19 GΩ 

and 13 GΩ respectively (figure 34b). These values are in good agreement with impedance 

spectra from DPhPC supported bilayers formed on AAO templates[192] and nano-BLMs formed 

using the painting method on functionalized gold coated AAO substrates.[193] An order of 

magnitude improvement in bilayer resistance is observed over bilayers formed through vesicle 

fusion on mercaptan coated gold surfaces.[194] The authors attribute the low bilayer resistance on 

mercaptan coated gold to incomplete surface coverage and bilayer defects during vesicle fusion. 

These defects were not observed in bilayers formed on Al2O3 at high vesicle concentrations, 

likely due to the formation of a high density SVL prior to the transition to a supported bilayer. 

 

Figure 35b overlays the current-voltage (IV) characteristics of open 5 nm, 7 nm and 9 nm 

diameter Al2O3 solid-state nanopores (pore resistances of 104 MΩ, 62.5 MΩ and 29.4 MΩ 

respectively), with the IV characteristics of a 200 nm diameter Al2O3 nanopore supporting a fluid 

DOPC bilayer (resistance of 9 GΩ). The fluid DOPC bilayer prevents ion transport through the 

200 nm diameter Al2O3 nanopore, resulting in an ionic current that is orders of magnitude less 

than that observed through even a small, 5 nm Al2O3 nanopore. Exclusively large ~ 200 nm pores 

were used in bilayer formation experiments for two reasons: (1) to rule out any possibility of 

pore clogging with lipid molecules (biomolecule clogging is observed during DNA or protein 

translocation experiments through very small Al2O3 nanopores) and, (2) to maximize the 

probability of membrane protein insertion in experiments seeking to incorporate α-hemolysin. 

Figure 35c illustrates a typical noise power spectrum from a ~7 nm nanopore showing strong low 

frequency 1/f noise characteristics. 1/f noise in solid state nanopores is attributed to two 

mechanisms: fluctuations in the total number of charge carriers (ions) through the nanopore and 

fluctuations in ion mobility due to electrostatic trapping at surface sites. As expected in the case 
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5.4  Chapter Summary 
 

In summary, this chapter presents the formation of highly fluid, defect-free lipid bilayers on 

unmodified Al2O3 surfaces through vesicle fusion and applies this methodology to form high 

impedance, mobile bilayers on single Al2O3 nanopore sensors. Lipid bilayer formation on Al2O3 

occurs exclusively in the presence of Ca2+ and high osmotic pressure, resulting in bilayers that 

exhibit significantly higher lateral fluidity than those formed on planar SiO2 and TiO2 substrates. 

Molecular dynamics simulations attribute the greater fluidity to a larger separation between the 

DOPC bilayer and the Al2O3 surface, which is in turn due to electrostatic repulsion between the 

headgroups of DOPC and the positively charged surface. AFM imaging has independently 

confirmed a 1.5–2.0 nm separation between the bilayer and Al2O3 surface. These results suggest 

that bilayer coated Al2O3 surfaces may be well suited for supporting membrane proteins, the 

thick interfacial water layer on Al2O3 permitting the integration of a broader range of membrane 

active peptides, while helping reduce protein immobilization and denaturation through surface 

contact. In the pharmaceutical and medical industries, such a platform would facilitate the 

screening of drugs specific to a broader range of membrane proteins in their native environment. 

Furthermore, lipid bilayers formed on Al2O3 nanopore sensors exhibit all the advantages of 

conventional BLMs and supported bilayers formed on SiO2 (simple to form, GΩ electrical seals), 

but also exhibit enhanced mechanical stability (stable for over 50 hours) and increased fluidity 

relative to their supported bilayer counterparts. The bilayer integrated solid-state membrane 

platform reported in this work provides an important first step in the development of a hybrid 

biological solid-state nanopore. By integrating chemically selective ion channels and biological 

nanopores into this platform, this technology could find widespread use in medical diagnostics, 

drug screening and in next generation DNA sequencing. 
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Graphene-Al2O3 Nanopore Sensors    6 
 
Graphene, an atomically thin sheet of carbon atoms densely packed into a two-dimensional 

honeycomb lattice, possesses remarkable mechanical, electrical and thermal properties.[58] The 

comparable thickness of a graphene monolayer to the 0.32-0.52 nm spacing between nucleotides 

in ssDNA makes this material particularly attractive for electronic DNA sequencing. The 

incorporation of graphene into nanopores was recently demonstrated by three groups.[59-61] In 

separate studies, the Golovchenko, Dekker, and Drndic labs reported on the electron-beam based 

fabrication of 5-25 nm diameter nanopores in suspended graphene films, prepared through either 

chemical vapor deposition (CVD) or exfoliation from graphite.[59-61] Nanopores were formed in 

as few as 1-2 monolayers of graphene, these membranes exhibiting remarkable durability and 

insulating properties in high ionic strength solution.[59] 

 

In this chapter, we present the development of a novel, highly versatile graphene-Al2O3 nanopore 

platform for biomolecule sensing. These nanopores are highly robust, exhibit stable conductance 

values, show remarkable pH response and allow for the manipulation of ionic current through the 

nanopore via applied potentials at the graphene gate. This exciting graphene-Al2O3 nanopore 

platform can also be used to probe the sensitive transport of dsDNA, including DNA folding, and 

the detection of protein DNA complexes, specifically estrogen receptor α bound to its cognate 

DNA sequence. Many exciting possibilities are introduced in this chapter. In particular, a third 

electrode a few monolayers in thickness, positioned in the nanopore, not only allows for the 

manipulation of pore conductance, but may also serve to slow down or trap a DNA molecule in 

the pore, an exciting possibility that could help enable solid-state nanopore DNA sequencing. 

These new developments are discussed next. 

 

6.1  Fabrication of Graphene-Al2O3 Nanopores 
 

The fabrication of these novel structures is shown in figure 37. Graphene (g1 layer) was 

transferred onto a FIB milled 300 nm diameter aperture in an Al2O3 membrane. Graphene 



 

growth w

depositio

the graph

etching o

the subst

400ºC an

 

Figure 37 

(b) Transfe

as a seed la

to the edge

 

A small 

not exten

was used

CVD pro

evaporate

was as follo

on (CVD).[19

hene in a b

of the copper

trate. PMMA

nneal in an A

Graphene na

er CVD graphe

ayer and then d

e of the chip fo

area graphe

nd to the edg

d to confirm 

ocess on Cu

ed Al as a s

ows: Graph
95] After gro

ilayer of PM

r foil in 1M 

A is removed

Ar/H2 enviro

anopore fabric

ene to cover th

deposit 6.5 nm

r contacting (g

ne piece wa

ge of the nan

the presence

u.[195] Next a

seed layer, f

ene is grow

owth, graphe

MMA (495K

FeCl3, rinsin

d in a 1:1 sol

onment. 

cation process

he aperture (3m

m of ALD Al2O

g2) and repeat A

as transferred

nopore chip. 

e of primaril

a dielectric l

followed by 

wn on 1.4 m

ene is transf

K/950K), O2

ng the film i

lution of me

 

. (a) Drill a 30

mm x 3mm grap

O3 (d1) on the ch

Al/Al2O3 depo

d (3mm x 3

Following t

ly monolaye

layer (d1) w

6.5 nm of A

mil copper 

ferred to rec

2 plasma etc

in deionized

ethylene chlo

00 nm FIB hole

aphene sheet - l

hip. Transfer a

osition (d2). (d)

mm) using 

the transfer p

ers on the su

was deposite

ALD Al2O3.

foils using 

ceiving subs

ching of ba

d  water, and

oride:methan

 

e in a 70 nm thi

layer g1). (c) E

another graphe

) FEGTEM nan

this process

process, Ram

ubstrate as ex

ed on g1 co

 Graphene 1

chemical v

strates by co

ackside grap

d scooping it

nol followed

ick Al2O3 mem

Evaporate < 2 

ene layer that e

nopore formati

s so that it w

man spectros

xpected usin

nsisting of 

1 (g1) provi

93 

vapor 

oating 

hene,  

t onto 

d by a 

mbrane. 

nm Al 

xtends 

ion. 

would 

scopy 

ng the 

2 nm 

ides a 



 

robust str

above pr

the activ

environm

using a fo

6.2  E
 

The curr

pores of v

 

 

Figure 38

nanopores 

computed 

Al2O3 nano

 

 

Linear I

previousl

pores of 

using num

ructural supp

rocess, follow

ve or device

ment by sand

focused elect

Electrical

rent-voltage 

varying size

8 Graphene-A

of varying si

using above eq

opores.  (b) Th

IV curves a

ly reported 

varying dia

merical simu

port for d1. T

wed by anot

e layer that 

dwiching it b

tron beam as

l Charact

characterist

e in 1M KCl,

Al2O3 nanopo

ze. Note that 

quations. (Inse

hese membrane

are general

for Al2O3 n

meter are sh

ulations. Th

The second l

ther dielectri

will be ele

between Al2

s previously 

terization

tics of graph

, 10mM Tris

re electrical 

the membrane

et)  1/f noise of

es and nanopore

ly observed

anopores in 

hown in figu

e mathemati

layer of grap

ic layer (d2)

ectronically 

2O3 layers. N

reported in c

n of Gra

hene-Al2O3

s, 1mM EDT

characterizat

e has near neg

f graphene-Al2

es give stable c

d suggesting

chapters 3, 

ure 38a. Als

ic model for

phene (g2) w

) the same a

biased and

Nanopores a

chapters 3 an

phene-A

nanopores a

TA, pH 8.  

tion. (a) IV c

gligible condu

2O3 nanopores 

conductance va

g a symme

 4 and 5. T

so shown are

r ion transpo

was next tran

as d1. Graph

d is thus ins

are formed in

nd 4.  

Al2O3 Nan

are shown i

characteristics 

uctance. Fitted 

is comparable

alues as shown

etric nanop

he IV chara

e fits to the 

ort through t

nsferred usin

hene 2 (g2) f

sulated from

n this gdgd 

nopores

in figure 38

of graphene-

data is nume

e to if not bette

n. 

ore structur

acteristics of

data constru

the pore inv

94 

ng the 

forms 

m the 

stack 

8a for 

 

-Al2O3 

rically 

er than 

re as 

f four 

ucted 

volves 



95 
 

solving equations coupling ionic transport, electric potential and fluid flow. The details of this 

process are provided by Aluru et al. The total flux of the ith species (ion) is given by the 

following expression 

 

                                       i i i i i i iD c z Fc c     Γ u            (3) 

 

where F is the Faraday’s constant, zi is the valence, Di is the diffusion coefficient, i is the ionic 

mobility, i is the flux, ci is the concentration of the ith species, u is the velocity vector of the 

fluid flow, and ϕ is the electrical potential.  The three terms on the right-hand side of Eq. 2 define 

the fluxes due to diffusion, electromigration, and convection, respectively. The Nernst-Planck 

(NP) equation describes the transfer of each dissolved species and is given by: 

 

                                                            i
i

t

c
Γ




                     (4) 

 

The electrical potential distribution is governed by the Poisson equation: 

 

                                                  
0

( ) i i
r
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                  (5) 

 

where 0 is the permittivity of vacuum and r is the relative permittivity.  The electric potential at 

the wall surface is governed by: 

                                                             
0

s

rn


 


 


           (6) 

 

where is σs the surface charge density and n is the normal direction of the wall. The fluid flow is 

governed by the Navier-Stokes and continuity equations: 
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where p is the hydrostatic pressure,  is the fluid viscosity, and ρe is the space charge density. 

