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ABSTRACT 

 This dissertation addresses the design of better induction motor drives from several 

perspectives. Loss minimization in the machine using real-time optimization methods is studied 

thoroughly. These methods are categorized and discussed in detail, with special emphasis on the 

application of ripple correlation control for induction motor loss minimization. The effect of 

these methods on the overall drive reliability is studied. A complete reliability model considering 

machine, power electronics, and sensor faults is developed, and a safe-mode controller is chosen 

to achieve better drive reliability. Loss estimation in power electronics is also addressed in order 

to achieve system-level loss minimization and design more reliable inverters with better electro-

thermal properties. 

Loss minimization results show that average energy savings exceed 5% in applications 

such as propulsion and hybrid vehicles. This amount is significant when global energy savings 

are considered and when the savings are translated to monetary equivalents or reductions in 

emissions and generation. The effect of loss minimization techniques on the drive reliability is 

shown to be minimal where the drive maintains over 50 years of expected time to failure. The 

addition of safe-mode control to mitigate sensor faults enhances closed-loop control reliability 

and improves it to be closer to a more-reliable open-loop controller while maintaining the desired 

closed-loop transient response. The loss estimation tool is shown to predict losses in IGBT-diode 

pairs within an average of 8% error under both periodic and aperiodic switching. These results 

are essential to design more reliable inverters with appropriate component sizing and better 

thermal management.   

The final outcome of this dissertation is a minimum-loss and highly reliable induction 

motor drive system for current and future applications. 
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CHAPTER 1 

INTRODUCTION 

1.1 Overview 

Machines have been widely used in different grid-connected and stand-alone applications 

with variable complexities. Simple applications include pumps, fans, compressors, etc., while 

more complex applications include electric vehicles (EVs) [1, 2], hybrid electric vehicles (HEVs) 

[3], airplane oil pumps, ship propulsion systems, and others. In general, machines constitute over 

50% of the grid-connected electric load [4, 5]. Industry publications, e.g. [6], report that motors 

consume 60% of the electrical energy in industries and infrastructures, 30% of the energy in 

buildings, and 85% of the energy of pumps, fans, and compressors worldwide. In standalone and 

transportation applications, energy storage devices store excess energy to supply the load once 

the mainstream energy is not available. Storage devices have limited capacity, and improving the 

efficiency of the machine would draw less power from any storage device so that the stored 

energy would last longer.  

The shift towards energy-saving motor drives has been mainly driven by the depletion of 

oil and gas reserves, growing economies, and increased greenhouse-gas emissions. According to 

[6], the load will double while CO2 emissions should be cut by half by the year 2050. Since 

machines constitute the main load in grid-connected and off-grid applications, energy savings in 

machines would reduce the global energy consumption, slow down the rate of depletion of non-

renewable resources, and reduce greenhouse gas emissions from power plants and transportation 

vehicles. 

Three main components constitute any motor drive system: machine, power electronics, 

and control. From a system-level perspective, improvements can be applied to one or more of 
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these three components. Such improvements include loss reduction in the machine or power 

electronics, voltage and current quality, fault tolerance and detection, optimal component sizing, 

improved component and overall drive reliability, cost effectiveness, drive size, and others. The 

driven load sets the priority of improvements. For example, in an all-electric airplane, safety is a 

major concern and is directly linked to reliability and fault tolerance of essential electric drives; 

in such an application, cost of redundant components is not a major concern. Also, in any 

system, system-level tradeoffs arise and can be modeled as multi-variable optimization 

problems. For example, reducing the flux in a machine reduces losses and increases efficiency; 

but, if such a machine is operating an EV and high torque is desired, the EV will stall because 

such high torques cannot be maintained at a low flux level. An overview of essential design 

aspects follows here: loss minimization in the machine, drive reliability, and improved thermo-

electric power electronics designs. Further details about essential drive system design are given 

in Section 2.1. 

Induction machines are most commonly used among machines due to their simple 

construction and control, robustness, and low cost. Therefore, minimizing losses in induction 

machines would be a major step towards minimizing the global electric load and energy 

consumption. Whether this loss minimization is possible or not depends on whether the machine 

losses can be pushed lower without affecting the driven load. While machines are designed for 

their highest efficiency at the rated load, most machines run under light loading conditions due to 

conservative designs or variable loads. An example of a 1.5 hp efficiency curve is given in Fig. 

1. It is clear from Fig. 1 that when the machine is operating at light loads, its efficiency degrades 

significantly. This implies that there is room for loss minimization or efficiency enhancement in 

that region. 
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Fig. 1. Typical efficiency vs. load curve for a 1.5 hp induction machine 

 

 Loss minimization in induction machines has been studied for several years [7, 8], and it 

is usually built around available drive features, e.g., voltage and current measurements. Adding 

loss minimization algorithms or techniques to the drive could increase complexity, require 

estimation, or jeopardize the load.  For example, the minimum motor input power (Pin) and 

power loss (Ploss) are Pin = Ploss = 0 W under unconstrained optimization. Then, the load is not 

supported and the machine does not operate. Since loss minimization techniques (LMTs) utilize 

a control variable to achieve minimum Pin or Ploss, drive reliability can be assessed by sweeping 

over the control variable and analyzing the system response under faults [9]. Two important 

factors should be considered: First, the drive reliability should not be affected by loss 

minimization under faults. Second, the load should be considered before applying loss 

minimization, with the most straightforward approach being constrained optimization. 

The most common faults in a motor drive occur in power electronics. These are usually 

related to overheating, thermal management problems, or thermal fatigue [10]. Since thermal 

management of power electronics is usually designed based on power losses, accurate loss 

estimation is desired. This estimation is well established in the literature but with ideal 
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assumptions regarding current waveforms, switching frequencies, and other operational 

considerations. In real induction motor drives, these assumptions might not hold. 

 

1.2 Problem Statement 

 There is a basic need for more efficient and reliable induction motor drive systems for 

current and future applications. 

 

1.3 Research Statement 

 This dissertation provides a comprehensive overview of induction motor LMTs where 

they are categorized, characterized, compared, applied in common practical applications, and 

analyzed from a reliability perspective. Ripple correlation control (RCC), a real-time ripple-

based optimization technique, is studied as a hybrid  LMT. The effect of LMTs on drive 

reliability under machine, power electronics, and sensor faults is studied. Reliability analysis is 

extended to different induction motor control methods and a systematic reliability modeling 

procedure is developed. A safe-mode controller is identified. In all LMT and reliability analyses, 

simulations, and experiments, indirect FOC (IFOC) is used as the controller. A loss estimation 

tool for insulated-gate bipolar transistors (IGBTs) and diodes is developed for periodic and 

aperiodic switching. Better power loss estimates from the tool are expected to improve electro-

thermal designs and enhance the drive reliability with and without LMTs.  

 The work is organized as follows: Chapter 2 provides a literature review of system-level 

design considerations of drives, LMTs, RCC, reliability modeling, and loss estimation in IGBTs 

and diodes. Chapter 3 elaborates on RCC as extremum-seeking (ES) control and as an LMT with 

operational challenges at high frequencies and possible solutions. Chapter 4 presents an example 
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of commercial energy-saving drives, and LMTs in more advanced applications, specifically a 

propulsion system and an HEV. Simulation and experimental results are shown. Drive reliability 

modeling is presented in Chapter 5 where the mathematical preliminaries of the modeling 

procedure are presented, a simulation model is experimentally validated, and reliability functions 

with mean-time-to-failure (MTTF) estimates are found. A safe mode is also discussed in Chapter 

5. Chapter 6 describes an IGBT-diode loss estimation tool for better thermo-electric power 

electronics designs and fewer thermal failures in motor drives due to overheating or inaccurate 

loss estimation. Conclusions and open research questions are presented in Chapter 7.  
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Design Considerations for Induction Motor Drive Systems 

 It is not a straightforward task to survey all design aspects in induction motor drives as 

the importance of every aspect, except fundamental requirements, varies from one application to 

another.
1
 For example, in traction applications, reliability is a major concern, but cost is more 

important for mass production of small pumps. Design requirements affect the three subsystems 

of an induction motor drive: machine, power electronics, and control and sensing. A better 

overall drive can be achieved through design improvements in each subsystem. 

Studies that consider the selection of motor drives are an important source of information 

for design criteria. Motor selection criteria include efficiency, cost, size, power density, 

reliability, torque quality, and number of poles (which affects the frequency and speed 

requirements). Control and sensor requirements include the number of sensors, cost, and 

robustness. Power electronics requirements include efficiency, size, reliability, and cost. For 

example, design criteria for an EV drive [11], compressor [12], traction [13], and general high-

performance variable frequency drives (VFDs) [14, 15], are available. Fundamental design 

―themes‖ for the whole drive can be noticed and they include the drive efficiency, reliability, 

cost, and size.  

Induction machine and power electronics efficiencies set the overall drive efficiency and 

cooling requirements. Machine losses and their physical concentrations are analyzed in [16], and 

design considerations in induction machines are shown in [17]. Loss minimization and analysis 

techniques are elaborated upon in [18, 19], and a literature review of loss minimization in 

                                                 
1 Much of the material in this chapter relates to the work presented in [9], [18], [19], [171], and [182]. Thus, copyright notices are added on 

figures and tables presented in these references and shown here. 
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induction machines is presented in Section 2.2. Thermal management of losses affects drive 

reliability. An example of the interaction between power electronics and the machine is analyzed 

for different switching patterns in the inverter [20].  

Drive reliability of the drive is a combination of the machine, power electronics, and 

control and sensing reliabilities. Comparison of different drives with reliability and other 

considerations is presented in [21]. Reliability-related examples include fault detection and 

diagnosis [22, 23], fault tolerant drives [24], and fault reduction or prevention, e.g., voltage 

transient reduction in cable-connected drives [25-27]. A literature review on reliability of 

induction motor drives is presented in Section 2.3. Control, sensing, and estimation design issues 

are also widely discussed throughout the literature as they affect the reliability, operation, and 

load support. Examples include the design of robust controllers in motor drives [28], state and 

parameter estimation [29, 30], and stability analysis of the controller [31].  

Cost is always a decisive factor. Two major cost categories are component cost and 

energy cost. While energy cost is related to energy consumption and thus losses, component 

costs depend on their physics, ratings, and other manufacturing characteristics. In general, 

components with higher power ratings, complex manufacturing processes, and higher efficiency 

cost more. While minimum cost is always desired, some applications that require special power 

electronics devices, machine material, thermal management, or protection and redundancy, 

sacrifice the cost factor for better efficiency, reliability, and performance. The size and weight of 

any drive are usually products of the allowed thermal and power limits. For example, cooling a 

250 kW inverter with a large blower requires significantly more volume than a liquid-cooled 

cold plate or heat sink. In an experimental laboratory environment, the inverter volume and 

thermal management are not a major issue, but in an EV, the volume is very limited.  
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Therefore, as in any design process, design tradeoffs always arise. The importance of 

efficiency, reliability, cost, and size are variable from one application to another, but the ultimate 

goal of a better design is to increase the efficiency and reliability, and reduce the cost and size. 

From an electrical design perspective, efficiency and reliability enhancements can be thoroughly 

addressed while keeping in mind that the cost and size do not increase.  

 

2.2 Loss Minimization in Machines 

2.2.1 Overview 

Loss minimization techniques minimize Pin or Ploss in a machine. For a given output 

power (Po), Pin = Po + Ploss and therefore at any instant of time, minimizing Ploss is equivalent to 

minimizing Pin at that instant.  From an energy perspective, the energy in a machine has an extra 

storage term, 

Ein = Eo + Eloss + Estored,     (1) 

where Ein, Eo, Eloss, and Estored are the input, output, lost, and stored energies, respectively. LMTs 

must address only loss. They have been applied to several machines including induction 

machines, permanent magnet synchronous machines (PMSMs), e.g. [32], and switched 

reluctance machines, e.g. [33]. As induction machines dominate industrial, residential, and 

transportation applications, the focus here is on LMTs for them.  LMTs have not been widely 

commercialized, and those augmented into commercial drives could be replaced with more 

advanced methods. The choice of the LMT is related to the application and drive capabilities 

where applications require a different LMT convergence speed, parameter sensitivity, and 

convergence error. For example, a simple water pump running at a constant flow can be preset to 

operate at a minimum loss for that load, but vehicles that run dynamic urban cycles with  abrupt 
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braking and acceleration require more advanced and dynamic LMTs. The choices of the drive 

and controller also affect the choice of an LMT where controllers have different inputs that could 

be used as loss-minimization control variables.  

Induction machine applications can be steady-state or dynamic depending on the load 

variability (ρ), defined as 

L
L

T
k

t






,                                       (2) 

where kL is a constant, TL is the load torque, and t is time. Dynamic applications such as electric 

vehicle drives have large ρ, while steady-state applications such as cooling fans have small ρ. 

Convergence time requirements of LMTs are highly affected by ρ— when ρ is large, the LMT 

must converge quickly to provide energy savings. When ρ is small, the response time of the 

LMT is not a major issue as it will have enough time to converge. Also, LMTs could depend on 

machine parameters and converge to a sub-optimal operating point due to errors in the parameter 

estimates. In a dynamic application, these errors could be less important as any energy savings 

achieved with fast convergence are useful; but, in steady-state applications, sub-optimal 

operation accumulates significant energy losses. Examples of dynamic applications include 

HEVs, electric ship propulsion [34], aircraft launchers and electric cranes which require short 

bursts of large amounts of energy.  Examples of steady-state or low-variability applications 

include fans, steady-flow pumps, and even air conditioning pumps with slight load variations due 

to minor temperature changes.  