From solving the coupled Poisson-Nernst-Planck equations (PNP) and the Navier-Stokes 

equations, we can obtain the electric potential, ionic concentration, velocity, and pressure 

profiles in the nanopore. The current through the channel is calculated by integrating the ionic 

fluxes over the cross-sectional area of the channel (pore area extracted from TEM images), i.e.: 

 

                                                         i i
iS

I z F dS  Γ n                    (9) 

 

where S is the cross-sectional area of the pore. Figure 38b shows the conductance stability of 

these same pores as a function of time. Stable conductance values were obtained for over 60 

minutes, confirming the stability of these pores in fluid.  Conductance values after drilling a 

nanopore were several orders of magnitude higher than the conductance of a graphene-Al2O3 

membrane with no pore. 

 

6.3  Detection of dsDNA 
 
To study the transport properties of graphene-Al2O3 nanopores, we performed experiments 

involving the translocation of λ-DNA, a 48.5 kbp long, dsDNA fragment extracted and purified 

from a plasmid. Given the relatively small persistence length of dsDNA (54 ± 2 nm)[196], λ-DNA 

is expected to assume the shape of a highly coiled ball in high salt solution with a radius of 

gyration,   μm33.12 LlR pg  as shown in figure 39a (i). Upon capture in the nanopore, the 

elongation and threading process occurs as shown in part (ii). Figure 39b illustrates the 

corresponding current blockades induced by λ-DNA as it translocates through an 11.3 nm 

diameter pore at an applied voltage of 400mV in 1M KCl, 10mM Tris, 1mM EDTA pH 10.4. 

The λ-DNA concentration used in these experiments was 100 ng/µl. High pH buffer was used to 

minimize electrostatic interactions between the bottom graphene surface of the nanopore and the 

negatively charged dsDNA molecule. Also, it is important to note that Al2O3 is negatively 

charged at this pH value (isoelectric point of Al2O3 is 8-9) and thus will not electrostatically bind 
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histogram of 39c. Note that ΔI here represents the current blockage induced by dsDNA relative 

to the baseline current at a particular voltage (400 mV in this case). The current histogram of 

figure 39c was constructed from 562 individual DNA translocation events. The folded transport 

of λ-DNA through a nanopore comes as no surprise given prior literature demonstrating such a 

phenomenon in large 20 nm SiN and graphene nanopores.[26, 61]  

 

To confirm that these events are indeed due to DNA translocation and not simply interactions 

with the pore surface, we probed the effect of voltage on translocation time. Voltage dependent 

DNA transport through an Al2O3 nanopore was previously demonstrated in chapter 4, 

translocation times decreasing with increasing voltage, corresponding to an increased 

electrophoretic driving force. A similar trend was observed in these experiments, tD = 1.81 ± 2.77 

ms at 400 mV and tD = 2.66 ± 4.08 ms at 250 mV. The broad distribution of translocation times 

is again representative of translocations involving significant interactions with the pore surface.  

 

The λ-DNA translocation experiments reported here are tremendously exciting as they prove that 

the graphene-Al2O3 nanopore is highly sensitive to detecting not only the presence of a single 

molecule, but also discriminating its subtle secondary structure (folded or unfolded). Indeed, this 

system could prove useful in reading the topographic structure of protein bound DNA fragments 

and or secondary structures that form in ssRNA. In the following section, we show proof-of-

principle protein-DNA binding experiments involving estrogen receptor α to its cognate binding 

sequence.  

 

6.4  Detection of Estrogen Receptor α and ERE Complexes  
 
 

Estrogen receptor α (ERα) is a ligand-activated transcription factor that, upon binding a 

hormone, interacts with specific recognition sequences in DNA. This recognition sequence is 

referred to as an estrogen response element (ERE). Schematics of the binding process and the 

ERE sequence are shown in figures 40a and 40b respectively. DNA-bound ERα  primarily serves 

as a nucleating factor for the recruitment of protein complexes and is involved in key biological 

processes including the oxidative stress response, DNA repair, and transcription regulation.[197] 



99 
 

ERα is a 599 amino acid long, 66.9 kDa protein with an isoelectric point of 8.3. Given all of our 

experiments were done at pH 8, we expect ERα to be positively charged under these 

experimental conditions. The ERα/ERE binding assay was performed in 80 mM KCl, 15 mM 

Tris, 0.2 mM EDTA, pH 8 containing 40% glycerol. The concentration of the dsDNA 50-mer 

containing the ERE sequence was 6.5 µg/ml; the final amount of the ERα protein added to the 

mixture was between 5-10 fmoles.  

 

The binding of ERα to its ERE sequence was confirmed using gel shift assays as shown in figure 

40c.  Binding was only observed at low salt concentrations below 640 mM as shown by the 

protein-DNA band, with binding efficiency decreasing with increasing KCl concentration. As a 

result, all nanopore sensing experiments with the ERα/ERE complex were performed in 80 mM 

KCl to maintain the integrity of the complex. Figure 40d shows the transport of the complex 

through a 14.3 nm graphene-Al2O3 pore. Clear current amplification events were observed as the 

complex transited through the pore (illustrated as upward pulses rather than the customary 

downward pulses that are typically observed in nanopore experiments). Current amplification 

induced by DNA transport through large 15-20 nm nanopores had previously been reported by 

Smeets and Chang at low salt concentrations (≤ 100 mM).[73, 96] These amplifications were 

reported to be the result of counterion (K+) condensation on the DNA backbone which locally 

enhanced the conductance of the nanopore during DNA translocation events in low salt. This 

phenomenon may explain the results observed in our experiments as well. K+ condensation on 

the 50-mer probe sequence and Cl- condensation on the net positively charged ERα may cause 

such upward events.  Interestingly, the durations of the events observed here are significantly 

longer than dsDNA events relating to very-long λ-DNA fragments. Thus, these events could not 

be attributed to the 50-mer sequence alone. These studies confirm that a DNA-protein complex 

can indeed be detected using a solid-state nanopore.  

 

The detection of ERα/ERE also serves as a model system and these principles can be extended to 

the detection of a variety of other DNA-protein complexes with very useful diagnostic 

applications. One such protein-DNA system will be presented in the next chapter. 
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   	 μ μ μ | |
         (10) 

 

where dpore represents the diameter, Lpore is the length of a cylindrical nanopore, nKCl is the 

number density of potassium or chloride ions, e is the elementary charge, σ is the surface charge 

density in the nanopore, and µK and µCl are the electrophoretic mobilities of potassium and 

chloride ions, respectively. We use values of µK = 7.616 x 10-8 m2/Vs and µCl = 7.909 x 10-8 

m2/Vs. The first term in the equation 9 represents the bulk conductance, and the surface charge 

contribution to the conductance in the nanopore is given by the second term. At KCl 

concentrations higher than nKCl >> 2σ/dporee, the first term in the formula dominates the 

conductance and bulk behavior is observed. Deviations from bulk behavior start to occur when 

the first and the second terms in equation 9 are comparable. As nKCl is lowered further, surface 

effects govern the nanopore conductance.  The above model assumes constant surface charge. 

However, our results suggest that surface charge may in fact also depend on ion concentration. 

This follows from the chemical reactivity of the Al2O3 surface given by: 

 

      AlOH ↔ AlO- + H+                   (11) 

 

Assuming thermodynamic equilibrium, the concentration of H+ ions near the surface is set by the 

local electrostatic potential. Behrends and Grier derived a relationship between the potential at 

the no-slip plane (ζ potential) and the surface charge density, σ, taking into account surface 

reactivity: 

 

 

     ζ σ 	 ln pK pH          (12) 

 

where kBT represents the thermal energy, Γ is the surface density of chargeable sites, pK is the 

equilibrium constant, and C is the capacitance of the Stern layer. An additional relationship 

between Γ and σ is given by the Grahame equation, which couples the electrostatic potential and 

the charge in the diffusion layer: 
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Conductance saturation was clearly observed at pH 10.9 as salt concentration was reduced, 

suggesting the presence of a highly charged, negative pore surface under these high pH 

conditions. In contrast, conductance saturation was not observed at pH 4 even at very low KCl 

concentrations (figure 42b), suggesting that the pore is only weakly charged at this pH. The pH 4 

response more closely resembles bulk behavior where the effects of surface charge on channel 

conductance are minimal (i.e. second term in equation 9 is almost negligible). These results 

suggest that the isoelectric point of a graphene-Al2O3 nanopore is close to pH 4, where the pore 

surface exhibits near negligible surface charge. This is surprising as planar Al2O3 surfaces 

deposited by ALD exhibit an isoelectric point of 8-9. The deviation from this bulk behavior may 

be attributed to multiple factors. Firstly, TEM fabrication dramatically changes the local 

composition of the nanopore relative to the bulk material. This was observed in chapter 4 via the 

preferential sputtering of O in Al2O3 during TEM pore formation. The result was an Al rich 

nanopore surface, closer to AlO0.6 in composition versus Al2O3 in the bulk. Secondly, TEM pore 

formation in nanolaminates is known to cause material mixing. For example, the formation of 

nanopores in SiO2/SiN/SiO2 stacks showed that O atoms can be dragged by a 200keV electron 

beam from the SiO2 layer into the SiN layer. Such liquid-like behavior in turn leads to mixing of 

O and N over the electron irradiated volume.[78, 116] Note that Si rich particles were also observed 

in the pore vicinity in SiO2/SiN/SiO2 systems, attributed to the preferential sputtering of O and 

N. It is therefore plausible that the material composition of our graphene-Al2O3 nanopore is a 

combination of C, Al, and O fused together. The pH response, isoelectric point and surface 

charge density of this melded material system will likely deviate significantly from bulk ALD 

Al2O3 or pure graphene response due to changes in bond lengths, co-ordinations and material 

composition in the sputtered system.  

 

Another contributing factor to the pH response observed in these experiments may have to do 

with the exposed graphene sheet on the bottom side of the nanopore. Previous studies have 

shown that the electrochemical double layer at the graphene/electrolyte interface is very sensitive 

to solution pH in both graphene FETs (GFETs) and multi-walled CNTs.[198-200] In fact, higher 

carrier mobilities and a shift in the Dirac point to more positive potentials are typically observed 

with increasing pH, which is indicative of increasing p-doping of the graphene sheet by the 
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adsorption of OH- ions. Studies have also shown that the application of negative gate potentials 

in GFETs (resulting in accumulation of OH- ions at the surface) produces a larger increase in 

conductivity when compared to positive gate potentials (accumulation of H3O+). Measured 

threshold voltage shifts with pH at negative gate biases yielded a value of 98 mV/pH unit for 1-2 

layers of graphene and 99 mV/pH  for 3-4 layers of graphene at constant  Vds of -1 V.[198] Both 

values are higher than the theoretical maximum predicted by the Nernst limit (59.2 mV/pH unit). 

This supra-Nernstian pH sensitivity was observed only at negative gate voltages, suggesting that 

the mechanism of pH sensitivity may involve an interplay between surface potential modulation 

by ion adsorption and the attachment of amphoteric OH- groups. The attachment of OH- groups 

was also observed in MWCNTs, thereby disrupting the local sp2 hybridization at exclusively 

high pH and resulting in an increase in conductance.[199] This pH dependent surface charge on 

the graphene layer could affect nanopore conductance. 

  

Figure 42c illustrates the pH response of a smaller 8 ± 0.5 nm diameter pore. Similar trends are 

seen as in figure 42b with lower pore conductance being observed at lower pH. Interestingly, 

saturation/plateauing in the conductance at pH 10.9 were observed at KCl concentrations starting 

at 10 mM, an order of magnitude higher than in figure 42b. This result is expected as Debye 

layer overlap and surface effects will begin to dominate at higher salt concentrations in smaller 

pores. The Debye screening length given by κ -1 (where κ 2e n /k Tεε ) is approximately 

3 nm in 10 mM KCl and thus is comparable to the 8 nm diameter of the pore in figure 42c. Thus 

surface charge effects are expected to be significant at this relatively high salt concentration.  

 

The pH response of graphene-Al2O3 nanopores is significantly more pronounced than the pH 

response of SiN[84] and TiO2
[82] nanopores as well as SiO2 nanochannels.[201] This may in part be 

due to the presence of graphene as discussed earlier, in conjunction with the high surface charge 

density of Al2O3. Numerical simulations and fitting of the analytical equations 9-12 should 

enable the extraction of this charge density (currently under way) and should allow for 

quantitative comparison with SiN and TiO2 nanopore platforms.  
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These studies confirm that modulating the surface potential of the nanopore using solution pH 

can indeed modulate the conductance of the pore. Next we investigate the effect of modulating 

nanopore surface potential using a gate electrode. 

 

6.6  Graphene Gated Nanopores 
 
 

The concept of an electrically gated solid-state nanopore has been widely discussed, but the 

implementation of such a system has proven challenging. A third electrode embedded in the 

nanopore is particularly attractive as it can be used to modify the electric fields in the pore and 

could potentially act to slow down or capture a translocating DNA molecule, a key step in 

enabling nanopore sequencing. The effects of an insulated third electrode on the conductances of 

both nanochannels and nanopores were previously shown.[82, 202] In the referenced nanopore 

study, however, the third electrode was a 30 nm thick TiN layer. Here we discuss the possibility 

of using graphene, of thickness only a few monolayers, as a nanopore electrode.  The realization 

of such a structure involved simple modifications to the architecture shown in figure 37. These 

modifications include the contact of graphene layer 2 (g2) in figure 37 with a 250 nm evaporated 

Ti/Au pad prior to atomic layer deposition of dielectric 2 (d2), as shown in figure 43a. The 

nanopore is next drilled in the contacted stack. After drilling the pore, the nanopore chip is 

epoxied (Kwikcast from World Precision Instruments) to a custom designed PCB and the Ti/Au 

pads contacting the graphene gate are connected using indium wires to external PCB pads (1 and 

2) as shown in figure 43b.  The resistance across pads 1 and 2 after connecting the chip was in 

the range of 5-15 kΩ typically, confirming the presence of a conductive graphene sheet on the 

nanopore chip after fabrication. The PCB mounted nanopore chip was next inserted into a 

custom designed fluidic setup as shown in figure 43c. Care was taken to ensure that the Ti/Au 

pads were isolated from the fluid to prevent leakage currents.  
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A higher conductance level is seen at pH 10.9 and pH 7.6 with the gate connected relative to the 

floating case. In contrast, lower conductance is observed at pH 4 with the gate connected relative 

to the floating gate case. Though this current enhancement and reduction is more pronounced as 

the salt concentration is reduced suggesting an electrostatic effect, this result cannot be attributed 

solely to an electrostatic modulation of the field in the pore. It is likely that there are also 

electrochemical currents flowing through the contacted g2 layer, which are more pronounced at 

higher pH. This potentially explains the significant current amplification observed at 1M KCl, 

pH 10.9 conditions even though the Debye screening length at this concentration is only ~ 0.3 

nm.  This is consistent with the notion that at high pH, OH- can disrupt the sp2 bonding of 

graphene resulting in charge transfer at the graphene fluid interface. This effect does not occur at 

low pH values, consistent with the lack of current enhancement observed in our experiments. 

The current modulation through the pore with the gate connected also cannot be attributed solely 

to leakage currents. Figure 44 shows little variation in leakage current as a function of pH in the 

voltage range (-100 mV to 100 mV), identical to what was probed in gated nanopore 

measurements. Further experiments are needed to understand the exact mechanism governing the 

gate response, but initial results show significant promise. Our results also suggest that the g2 

layer may in fact be used as a trans electrode in the pore given the significant current transfer 

that is observed at this interface. This layer could serve as a sensitive electrode in future DNA 

translocation experiments. The application of local potentials in the pore via this third electrode 

may also be useful in slowing or trapping DNA molecules in the pore. The viability of these 

concepts needs to be explored through further experiments.   

 

6.7  HfO2 Coated Nanopores 
 
Coating graphene-Al2O3 nanopores with an ALD HfO2 layer could not only help passivate the 

surface of the nanopore and help reduce leakage currents, but could also alter pH response as the 

isoelectric point of HfO2 is 7[203] and allow for surface functionalization with organosilanes. 

ALD HFO2 deposition in a preformed nanopore, however, is not trivial. Given the high surface 

area, confined volume, high defect density/surface roughness and varying material composition 

in a nanopore, the deposition follows a highly nonlinear process and resembles a chemical vapor 
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This non-linear deposition may be due to several factors. The surface of the nanopore post e-

beam fabrication may not be completely hydrophilic and may also contain defect sites and 

exposed graphene edges that serve as nucleation sites. ALD deposition on H terminated Si 

surfaces is known to be problematic. The lack of uniform nucleation on H-Si can produce island 

growth as described by a Volmer-Weber growth mechanism.[204] After multiple ALD cycles, 

these islands may grow together and form a continuous film. However, in the ultrathin film 

regime, the ALD films are rough and not conformal to the initial substrate. Nucleation 

difficulties are also encountered during atomic layer deposition of Al2O3 and HFO2 on carbon 

nanotubes and graphene. This is typically because CNT/graphene surfaces are inert and do not 

contain chemical species (OH groups) that allow for the reaction of either Al(CH3)3 or H2O 

during deposition. As a result, Al2O3 ALD on single-walled and multi-walled CNTs yields only 

the growth of isolated Al2O3 nanospheres originating from specific defect sites on the surface of 

the CNTs. Similarly, Al2O3 and HfO2 ALD have resulted in the growth of nanoribbons only 

along the step edges of graphene surfaces.[204] These issues likely complicate the deposition of a 

highly conformal HfO2 coating inside the nanopore. 

 

Despite these challenges, we were able to form HfO2 coatings inside the pore by limiting the 

total number of ALD cycles to ≤ 20. The pH response of these HfO2 coated pores was also 

examined and is shown in figure 47. Surprisingly pore conductance at high pH (10.4) did not 

saturate, suggesting that the density of exposed –OH groups on the HfO2 coated surface is 

significantly less than in Al2O3 case. This does not come as a surprise given the pH response of 

HfO2 is only 49 mV/pH unit, relative to the near Nernst like response of thin Al2O3 layers (59 

mV/pH unit).[205] Figure 47 also suggests that the isoelectric point of HfO2 is between 4 and 7.6 

given the close to bulk-like conductance behavior observed at these pHs.   

 

DNA translocation through HfO2 coated nanopores was also observed. Though events were 

sparsely populated, characteristic downward blockades were observed in 1M KCl, 10 mM Tris, 1 

mM EDTA, pH 10.4. Further experiments need to be conducted to determine the translocation 

dynamics of λ-DNA through a HfO2 nanopore. 
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Future Work         7 

 
 

We propose using the graphene-Al2O3 nanopore sensors discussed in chapter 6 for the detection 

of robust cancer biomarkers (specifically DNA methylation patterns) at ultra-low concentrations 

in human serum samples. Nanopore technology is well suited for gene based methylation 

analysis and is capable of screening small panels of hypermethylation markers specific to a 

variety of cancers. Nanopore sensors, therefore, could potentially play an important role in early 

cancer detection, risk assessment, disease monitoring, chemoprediction and patient prognosis.  

 

The majority of methylation detection techniques conduct analysis at specific loci or groups of 

genes where CpG hypermethylation is known to correlate with cancer. Standard analytical 

techniques such as PCR, however, erase methylation information leaving the investigator 

oblivious to the epigenetic content of the original genomic DNA sequence. To overcome such 

limitations, new clinical techniques have been developed and are summarized below. The 

sequence of steps associated with each technique is illustrated in figure 48. 