Two major LMT categories exist: offline and online (or real-time) [18, 19]. Offline 

techniques include designing the motor for lower losses. Such designs address loss minimization 

from a structural perspective using electromagnetic field theory to set the shapes of the rotor and 
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stator in addition to the wiring distribution, material, and overall size. Another offline approach 

is setting the controller operating point at the minimum power loss for the rated or most frequent 

load. For example, in a field-oriented control (FOC) or vector drive, the machine flux is set to an 

―optimal‖ value based on expected operating conditions. Another method is a factory-defined 

mapping that defines desired flux as a predetermined function of load. In general, offline 

techniques cannot adjust losses while the drive is running. Exceptions include preset look-up 

tables that update the control variable based on a pre-defined loss model while checking if the 

load is supported. Optimal operating points are stored in the controller memory for a specific 

machine, e.g. [8] where ωsl is the control variable that is adjusted for every load. A similar look-

up table is also used in [35] where the optimal V/f ratio is selected based on motor parameters 

and dynamic equations, but these parameters are static and might be inaccurate or vary. Thus, 

offline LMTs are usually inaccurate and cannot set the drive to operate at the exact minimum-

loss point. More details about offline LMTs and power loss analysis using electromagnetic 

simulations are available in [19].  

Real-time LMTs utilize use information about operation and machine parameter 

estimates to minimize losses continuously while the drive is running, as shown in Fig. 2. In 

induction machines, the control variable could be the flux, voltage, current, slip frequency, or 

combinations. The three categories of online LMTs are [18, 19] model-based, physics-based, and 

hybrids that combine these. Model-based LMTs depend on motor parameters and power-loss 

models. Physics-based LMTs utilize feedback and search for the minimum-loss operating point. 

Hybrid LMTs use both motor parameters and feedback. From this classification, LMTs can be 

compared based on convergence speed to the minimum loss, sensitivity to motor parameter 

errors, and accuracy in tracking the minimum power point. 
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LMT categories are summarized in Fig. 3. For example, reference [36] divides these 

methods into ―methods based on [an] induction motor loss model‖ and ―methods based on search 

controllers of [the] minimum [power loss].‖ Reference [37] categorizes LMTs as ―simple state 

control‖ such as power factor control, ―model-based control,‖ and ―search control.‖  The 

classifications in [36, 37] are similar to model- and physics-based LMTs but ignore hybrid 

methods. Hybrid LMTs were first identified as an independent category in [18], and more related 

elaborate discussions are available here and in [19]. 

 
Fig. 2. Induction motor drive with an LMT 
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Fig. 3. LMT categories ©2010 IEEE 
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2.2.2 Commercial Energy-Saving Techniques 

Most commercial induction motor drives are applied to fans and pumps. In variable pump 

applications, affinity laws show that Pin is proportional to the cube of rotational speed; therefore 

at low loads or speeds, Pin can be significantly reduced from the rated value while maintaining 

the load. Using a motor drive, machine currents, voltages, and frequency can be controlled. 

Whether the drive is open- or closed-loop, reducing the flux can reduce Pin or Ploss. An example 

of Pin vs. the d-axis rotor flux (λdr) is shown in Fig. 4 for a 1.5 hp induction machine at a single 

torque-speed operating point.   
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Fig. 4. Pin vs. λdr for a 1.5 hp induction machine at 2 N·m and 1000 rpm ©2010 IEEE 

Flux reduction is a well-known method to save energy in induction motor drives. It can 

be applied in both open- and closed-loop drives — in open-loop or volts per hertz (V/f) drives, 

the V/f ratio approximates the magnetizing flux in the machine and can be reduced, while in 

close-loop (FOC or vector) drives, the flux command can be reduced. In this section, elaboration 

is given on commercial open-loop drives, and similar procedures are applied to closed-loop 

drives. 

In an open-loop drive, the frequency sets the machine reference speed and is maintained 

at a desired reference value. Flux reduction to save energy can thus be achieved by reducing the 
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voltage. But at low voltages, flux reduction may cause the loss of load support, and the machine 

would stall. Therefore, in commercial drives such as [38], the load is always checked through 

estimators. This control can be summarized as shown in Fig. 5.  

Start

Set rated V/f

Steady 

state?

Reduce voltage

Load 

supported?

Stop reducing 

voltage

Speed command 

changed?

Yes

Yes

Yes

No

No

No

 
Fig. 5. Flow chart of voltage-control energy-saving method 

Temperature feedback is used in heating, ventilation, and air conditioning (HVAC) to 

reduce the flux while maintaining temperature. An example is the adaptive energy optimization 

(AEO) by Danfoss which adjusts the pump speed to maintain the temperature within a desired 

band [39]. Another commercial energy-saving voltage control is available in Siemens drives 

where the voltage is reduced, thus reducing the current until the current starts to increase [40]. 

Several Yaskawa drives, e.g., E7, have two energy-saving modes: a manual tuning and automatic 

search. According to [41], the factory setting or ―energy saving coefficient‖ can be manually set 

depending on the drive capacity. Further adjustment can be achieved with manual tuning. 

Another option is to use the automatic search, which slightly adjusts the machine voltage from 

the factory setting and avoids stalling the machine. 
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Since commercial energy-saving methods check for load support and reduce the flux 

iteratively, their response time is usually slow and could take minutes, especially when the drive 

updates its commands after waiting for steady state. Load estimation could introduce another 

drawback if it is machine-parameter dependent because any errors in the parameter estimates 

could cause load estimation error, which in turn could cause the system to stall with an under-

estimated load. Approaches that monitor the speed for load information are parameter 

independent and therefore have no parameter sensitivity.  If used, manual tuning of the energy-

saving method is a drawback, especially under variable loads.  

 Sections 2.2.3 – 2.2.5 introduce the main characteristics and examples of model-based, 

physics-based, and hybrid LMTs, while Section 2.2.6 compares them based on the literature. 

Section 4.5 compares LMTs under the same operating conditions.   

 

2.2.3 Model-Based Techniques 

Model-based techniques utilize models of Ploss to estimate losses and then minimize 

them; thus, they depend on motor parameters. They can be defined as follows:  

Definition 1: A model-based LMT depends on motor parameters and a power-loss or input power 

model to achieve minimum loss operation. It does not include closed-loop power measurement 

or estimation but might use other feedback [19].  

There are two sources of error in motor parameter estimates: machine parameter tests 

have limited accuracy, and parameters can vary during operation due to physical effects such as 

temperature, saturation, etc. Errors in motor parameter estimates lead to sub-optimal operation. 

While several model-based LMTs use fixed parameter estimates, e.g. [4, 42-48], parameters can 

be updated online through look-up tables, e.g. [8], or through estimators, e.g. [49-51]. The model 
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of Ploss can be dependent on the stator resistance (Rs) [4], both Rs and the rotor resistance (Rr), or 

on all parameters including stator inductance (Ls), rotor inductance (Lr), magnetizing inductance 

(Lm), and core resistance (Rc) [47]. The magnetizing current is used as the control variable in [4], 

while the slip frequency (ωsl) is used in [47] where simulations show tracking of the 

―theoretical‖ optimal ωsl without comparison to nominal operating conditions. A similar 

approach to [47] where the steady-state motor model is used and ωsl is the control variable is 

presented in [48]. But, in [48] the system is linearized around ωsl and is independent of Ls. The 

magnetizing flux (λm) is used in [44] as the control variable where the model is dependent on Rs, 

Rr, and Lm. The LMT in [42] uses the stator current as the control variable and is dependent on 

Rs, Rr, Lm, and Rc. Sensitivity analyses in [42] show that variations in Rr are critical but lead to a 

2% increase of the optimal power loss. The stator current is also used to minimize losses in [45, 

46]. Another important control variable is the rotor flux (λr) and its direct-axis component λdr, 

e.g. [49, 52]. More details about the use of λdr and how that relates to Fig. 4 are shown in [53].   

As mentioned earlier, look-up tables are static but machine parameters might vary during 

operation. Thus, some look-up tables that utilize online parameter estimates can be considered as 

model-based LMTs. For example, Rr and Lm are estimated in [49] to update a look-up table, and 

genetic algorithms are used in [51] to set the optimal V/f ratio (λm). Another way to update motor 

parameters is shown in [50] where physics-based parameter models are used (dependent on the 

load, temperature, etc.) to modify the stator current. Other model-based LMTs include those 

based on neural networks that use a Ploss model for the learning and correcting phases [54], and 

those based on optimal control theory [43] which have a model of the cost function. 

Table 1 [18, 19] shows examples of Ploss models with their minimization variables (x) 

that are used in some model-based LMTs. In Table 1, k1, k2, k3, k4, and k5, are defined in [47], 
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and ke, kh, kstr and kfw are the eddy current, hysteresis, stray, and friction and windage loss 

coefficients, respectively;  ωr, ωs (or ωe)  are the rotor and stator frequencies, respectively; Rqls is 

the q-axis core resistance, Ld is the d-axis self-inductance, Te is the electromechanical torque, i 

and V are currents and voltages, respectively; subscripts q, d, s, and r, stand for q-axis, d-axis, 

stator, and rotor variables, respectively; and np is the number of poles.  

Table 1. Some power loss functions and their relative minimization variables 
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λr 

 

The loss models in Table 1 vary according to the losses they consider. For example, core 

losses are modeled as insensitive to frequency, i.e., resistive loss, in the first three rows. Eddy 

current and hysteresis losses, both being core losses, are split in the fourth row where ke and kh 

are dependent on the material and construction of the machine. The effect of the frequency on 

core losses is clear in the fifth row where ke is multiplied by 
2

r and kh is multiplied by ωr, which 

is similar to the model shown in the seventh row. Stray, friction, and windage losses are also 
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considered in the fifth row. A more generic loss model that relates losses to ωsl is shown in the 

sixth row where the constants k1–k5 are parameter dependent. Such a model is convenient in 

visualizing Ploss as a function of a single control variable. 

Convergence times of model-based LMTs range from 300 ms to several seconds, as 

shown in [4, 8, 35, 42, 46, 48], and efficiency improvements up to 70 points are recorded. 

Convergence times and efficiency improvements are dependent on the inertia and load on a 

machine shaft. In summary, common characteristics among model-based LMTs are their 

dependence on motor parameters and ratings and possible sub-optimal operation due to errors in 

parameter knowledge. 

 

2.2.4 Physics-Based Techniques 

Physics-based LMTs are independent of motor parameters or Ploss models. A physics-

based LMT drives the control input to reduce Pin, which is available from voltage and current 

measurements. As explained in Section 2.2.1, minimizing Pin is equivalent to minimizing Ploss 

for a given Po, subject to storage aspects.   

Definition 2: A physics-based LMT utilizes electromechanical or mathematical principles to 

drive the control input in the direction of minimum Pin, regardless of the motor ratings or 

parameters.  

Some physics-based LMTs perturb a control variable and then assess whether or not Pin 

decreased. Commercial energy-saving methods follow similar perturb-and-observe (P&O) 

techniques, also common in maximum power point tracking (MPPT) of photovoltaic (PV) 

arrays. Control variables similar to those utilized in model-based LMTs can be used. The 

perturbed command could be the V/f ratio [55] as in commercial drives, λm [56], the dc link 
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voltage of the inverter [57], and λdr in an FOC drive [58].  Among the three LMTs discussed in 

[59], one is physics-based and is similar to commercial voltage control. In general, P&O 

algorithms check whether changes in Pin and in x are positive or negative and update x 

accordingly. No machine parameter estimates or models are required, and all operation is based 

on the machine physics and response to change in the control variable. A  high-level P&O 

algorithm is shown in Fig. 6.  

Compare new values of Pin and 

x with their previous values

Initialize then measure Pin

Determine whether to increase 

to decrease x to approach 

minimum Pin

 
Fig. 6. Simplified flowchart of P&O 

 

Several fuzzy logic controllers have been used as physics-based LMTs. Examples are 

shown in [60] where ids is used as the control variable. Membership functions are built based on 

derivative estimates ΔPin/Δids which determine the direction of ids towards minimum Pin. A 

neuro-fuzzy approach is also shown in [61] where the stator voltage is used as the control 

variable (further details about the training of the neural network and updating membership 

functions are available in [61]).  
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In general, convergence times of physics-based LMTs [55-60] are slower than model-

based LMTs, and vary from a few seconds to several minutes for machine ratings between 1.5 

and 10 hp. Their main advantage is independence of machine parameters or models.   

 

2.2.5 Hybrid Techniques 

Hybrid LMTs were first identified in [18, 19]. These LMTs have features from both 

model- and physics-based methods, thus the term ―hybrid.‖ Among several possible 

combinations of model- and physics-based characteristics, two main examples of hybrid 

techniques are: (i) applying P&O on a Ploss model, and (ii) using a parameter-dependent 

estimator with a physics-based LMT.   

Definition 3: Hybrid LMTs require a motor or system model to search for the minimum Ploss or 

Pin, then use electromechanical principles and mathematical characteristics to achieve optimality. 

Identifying hybrid techniques is not a straightforward process; each LMT is individually 

analyzed because hybrid LMTs can be easily confused with model- or physics-based LMTs. 