 

7.1  Conventional Methylation Detection Assays 
 

 

Bisulfite Genomic Sequencing (BGS): The gold standard in DNA methylation analysis is 

bisulfite genomic sequencing which involves (1) sodium bisulfite conversion of DNA, (2) PCR 

of the target fragment, and (3) DNA sequencing.[206] Sodium bisulfite efficiently converts 

cytosine to uracil (C→U) without affecting 5-methylcytosine (5mC→5mC) and is used to 

preserve epigenetic information during PCR. Methylation status is derived by sequencing the 

bisulfite converted, PCR amplified, target sequence using Sanger bisulfite sequencing or 

pyrosequencing methods.[207] Although  the bisulfite conversion process is a powerful method for 

the identification of 5-methylcytosine, it presents some major drawbacks. During conversion, 

DNA is exposed to a tremendously harsh environment resulting in significant DNA degradation 

(approaching 85% to 95% after 4 hours at 55 °C).[208] As a result, relatively large amounts of 
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Methylation-Specific PCR (MSP): Methylation-specific PCR overcomes the need for 

sequencing. This process also relies on the initial bisulfite conversion of DNA, but in contrast to 

the bisulfite genomic sequencing technique, methylation discrimination is achieved at the PCR 

stage itself. In MSP, different primer sets covering CpG dinucleotides are designed for the 

methylated and unmethylated versions of the region of interest. The two amplification reactions 

are run in parallel, and qualitative conclusions regarding the methylation status of the original 

sequence are drawn from the presence or absence of a resulting PCR product in the two 

reactions.[209] This technique again requires complex primer design, PCR reagent preparation 

steps, PCR and manual gel-electrophoresis, making it both time intensive and laborious.[209] 

 

MethyLight: The MethyLight assay combines the strengths of MSP with quantitative, 

fluorescence-based, real-time PCR for improved sensitivity and throughput.[210, 211] Again 

bisulfite treatment is required prior to PCR. MethyLight incorporates a methylation-specific 

FRET probe that binds selectively to the template strand and allows for accurate quantification of 

MSP reactions and enhanced methylation detection.[209] Though this technique is faster than 

MSP, a drawback of the MethyLight implementation is that it is limited to detecting only specific, 

predicted methylation patterns, resulting in low throughput.[209] To detect methylation in a target 

sequence containing two CpG dinucleotides, 4 separate reactions or 4 differently labeled probes 

would be needed, adding complexity and cost. In addition, the MethyLight assay suffers from 

PCR related artifacts and plate-to-plate variations.[209] 

 

Large Scale Methylation Analysis Methods: Techniques also exist for large scale genome 

wide methylation analysis. Two such methods include restriction landmark genomic scanning 

(RLGS) and DNA microarrays. A detailed description of these techniques is available in the 

literature.[212-214] Applications of RLGS include determining global methylation changes in 

chronic lymphocytic leukemia and studying the effects of genome wide hypomethylation.[213] 

Microarray techniques have been used to detect methylation aberrations associated with a variety 

of cancers, including breast cancer.[214] Though these techniques allow for genome-wide analysis 

in a highly parallelized manner, they still require bisulfite treatment or methylation-sensitive 
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restriction enzyme digestion prior to screening. In addition, large sample volumes and significant 

downstream analysis are needed, especially in the case of RLGS.[213] Low resolution and cross 

hybridization in microarray analysis[213] also limit the utility of this approach. 

 

7.2  Nanopore Based Methylation Analysis 
 

Current methods for gene based methylation analysis are highly labor intensive, require large 

sample volumes, suffer from high per run cost and in most cases lack the sensitivity needed to 

derive useful clinical outcomes. In contrast, a nanopore based approach to methylation analysis 

for early cancer detection, though a radical departure from current clinical paradigms, may 

deliver the sensitivity and speed needed in extracting useful clinical information, relevant to 

patient outcome. Nanopore based techniques are well suited for gene based methylation analysis 

due to their ability to (1) detect target molecules at extremely low concentrations from minute 

sample volumes, (2) detect a combination of methylation aberrations across a variety of genes 

(important in monitoring disease progression and prognosis), (3) detect subtle variations in 

methylation patterns across alleles that would not be detected using bulk ensemble averaging 

methods such as PCR and gel-electrophoresis, (4) perform rapid methylation analysis (hundreds 

of copies of the same gene analyzed in minutes), (5) reduce cost (small reagent volumes needed), 

(6) simplify experimental and analysis steps by eliminating cumbersome PCR, DNA sequencing 

and bisulfite conversion steps as shown in figure 29. 

 

Analysis of MBD2 bound Methylated DNA using Electrical Current Spectroscopy 

The nanopore based methylation analysis process is illustrated in figure 49. First, commercially 

available, fully methylated, short (~100-200 bp) control DNA molecules (collaboration with 

Mayo clinic) will be combined with methyl-CpG binding proteins to form protein bound DNA 

complexes (figures 49b and 49c). The methyl-CpG-binding protein family consists of five 

proteins, MeCP2, MBD1, MBD2, MBD3 and MBD4, each containing a methyl-CpG-binding 

domain (MBD) that allows them to bind to methylated DNA.  
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currently using has been expressed in bacteria by our collaborator (Nardulli lab at University of 

Illinois) and the binding of this protein to methylated DNA has been confirmed through gel shift 

assays.  

 

The MBD2-DNA complex will next be introduced into the cis chamber of the nanopore fluidic 

setup as shown in figure 49d. Under an applied potential, these short, MBD2 bound, methylated 

DNA fragments will translocate through the pore resulting in characteristic current blockades, 

representative of the methylation status of the molecule. 

 

Methylation Determination: We expect to be able to distinguish a single methylated DNA 

molecule from an unmethylated DNA fragment of equal length using nanopore based current 

spectroscopy methods (figure 50). The passage of unmethylated DNA through the pore will 

produce only a slight deviation in the baseline current as seen in figure 50a. A single, shallow 

blockade level is expected after removing all folded DNA translocation events.[25] The passage of 

an MBD2 bound DNA fragment through the pore, however, will result in a very different current 

signature (figure 50b). As the drop in pore current is related to the cross section of the 

translocating molecule, deeper blockades will be observed when the large, bound protein 

traverses the pore. Two distinct blockade levels are expected, the first corresponding to regions 

of DNA that do not contain bound proteins (IDNA), and the second corresponding to regions 

containing the MBD2 bound protein (IMBD2). Studies by Kowalczyk on RecA bound DNA 

through large ~30nm nanopores confirmed the detection of two distinct blockade levels 

corresponding to regions of RecA coated DNA and uncoated DNA.[220, 221] RecA has a molecular 

weight (~38 kDa) and cross sectional diameter (~7 nm) that is similar to MBD2. Thus, distinct 

current signatures from MBD2 bound DNA are expected relative to native DNA in ~15 nm 

Al2O3 nanopores.  

 

The electrophoretic transport of MBD2 bound DNA molecules has been previously 

demonstrated using electrophoretic mobility shift assays and polyacrylamide gel 

electrophoresis.[216, 222] Interestingly, fragments with multiple bound MBD proteins 

corresponding to multiple methylated CpG dinucleotides migrated slower through the gel and 

could be resolved with single protein resolution.[216] Furthermore, each additional bound protein 
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translocation of fragments with multiple bound proteins will result in an electrical readout as 

shown in figure 50c that resembles the spatial distribution of proteins along that fragment. This 

can then be used to determine the distribution of methylated CpG dinucleotides along the 

interrogated DNA fragment. The current signature can also be used to quantify the extent of 

methylation based on the number of deep current blockades per event. 

 

This raises the question as to what the spatial resolution of this technique is. DNase I footprinting 

confirmed that the MBD of MeCP2 protects a total of 12-14 nucleotides surrounding a single 

methylated CpG pair.[216] As the MBD of MeCP2 and MBD2 are homologous, we expect that 

MBD2 will cover approximately 12-14 bp of DNA upon binding also. Additional methyl CpG 

dinucleotides within this 12-14 bp domain are not available to bind to other MBD2 molecules, 

thereby limiting the spatial resolution of this technique.[216] Kowalczyk reported a spatial 

resolution of about 15 bp in RecA bound DNA translocation experiments through solid-state 

nanopores.[220] This is remarkable given that RecA carries a net negative charge[221] at pH 8.0. 

However, the net positive charge on MBD2 at pH 8.0 may help reduce the velocity of protein 

bound-DNA transport through the pore, translating to superior spatial resolution, perhaps 

exceeding that observed in RecA coated DNA experiments. We therefore expect to be able to 

resolve individual MBD2 molecules positioned along a single DNA strand with good resolution 

given the high signal-to-noise ratio of our nanopore platform.[30] The detection of individual 

bound MBD2 proteins in a nanopore is further supported by nanopore protein studies that 

detected individual BSA,[223] RecA,[221] and fibrinogen.[223] The length-wise topographic reading 

process reported here will allow us to quantify methylation levels and map methylation 

distributions along a single DNA fragment, and can be extended to the analysis of specific genes. 

 

This highly sensitive nanopore based methylation analysis technique may prove very useful in 

medical diagnostics.  
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Conclusions          8 

 
 

Solid-state nanopores offer immense potential as tools to replicate and understand the biophysics 

of single molecule transport through ion channels. We successfully demonstrated the 

development of a new solid-state, Al2O3 nanopore sensor with enhanced surface properties for 

the real-time, label-free detection and analysis of individual DNA molecules. The versatility of 

this technology allows for large scale VLSI integration promising reliable, affordable, mass 

producible single molecule sensors. Initial steps towards the development of hybrid nanopores, 

combining the stability and top down fabrication of solid-state technology with the chemical 

selectivity of biological nanopores, were also presented. Finally, the development of novel, 

highly versatile graphene-Al2O3 nanopores was presented. These platforms are highly robust, 

exhibit stable conductance values, show remarkable pH response and allow for the manipulation 

of ionic current through the nanopore by applying potentials to the graphene gate. Future studies 

will reveal whether the graphene gate could help slow down or trap a translocating DNA 

molecule in the pore, an exciting prospect that could help enable nanopore based DNA 

sequencing.  

 

The application of this technology, however, extends well beyond DNA sequencing alone. Point-

of-care diagnostic tests employing nanopore technology could be used to detect and monitor 

infectious diseases like influenza, making them effective tools in public health strategies. In 

defense, solid-state nanopores can be used for the rapid detection of high priority agents such as 

Bacillus anthracis (anthrax) at ultra-low concentrations. In drug screening, solid-state nanopores 

provide a means for label-free, real-time kinetic analysis of biomolecular interactions at the 

single molecule level including protein-protein, protein-DNA and receptor-ligand interactions. In 

medicine, nanopores could play an important role in diagnostics, risk assessment, disease 

monitoring, chemoprediction and patient prognosis. This technology may also serve as a base to 

provide further insight into the mechanisms driving biological processes, including cell signaling 
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and regulation using gated, selective ion channels, RNA translation using nuclear membrane 

pores, protein secretion across cellular membranes, and viral infection by phages. Needless to 

say, the future for nanopore technology is indeed very promising. 
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Appendix            

 
 
 

Fabrication of Al2O3 Nanopores 

 

The fabrication process starts with double-sided polished <100> silicon wafers from Silicon 

Quest International thinned down to a final thickness of 300±10μm. Wafers were piranha 

cleaned (1:1 H2SO4:H2O2) for 15 minutes prior to introduction into the ALD flow reactor 

(Cambridge NanoTech Inc) to remove organics and to promote the formation of reactive 

hydroxyl surface groups. The resulting interfacial SiO2 layer also promotes film adhesion and 

helps achieve low leakage current through the dielectric film. ALD was used to deposit 700 Å of 

Al2O3 at an average deposition rate of 0.96 Å/cycle. Deposition of Al2O3 was done at a platen 

temperature of 300˚C using tetramethylaluminum (TMA) as the metal-precursor and water vapor 

as the oxygen precursor. One reaction cycle consisted of 0.05 s pulse of TMA, followed by 10 s 

evacuation of the reactor, 0.05 s pulse of water vapor followed by another 10 s reactor 

evacuation to remove gaseous byproducts, primarily CH4 and any unreacted species. Water 

vapor supplied the oxygen forming Al-O-Al bonds while continually passivating the surface with 

Al-OH groups. Thermal annealing was next performed. During the low temperature anneal step, 

temperatures were ramped from 25˚C to 500˚C and film stress was monitored in-situ. Stress was 

reduced to 50 MPa at 500˚C but returned upon cooling to room temperature, suggesting that the 

inherent stress is likely due to mismatches in thermal expansion coefficients of the Al2O3 film 

and Si substrate.  The mechanical stress of the deposited thin film was calculated using an optical 

film stress measurement tool (FSM 500TC) from Frontier Semiconductor.  

 

Next, low stress silicon nitride was deposited (STS Mesc PECVD System) using a mixed 

frequency recipe consisting of alternating high frequency and low frequency deposition steps 

using process gases of SiH4 and NH3 at flow rates of 40 sccm and 55 sccm respectively at a 

platen temperature of 300˚C. High frequency (HF: 6 s at 13.56 MHz, platen power 20 W) and 

low frequency (LF: 2 s at 380 kHz, platen power 60 W) deposition steps resulted in stacked 
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tensile and compressively stressed layers. Process optimization resulted in the formation of 500 

nm thick SiN films with a net tensile stress of < 80 MPa. Pattern transfer required the use of RIE 

(PlasmaLab) and this dry etch process was conducted at a power of 90 W and chamber pressure 

of 35 mT using CF4 as the precursor at a flow rate of 60 sccm. An etch rate of 625 Å/min was 

characterized for this recipe. Next, backside lithography was used to pattern 30 x 30 μm square 

openings on the wafer backside, aligned with the openings on the front side using AZ9260 

photoresist and a Quintel Q7000 IR Backside Mask Aligner. The patterned photoresist layer 

defined the mask for the following backside deep trench etch. Native oxide was removed from 

the backside of the device wafer using a short dry etch (1 min in RIE using CF4) before mounting 

the wafer in the STS inductively coupled plasma deep reactive ion etching system (STS Mesc 

Multiplex Advanced Silicon Etcher). Deep silicon etching and polymer stripping were done for 

12 s at a chamber pressure of 37 mT and platen power of 12 W with SF6 and O2 flow rates of 130 

sccm and 13 sccm respectively per cycle. C4F8 sidewall passivation followed the etch step and 

was done at a chamber pressure of 18 mT for 8 s at a flow rate of 78 sccm. 495 such 

etch/passivation cycles were required to etch completely through the 300 μm thick Si handle 

layer and to stop on the 60 nm thick Al2O3 membrane layer. TEM sputtering was done using 

beam currents estimated between 108-109 e-nm-2. The electron beam was focused to a 1.6 nm 

spot size in convergent beam diffraction mode and used to decompositionally sputter the Al2O3 

membrane. Si3N4 pores were formed in commercially available DuraSiNTM Si3N4 membranes 

from Protochips Inc. 

 

Experimental Procedures 

 

Post fabrication, nanopore chips were solvent cleaned with acetone/methanol/deionized water 

(Millipore 18.2 MΩ-cm) and treated with oxygen plasma for 1 minute at 90 W to remove any 

organic contaminants. Polydimethylsiloxane (PDMS) gaskets were bonded to each side of the 

chip to form gigaohm seals, thereby reducing fluidic leakage and improving electrical isolation 

between the reservoirs. A subsequent plasma treatment was done on the chip to enhance the 

hydrophilicity and wettability of the pore. The treated pores were immediately mounted between 

two chambers of a poly(methyl methacrylate) (PMMA) flow cell. The flow cell was designed to 

allow complete rinsing and interchange of the ionic solution in each reservoir without 
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dismantling the setup. 1 M KCl with 10 mM Tris-HCl buffering agent was introduced into both 

reservoirs and immediate wetting and ionic conduction through the pore was observed. The pH 

of the ionic solution was 7.5, adjusted using dilute KOH solution and aqueous H2SO4. The ionic 

solution was filtered using a 0.2 μm lure lock filter to remove any large particulate contamination. 

Current was measured by placing newly chlorided Ag/AgCl electrodes in each reservoir with the 

nanopore forming the only electrical/fluidic connection between the two compartments of the 

flow cell. The entire setup was housed in a double Faraday cage with a dedicated low noise 

ground connection mounted on a vibration isolation table. The current signal was measured using 

the Axopatch 200B low noise current amplifier (Axon Instruments, USA) operated in resistive 

feedback mode with β = 1. Data was low-pass filtered at 100 kHz (effective bandwidth of 70 

kHz) using the built-in 8 pole Bessel filter. The output signal was sent to a Digidata 1440A data 

acquisition module (Axon Instruments, USA) and was digitized at 200 kHz and recorded using 

pClamp 10.2 software. Open pore current was recorded prior to the insertion of dsDNA. DNA 

translocation studies involved the use of 5 kbp dsDNA (NoLimitsTM) from Fermantas Inc. with 

dsDNA being inserted into the cis chamber at a final concentration of 6 nM. 

 

Capacitance Measurements 

 

The capacitance of Al2O3 membranes, Cmem, was measured using two techniques. The first 

technique used a small signal AC voltage (5 mV, 1 kHz square wave) from a standard signal 

generator to measure the RelectrolyteCmem time constant of the membrane structure. The equivalent 

electrical circuit for the nanopore is shown in Figure 51(a). The electrolyte resistance (1M KCl) 

given the geometry of the PMMA flow cell was measured at 50 kΩ, in good agreement with 

geometric calculations. A membrane capacitance of 19 pF was extracted using this method. The 

typical membrane response to a square wave input is illustrated in Figure 51(b). The second 

method used an LCR meter (Agilent 4284A Precision LCR Meter, 20 Hz to 1 MHz) to measure 

the complex impedance of an Al2O3 nanopore as a function of frequency (Figure S.1(c)). The 

frequency was swept from 100 Hz to 100 kHz, corresponding to the bandwidth of interest in 

nanopore measurements. Fitting the simplified circuit model to the measured data, a membrane 

capacitance of 21 pF was extracted. Cmem was seen to dominate the complex impedance at high 



 

frequenc

structure

 

 

 

Figure 51 

input (5 m

frequency.

 

 

 

 

 

 

 

 

 

 

 
 
 

 

ies as seen in

s measured w

(a) Simplified

mV, 1 kHz). Fi

 At high freque

n the phase p

were 20 ± 5 

d circuit model 

itted Cmem = 19

encies (f >10 k

plot of Figur

pF.    

of a nanopore

9 pF. (c) Com

kHz), Cmem dom

re 51(c). The

e. (b) Current r

mplex impedanc

minates impeda

e capacitanc

response of an 

ce of a 7.6 nm

ance. Cmem = 21

ces of all nan

Al2O3 membra

m Al2O3 nanop

1 pF using this

nopore memb

 

ane to a square

pore as a funct

s method.  

127 

brane 

e wave 

tion of 



128 
 

 
References          
 
 
[1] P. D. Thomas, A. Kejariwal, Proceedings of the National Academy of Sciences of the 

United States of America 2004, 101, 15398. 
 
[2] The International HapMap Consortium, Nature 2005, 437, 1299. 
 
[3] E. R. Mardis, Annual Review of Genomics & Human Genetics 2008, 9, 387. 
 
[4] M. L. Metzker, Nature Reviews: Genetics 2010, 11, 31. 
 
[5] D. Branton, et al., Nature Biotechnology 2008, 26, 1146. 
 
[6] X. S. Ling, B. Bready, A. Pertsinidis, US Patent 2007 0190542, 2007. 
 
[7] Y. Astier, O. Braha, H. Bayley, Journal of the American Chemical Society 2006, 128, 

1705. 
 
[8] J. Clarke, H. C. Wu, L. Jayasinghe, A. Patel, S. Reid, H. Bayley, Nature Nanotechnology 

2009, 4, 265. 
 
[9] S. L. Cockroft, J. Chu, M. Amorin, M. R. Ghadiri, Journal of the American Chemical 

Society 2008, 130, 818. 
 
[10] F. Olasagasti, K. R. Lieberman, S. Benner, G. M. Cherf, J. M. Dahl, D. W. Deamer, M. 

Akeson, Nature Nanotechnology 2010, 5, 798. 
 
[11] I. M. Derrington, T. Z. Butler, M. D. Collins, E. Manrao, M. Pavlenok, M. Niederweis, J. 

H. Gundlach, Proceedings of the National Academy of Sciences of the United States of 
America 2010, 107, 16060. 

 
[12] B. McNally, A. Singer, Z. Yu, Y. Sun, Z. Weng, A. Meller, Nano Letters 2010, 10, 2237. 
 
[13] A. P. Ivanov, E. Instuli, C. M. McGilvery, G. Baldwin, D. W. McComb, T. Albrecht, J. B. 

Edel, Nano Letters 2010, 11, 279. 
 
[14] J. Lagerqvist, M. Zwolak, M. Di Ventra, Nano Letters 2006, 6, 779. 
 
[15] J. B. Heng, A. Aksimentiev, C. Ho, V. Dimitrov, T. W. Sorsch, J. F. Miner, W. M. 

Mansfield, K. Schulten, G. Timp, Bell Labs Technical Journal 2005, 10, 5. 
 
[16] M. E. Gracheva, A. Xiong, A. Aksimentiev, K. Schulten, G. Timp, J.-P. Leburton, 

Nanotechnology 2006, 17, 622. 



129 
 

[17] G. Sigalov, J. Comer, G. Timp, A. Aksimentiev, Nano Letters 2007, 8, 56. 
 
[18] J. J. Kasianowicz, E. Brandin, D. Branton, D. W. Deamer, Proceedings of the National 

Academy of Sciences of the United States of America 1996, 93, 13770. 
 