Also, the application context affects whether a method is hybrid or not. For example, if the 

control variable and cost function are measured independently of the drive model, RCC can be 

used as a physics-based method which relies on inherent ripple in measurements and drive 

physics to achieve the optimum. This is the case for RCC when used in loss minimization of dc 

machines where the control variable, in this case field current, and the input power can be 

measured. But, if parameter-dependent Ploss or Pin estimation is used as shown in [62], RCC still 

uses the drive physics to achieve optimal operation; the estimation of Ploss introduces model 

dependence and RCC becomes a hybrid LMT. A similar case is for RCC applications for 

induction machines where Pin is measured but λdr is estimated [53, 62]. In Chapter 3, RCC is 
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discussed in more detail, but is not the only hybrid LMT. Several techniques classified as model- 

or physics-based are actually hybrid, as in [7]. For example, [7] presents an LMT that estimates 

Pin from motor parameters then perturbs ωsl to converge towards the minimum Pin. Other 

examples include [59] where the induction motor slip is evaluated from a model for minimum 

Pin, [63] where a search algorithm is also utilized with a dynamically-updated Ploss model, and 

[5] where fuzzy logic searches around a model-based minimum to correct the power factor.  

 

2.2.6 Comparison of LMTs from Literature  

A preliminary comparison of LMTs from the literature can be established. Even though 

the machines, drives, and loads vary from one reference to another, general characteristics can be 

drawn. Results are reported as reduction in Ploss, energy savings, efficiency improvement, stator 

voltage reduction, and others. Table 2 shows convergence times, machine ratings, and 

improvements introduced by different types of LMTs.  

Table 2. Summary of LMT performance in literature ©2010 IEEE 

Reference Convergence time (s) Improvement Motor rating Type 

[4] 2.5 Ploss reduced by 70% 1/3 hp Model-Based 

[44] 5 Input voltage reduced from 220V 

to 85V 

1 hp Model-based 

[46] 0.5 Efficiency improved by 50 points 1 hp Model-based 

[50] Unspecified Efficiency improved by 20 points 2.2 hp Model-based 

[51] Unspecified Ploss reduced by 75% 1.5 hp Model-based 

[35] 0.5 to 5 Efficiency improved by 12 points 1.5 hp Model-based 

[55] 5 min Efficiency improved by 12 points 10 hp Physics-based 

[57] Unspecified Efficiency improved by 12 points 10 hp Physics-based 

[58] 7 Input Power reduced by 3.6% 7.5 hp Physics-based 

[60] 7 Ploss reduced by 50% 1.5 hp Physics-based 

[61] 0.5 Efficiency improved by 27 points 0.25 hp Physics-based 

[19] 0.5 Ploss reduced by 61% 1.5 hp Hybrid 
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From the results and references shown Table 2, all LMTs lead to energy savings and 

efficiency improvement in one way or another. The amount of energy savings could be 

significantly affected by model dependence, and this is analyzed in more detail in Section 4.4.4 

for a model-based LMT. Physics-based techniques are slower than model-based techniques due 

to the fact that most must wait to evaluate Pin in steady-state and update their control variable 

accordingly. An exception is shown in [61] where the machine power rating is very low and has 

less inertia compared to other machines, which allows the physics-based LMT to converge 

quickly. While P&O methods cause undesirable, persistent oscillations around the optimum, 

adaptive P&O algorithms, e.g. [64], can reduce the oscillation size exponentially. Therefore, 

physics-based techniques are mainly attractive because of machine parameter independence. 

Model-based LMTs converge quickly, depending on the time taken to calculate the control 

variable at the minimum Ploss. But, they are parameter dependent, might require tuning, and 

could cause sub-optimal operation due to parameter errors. Hybrid LMTs usually require fewer 

motor parameters than model-based LMTs and converge faster than physics-based LMTs. A 

potential drawback is implementation complexity. However, when using digital signal processors 

(DSPs), which are common in motor drives, this complexity is not limiting.  

 

2.3 Ripple Correlation Control 

2.3.1 Introduction and Background 

 Ripple correlation control is a real-time optimization method which was first patented in 

1996 as a ―self-excited power minimizer/maximizer for switching power converters and 

switching motor drive applications‖ [65]. It is clear from the patent title that motor drives are 

major RCC applications. RCC uses inherent ripple in power converters to achieve the optimum 
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of a time-dependent objective function J(t). Whether J(t) is concave (profit function) or convex 

(cost function), it should be unimodal, i.e., have a single optimality point.  RCC maximization 

applications include PV MPPT and maximum power transfer from a source to a load through a 

power electronics converter. An obvious minimization application is RCC as an LMT [62, 66, 

67]. In an induction machine, Pin is convex as shown in Fig. 4, but the curve is relatively flat near 

the minimum. The effect of this flatness on RCC and general LMT operation will be further 

discussed in Chapter 3. In the following discussion, cost function minimization is used to 

demonstrate the derivation of RCC control laws, which is a generalized scenario to minimize Pin 

or Ploss in an induction machine.  

 RCC shares common characteristics with two control methods available in the control 

systems literature: Extremum seeking (ES) control and vibrational control (VC). The discussion 

on RCC as ES is elaborated in Section 3.1. As defined in [68], VC is a nonclassical control 

principle which proposes a utilization of zero-mean parametric excitation of a dynamical system 

for control purposes. Thus, the characteristic common to both RCC and VC is the use of 

perturbations or excitations to enhance system operation. RCC uses inherent ripple in a system to 

achieve an optimum, but VC utilizes injected zero-mean sinusoidal vibrations to the plant 

parameters. For example, for a linear system 
t

z Az Buh


 
   

 
 where h is a periodic zero-mean 

function and ε is a small parameter, excitation is introduced to the input (u) through a 

multiplicative h, and the real plant can be modeled with perturbed parameters 

 
t

z A A z Buh


 
    

 
where perturbations are used to achieve stability [69]. Another example 

of VC is a nonlinear system ( , , )z g z u d where d is a plant parameter and excitations are 
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injected in d  as d d . Several nonlinear system models are studied in [70] where VC is used to 

stabilize the system. In a stabilization problem using VC, the asymptotically stable solution ( sz ) 

is desired to reach the equilibrium point ( eqz ) within a certain bound δeq: || ||s eq eqz z   [70]. 

One direct link that can be established between RCC and VC is that δeq can be minimized from 

an optimization perspective in both. As both RCC and VC utilize perturbations, the former to 

achieve an optimum and the latter to achieve stability, a stronger link should exist between both 

but needs deeper investigation that is beyond the scope of this dissertation.  

 

2.3.2 RCC Basic Principles 

Given the cost function J(t) and the control variable x(t), the optimal value of J(t), J*(t) at 

x*(t), can be found by solving for x*(t) when dJ(t)/dx(t) = 0. This is illustrated in Fig. 7. For any 

initial condition x0  [xmin, xmax] set by the initial input u0, the control input u(t) is 

( )
( )

( )

dJ t
u t k

dx t
  ,      (3) 

where k is a positive gain. To better understand equation (3), let ( ) ( )x t u t and thus the optimal 

x(t), x*(t), can be found as
0

( )
*( )

( )

t
dJ

x t k d
dx





   . Observing Fig. 7 at a certain instant t (thus t is 

dropped in the figure), when x< x*, J decreases and dJ/dx < 0 which causes the integral to grow 

when scaled by -k and therefore go toward the minimum. When x> x*, J increases and dJ/dx> 0, 

the integral decreases when scaled by -k and goes toward the minimum.  



24 

 

J

xx*

J*

xmin

dJ/dx > 0

xmax

dJ/dx < 0

 
Fig. 7. Convex J with minimum J* at x* 

 

In a dynamical system, dJ(t)/dx(t) is not usually available for measurement ,thus using 

the chain rule, x*(t) can be written as  









d

dx

d

d

dJ
ktx

t


0

)(

)(
)(* .     (4) 

Since the sign of dη/dx(η) and dη/dx(η) is the same, replacing dη/dx(η) by a function q(η) that 

preserves the sign of dx(η)/dη would still achieve the minimum. For the simplest form of q(t) = 

dx(t)/dt, equation (4) can be written as 

0 0

( ) ( )
( ) ' ' ( ) ( )

t t
dJ dx

x t k d k J x d
d d

 
   

 
   ,               (5) 

where k’ is a constant gain.  Note that equations (4) and (5) still preserve the minimum because 

for the simplest form of q(t) = dx(t)/dt, applying the chain rule again gives  

2

0 0

( ) ( ) ( ) ( ) ( )
*( ) ' '

( ) ( )

t t
dJ dx dx dJ dx

x t k d k d
dx d d dx d

    
 

    

 
     

 
  .    (6) 

In equation (6), the original integrand from equation (3) is scaled by a positive term, and the 

minimum point x*(t) is preserved [71], given that x(t) is persistently excited.  

 When ripple exists in J(t) and x(t), this ripple includes information about dJ(t)/dt and 

dx(t)/dt. In general, ripple can be modeled as a Fourier series of sinusoidal signals where dc and 

higher frequencies are present. If J(t) and x(t) are high-pass filtered to eliminate dc components, 
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ripple can be used to extract derivative information of J(t) and x(t). For the ripple signals 

( )x t and ( )J t , RCC law can be written as 

0

*( ) " ( ) ( )

t

x t k J x d     ,     (7) 

where k’’ is a constant gain. 

Without loss of generality, let the ripple signals be sinusoidal and high-pass filtered. 

From Fig. 7, when the operating point is at the left of x*(t) and dJ(t)/dx(t) is negative, the ripple 

signals ( )x t and ( )J t are out-of-phase by π+2nπ radians where n is an integer number 

and ( ) ( )J t x t ≤0 for all t. When the operating point is at the right of x*(t) and dJ(t)/dx(t) is 

negative, the ripple signals ( )x t and ( )J t are in-phase at 0 +2nπ radians and ( ) ( )J t x t ≥0 for all t. 

These phase relationships are illustrated in Figs. 8 and 9. At the optimum, the ripple signals are 

π/2+n π radians out-of-phase.   
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Fig. 8. Ripples in the objective function and control variable when ( ) ( )J t x t ≤ 0 
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Fig. 9. Ripples in the objective function and control variable when ( ) ( )J t x t ≥ 0 
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A discrete version of RCC (DRCC) was presented in [72] for MPPT applications with dc-

dc converters. The discrete x can be updated as 

*( ) *(0) [ ( ) (0)]
1

dk w
x T x J d T J

d

  


,    (8) 

where kd is a constant gain, d is the duty cycle of the converter, T is the ripple period in J, and w+ 

is the positive slope of the triangular ripple in x. As shown in equation (8), extracting two 

samples of J over T is sufficient to drive the system to the optimum [72]. A digital 

implementation of equation (7) was also presented in [73].   

Applying RCC as an LMT for machines has been investigated in [53, 62, 66]. Dc, 

synchronous, and induction machines were used, and all research concluded that for induction 

machines, low frequency ripple should be used. Such ripple is not inherently present in an 

induction machine drive, so external perturbations were injected. In Chapter 3, useful 

frequencies are identified from a frequency domain analysis. Experimental results of RCC in 

induction machine applications have not yet been presented for reasons outlined in Chapter 3. 

Chapter 3 also elaborates on the reason behind the low ripple frequency requirement in induction 

machines from an energy storage perspective. 

 

2.4 Reliability Modeling of Induction Motor Drives 

 Adding an LMT to the induction motor drive dynamically changes an input command. 

This change could affect the drive response under faults. For example, if any fault causes Te to 

overshoot in an FOC drive while the drive is operating under flux weakening, the machine could 

stall because the flux is not able to support Te. Reliability assessment of the drive under LMTs is 

therefore essential. In general, reliability modeling or assessment is valuable for any motor drive 
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application. Safety and reliability are major concerns, especially in transportation systems such 

as EVs [1, 2]. Drive failure in transportation, manufacturing, pumping, cooling, etc., could be 

catastrophic.  

 Common reliability models include fault trees developed by Bell Telephone Laboratories 

[74], series-parallel reliability block diagrams (RBDs), state diagrams and Markov models, etc. 

Failure mode and effect analysis (FMEA) is also a popular tool to evaluate system reliability. 

FMEA assesses the system response after every fault by comparing it to desired performance 

measures. In dynamic systems, Markov models are the most attractive because they capture the 

transition dynamics of a system from one state to another, with dependency only on the previous 

state.  This simplifies studying the fault occurrence order, fault and repair effects, state-

dependent failure rates, and fault coverage — the probability of system survival for a fault. One 

drawback of Markov models is that they assume fixed failure rates that do not consider the 

increased failure rate with component aging. Markov models can be expanded easily for complex 

and large systems. The detail can be at a component level, e.g., gate driver of one IGBT in an 

inverter; a sub-system level, e.g., short circuit in an inverter phase; or a system level, e.g., motor 

drive shut down. The analysis complexity significantly increases for more detailed models of 

large systems, and sub-system level analysis is usually used.  The level of detail in any reliability 

analysis sets the analysis complexity, where more fault modes would cause exponential growth 

of the system states.  

Significant work has been published on fault tolerance, e.g. [75], speed-sensorless control 

(for higher reliability), e.g. [76], and fault models and modes in motor drives [77], but 

comprehensive reliability modeling methods have not been discussed. Such methods are key to 
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assessing whether or not a design meets reliability and fault tolerance requirements for all 

possible operational conditions. Some examples are summarized in Table 3. 