[19] M. Akeson, D. Branton, J. J. Kasianowicz, E. Brandin, D. W. Deamer, Biophysical 

Journal 1999, 77, 3227. 
 
[20] A. Meller, L. Nivon, E. Brandin, J. Golovchenko, D. Branton, Proceedings of the 

National Academy of Sciences of the United States of America 2000, 97, 1079. 
 
[21] S. Howorka, S. Cheley, H. Bayley, Nature Biotechnology 2001, 19, 636. 
 
[22] M. Bates, M. Burns, A. Meller, Biophysical Journal 2003, 84, 2366. 
 
[23] V. Borsenberger, N. Mitchell, S. Howorka, Journal of the American Chemical Society 

2009, 131, 7530. 
 
[24] J. Li, M. Gershow, D. Stein, E. Brandin, J. A. Golovchenko, Nature Materials 2003, 2, 

611. 
 
[25] P. Chen, J. Gu, E. Brandin, Y. R. Kim, Q. Wang, D. Branton, Nano Letters 2004, 4, 2293. 
 
[26] A. J. Storm, J. H. Chen, H. W. Zandbergen, C. Dekker, Physical Review E 2005, 71,  

051903. 
 
[27] A. J. Storm, C. Storm, J. Chen, H. Zandbergen, J.-F. Joanny, C. Dekker, Nano Letters 

2005, 5, 1193. 
 
[28] D. Fologea, J. Uplinger, B. Thomas, D. S. McNabb, J. Li, Nano Letters 2005, 5, 1734. 
 
[29] M. Wanunu, J. Sutin, B. McNally, A. Chow, A. Meller, Biophysical Journal 2008, 95, 

4716. 
 
[30] B. M. Venkatesan, B. Dorvel, S. Yemenicioglu, N. Watkins, I. Petrov, R. Bashir, 

Advanced Materials 2009, 21, 2771. 
 
[31] B. M. Venkatesan, A. B. Shah, J. M. Zuo, R. Bashir, Advanced Functional Materials 

2010, 20, 1266. 
 
[32] Z. Chen, Y. Jiang, D. R. Dunphy, D. P. Adams, C. Hodges, N. Liu, N. Zhang, G. 

Xomeritakis, X. Jin, N. R. Aluru, S. J. Gaik, H. W. Hillhouse, C. Jeffrey Brinker, Nature 
Materials 2010, 9, 667. 

 
[33] M. Wanunu, T. Dadosh, V. Ray, J. M. Jin, L. McReynolds, M. Drndic, Nature 

Nanotechnology 2010, 5, 807. 



130 
 

 
[34] M. Wanunu, W. Morrison, Y. Rabin, A. Y. Grosberg, A. Meller, Nature Nanotechnology 

2010, 5, 160. 
 
[35] P. W. Laird, Nature Reviews: Cancer 2003, 3, 253. 
 
[36] P. M. Das, R. Singal, Journal of Clinical Oncology 2004, 22, 4632. 
 
[37] P. W. Laird, R. Jaenisch, Annual Review of Genetics 1996, 30, 441. 
 
[38] G. Strathdee, R. Brown, Expert Reviews in Molecular Medicine 2002, 4, 1. 
 
[39] D. K. Vanaja, M. Ehrich, D. Van den Boom, J. C. Cheville, R. J. Karnes, D. J. Tindall, C. 

R. Cantor, C. Y. F. Young, Cancer Investigation 2009, 27, 549. 
 
[40] C. Dekker, Nature Nanotechnology 2007, 2, 209. 
 
[41] S. Bhakdi, J. Tranum-Jensen, Microbiology and Molecular Biology Reviews 1991, 55, 

733. 
 
[42] D. Jonas, I. Walev, T. Berger, M. Liebetrau, M. Palmer, S. Bhakdi, Infection and 

Immunity 1994, 62, 1304. 
 
[43] S. Winters-Hilt, BMC Bioinformatics 2007, 8, S9. 
 
[44] J. J. Kasianowicz, E. Brandin, D. Branton, D. W. Deamer, Proceedings of the National 

Academy of Sciences of the United States of America 1996, 93, 13770. 
 
[45] A. Meller, L. Nivon, D. Branton, Physical Review Letters 2001, 86, 3435. 
 
[46] J. Mathe, A. Aksimentiev, D. R. Nelson, K. Schulten, A. Meller, Proceedings of the 

National Academy of Sciences of the United States of America 2005, 102, 12377. 
 
[47] A. Meller, D. Branton, Electrophoresis 2002, 23, 2583. 
 
[48] J. Nakane, M. Akeson, A. Marziali, Electrophoresis 2002, 23, 2592. 
 
[49] L. Brun, M. Pastoriza-Gallego, G. Oukhaled, J. Mathe, L. Bacri, L. Auvray, J. Pelta, 

Physical Review Letters 2008, 100. 
 
[50] S. E. Henrickson, M. Misakian, B. Robertson, J. J. Kasianowicz, Physical Review Letters 

2000, 85, 3057. 
 
[51] W. Vercoutere, S. Winters-Hilt, H. Olsen, D. Deamer, D. Haussler, M. Akeson, Nature 

Biotechnology 2001, 19, 248. 
 



131 
 

[52] D. Stoddart, A. J. Heron, E. Mikhailova, G. Maglia, H. Bayley, Proceedings of the 
National Academy of Sciences of the United States of America 2009, 106, 7702. 

[53] N. Mitchell, S. Howorka, Angewandte Chemie International Edition 2008, 47, 5565. 
 
[54] D. Wendell, P. Jing, J. Geng, V. Subramaniam, T. J. Lee, C. Montemagno, P. Guo, 

Nature Nanotechnology 2009, 4, 765. 
 
[55] Y. Xiang, M. C. Morais, A. J. Battisti, S. Grimes, P. J. Jardine, D. L. Anderson, M. G. 

Rossmann, European Molecular Biology Organization Journal 2006, 25, 5229. 
 
[56] J. Li, D. Stein, C. McMullan, D. Branton, M. J. Aziz, J. A. Golovchenko, Nature 2001, 

412, 166. 
 
[57] I. G. Salisbury, R. S. Timsit, S. D. Berger, C. J. Humphreys, Applied Physics Letters 

1984, 45, 1289. 
 
[58] A. K. Geim, Science 2009, 324, 1530. 
 
[59] S. Garaj, W. Hubbard, A. Reina, J. Kong, D. Branton, J. A. Golovchenko, Nature 2010, 

467, 190. 
 
[60] C. A. Merchant, K. Healy, M. Wanunu, V. Ray, N. Peterman, J. Bartel, M. D. Fischbein, 

K. Venta, Z. T. Luo, A. T. C. Johnson, M. Drndic, Nano Letters 2010, 10, 2915. 
 
[61] G. G. F. Schneider, S. W. Kowalczyk, V. E. Calado, G. G. Pandraud, H. W. Zandbergen, 

L. M. K. Vandersypen, C. Dekker, Nano Letters 2010, 10, 3163. 
 
[62] C. J. Lo, T. Aref, A. Bezryadin, Nanotechnology 2006, 17, 3264. 
 
[63] S. Wu, S. R. Park, X. S. Ling, Nano Letters 2006, 6, 2571. 
 
[64] M. Yu, H.-S. Kim, R. H. Blick, Optics Express 2009, 17, 10044. 
 
[65] A. J. Storm, J. H. Chen, X. S. Ling, H. W. Zandbergen, C. Dekker, Nature Materials 

2003, 2, 537. 
 
[66] T. Schenkel, V. Radmilovic, E. A. Stach, S. J. Park, A. Persaud, Journal of Vacuum 

Science & Technology B: Microelectronics and Nanometer Structures 2003, 21, 2720. 
 
[67] C. C. Harrell, Z. S. Siwy, C. R. Martin, Small 2006, 2, 194. 
 
[68] Z. Siwy, E. Heins, C. C. Harrell, P. Kohli, C. R. Martin, Journal of the American 

Chemical Society 2004, 126, 10850. 
 
[69] Z. Siwy, D. Dobrev, R. Neumann, C. Trautmann, K. Voss, Applied Physics A: Materials 

Science & Processing 2003, 76, 781. 



132 
 

 
[70] M. J. Kim, B. McNally, K. Murata, A. Meller, Nanotechnology 2007 20, 205302  
 
[71] M. J. Kim, M. Wanunu, D. C. Bell, A. Meller, Advanced Materials 2006, 18, 3149. 
 
[72] J. B. Heng, C. Ho, T. Kim, R. Timp, A. Aksimentiev, Y. V. Grinkova, S. Sligar, K. 

Schulten, G. Timp, Biophysical Journal 2004, 87, 2905. 
 
[73] R. M. M. Smeets, U. F. Keyser, D. Krapf, M.-Y. Wu, N. H. Dekker, C. Dekker, Nano 

Letters 2006, 6, 89. 
 
[74] R. E. Gyurcsányi, TRAC Trends in Analytical Chemistry 2008, 27, 627. 
 
[75] J.-M. Moon, D. Akin, Y. Xuan, P. Ye, P. Guo, R. Bashir, Biomedical Microdevices 2009, 

11, 135. 
 
[76] L. Petrossian, S. J. Wilk, P. Joshi, S. Hihath, S. M. Goodnick, T. J. Thornton, 

Microelectromechanical Systems, Journal of 2007, 16, 1419. 
 
[77] J.-M. Moon, D. Akin, Y. Xuan, P. Ye, P. Guo, R. Bashir, Biomedical Microdevices 2009, 

11. 
 
[78] M. Y. Wu, R. M. M. Smeets, M. Zandbergen, U. Ziese, D. Krapf, P. E. Batson, N. H.  

Dekker, C. Dekker, H. W. Zandbergen, Nano Letters 2009, 9, 479. 
 
[79] Z. Siwy, A. Fulinski, American Journal of Physics 2004, 72, 567. 
 
[80] Z. S. Siwy, Advanced Functional Materials 2006, 16, 735. 
 
[81] C. Ho, R. Qiao, J. B. Heng, A. Chatterjee, R. J. Timp, N. R. Aluru, G. Timp, Proceedings 

of the National Academy of Sciences of the United States of America 2005, 102, 10445. 
 
[82] S.-W. Nam, M. J. Rooks, K.-B. Kim, S. M. Rossnagel, Nano Letters 2009, 9, 2044. 
 
[83] G. A. Parks, Chemical Reviews 2002, 65, 177. 
 
[84] M. Wanunu, A. Meller, Nano Letters 2007, 7, 1580. 
 
[85] E. B. Kalman, O. Sudre, Z. S. Siwy, Biophysical Journal 2009, 96, 648a. 
 
[86] P. Chen, K. D. Gillis, Biophysical Journal 2000, 79, 2162. 
 
[87] D. P. Hoogerheide, S. Garaj, J. A. Golovchenko, Physical Review Letters 2009, 102. 
 
[88] R. M. M. Smeets, N. H. Dekker, C. Dekker, Nanotechnology 2009, 20, 095501. 
 



133 
 

[89] R. M. M. Smeets, U. F. Keyser, N. H. Dekker, C. Dekker, Proceedings of the National 
Academy of Sciences of the United States of America 2008, 105, 417. 

 
[90] V. Tabard-Cossa, D. Trivedi, M. Wiggin, N. N. Jetha, A. Marziali, Nanotechnology 2007, 

18, 305505. 
 
[91] J. D. Uram, K. Ke, M. Mayer, ACS Nano 2008, 2, 857. 
 
[92] M. S. Keshner, Proceedings of the Institute of Electrical and Electronic Engineers 1982, 

70, 212. 
 
[93] P. Chen, T. Mitsui, D. B. Farmer, J. Golovchenko, R. G. Gordon, D. Branton, Nano 

Letters 2004, 4, 1333. 
 
[94] J. B. Heng, A. Aksimentiev, C. Ho, P. Marks, Y. V. Grinkova, S. Sligar, K. Schulten, G. 

Timp, Biophysical Journal 2006, 90, 1098. 
 
[95] J. Comer, V. Dimitrov, Q. Zhao, G. Timp, A. Aksimentiev, Biophysical Journal 2009, 96, 

593. 
 
[96] H. Chang, F. Kosari, G. Andreadakis, M. A. Alam, G. Vasmatzis, R. Bashir, Nano 

Letters 2004, 4, 1551. 
 
[97] S. Benner, R. J. A. Chen, N. A. Wilson, R. Abu-Shumays, N. Hurt, K. R. Lieberman, D. 

W. Deamer, W. B. Dunbar, M. Akeson, Nature Nanotechnology 2007, 2, 718. 
 
[98] D. K. Lubensky, D. R. Nelson, Biophysical Journal 1999, 77, 1824. 
 
[99] G. A. Calin, C. M. Croce, Nature Reviews: Cancer 2006, 6, 857. 
 
[100] S. Volinia, G. A. Calin, C.-G. Liu, S. Ambs, A. Cimmino, F. Petrocca, R. Visone, M. 

Iorio, C. Roldo, M. Ferracin, R. L. Prueitt, N. Yanaihara, G. Lanza, A. Scarpa, A. 
Vecchione, M. Negrini, C. C. Harris, C. M. Croce, Proceedings of the National Academy 
of Sciences of the United States of America 2006, 103, 2257. 

 
[101] W. H. Lee, W. B. Isaacs, G. S. Bova, W. G. Nelson, Cancer Epidemiology Biomarkers 

and Prevention 1997, 6, 443. 
 
[102] U. Mirsaidov, W. Timp, X. Zou, V. Dimitrov, K. Schulten, A. P. Feinberg, G. Timp, 

Biophysical Journal 2009, 96, L32. 
 
[103] M. Wanunu, D. Cohen-Karni, R. R. Johnson, L. Fields, J. Benner, N. Peterman, Y. Zheng, 

M. L. Klein, M. Drndic, Journal of the American Chemical Society 2010, 133, 486. 
 
[104] D. Botstein, N. Risch, Nature Genetics 2003, 33, 228. 
 



134 
 

[105] Q. Zhao, G. Sigalov, V. Dimitrov, B. Dorvel, U. Mirsaidov, S. Sligar, A. Aksimentiev, G. 
Timp, Nano Letters 2007, 7, 1680. 

 
[106] A. Singer, M. Wanunu, W. Morrison, H. Kuhn, M. Frank-Kamenetskii, A. Meller, Nano 

Letters 2010, 10, 738. 
 
[107] K. B. Jirage, J. C. Hulteen, C. R. Martin, Science 1997, 278, 655. 
 
[108] K.-Y. Chun, P. Stroeve, Langmuir 2002, 18, 4653. 
 
[109] K. B. Jirage, J. C. Hulteen, C. R. Martin, Analytical Chemistry 1999, 71, 4913. 
 
[110] S. B. Lee, D. T. Mitchell, L. Trofin, T. K. Nevanen, H. Soderlund, C. R. Martin, Science 

2002, 296, 2198. 
 
[111] T. Jovanovic-Talisman, J. Tetenbaum-Novatt, A. S. McKenney, A. Zilman, R. Peters, M. 

P. Rout, B. T. Chait, Nature 2009, 457, 1023. 
 
[112] R. Peters, Traffic 2005, 6, 421. 
 
[113] P. Kohli, C. C. Harrell, Z. Cao, R. Gasparac, W. Tan, C. R. Martin, Science 2004, 305, 

984. 
 
[114] J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, G. M. Whitesides, Chemical 

Reviews 2005, 105, 1103. 
 
[115] J. Nilsson, J. R. I. Lee, T. V. Ratto, S. E. Létant, Advanced Materials 2006, 18, 427. 
 
[116] M. Y. Wu, D. Krapf, M. Zandbergen, H. W. Zandbergen, P. E. Batson, Applied Physics 

Letters 2005, 87, 113106. 
 
[117] G. Jagerszki, R. E. Gyurcsanyi, L. Hofler, E. Pretsch, Nano Letters 2007, 7, 1609. 
 
[118] L. Höfler, Róbert E. Gyurcsányi, Electroanalysis 2008, 20, 301. 
 
[119] Y. R. Kim, J. Min, I. H. Lee, S. Kim, A. G. Kim, K. Kim, K. Namkoong, C. Ko, 

Biosensors and Bioelectronics 2007, 22, 2926. 
 
[120] Z. Siwy, S. Howorka, Chemical Society Reviews 2009, 39, 1115. 
 
[121] S. M. Iqbal, D. Akin, R. Bashir, Nature Nanotechnology 2007, 2, 243. 
 
[122] E. C. Yusko, J. M. Johnson, S. Majd, P. Prangkio, R. C. Rollings, J. Li, J. Yang, M. 

Mayer, Nature Nanotechnology 2011, 6, 253. 
 



135 
 

[123] B. M. Venkatesan, J. Polans, J. Comer, S. Sridhar, D. Wendell, A. Aksimentiev, R. 
Bashir, Biomedical Microdevices 2011, in press. 

 
[124] A. R. Hall, A. Scott, D. Rotem, K. K. Mehta, H. Bayley, C. Dekker, Nature 

Nanotechnology 2010, 5, 874. 
 
[125] J. T. Fitch, C. H. Bjorkman, G. Lucovsky, F. H. Pollak, X. Yin, Journal of Vacuum 

Science & Technology B 1989, 7, 775. 
 
[126] W.-K. Kim, W.-H. Nam, S.-H. Kim, S.-W. Rhee, Journal of Chemical Engineering of 

Japan 2005, 38, 578. 
 
[127] S. Jensen, A. D. Yalcinkaya, S. Jacobsen, T. Rasmussen, F. E. Rasmussen, O. Hansen, 

Physica Scripta 2004, T114, 188. 
 
[128] K. R. Williams, R. S. Muller, Journal of Microelectromechanical Systems 1996, 5, 256. 
 
[129] A. J. Storm, J. H. Chen, X. S. Ling, H. W. Zandbergen, C. Dekker, Nature Materials 

2003, 2, 537. 
 
[130] G. Krautheim, T. Hecht, S. Jakschik, U. Schröder, W. Zahn, Applied Surface Science 

2005, 252, 200. 
 
[131] H. Fischer, M. Hemelik, R. Telle, R. Marx, Dental Materials 2005, 21, 671. 
 
[132] R. Katamreddy, R. Inman, G. Jursich, A. Soulet, A. Nicholls, C. Takoudis, Thin Solid 

Films 2007, 515, 6931. 
 
[133] S. D. Berger, I. G. Salisbury, R. H. Milne, D. Imeson, C. J. Humphreys, Philosophical 

Magazine Part B 1987, 55, 341  
 
[134] J. E. Bonevich, L. D. Marks, Ultramicroscopy 1991, 35, 161. 
 
[135] M. Kundu, N. Miyata, M. Ichikawa, Applied Physics Letters 2001, 79, 842. 
 
[136] O. Zywitzki, K. Goedicke, H. Morgner, Surface and Coatings Technology 2002, 151-152, 

14. 
 
[137] D. R. G. Mitchell, X. Wang, R. A. Caruso, Micron 2008, 39, 344. 
 
[138] J. C. Pivin, Journal of Materials Science 1983, 18, 1267. 
 
[139] A. J. Bourdillon, S. M. El-mashri, A. J. Forty, Philosophical Magazine A 1984, 49, 341  
 
[140] D. Bouchet, C. Colliex, Ultramicroscopy 2003, 96, 139. 
 



136 
 

[141] I. Stará, D. Zeze, V. Matolín, J. Pavluch, B. Gruzza, Applied Surface Science 1997, 115, 
46. 

 
[142] R. F. Egerton, Electron Energy-Loss Spectroscopy in the Electron Microscope, Plenum 

Press, New York, 1996. 
 
[143] G. S. Chen, C. B. Boothroyd, C. J. Humphreys, Philosophical Magazine A 1998, 78, 491. 
 
[144] M. S. M. Saifullah, K. Kurihara, C. J. Humphreys, Journal of Vacuum Science & 

Technology B: Microelectronics and Nanometer Structures 2000, 18, 2737. 
 
[145] M. E. Mochel, C. J. Humphreys, J. A. Eades, J. M. Mochel, A. M. Petford, Applied 

Physics Letters 1983, 42, 392. 
 
[146] D. K. N. Lubensky, D. R. , Biophysical Journal 1999, 77, 1824  
 
[147] M. Wanunu, J. Sutin, B. McNally, A. Chow, A. Meller, Biophysical Journal 2008, 

biophysj.108.140475. 
 
[148] A. M. Berezhkovskii, I. V. Gopich, Biophysical Journal 2003, 84, 787. 
 
[149] C. T. A. Wong, M. Muthukumar, The Journal of Chemical Physics 2007, 126, 164903. 
 
[150] S. Alami-Younssi, A. Larbot, M. Persin, J. Sarrazin, L. Cot, Journal of Membrane 

Science 1995, 102, 123. 
 
[151] S. Veeramasuneni, M. R. Yalamanchili, J. D. Miller, Journal of Colloid and Interface 

Science 1996, 184, 594. 
 
[152] P. Bowen, C. Carry, D. Luxembourg, H. Hofmann, Powder Technology 2005, 157, 100. 
 
[153] G. V. Franks, L. Meagher, Colloids and Surfaces A: Physicochemical and Engineering 

Aspects 2003, 214, 99. 
 