Table 3. Faults studied in literature 

Reference Faulty components or subsystems 

[78] Power electronics 

[79] Control 

[80, 81] Power supply 

[82] Motor 

[83] Sensors 

[84] Cooling  

[85] Motor and power supply 

[86] Control, power electronics, and motor 

[87] Transformer and line filters 

 

To improve system reliability, redundancy in most of the components mentioned in Table 

3 is common. Among the most common designs for redundancy are multiphase machines [88] 

and split-wound motors [89]. Reliability enhancement through control is achieved with fault-

tolerant control algorithms [78, 90-92]. Other strategies for reliability enhancement include more 

reliable communication [93], preventive maintenance [94, 95], and component de-rating. 

Fault detection is essential for appropriate drive operation and could be utilized to 

activate safe modes, emergency systems, or fault-isolation mechanisms. Several methods for 

fault detection are available [78, 96-103] and utilize frequency-domain analysis, e.g., a short-

time Fourier transform [96], pattern recognition [101], or monitoring the drive operation such as 

current, voltage, temperature, etc.  

Markov models are rarely found in the context of motor drive reliability. Models in [84, 

104-106] are incomplete and do not include systematic procedures, e.g., performance evaluation, 

multi-fault levels, mathematical foundations, etc., to develop a reliability model of the drive. A 

high-level analysis of a power system that includes a machine is shown in [106] and the whole 
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drive is just a sub-system. Essential faults in machines and sensors are ignored in [104], and 

sensor faults in [105] even though they could cause catastrophic drive failures. Although most 

faults, including those in sensors, are addressed in [83], the focus is on control. No modeling 

procedure is presented. Fault coverage is missing in all motor drive ―reliability literature.‖ Also, 

in [83] only inverters as a series RBD are considered; no systematic procedure is considered in 

[107]. 

Even when the drive fails, it is desired to maintain the load. Safe-mode control that 

maintains such operation is uncommon in the literature. Such a safe mode controller is expected 

to have minimum dependence on feedback to avoid sensor faults, as shown in Fig. 10.  The 

closest approach to switching to a safe mode is [108] where an induction motor drive switches 

between IFOC and DTC to improve transient and steady-state operation. Limitations of safe-

mode control include the effects of faults common in both nominal and safe-mode controllers, 

e.g., loss of the controller power supply. 

Regular 

Controller

Safe-mode 

Controller

Inverter

Gate 

Signals

Commands

Machine

Feedback 

Signals

Fault 

Detection

 
Fig. 10. Desired safe-mode scheme 
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Therefore, most available literature covers general physical faults, assumes certain 

system structures, e.g., series components, stresses fault-tolerant algorithms but not necessarily 

redundancy, and limits the reliability evaluation to specific components. Even though energy-

saving methods or LMTs are seen as essential in current and future drive applications, their 

effect on system reliability is ignored. Also, having a back-up controller could be an attractive 

solution to several failures, but this has not been addressed.  

 

2.5 Power Electronics Loss Estimation: Loss Minimization and Reliability Enhancement   

In order to minimize the total losses in a drive system, power electronics losses should be 

addressed. An essential step in minimizing power electronics losses is loss estimation. Also, 

proper loss estimation in power electronics leads to better thermal designs including component 

sizing, placement, cooling and thermal management. Most common failures in motor drives are 

caused by power electronics faults, specifically related to problems with thermal management or 

conservative thermal designs. IGBT-diode pairs are among the most common devices in motor 

drives, and their market is continuously expanding due to their fast response, well-established 

gate drivers, and increasing allowable junction temperatures, e.g., SiC IGBTs. Thus, loss 

estimation in IGBT-diode pairs helps reduce power electronics faults and improve overall drive 

reliability. 

Usually, power losses and thermal characteristics of the power electronics and thermal 

management components are directly related. Zero- or higher-order circuit-based thermal models 

are utilized to predict power electronics junction temperatures. Compared to an electric circuit, 

thermal circuits use dissipated power instead of current, thermal resistance instead of electric 

resistance, and temperatures instead of voltages as shown in the zero-order model in Fig. 11. 
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Designing thermal management is usually an iterative process. The first step is to determine the 

IGBT-diode pairs (or any power semiconductor devices) with suitable ratings for the application. 

From the device datasheet, the junction to case thermal resistance (Rj-c) and case to sink thermal 

resistance (Rc-s) are determined. The second and most fundamental step is to estimate power 

losses. While these are mainly dependent on electrical operation, e.g., switching and conduction, 

and electrical components, e.g., gate resistor, they may be affected by the junction temperature as 

will be explained later. After a preliminary power loss estimate is found, the third step is to use a 

preliminary thermal design with some sink-to-ambient thermal resistance (Rs-a). The 

temperatures at the junction (Tj), case (Tc), and sink (Ts) can be found for a certain ambient 

temperature (Ta). Alternatively, the design can start from a desired maximum Tj. In Fig. 11, PQ, 

PD, and PT are the IGBT, diode, and total power losses, respectively; subscripts D and Q are for 

diode and IGBT quantities, respectively.  

Rj-c,D

Rj-c,Q

Rc-s Rs-a

Ts

Tj,D

Tj,Q

Tc Ta

PD

PT

PQ

 
Fig. 11. Zero-order thermal model 

 

The design then proceeds iteratively where other devices with different power losses or 

thermal resistances can be selected. Different heat sinks and cooling strategies with different 

equivalent Rs-a can also be selected. The design and analysis could also proceed the other way 

around—if temperature measurements are available for a specific design, power losses can be 

estimated based on datasheet thermal resistance values [109-115]. Several design considerations 
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are presented in [116]. In these scenarios, power loss estimation can be used in active thermal 

control as in [117].  

 Assumptions of certain electrical characteristics in the power electronics converter or 

inverter could lead to estimation errors and sub-optimal thermal designs. Most published 

research in power loss estimation thus assumes a fixed switching frequency (fsw) [110, 111, 114-

116, 118-122].  Such an assumption is not applicable for estimating power losses under aperiodic 

switching, e.g., hysteresis. Also, power losses are significantly affected by the switching pattern 

in the semiconductor devices because these patterns affect the switching losses and conduction 

losses (through conduction time). Periodic switching, mainly pulse-width modulation (PWM), is 

the most common switching scheme in power electronics. In addition to fixed switching 

frequencies, such tools make major assumptions as an ideal ripple-free collector-emitter current 

(Ice) [118, 119], linear energy functions with respect to current [120], datasheet energy values 

that approximate power losses at a certain Ice [122], etc. In an inverter under fixed-fsw operation, 

loss estimation uses variants of (9) – (12) [118] where the subscripts cond, sw, on, and off stand 

for conduction, switching, turn-on, and turn-off losses, respectively; Icep is the peak collector 

current, ma is the modulation depth, cosθ is the power factor, fsw is the switching frequency, Irr 

and trr are the diode reverse recovery current and time, respectively, Vdc is the inverter dc bus 

voltage, Vce,sat is the collector-emitter saturation voltage, and Vf  is the diode forward voltage. 

, ,

1
cos

8 3

a
Q cond cep ce sat

m
P I V 



 
  

 
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 ,

1

8
D sw rr dc rr swP I V t f       (12) 

 Curve fitting of switching energies is a common practice in the literature. Points taken 

from datasheet energy-vs.-current curves are processed using curve-fitting methods as 

polynomial or logarithmic functions of the current, e.g. [115]. Curves given in datasheets are 

usually plotted under specific test conditions, mainly Vdc, Tj,Q and/or Tj,D. The effects of the gate 

resistance (Rg) and gate voltage (Vg) of an IGBT are commonly considered as the choice of the 

gate drive, and soft or hard switching could also affect the energy curves. Even though energies 

can be accurately estimated by considering most discrepancies between the actual application 

and the datasheet test conditions, effects of different factors differ from one IGBT-diode module 

to another. Thus, although specific detailed models would be accurate for one module, the model 

has to be adjusted for all other modules.  

The simplest form considered is shown in (13) where the effect of Vdc is assumed to be 

linear with the base dc voltage (Vbase) used in the tests. In equation (13), Esw can be the IGBT 

turn-on, turn-off, or diode turn-off energy, and 
ds

swE  is the switching energy given in the 

datasheet.  

ds dc
sw sw

base

V
E E

V

 
  

 
.     (13) 

Equation (13) might not accurately estimate the switching energies for specific operating 

conditions, but it is commonly used in commercial software, e.g., Melcosim from Mitsubishi. It 

can be applied to any IGBT-diode module without the need to tune any gains or factors as there 

are no unknowns. Another way to model the effects of the current (I), Vdc, and Tj is presented in 
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[123] and shown in equation (14) where σ, ζ, μ, and κ are constants chosen for the best curve fit 

and Tbase is the device junction temperature under the datasheet test. 

jdc
sw

base base

TV
E I

V T

 


   

    
   

.     (14) 

More effects are considered in [124] where Rg and Vg are also considered, as shown in equation 

(15), where Rbase and Vg,base are the datasheet test gate resistor and voltage, respectively; δ and ς 

are constants chosen in a similar manner as μ and κ.   

,

j g gdc
sw

base base base g base

T R VV
E I

V T R V

  


      

         
       

.   (15) 

A combination of temperature measurements and curve fitting is shown in [124] to determine 

curve-fitting coefficients. 

Model-based estimation methods rely on the IGBT-diode parasitic model where all 

parasitic capacitance and resistance is estimated, e.g. [125]. Such methods tend to be 

computationally expensive, especially with detailed models. When ideal switch models are used, 

most of the power loss information is lost and inaccuracies occur. For example, the method 

presented in [126] uses ideal switch models but suffers from measurement offsets which are 

corrected manually.  

Loss estimation under aperiodic switching is presented in some examples, but without 

calorimetry. A model-based method is shown in [127] where both electrical and thermal 

characteristics are modeled. The method in [127] is model-dependent. Two methods that use 

information about the switching and conduction of the IGBT and diode are presented in [128, 

129]. Both use simple curve fitting and the detection of switching and conduction states. In 

[129], only simulations under PWM switching are provided and therefore the experimental 
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accuracy of the method is not validated for periodic and aperiodic switching. The method in 

[128] is also used under fixed fsw and the estimation error is acceptable and less than 15%. 

Reference [130] uses curve fitting of switching energies to improve the computational efficiency 

as compared to model-based methods. Loss measurement is not elaborated upon even though 

estimated and measured losses are compared. The tool in [130] requires significant signal 

conditioning to obtain meaningful results, has a small step size and a long simulation time, 

depends on rise and fall times, and lacks incomplete comparisons with available software 

common in the industry.  

In summary, literature lacks loss-estimation techniques that are model-independent, fast, 

accurate, require no or minor signal-conditioning, operate on any switching scheme, and are 

experimentally validated to have all of these advantages. The tool proposed in Chapter 6 has all 

of these characteristics and is able to estimate losses under periodic and aperiodic switching with 

three measurements: load current, IGBT switching pulse, and Vdc.  
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CHAPTER 3 

RIPPLE CORRELATION CONTROL AS AN EXTREMUM-SEEKING CONTROL AND 

A LOSS-MINIMIZATION TECHNIQUE 

3.1 Ripple Correlation Control as an Extremum Seeking Control 

Extremum seeking control has been researched since the early 20
th

 century [131], and 

significantly developed in the 1950s and 1960s, e.g. [132, 133]. One of the frequently used ideas 

behind ES is the injection of sinusoidal perturbations into a dynamical system to achieve an 

extremum operating point. Several applications of ES have been introduced in the literature 

including current maximization in a railway application [131], MPPT of a photovoltaic (PV) 

array [134], MPPT of a wind energy conversion system [135], optimization of automotive power 

trains [136], antilock braking systems [137], and axial flow compressors [138]. When ES is 

applied to renewable energy systems, mainly PV and wind, in addition to automotive 

applications, a significant overlap with other real-time optimization (RTO) techniques is found. 

Although these techniques dynamically optimize a cost or profit function, they have not been 

directly associated with ES. 

Ripple correlation control is an RTO technique that utilizes inherent ripple in a dynamic 

system to achieve the optimum [65, 139]. Because RCC can be a fast (with high ripple 

frequencies) and accurate (due to integral control) LMT, and has been shown to have problems 

operating at high frequencies in induction machines, there is more interest in detailed analyses of 

RCC as an LMT [53, 62, 66]. It is useful to relate RCC to available ES theory to analyze its 

stability and establish a link between the RCC and ES literature that could be helpful to address 

RCC problems. The main common characteristic is the use of perturbations to estimate the 

function gradient and achieve optimality. The major difference is the perturbation source. In the 
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following analysis and discussion, optimum and extremum are used interchangeably, and the 

objective function is assumed to be unimodal where the local extremum is global. 

 

3.1.1 Historic Overview of ES 

Most researchers involved with ES agree that the work by Leblanc in 1922 [131] is the 

first attempt to utilize perturbations in extremum seeking.  In [131], the current in an electric 

railway feeder is maximized using varying self-inductance of a coil at 20 kHz perturbations. 

Extensive ES research followed in the 1950s, mainly in the Russian literature, which is 

summarized along with some American literature [140] on ES in [141]. ES techniques in [132, 

141-143] are distinguished from the rest by the use of stepping regulators, which use discrete 

steps towards the extremum. The classification in [140] is summarized in [141] and is restated 

here: The first group includes controllers that use a static characteristic slope, found using direct 

differentiation, continuous test signals, or output sampling. The second group includes peak-

holding regulators that use the error between the extremum and the actual operating point to 

maintain extremum seeking. Discussions in [132] focus on the perturbation- or oscillation-based 

ES where systems are classified by having external or self-oscillations. A third category 

addressed in [132] includes non-perturbation-based ES where systems have preset nonlinear 

follow-up characteristics.  

Morosanov [141] developed a more comprehensive overview that classifies ES 

algorithms based on the search method. A block diagram that summarizes a basic ES system is 

presented in [141] and shown in Fig. 12. It will be shown later that this diagram is not only the 

basis of all ES, but also RCC. Note that again, x(t) is the control variable and J(t) is the output 

and objective function. It is important to mention that the ES system shown in Fig. 12 is 
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considered simplified. While a ―plant‖ usually holds the dynamics from the input Z(t) [or u(t)], to 

the output J(t) [or y(t)], ES literature shows a simple mapping between x(t) and J(t), in addition 

to the effector (E) which is usually an integrator as will be discussed later. In most real systems, 

the mapping is not as simple as shown in Fig. 12, and might be a complex problem especially if 

it is an inverse model of a complex system.  

TCE

R x(t) J(t)in

J(t)Z(t)

x(t)

optional

 

Fig. 12. Basic ES system [141] 

( )J t could be generated using different methods with the extremum transducer ―T.‖ The sign and 

value of the derivative include information about the error between the operating point and the 

extremum, and whether it is converging towards the extremum or not. This information is 

accompanied with the change of the control variable x(t) to determine the next value of x(t). 

According to [140, 141], there are three main methods to estimate ( )J t : 

1. Direct differentiation.  

2. Accessary test sinusoidal modulation with phase detection. 

3. Approximate differentiation (first-order discrete derivatives). 

While direct differentiation might be a simple approach with either analog or digital circuits, 

small transitions in y could be significantly amplified in ( )J t . Also, approximate differentiation 

introduces truncation errors.  External perturbations are the main basis of modern ES [144], and 

more details follow in the next section. 
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The controller ―C‖ uses information from ( )J t and ( )x t (not shown) to determine the 

search direction towards the optimum. Four main situations exist in a convex (concave) cost 

(profit) function where ( )J t and ( )x t could be ≤ or ≥ 0, independently. The signs of derivatives are 

used to find the desired search direction, as shown in (16) [141], where τ is a constant gain that is 

> 0 for maximization and < 0 for minimization,  

sign( ( ))
( )

sign( ( ))

J t
Z t

x t
 ,     (16) 

and 

1, if 0

sign( ) 0, if 0

1, if 0

x

x x

x

 


 
 

.  

The effector ―E‖ is usually an integrator that accumulates the desired change in the 

control variable x(t). For example, in a maximization case, if ( )J t > 0 and ( )x t > 0, the operating 

point is on the left side of the profit function, Z(t) > 0, and the integrator will further increment 

x(t). Once the operating point passes the maximum, ( )J t < 0 and ( )x t > 0, and Z(t) < 0, so the 

integrator will decrement x(t) back towards the maximum.   This integration is shown in (17) 

where to is the initial time:  

sign( ( ))
( ) ( )

sign( ( ))
o o

t t

t t

J
x t Z t d

x


 


   .          (17) 

The regulator ―R‖ is optional. It regulates the input to the plant and passes x(t) to that input. Note 

that in (17), the controller will diverge when sign( ( ))x t =0, and therefore the integrand can be 

changed to 

( ) sign( ( ))sign( ( ))

o

t

t

x t J x d     ,          (18) 
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where sign( ( ))x t =0 is no longer a problem, or simply, 

( ) sign( ( ) ( ))

o

t

t

x t J x d         (19) 

as shown in [145]. 

Another major review of ES from 1980 is available in [146] where both static and 

dynamic systems are overviewed, and ES is categorized into four groups:  

1. Perturbation methods: aim at setting ( )J t = 0. These methods use test (external) 

perturbations.  

2. Switching methods: change the input in steps until reaching the extremum area. 

These methods are similar to perturb and observe (P&O) algorithms that decide on 

the next step in x(t) based on the change in x(t) and the approximate differentiation 

or difference in J(t). An example of MPPT is given for a satellite solar cell. 

3. Self-driving systems: rely on information from the derivatives of J(t) and x(t) to 

find the extremum. Even though no details are given on the method of finding ( )J t , 

it is mentioned that a filter should be used to extract the derivatives. These systems 

are very similar to RCC, especially when the control law proposed is modified to be  

( ) sign( ( )) sign( ( ) ( ))z t x t J t x t       (20) 

where ( )J t and ( )x t represent the filtered signals. Integrating (20) yields the desired 

input. Note that division is avoided in (20). 

4. Model-oriented methods: use model information for finding the extremum. The 

model could either be updated before or in parallel with the ES. 
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While ES in MPPT applications can be categorized into these four categories, RCC needs careful 

consideration due to its similarity with two or more of the above categories.  

 

3.1.2 Modern Extremum-Seeking Control 

External perturbations are the basis of modern ES in the works of Krstić, e.g. [144], 

Nesić, e.g. [147], and others such as [148]. Reference [149] is dedicated to introducing ES for 

RTO applications. ES is used to find an unknown extremum of a dynamic system in both 

continuous and discrete times, and ES stability is analyzed. Half of [149] is dedicated to 

applications including bioreactors, formation flight, combustion in stabilities, etc. Several papers 

by Krstić outline the theory of ES with external sinusoidal perturbations. 

Extremum seeking of a continuous-time system with external perturbations is shown in 

Fig. 13. The main idea in this system is to inject an external perturbation,  ( ) sinp px t t  , to 

the system input where ω is the perturbation frequency and αp is the perturbation amplitude. The 

perturbation is used to estimate the gradient of J (Jp), as the perturbation effect will propagate to 

J.  

T

x(t) J(t)

Jp(t)
×γ+

xp(t)=αpsin(ωt)

Z(t)x(t)


 
Fig. 13. Modern ES based on external perturbations 
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Thus, J would have a certain offset with some perturbation due to the additive 

perturbation at the input. ―T‖ is usually a high-pass filter that attenuates the offset in Jp(t), 

however, the perturbation and higher order harmonics remain. As in equation (19), the derivative 

x is multiplied or ―correlated‖ with that of J, but when this is put in the perspective of Fig. 13, 

xp(t) and Jp(t) are correlated as ξ = xp(t) Jp(t), where xp(t) demodulates Jp(t). Because the 

perturbations and derivatives are sinusoids, they maintain their relative phase shift. The effect of 

higher order harmonics produced by demodulation is negligible after integration. In Fig. 13, the 

input has an offset ( )x t and the additive perturbation xp(t). Integration increases or decreases the 

control signal in the direction of the extremum, and the gain γ affects the convergence rate and 

scaling of ξ. Perturbation or persistent excitation is always added to the input to maintain 

tracking. Otherwise, xp(t)= 0, and the system will not be able to dynamically track the extremum 

because the integrator will not update from its last value.  

A simple mathematical derivation of the ES of Fig. 13 is shown in [149] and here for 

convenience. The main assumption is that  
2

2

2

1 ( )
( ) *( ) ( ) *( )

2 ( )

d J t
J t J t x t x t

dx t
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reasonable assumption around the extremum. Note that
2

2

( )

( )

d J t

dx t
>0 for minimization, 

and
2

2

( )

( )

d J t

dx t
<0 for maximization problems. The following derivation shows that the system will 

converge by having the error xe(t) → 0 or ( )x t → x*(t).  
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Substituting x(t)-x*(t) in J(t), 

 
2

2

2

1 ( )
( ) *( ) ( ) sin( )

2 ( )
e p
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J t J t x t t

dx t
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Expanding J(t) and passing it though the high-pass filter (T),  
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For a constant x*(t) = x*, ( ) ( )ex t x t   since *( ) 0x t  . Using trigonometric identities and 

integrating,  
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As the integration of sinusoids has negligible effects on ( )x t , and xe(t)
2
 is negligible,  
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Then,  
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For xe(t) → 0, 
2

2

2

( )

( )
p

d J t

dx t
 must be > 0. In a maximum-seeking problem, 

2

2

( )

( )

d J t

dx t
< 0 and γ is 

chosen to be < 0, while in a minimum-seeking problem, 
2

2

( )

( )

d J t

dx t
> 0 and γ is chosen to be > 0. 

Therefore with the appropriate choice of γ, xe(t) → 0 and ( )x t → x*(t). System stability proofs 

using both the static and singular perturbation system models are extensively studied in [144]. 
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A discrete version of this system is shown in [150], where the plant is split into three 

blocks: two input and output blocks that are assumed to be exponentially stable linear functions. 

Between them are the plant dynamics lumped in a nonlinear function. Stability of the discrete-

time system is studied using two-time-scale averaging theory. Only continuous-time ES and 

RCC are addressed here. Discrete-time versions of both controllers exist, and the analysis 

presented here can be applied. Other discrete ES algorithms include least-square estimation, 

parabola approximation, and ellipse approximation as shown in [135] where the objective 

function is assumed to be quadratic around the optimum. 

An important design factor in ES is the frequency ω which affects stability and 

convergence [151]. The choice of ω in a static system does not affect convergence, and can be 

arbitrarily large. But for dynamic systems, an upper bound on ω is chosen. In [151], stability 

conditions include ―small-enough‖ αp and ω. The physical interpretation of this choice is not 

clear, but larger ω lead to faster convergence times as shown in simulation in [151]. The ES 

convergence rate is shown to be dependent on four factors: gain γ, frequency ω, amplitude αp, 

and power of the perturbation signal power Pp. A function β is defined as β=γα
2
ωPp, where β 

sets the upper bound convergence rate. Note that in [151], square and triangular perturbations are 

also studied and show that square perturbations result in the fastest convergence rate. This result 

implies that sign functions of J and x or their derivatives, where the sign function results in a 

square wave, would lead to faster convergence of the ES.  

 

3.1.3 RCC from an ES Perspective 

Both RCC and ES have been well established as real-time optimization methods, with 

two major similarities. The first is that both utilize perturbations to achieve optimality, and the 
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second is that they both assume objective functions with a single global extremum. The latter 

might pose a limitation on real-time optimization methods, especially if the objective function 

could have local extrema, e.g., PV power curve under partial shading. Some other real-time 

optimization methods address the global extremum seeking or optimization in the presence of 

local extrama. Examples include the work presented in [152] where a two-stage method is used 

with the first stage being a brute-force search; modified search methods such as the one shown in 

[153]; variable perturbation or dither where the search space of the ES method is extended and 

shrunk based on the variable step size set by the frequency of the dither, e.g., [151]; and others. 

Other than having a brute-force search or a brute-force-assisted search, there is no method that 

can guarantee accurate convergence to a global extremum in the presence of local extrema. This 

problem remains as an open and active research topic. Thus, objective functions with a single 

extremum are assumed in the following analysis.  

There are several formulations of equation (5) that can be directly related to ES shown in 

equation (19). Even when equation (7) is used rather than equation (5), equations (7) and (19) 

give similar results. Since ripple sign at any instant is what determines the gradient dJ(t)/dx(t) 

sign, (7) can be written as (10) where ζk is a positive gain,  

0

*( ) sign( ( ) ( ))

t

kx t J x d     .    (21) 

But, sign(a)sign(b)=sign(ab). Therefore, (21) can be written as  

0

*( ) sign( ( ))sign( ( ))

t

kx t J x d     .         (22) 

A basic principle in RCC is that ripples are used to estimate the derivatives of x and J. 

For the simple case of x and J having a dc offset with sinusoidal ripple, the derivatives and the 
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ripple are both sinusoidal and maintain their relative phase relationship. Triangular and 

exponential ripple waveforms are also common in power electronics converters. Exponential 

ripple and its derivative are both exponential and, again, the ripple and derivative have similar 

characteristics. Triangular ripple can be written as a Fourier series of sinusoids, and thus the 

derivative and ripple hold similar information except that the derivative is a square wave. This is 

not straightforward; therefore, two examples are shown in Fig. 14. 
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Fig. 14. Triangular ripple and the derivatives of x and y maintain the same sign for sign( ( ) ( ))y t x t and 

sign( ( ) ( ))y t x t when x and y are (a) out-of-phase by π and (b) in-phase 
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It is clear from Fig. 14 that the sign of ( ) ( )J t x t and ( ) ( )J t x t  is always the same. 

Therefore, (21) can be modified to be (23) where δ is a gain.  

 
0

*( ) sign( ( ))sign( ( ))

t

x t J x d     .    (23) 

Note that the form of (23) is exactly the same as that of (18) for to = 0. This proves that RCC is 

ES, and the only difference is the estimation of ( )x t and. Ripple information is used in RCC, 

while derivative estimation, direct derivation, or modulation and demodulation are used in ES. 

 

3.1.4 Stability of RCC and ES 

Stability analysis of any RCC or ES law, e.g., (3), (18), (19), (23), etc., can be used as 

RCC and ES where shown to be equivalent. The main RCC law shown in (3) is used for stability 

analysis. Equation (24) shows this law.  