[154] D. Kejian, S. Weimin, Z. Haiyan, P. Xianglei, H. Honggang, Applied Physics Letters 

2009, 94, 014101. 
 
[155] A. Aksimentiev, J. B. Heng, G. Timp, K. Schulten, Biophysical Journal 2004, 87, 2086. 
 
[156] S. W. Lee, H. Shang, R. T. Haasch, V. Petrova, G. U. Lee, Nanotechnology 2005, 16,  

1335. 
 
[157] S. Penumetcha, R. Kona, J. Hardin, A. Molder, E. Steinle, Sensors 2007, 7, 2942. 
 
[158] V. Szczepanski, I. Vlassiouk, S. Smirnov, Journal of Membrane Science 2006, 281, 587. 
 



137 
 

[159] I. Vlassiouk, P. Takmakov, S. Smirnov, Langmuir 2005, 21, 4776. 
 
[160] I. Vlassiouk, A. Krasnoslobodtsev, S. Smirnov, M. Germann, Langmuir 2004, 20, 9913. 
 
[161] J. Drews, Science 2000, 287, 1960. 
 
[162] E. Castellana, P. Cremer, Surface Science Reports 2006, 61, 429. 
 
[163] B. W. Koenig, S. Krueger, W. J. Orts, C. F. Majkrzak, N. F. Berk, J. V. Silverton, K. 

Gawrisch, Langmuir 1996, 12, 1343. 
 
[164] E. Sackmann, Science 1996, 271, 43. 
 
[165] J. M. Solletti, M. Botreau, F. Sommer, W. L. Brunat, S. Kasas, T. M. Duc, M. R. Celio, 

Langmuir 1996, 12, 5379. 
 
[166] P. S. Cremer, S. G. Boxer, The Journal of Physical Chemistry B 1999, 103, 2554. 
 
[167] E. Reimhult, F. Hook, B. Kasemo, Langmuir 2003, 19, 1681. 
 
[168] T. Cha, A. Guo, X. Y. Zhu, Biophysical Journal 2006, 90, 1270. 
 
[169] E. Reimhult, F. Hook, B. Kasemo, Journal of Chemical Physics 2002, 117, 7401. 
 
[170] J. T. Groves, N. Ulman, P. S. Cremer, S. G. Boxer, Langmuir 1998, 14, 3347. 
 
[171] M. D. Mager, B. Almquist, N. A. Melosh, Langmuir 2008, 24, 12734. 
 
[172] P. Nollert, H. Kiefer, F. Jahnig, Biophysical Journal 1995, 69, 1447. 
 
[173] R. F. Roskamp, I. K. Vockenroth, N. Eisenmenger, J. Braunagel, I. Koper, 

Chemphyschem 2008, 9, 1920. 
 
[174] J. Drexler, C. Steinem, Journal of Physical Chemistry B 2003, 107, 11245. 
 
[175] A. Berquand, P. E. Mazeran, J. Pantigny, V. Proux-Delrouyre, J. M. Laval, C. Bourdillon, 

Langmuir 2003, 19, 1700. 
 
[176] H. G. Kapitza, G. Mcgregor, K. A. Jacobson, Proceedings of the National Academy of 

Sciences of the United States of America 1985, 82, 4122. 
 
[177] J. C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C. Chipot, R. D.  

Skeel, L. Kalé, K. Schulten, Journal of Computational Chemistry 2005, 26, 1781. 
 
[178] P. F. Batcho, D. A. Case, T. Schlick, The Journal of Chemical Physics 2001, 115, 4003. 
 



138 
 

[179] S. Miyamoto, P. A. Kollman, Journal of Computational Chemistry 1992, 13, 952. 
 
[180] H. C. Andersen, Journal of Computational Physics 1983, 52, 24. 
 
[181] A. D. MacKerell, D. Bashford, M. Bellott, R. L. Dunbrack, J. D. Evanseck, M. J. Field, S. 

Fischer, J. Gao, H. Guo, S. Ha, D. Joseph-McCarthy, L. Kuchnir, K. Kuczera, F. T. K. 
Lau, C. Mattos, S. Michnick, T. Ngo, D. T. Nguyen, B. Prodhom, W. E. Reiher, B. Roux, 
M. Schlenkrich, J. C. Smith, R. Stote, J. Straub, M. Watanabe, J. Wiorkiewicz-Kuczera, 
D. Yin, M. Karplus, The Journal of Physical Chemistry B 1998, 102, 3586. 

 
[182] E. R. Cruz-Chu, A. Aksimentiev, K. Schulten, The Journal of Physical Chemistry B 2006, 

110, 21497. 
 
[183] G. J. Martyna, D. J. Tobias, M. L. Klein, The Journal of Physical Chemistry 1994, 101, 

4177. 
 
[184] S. W. I. Siu, R. Vacha, P. Jungwirth, R. A. Bockmann, The Journal of Chemical Physics 

2008, 128, 125103. 
 
[185] D. Axelrod, D. E. Koppel, J. Schlessinger, E. Elson, W. W. Webb, Biophysical Journal 

1976, 16, 1055. 
 
[186] R. Richter, A. Mukhopadhyay, A. Brisson, Biophysical Journal 2003, 85, 3035. 
 
[187] G. Csucs, J. J. Ramsden, Biochimica Et Biophysica Acta-Biomembranes 1998, 1369, 61. 
 
[188] T. E. Starr, N. L. Thompson, Langmuir 2000, 16, 10301. 
 
[189] S. Kumar, J. H. Hoh, Langmuir 2000, 16, 9936. 
 
[190] C. Kataoka-Hamai, H. Inoue, Y. Miyahara, Langmuir 2008, 24, 9916. 
 
[191] H. C. Gaede, K. M. Luckett, I. V. Polozov, K. Gawrisch, Langmuir 2004, 20, 7711. 
 
[192] X. J. Han, A. Studer, H. Sehr, I. Geissbuhler, M. Di Berardino, F. K. Winkler, L. X. 

Tiefenauer, Advanced Materials 2007, 19, 4466. 
 
[193] W. Romer, C. Steinem, Biophysical Journal 2004, 86, 955. 
 
[194] M. Stelzle, G. Weissmuller, E. Sackmann, Journal of Physical Chemistry 1993, 97, 2974. 
 
[195] X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E.  

Tutuc, S. K. Banerjee, L. Colombo, R. S. Ruoff, Science 2009, 324, 1312. 
 
[196] J. A. Abels, F. Moreno-Herrero, T. van der Heijden, C. Dekker, N. H. Dekker, 

Biophysical Journal 2005, 88, 2737. 



139 
 

 
[197] J. R. Schultz-Norton, Y. S. Ziegler, A. M. Nardulli, Trends in Endocrinology & 

Metabolism 2011, 22, 124. 
[198] P. K. Ang, W. Chen, A. T. S. Wee, K. P. Loh, Journal of the American Chemical Society 

2008, 130, 14392. 
 
[199] K. Lee, J.-H. Kwon, S.-l. Moon, W.-S. Cho, B.-K. Ju, Y.-H. Lee, Materials Letters 2007, 

61, 3201. 
 
[200] Y. Ohno, K. Maehashi, Y. Yamashiro, K. Matsumoto, Nano Letters 2009, 9, 3318. 
 
[201] D. Stein, M. Kruithof, C. Dekker, Physical Review Letters 2004, 93, 035901. 
 
[202] R. Karnik, R. Fan, M. Yue, D. Li, P. Yang, A. Majumdar, Nano Letters 2005, 5, 943. 
 
[203] Y. W. Chen, M. Liu, T. Kaneko, P. C. McIntyre, Electrochemical and Solid-State Letters, 

13, G29. 
 
[204] S. M. George, Chemical Reviews 2009, 110, 111. 
 
[205] S. Chen, J. G. Bomer, E. T. Carlen, A. van den Berg, Nano Letters 2011, 11, 2334. 
 
[206] A. Murrell, V. K. Rakyan, S. Beck, Human Molecular Genetics 2005, 14, R3. 
 
[207] W. B. Coleman, A. G. Rivenbark, Journal of Molecular Diagnostics 2006, 8, 152. 
 
[208] C. Grunau, S. J. Clark, A. Rosenthal, Nucleic Acids Research 2001, 29, e65. 
 
[209] B. N. Trinh, T. I. Long, P. W. Laird, Methods 2001, 25, 456. 
 
[210] M. Campan, D. J. Weisenberger, B. Trinh, P. W. Laird, in DNA Methylation,  2009, 325. 
 
[211] C. A. Eads, K. D. Danenberg, K. Kawakami, L. B. Saltz, C. Blake, D. Shibata, P. V. 

Danenberg, P. W. Laird, Nucleic Acids Research 2000, 28, e32. 
 
[212] Y. Ando, Y. Hayashizaki, Nature Protocols 2006, 1, 2774. 
 
[213] E. A. Moskalyov, A. T. Eprintsev, J. D. Hoheisel, Molecular Biology 2007, 41, 723. 
 
[214] P. S. Yan, M. R. Perry, D. E. Laux, A. L. Asare, C. W. Caldwell, T. H. M. Huang, 

Clinical Cancer Research 2000, 6, 1432. 
 
[215] H. F. Jørgensen, A. Bird, Mental Retardation and Developmental Disabilities Research 

Reviews 2002, 8, 87. 
 
[216] X. Nan, R. R. Meehan, A. Bird, Nucleic Acids Research 1993, 21, 4886. 



140 
 

 
[217] M. Nakayama, M. L. Gonzalgo, S. Yegnasubramanian, X. H. Lin, A. M. De Marzo, W. G. 

Nelson, Journal of Cellular Biochemistry 2004, 91, 540. 
 
[218] E. Ballestar, A. P. Wolffe, European Journal of Biochemistry 2001, 268, 1. 
 
[219] A. P. Wolffe, P. L. Jones, P. A. Wade, Proceedings of the National Academy of Sciences 

of the United States of America 1999, 96, 5894. 
 
[220] S. W. Kowalczyk, A. R. Hall, C. Dekker, Nano Letters 2009, 10, 324. 
 
[221] R. M. M. Smeets, S. W. Kowalczyk, A. R. Hall, N. H. Dekker, C. Dekker, Nano Letters 

2008. 
 
[222] K.-i. Tatematsu, T. Yamazaki, F. Ishikawa, Genes to Cells 2000, 5, 677. 
 
[223] D. Fologea, B. Ledden, D. S. McNabb, J. L. Li, Applied Physics Letters 2007, 91. 
 
 


	Thesis Cover Venkatesan formatted.pdf
	PhD Dissertation Venkatesan Final after 4th Correction