0

( )
*( )

( )

t

s

dJ
x t d

dx


 


  .     (24) 

Again, a maximization problem is considered, and the proof is similar to that presented in [134] 

for ES except that the sign of the integrand is used in [134]. For Lyapunov stability analysis, a 

differential form of (24) is desired; therefore, (24) is written as 

( ) ( )

( )
s

dx t dJ

dt dx





 .     (25) 

Dropping *, t, and η for simplicity, (25) is written as 

 s

dJ
x

dx
 .       (26) 

A Lyapunov energy-like function V(t) is defined as  
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2
1

( )
2

dJ
V t

dx

 
  

 
,     (27) 

and the derivative of V(t) is thus  

22 2 2

2 2 2
( ) s s

d J dJ dx d J dJ dJ d J dJ
V t

dx dx dt dx dx dx dx dx
 

 
    

 
   (28) 

If a maximization problem of a concave objective function is considered, then ζs>0, 
2

2

d J

dx
≤ 0, 

and ( )V t ≤ 0. Note that in a minimization application ζs<0 and 
2

2

d J

dx
≥0, so ( )V t ≤0; therefore, 

( )V t ≤ 0. According to Lyapunov’s second theorem on stability, as V(t) ≥ 0 and V(t) = 0 iff t = 0, 

i.e., dJ/dx = 0 at the initial time, and ( )V t ≤ 0, the system shown in (24) is stable in the sense of 

Lyapunov. This proves the stability of RCC and ES. 

 

3.2 Ripple Correlation Control as a Loss Minimization Technique 

 In induction motor applications, λdr can be used as the control variable to minimize Pin or 

Ploss. This choice is based on [52, 53] in addition to simulation and experimental results shown in 

[19]. Among these results is the one shown in Fig. 4 where the minimum region is relatively flat 

but Pin is still convex. Therefore, λdr can be used as the control variable. However, other 

conditions apply for RCC.  

One design issue in RCC is to make the ripple amplitude large enough to avoid a small 

signal-to-noise ratio (SNR), but small enough not to introduce significant oscillations or 

instability (similar stability discussion for ES and conditions on αp are shown in [151]). This 

choice is a general concern at higher frequencies that overlap with the noise spectrum, but power 
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electronics converters have substantial ripple magnitudes compared to noise. The choice of the 

ripple frequency is a key aspect of RCC. While in ES literature the frequency ω is chosen to be 

―small enough‖ for the dynamic system transients to settle, the choice of ω in RCC literature has 

been more systematic. In both RCC and ES, ω determines the convergence rate to the optimum. 

This is clear in RCC — if ω is high, its period is small and less time is needed to arrive at the 

optimum. But, the question is, how high can ω be? When the real J is known in an ideal 

scenario, there are no upper limits on ω. But, in real systems, J is either measured or estimated 

as ˆ( )J t . Measurements have offsets and noise, in addition to calibration errors. Also, when 

measurements are not available, estimates have estimation errors. Therefore, conversion 

to ˆ *( )J t in the vicinity of J*(t) is expected. The error introduced by ˆ *( )J t affects the frequency 

choice, especially when the error is large. In real applications, such as MPPT of PV panels and 

loss minimization in machines, a major source of error between ˆ( )J t and J(t) is the stored energy 

not usually accounted for in J when J is Pin. This effect can be explained in the following 

sections. 

Example: 

The investigation of RCC application to minimize power losses in induction machines 

has been researched and analyzed in [53, 62, 66]. A major problem is that it requires very low 

ripple frequencies which are not inherently available in the machine drive. Reference [53] finds 

the frequency response of the cost function relative to a control variable. The required ripple is 

only available when running at an extremely low speed, close to stall, where the electrical 

frequency is close to zero.  



50 

 

A system utilizing RCC with an induction machine under FOC is shown in Fig. 15. The 

cost function used is Ploss, and the control variable is λdr [53]. Again, maintaining constant Po, 

minimizing Ploss is equivalent to minimizing Pin since Ploss = Pin – Po.  

 
Fig. 15. Typical application of RCC to an induction machine 

 

The transfer function of any perturbations in input power Pin owing to changes in flux λdr 

is given by 

2

3
[ ( ) 2 2( ) ]

2

in m
ds dr m s lr m s ds e qs

dr

dP L
s D L R L L R D

d D
    




     ,  (29) 

which is derived from Pin under FOC for balanced three-phase conditions as shown in Appendix 

A, but without core losses. Note that D is a constant gain also defined in Appendix A. The flux 

λdr can be varied and the frequency response or Bode plots of input power from (29) can be 

generated. At the optimal λdr (λdr*), the phase of (29) is expected to be at π/2 + nπ radians where 

n is an integer. Since this is a dynamic application, λdr* changes in real time because the motor is 

never in steady state under variable loads and disturbances. But, linearization at a certain 

operating point is essential to show that the minimum Pin exists. Note that substituting for the 

variables in (29) for an operating point is shown in Appendix A. In this example, an operating 

point is selected at 2 N·m for a fan load. The resulting convex Pin curve is shown in Fig. 16 and 
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shows the minimum around 300 mV·s. This curve is different from that in Fig. 4 because this 

approximation is based on an idealized steady-state model of the drive under IFOC without core 

losses, while Fig. 4 is extracted from simulations of the nonlinear drive model including core 

losses. A Bode plot of (29) for different values of λdr is shown in Fig. 17.  
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Fig. 16. Convex plot of Pin using the steady-state model of Pin used in (29) 
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Fig. 17. Bode plots of (29) for 100 < λdr < 900 mV·s in steps of 100 mV·s, the black line shows the Bode plot at the 

minimum Pin 

 

The phase at the minimum power point is π/2 radians or 90
o
 and it corresponds to λdr≈300 

mV·s. It is clear from Fig. 17 that for the steady-state model there is a single global minimum. 
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But, the frequency at which this minimum can be identified unambiguously is less than 100 

rad/sec or 16 Hz.  

 

3.3 Compensator for Higher Frequency Operation 

The limited frequency range for applying RCC, as shown in Fig. 17, is attributable to 

energy storage in the induction machine.
2
 A similar problem was investigated in [71] for RCC in 

a photovoltaic application. In that case, the storage medium is the photovoltaic panel output 

capacitance, while in the induction motor case, it is a combination of the leakage and 

magnetizing inductances.  

It is necessary to design compensation for the stored energy to extend the operating 

frequency range. Given any inductor L carrying a time-varying current iinductor(t) with a voltage 

drop vinductor(t), the energy stored is Einductor(t) = ½Liinductor(t)
2
. As (29) is derived from power 

rather than energy in the frequency domain, a frequency-domain power expression would 

account for the energy storage problem. The power in the inductor is given by 

( ) ( )
( ) ( ) ( ) ( )inductor inductor

inductor inductor inductor inductor

dE t di t
P t v t i t L i t

dt dt
   .  (30) 

For an initial current iinductor(0) = 0 at t = 0, the Laplace transformation is 

Pinductor(s)=s(½LIinductor(s)
2
) where Iinductor(s) is the inductor current in the Laplace domain.   

The induction machine dq0 model is shown in Fig. 18 [154] where Llr and Lls are the rotor 

and stator leakage inductances, respectively. The total inductor power can be written as   

       2 2 2 2 2 2 2 21 1 1 1

2 2 2 2
ind m qs qr m ds dr ls qs ds lr qr drP s L i i L i i L i i L i i

 
        

 
.  (31) 

                                                 
2 The compensator design presented in this chapter is submitted as an invention disclosure at the University of Illinois number TF10092.  
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The reason  2 2

qs qri i and  2 2

ds dri i are used in (31) rather than  
2

qs qri i and  
2

ds dri i is that, 

physically, the rotor and stator currents do not combine in Lm in either d or q circuits as might be 

interpreted from Fig.18. Therefore the cross terms 2iqsiqr and 2idsidr should not be considered. The 

compensated input power is thus  

,comp all in indP P P  ,     (32) 

and 

,

2

3
[ ( ) 2 2( ) ]

2

comp all

dr ds dr m s lr m s ds m e qs

dr

dP
s A B L R L L R DL

d D
     




      ,  (33)  

where  

      2ls m lr ls m m ls mA L L L L L L L L       

and 

      2m lr ls m m ls mB L L L L L L L    . 

Rs
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Fig. 18. Induction machine equivalent circuit model 
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Bode plots of 
,comp all

dr

dP

d
are shown in Fig. 19. As expected, with ideal compensation and 

knowledge of Lm, Lls, and Llr, the frequency range of the compensated transfer function goes to 

∞. Phase shifts of 180
o
 and 0 (or 360

o
) below and above the optimum, respectively, are clear. 

Thus, the optimal λdr did not change, but the frequency range has been extended.  
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Fig. 19. Ideal compensation showing all points above, below, and at the minimum 

 

This compensation procedure is just a mathematical exercise. Real-life compensation for 

leakage inductances is a hard task, especially because these inductances are in the range of 1–5% 

of Lm and are difficult to measure. Therefore, a simpler but non-ideal compensation method with 

less dependence on motor parameters is desired, representing a potential future implementation. 

As most of the stored energy is attributed to Lm, which can be approximated from simple motor 

tests, an effective compensated input power is considered as 

,comp m in mP P P   where    2 2 2 21 1

2 2
m m qs qr m ds drP s L i i L i i

 
    

 
,  (34) 
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,

2

3
[ ( ) (2 2( ) )]

2

comp m m
m dr ds m dr m s lr m s ds m e qs

dr

dP L
sL L L R L L R DL

d D
     




       ,        (35) 

where 

  2 2ls m ls mL L L L      

and  

 22ls lr mL L L    . 

The Bode plots of 
,comp m

dr

dP

d
 in Fig. 20 show that the minimum can be identified up to about 3000 

rad/sec or 477 Hz. This covers the 120 Hz ripple in single-phase power sources and the 360 Hz 

from three-phase bridge rectifiers inherent in induction motor drives.  
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Fig. 20. Bode plots of (21) for 100 < λdr < 900 mV·s in steps of 100 mV·s 

 

Estimates of leakage inductances and more accurate data about Lm can improve this 

range, and in principle reach switching frequencies in power electronics converters feeding 
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induction machines. The optimal value of λdr does not change, but the ripple frequency range 

over which RCC is useful has been extended.  It is especially important to extend the frequency 

range to at least 360 Hz to permit rectifier ripple.  If it can be extended to 10 kHz or more, then 

output inverter ripple can be employed for RCC. 

 

3.4 Time-Domain Simulations 

Time-domain simulations give a better understanding of the proposed compensator in a 

real application. An example showing the effect of compensator phase correction between λdr 

and Pin is shown here. The 1.5 hp motor parameters used are shown in Appendix A. Substituting 

these parameters in (29), (33), and (35) results in steady-state transfer functions of Pin, Pcomp,all, 

and Pcomp,m, respectively. The results are tabulated in Table 4 where the function is notated Θs + 

Ω.  

Table 4. Transfer function parameters for three different cases 

System Θ Ω 

No Compensation -33.92 2312 

Ideal Compensation 0 1541 

Lm Compensation  -0.4002 1541 

 

 The three systems were simulated, where the input to the transfer function is λdr + 

sinusoidal ripple, and the output is Pin + ripple. The load condition is maintained at Te=2N·m. To 

illustrate, λdr=500 mV·s, which is above the minimum for the steady-state system. Ideally, the 

ripples in λdr and Pin should be in phase at any frequency. A 360 Hz, rectifier ripple frequency is 

used to demonstrate the compensator capabilities. The results in Fig. 2 show that when the 

system is uncompensated, the phase shift between λdr and Pin is 90
o
. This means that RCC would 

confuse this sub-optimal point with the real minimum. Under ideal compensation, the phase shift 

is exactly 0
o
, which is expected, and allows RCC to track the optimum at any frequency. Usually, 
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the leakage inductances are not well known, so a compensator considering only Lm was 

simulated as shown in the bottom plot in Fig. 21. Even though the phase shift under this partial 

compensation is not exactly zero, it is significantly less than 90
o
, and RCC will not confuse it 

with the optimum.  
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Fig. 21. Time-domain simulations of the uncompensated, ideally compensated, and partially compensated system 
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CHAPTER 4 

LOSS MINIMIZATION TECHNIQUES: APPLICATIONS, COMPARISON, AND 

ENERGY SAVINGS 

4.1 Energy-Saving Potential 

Energy savings in a motor drive can be achieved using LMTs reviewed in Section 2.2 and 

RCC discussed in Chapter 3.
3
 Savings vary depending on the convergence accuracy and speed to 

the minimum Pin or Ploss. Any LMT is expected to give useful savings in a constant steady-state 

application. For dynamic loads, fast methods are needed. In this section, the LMT is treated as a 

black box and the minimum power point is assumed to be known for any load. An illustrative 

example is used to show the amount of energy saved in a common application—an induction 

machine in a pump. Energy saved can be calculated by finding the total electrical energy 

consumed by the machine under nominal operating conditions compared to optimal operating 

conditions. Hereafter, λdr is used as the control variable for reasons outlined in Chapters 2 and 3, 

and Pin is the cost function.  

Using simulations, experiments, or analytical calculations, Pin is found for different loads. 

The load determines Po and the efficiency (ε) is found as ε=Po/Pin. The efficiency curve shown 

in Fig. 1 can then be plotted. Pin is expected to decrease under an LMT, especially for light loads, 

and ε would increase to become the optimal efficiency (ε*). Here, ε* was found from IFOC 

simulations employing the 1.5 hp machine under different values of λdr. The minimum was found 

for loads stepped from 0 to 100% in 10% increments. LMTs converge to the vicinity of ε*. The 

resulting ε* is shown in Fig. 22 for different loads. It is clear that at lighter loads, efficiency 

improvement, loss minimization, and energy savings are significant.  

                                                 
3 Most of the results presented in this chapter have been published in [18], [19], and [155].  
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Fig. 22. Nominal (solid line) and optimal (dashed line) efficiencies 

 

Typical pump load profiles, e.g. [155], are used to find the total output energy for a time 

period. Mapping a load profile to efficiency in Fig. 22 gives the expected efficiency over a time 

period. A similar load profile to the one shown in [155] is used here. This is typical for a heating, 

ventilating, and air conditioning (HVAC) pump where the machine frequently operates below 

rated conditions. The total time interval is 5000 hours and the power has a Gaussian distribution 

as shown in Fig. 23.  
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Fig. 23. Load profile for the 1.5 hp induction machine in a pump application 

 

Efficiency points can be extracted for every load under both nominal and optimal 

operation, then  Pin is determined as Pin = Po/ε and Po is calculated as the load percentage of 1.5 

hp or 1119 W. Results are shown in Table 5, and Table 6 shows the total Ein and average 

efficiency for both scenarios. Note that the average efficiency is found as a weighted average 

based on the histogram of Fig. 23.  

ε* 

ε 
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Table 5. Efficiency, Pin, and Ein for nominal and optimal operation (with * superscript) 

Load (%) Time (h) ε (%) Pin (W) Ein (MWh) ε* (%) Pin* (W) Ein* (MWh) 

10 300 42.14 266 0.0797 79.05 142 0.0425 

20 400 59.16 378 0.151 86.77 258 0.103 

30 500 68.29 492 0.246 88.99 377 0.189 

40 600 73.94 605 0.363 89.61 499 0.299 

50 700 77.74 720 0.5038 89.55 625 0.437 

60 700 80.45 835 0.5842 89.17 753 0.527 

70 600 82.45 950 0.5700 88.59 884 0.531 

80 500 83.97 1066 0.5330 87.91 1018 0.509 

90 400 85.16 1183 0.4730 87.16 1155 0.462 

100 300 86.1 1300 0.3899 96.37 1161 0.348 

 

 

Table 6. Total energy and average efficiency from Table 5 

Operation  Total Ein and Ein* (MWh)  Average ε and ε* (%)  

Nominal  3.894  70.2  

Optimal  3.448  82.8  

 

It is clear from Tables 5 and 6 that overall efficiency improves under optimal operation as 

expected. Improvements are achieved at low loads where ε increases by around 38 points at 10% 

load. The average increase in ε is 12.6% which is also significant. If induction machines are 50% 

of the global electric load and operate under energy-saving control, global generation can be 

reduced by 6.27%. Energy savings are also significant where Ein dropped by 11.46% from 3.894 

MWh to 3.448 MWh for a 5000 h period. The total energy saved for this period is thus 446 kWh 

or 11.45%. The energy savings are substantial for a large number of pumps run. For example, 

optimal operation of one million pumps saves 446 GWh of energy. At 10 ¢/kWh, the value of 

these savings is $44.6 million over a period of 5000 h or 208 days.  

The above example shows that if Pin* is achieved, significant energy savings will result 

and could lead to a reduction in the global energy consumption, generation, and greenhouse gas 

emissions. In the following sections, Pin* is found using LMTs, but special consideration should 
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be taken when applying the LMT, including maintaining load support as shown in Section 4.2. 

Examples that demonstrate the characteristics of LMTs and their energy-saving potential are 

shown in Sections 4.3 and 4.4.  

 

4.2 Constrained Optimization and the Effect on the Load 

It is important to consider the load before applying any LMT to an induction machine. An 

important observation can be made from induction machine theory: torque is directly related to 

current and flux. If the flux is set to be weak to achieve energy savings, the optimal flux could be 

less than the flux needed to support the load torque, and the machine will stall. This was verified 

in the laboratory and shown in Fig. 24. When the minimum flux linkage (λdr,min) is greater than 

λdr* and the LMT converges to λdr*, the machine will not be able to maintain the load torque. 

Another observation is that the region that includes Pin* is relatively flat as shown in Fig. 4, even 

in the saturation region. While the maximum flux linkage (λdr,max) is determined by the machine 

saturation limits, an LMT can converge to a λdr that is higher than rated if saturation is not 

included in a model-based LMT or in simulation models. But, when λdr,max is not considered, the 

desired outcome is to find out if the LMT achieves Pin* regardless of λdr in the flat region. 

However, in experiments, λdr,max is an important constraint to avoid saturation. It can be 

determined from the machine rated flux or flux linkage.  

Pin

λdr* λdr,maxλdr,min

Pin*

λdr

 
Fig. 24. Situation when λdr is less than λdr,min 
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To determine the allowed λdr,min for a certain load, λdr must be formulated as a function of 

Te and other states, and its lower bound is λdr,min. In an IFOC drive, the limit is found to be 

4

3

e
dr

p m ls rated

T

n L L i

        (36) 

where γλ is a gain and irated is the rated current in the dq0 frame. Equation (36) is derived in 

Appendix B. When λdr*<λdr,min, several solutions exist to mitigate this problem. One is to use a 

static high value of λdr,min which would prevent λdr* from going below λdr,min. This solution has a 

drawback when λdr*<< λdr,min because sub-optimal operation will result when setting λdr*= λdr,min. 

Another solution is to augment the load into the cost function of Pin or Ploss. But this has to be 

custom designed for every LMT or cost function model. The solution discussed below is to 

dynamically shift Pin or Ploss with respect to λdr such that λdr* is moved to λdr,s* where λdr,s*> 

λdr,min. In Fig. 25 the shift is Δλ>|λdr*- λdr,min| and the shifted Pin is Pin,s. 

Pin

λdr* λdr,s*

ΔP

λdr

λdr,maxλdr,min

Δλ

Pin,s

 
Fig. 25. Shifting Pin satisfies λdr,s*>λdr,min but introduces ΔPs 

 

Note that this shift would introduce sub-optimal operation in power, quantified as ΔP, 

where ΔP≈0W is desired. The upper limit Δλ<|λdr*- λdr,max|  satisfies the saturation limit but could 

introduce higher ΔPs than desired; thus, Δλ is set to be Δλ=|λdr*- λdr,min+ελ| where ελ is a small 

positive value. The shifted Pin curve (Pin,s) can be found for a certain Δλ. The first step is to 

formulate Pin in terms of λdr and Δλ. This can be achieved by using IFOC equations [154]. The 

curve shift derivation is shown in Appendix B, and Pin,s is  
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2

,in s in eP P T   ,      (37) 

where Γ and Λ are defined in Appendix B. A simpler form of Pin,s is desired because equation 

(37) depends on knowledge of load, motor parameters, and λdr. For this purpose, two 

approximations of (37) are studied. The first (Pin,s1) sets 21/ dr  and Λ=0, and the second 

(Pin,s2) sets Γ=1 and Λ=0. Both are independent of Δλ but still depend on Te. The second 

approximation is also independent of λdr. This is an advantage when Pin,s is found dynamically 

without estimating λdr. For Δλ=0.1V·s, Pin, Pin,s, Pin,s1, and Pin,s2 are shown in Figs. 26 and 27 for 

Te=2 and 4N·m, respectively. Zoomed-in versions are shown in Figs. 28 and 29.  
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Fig. 26. Shifted and original Pin for Te=2N·m 
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Fig. 27. Shifted and original Pin for Te=4N·m 
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Fig. 28. Zoom in for Te=2N·m 

0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6
650

660

670

680

690

700

710

720


dr

 (V.s)

P
o
w

e
r 

(W
)

T
e
=4

 

 

P
in

P
in,s

P
in,s1

P
in,s2

 
Fig. 29. Zoom in for Te=4N·m 
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Figs. 26–29 show that Pin,s is shifted by 0.1V·s as expected with minimal ΔP. Even though the 

second approximation has minimal ΔP≈0, it does not lead to any significant horizontal shift in Pin 

when the desired Δλ is 0.1V·s. The first approximation is still useful to introduce the horizontal 

shift and introduces smaller ΔP than that in Pin,s. Note that ΔP is defined on Pin,s as shown in Fig. 

25; thus, the vertical shift of Pin,s1 does not affect ΔP. These results suggest that Pin,s or its 

approximation, Pin,s1, can solve the problem of having λdr*<λdr,min by introducing the horizontal 

shift.  

 

4.3 Hybrid Vehicle Motor Drive Application 

4.3.1 Model-Based LMT in an HEV Application  

The energy-saving potential was studied in a static sense for a pump application in 

Section 4.1. Energy savings were shown to be significant, but could vary for dynamic 

applications. HEVs and EVs are important and promising applications of induction motor drives. 

They have highly variable loads (large ρ) with abrupt braking and acceleration, especially in 

urban areas. Energy storage in a vehicle is limited to the battery capacity. Combining high load 

variability with limited battery capacity leads to significant energy bursts in and out of the 

batteries. Because LMTs reduce the power requirement in an HEV or EV, less energy is drawn 

from the battery pack. This helps reduce the battery cycling bursts and pack size but poses 

challenges—the LMT must be faster than the vehicle dynamics in order to achieve meaningful 

savings, and λdr,min and λdr,max should be selected to avoid any catastrophic stall. The second 

challenge can be solved using the approach derived in Section 4.2 using an LMT that considers 

the load. The first challenge requires revisiting the review in Section 2.2.6 where model-based 

LMTs are expected to be the most suitable for HEV and EV applications. Literature reports that 
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model-based LMTs are significantly faster than the physics-based LMTs, in general. Hybrid 

LMTs are also slower than model-based LMTs but can still perform well. Convergence error to 

the true minimum that could result due to parameter errors in model-based LMTs is of little 

concern; energy savings with a very fast response time are desired. 

A model-based LMT that uses λdr as the control variable in an IFOC induction motor 

drive is shown in [52] and in equation (38) (the derivation of (38) is shown in [52]). Equation 

(38) is suitable for HEV and EV applications because Te is augmented in the Ploss model, which 

solves the second challenge mentioned above.  

2 2
2

2 2 2

s s r e
loss dr r

m m dr

R R L T
P R

L L




 
   

 
.     (38) 

By solving ∂Ploss/∂ λdr=0, the value of λdr* can then be found to be 

2
2 2

4* m r
dr r e

s

L R
L T

R


 
  

 
.            (39) 

To demonstrate the energy-saving potential in an HEV, the induction machine efficiency 

is evaluated under nominal and optimal flux found using (39). Two methods are used: The first 

uses the HEV simulator which is described in Section 4.3.2. In these simulations, the HEV is run 

under different drive cycles for the nominal flux. Pin, Pout (Te and the mechanical speed ωm) are 

recorded for every simulation sample, then the optimal Ploss (Ploss*) is found analytically to find 

Pin*= Pout+ Ploss*. The second uses an experimental setup where the LMT is dynamically applied 

over a simple driving cycle and Pin and Pin* are compared.  
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4.3.2 HEV Simulator  

The HEV model used is based on [3] which was experimentally validated with a real 

HEV and discussed in more detail in [156]. The model includes fuel cell and battery energy 

storage systems in addition to an IFOC induction motor drive and a traction system. The IFOC 

block diagram is shown in Fig. 30 where the superscript c denotes a command quantity, iabc are 

the three-phase stator currents, and ζs is the electrical angle. The induction motor power rating is 

10 hp and its parameters are given in Appendix A. The drive model is based on [154] and the 

battery model was experimentally validated in [157]. The energy storage system sets the inverter 

Vdc which is managed based on the load requirement (energy is stored and dispatched according 

to the load status). The traction system is based on basic torque equations [158] and an automatic 

transmission gearbox. The load torques are aerodynamic drag, rolling resistance, inertia, and hill-

climbing torques. A high-level block diagram of the simulator is shown in Fig. 31 where Pload is 

the power required by the load.  
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Fig. 30. Block diagram of the motor drive ©2010 IEEE 
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Fig. 31. High-level block diagram of the HEV simulator ©2010 IEEE 

 

The simulator runs in real time and therefore drive cycle simulations do not involve long 

simulation times. This is achieved by using an XPC target connected to a host computer running 

MATLAB®. The communication between the target and host computers is established over a 

TCP/IP network for large data files, or over serial RS-232 for small data files. Simulations are 

compiled from Simulink onto the target computer which runs them in real-time at a certain 

sampling rate (as low as 11μs in this case) and then sends the results to the host computer. 

The driving cycle or schedule loaded to the simulator contains the desired linear speed 

profile of the HEV. Interpolated acceleration is mapped to c

eT using the gearbox and traction 

equations and the command is sent to the drive model. The drive utilizes the energy storage 

system for Vdc. For vehicle acceleration, the c

eT is positive, and for deceleration or braking it is 

negative.  

 

4.3.3 Evaluation of Energy Savings 

Efficiency maps are often used to estimate machine efficiency for different torque-speed 

operating points. They produce a static map which can be mapped to a load profile [159]. Their 

main drawback is ignoring the machine transient response even though transients include 

significant energy flow. The HEV and EV literature has focused on these maps, and vehicle 

dynamics are not usually considered. This leads to inaccuracies when evaluating machine 
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efficiency. An example of an efficiency map is shown in Fig. 32 and is available along with 

other maps in [160].  

 
Fig. 32. Efficiency map of an induction machine for high-voltage wye arrangement at 100% flux level [160] 

Comparison of HEV machine efficiency under nominal and optimal operation is shown 

in [161] where the comparison is based on the dynamic evaluation of Pin and Po. This evaluation 

helps find the overall energy efficiency (α) defined as the ratio of total Eo over the total Ein where 

total energies are evaluated for a complete driving cycle. Also, Ein can be translated to a dollar 

value and savings when compared to Ein*. Another comparative evaluation is based on the 

dynamic efficiency (εj) which is the ratio of the instantaneous Po over Pin for an instant j. Note 

that Pin and Po can change form: Pin is electrical and Po is mechanical for motor operation, while 

Po is electrical and Pin is mechanical for generator operation (regeneration). It is expected that 

under an LMT, both α and the average εj ( ) would increase to α* and the average εj* ( * ).  

 

4.3.4 Results and Remarks
4
  

Published driving schedules were used to evaluate α, α*, , and * . Urban schedules 

include dynamic acceleration and braking while highway schedules are less variable. The 

                                                 
4 Comparisons of an induction machine and a PMSM of similar ratings in the HEV simulator are shown in [153]. Results show that the 

induction machine under loss minimization control could have a comparable efficiency to the PMSM. 
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schedules, shown in Table 7, are available on the Environmental Protection Agency (EPA) 

website [162] and include those from the United Nations Economic Commission for Europe 

(UN/ECE). 

Table 7. Driving schedules from [162] ©2010IEEE 

Driving Schedule Source Time (s) 

Urban Dynamometer Driving Schedule (UDDS) EPA 1364 

Highway Fuel Economy Driving Schedule (HWYFET) EPA 765 

New York City Cycle (NYCC) EPA 598 

Elementary Urban Cycle (EUC) UN/ECE 195 

Extra-Urban Driving Cycle (EUDC) UN/ECE 400 

 

The driving schedules were all run under nominal and optimal flux from equation (39). 

Sample results are shown in Figs. 33 and 34 for one highway schedule (HWYFET) and another 

urban schedule (EUC). Results of other schedules show, like these, that ε* forms an envelope 

around ε and overall energy savings can be achieved under efficiency improvement.  Note that in 

Figs. 33 and 34, neither ε nor ε* reaches 100%, but at some transient points Pin and Po nearly 

match as the drive makes the dynamic transition between motoring and braking.   
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Fig. 33. Induction machine efficiency under rated and optimal flux for HWFET ©2010 IEEE 
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Fig. 34. Induction machine efficiency under rated and optimal flux for EUC ©2010IEEE 

 

A numerical comparison of  and * for all five driving schedules is shown in Table 8. 

As expected, * is higher than   for all schedules, with an average improvement of two points. 

While these savings are not large, they impact battery sizing and overall efficiency.  Some values 

of  and * are low, because when the HEV stops,  and * are both zero. If the stall points are 

excluded from any schedule,  and *  will be significantly higher; their average is about 90%. 

Table 8.  and * for five driving schedules ©2010 IEEE 

Driving Schedule   (%) *  (%) 

UDDS 69.61 72.76 

HWYFET 89.71 91.67 

NYCC 49.39 51.91 

EUC 59.21 60.24 

EUDC 82.05 83.50 

 

Another numerical comparison is for α and α*. Ein, Ein*, and Eo are found from the 

simulation results similar to those in Figs. 33 and 34. Eo is the same under nominal and optimal 

operation. If the data sampling rate is 1 s, the sum of Pin multiplied by the schedule time with 

appropriate h/s conversion (K) would be Ein. However, the number of samples (Ns) is 
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significantly higher due to the small step size (Ss) of 11 μs/sample, so the following equation can 

be used to find Ein, Ein*, and Eo where Ein is shown as an example:  

,

1

sN

in in j s

j

E P S K


   .      (40) 

In equation (40), the units are W∙samples for ,

1

sN

in j

j

P


 , s/sample for Ss, and h/s for K to give Ein in 

Wh. The total energy results of all five schedules are shown in Table 9, and the resulting energy 

efficiencies (both α and α*) are shown in Fig. 35. It is clear in Table 9 that Ein*<Ein as expected. 

Therefore, the total energy drawn from the storage medium is less under an LMT. Having 

Ein*<Ein directly translates to α*<α as shown in Fig. 35. The average improvement in α is 4.22 

points, which is significant especially with limited energy storage.  

Table 9. Input and output energies for different drive cycles under rated and optimal flux ©2010 IEEE 

Driving Schedule Ein (KWh) Ein* (KWh) Eo (KWh) 

UDDS 0.9620 0.9083 0.7253 

HWYFET 1.6462 1.6067 1.4632 

NYCC 0.1778 0.1458 0.0871 

EUC 0.0653 0.0647 0.0489 

EUDC 0.7110 0.6870 0.6170 

 

 
Fig. 35. Nominal and optimal energy efficiencies for five drive cycles ©2010 IEEE 

 

A simplified driving schedule was tested to validate the energy savings experimentally 

and show the efficiency improvement under dynamic LMT based on (39). The setup of the 

induction motor drive under IFOC is described in Appendix C [163]. The driving schedule used 
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is shown in Fig. 36 and involves acceleration, deceleration, braking, and steady speed with 

torque steps— resembling hill climbing. This sample schedule serves the intended goal of 

demonstrating energy savings for various dynamic operations common in an HEV. It can be 

applied in two-quadrant dynamometers which are widely available and less expensive than four-

quadrant dynamometers. Experimental results of Pin and Po and their averages, for both nominal 

and optimal flux operation are shown in Figs. 37 and 38, respectively.  

 
Fig. 36. Short driving schedule used in experiments ©2010 IEEE 
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Fig. 37. Experimental results for Pin and Po under 

nominal operation ©2010 IEEE 

 

 
Fig. 38. Experimental results for Pin* and Po under 

optimal operation ©2010 IEEE 

 

Figure 38 shows that, as expected, Pin* is generally less than Pin for different operating 

conditions. This leads to having Ein*<Ein, α*<α, and  < * .  These results are shown in Table 

10. The energy and dynamic efficiency numbers shown in Table 10 are relatively low due to the 

light load operation. Note that in Fig. 36 the maximum torque applied is 3N·m while the rated 

torque is 6.1N·m. The motor has lower efficiencies at light loads compared to the rated load, as 

shown in Fig. 1. As shown in Table 10, the average dynamic efficiency improves by 2.66 points, 

and the energy efficiency improves by 3.4 points. These results are similar to the HEV results 

shown in Table 8 and Fig. 35, but the energy savings in an HEV are greater because the 

percentage savings are from a larger Ein or Pin due to the larger HEV motor.  

Table 10. Numerical results from the experimental driving schedule ©2010 IEEE 

  (%) *  (%) Ein (Wh) Ein* (Wh) Eout (Wh) α (%) α* (%) 

54.69 57.35 3.42 3.23 1.94 56.7 60.1 
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4.4 Propulsion Application 

4.4.1 Propulsion Load and Loss Minimization 

Electric ship propulsion is an application of large electric machines. The first machines 

used were dc with power limited to 10,000 hp. They suffer from high repair and maintenance 

requirements [164]. Newer propulsion systems use ac machines, specifically induction machines. 

Their power range goes up to 33,000 hp or 20–25 MW [164, 165]. With high power ratings, any 

loss minimization would be significant. For example, 5% energy savings in a 20 MW machine 

could be enough to power most auxiliary loads, such as lights on board a ship. Multiphase 

induction motors are usually used in electric ships because of their high torque density, high 

efficiency, low torque pulsations, flexibility of power conditioning, and fault tolerance [166-

168]. A three-phase machine is used here for laboratory testing.   

A propulsion load is studied to compare LMTs in real time. This load is usually used to 

model fans and propellers where, according to the propeller law, the power required by the 

propeller (Pprop) is a cubic function of the velocity (Vprop) of the propelled body. Given a 

constant, kprop,  

3

prop prop propP k V .      (41) 

Here, Pprop is the machine power and is the product of Te and ωm, where ωm and Vprop are linearly 

related [169]. Thus, TL=Te in steady state, is a quadratic function of ωm,   

2

L load mT k  .      (42) 

The constant kload can be calculated from machine ratings. For example, for the 1.5 hp machine 

used in the following simulations and experiments, the rated ωm is 1750 rpm or 183.26 rad/s, and 
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the rated torque is 6.1 N·m. Setting TL=6.1 N·m and ωm=183.26 rad/s, and solving (42) yields 

kload =1.816×10
-4 

N·m/(rad/s)
2
.  

 All three real-time or online LMT categories are tested with the propulsion load, shown 

in equation (42), using the same simulation and experimental setup. This provides common 

ground for comparing LMTs [18], necessary because of the multiplicity of machine ratings, 

loads, and controllers used to demonstrate LMT operation in various publications. The 

simulations use IFOC and the induction machine model from [154]. The experimental setup is 

described in Appendix C. All LMTs use λdr as the control variable for reasons described earlier. 

The model-based LMT is based on equations (38) and (39), where Ploss is the cost function. It 

uses an estimate of Te and some motor parameters to set λdr*. The physics-based LMT is a simple 

P&O described in Fig. 6 where Pin is the cost function. It samples Pin and λdr every 1 s after 

system transients settle. The hybrid LMT is RCC with Pin as the cost function. Due to the high-

frequency problem when applying RCC to induction machines, a slow low-amplitude 

perturbation at 4 Hz is injected to λdr for RCC simulations. This makes RCC similar to modern 

ES as shown in Fig. 13 where the perturbation is 

( ) ( ) 20sin(8 )p drx t t t   mV∙s 

compared to the rated flux of 500 mV∙s.  

 

4.4.2 Simulation Results 

Simulation results for the three LMTs are shown in Figs. 39–41 for TL=2 N·m and 

ωm=ωrm=1000 rpm. LMTs are expected to converge to between 600 and 800 mV·s, as shown in 

Fig. 4. The initial λdr command is 200 mV·s which is significantly lower than the rated λdr at 500 
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mV·s. This low initial condition is outside the flat minimum-Pin region and clearly shows the 

transient response of the LMT.  
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Fig. 39. Simulation results for model-based LMT ©2010 IEEE 
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Fig. 40. Simulation results for physics-based LMT ©2010 IEEE 
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Fig. 41. Simulation results for hybrid LMT (RCC) ©2010 IEEE 

All three LMTs converge to λdr* near 680 mV·s, as expected. In general, λdr* would be 

less than the rated λdr for a real machine, but in these simulations, saturation is not considered 

and therefore higher flux is not penalized. The model-based LMT shows convergence within 250 

ms, fast enough to track sub-second load changes. Sensitivity to machine parameter errors is 

studied later. The physics-based LMT converges slowly to the vicinity of λdr*, then oscillates. 

These oscillations are significant, since the minimum region is relatively flat. The hybrid LMT 

shows fast convergence and low oscillations when compared to the physics-based LMT. The 

oscillation amplitude depends on that of the injected perturbation or inherent ripple. The hybrid 

LMT depends on fewer parameters and has lower parameter sensitivity compared to the model-

based LMT. These results show that with accurate machine parameter knowledge, model-based 

LMTs perform well. When no parameter knowledge is assumed, physics-based LMTs should be 

used despite their slow convergence. Applications that have low load variability, or small ρ, and 

long runtimes can use physics-based LMTs, as the minimum Pin does not change significantly 

and slow convergence time is not an issue. Physics-based LMTs with small step sizes have 

lower-amplitude oscillations at the cost of slower convergence times. Adaptive physics-based 
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LMTs, such as the adaptive P&O algorithm presented in [64], can reduce convergence time and 

oscillations but are still outperformed by model-based and hybrid LMTs. 

 

4.4.3 Experimental Results 

Experimental results for the model- and physics-based LMTs are shown in Figs. 42 and 

43, respectively, for the same operating condition described in Section 4.4.2. Channel 1 is ωm in 

rpm, Channel 2 is Pin in W, and Channel 3 is the λdr command in mV·s.  The load is applied at 

t=9 s, and the LMT is engaged at t=16 s. These results are similar to those shown in Figs. 39 and 

40. The main difference is that the LMTs converge at or near 470 mV·s<500 mV·s, as expected. 

The convex plot of the LMTs with measurement error bounds in Fig. 44 shows the expected 

minimum. In Fig. 42, the model-based LMT responds quickly, similar to a step command due to 

the fast calculation of λdr* on the DSP. Figure 43 shows that the physics-based LMT has slower 

convergence time and requires several seconds to reach the minimum-Pin region of the minimum 

Pin. Both figures show that the load is well maintained at a speed of 1000 rpm when the torque is 

set through an external loop at 2 N·m.  
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Fig. 42. Experimental results for model-based LMT 

Channel-1: ωm (rpm), Channel-2: Pin (W), and Channel-

3: λdr command (mV·s) ©2010 IEEE 

 
Fig. 43. Experimental results for physics-based LMT 

Channel-1: ωm (rpm), Channel-2: Pin (W), and Channel-

3: λdr command (mV·s) ©2010 IEEE 
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Fig. 44. Experimental results for convex plot of Pin vs λdr with measurement error bars ©2010 IEEE 
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Results in Figs. 39 and 42, and Figs. 40 and 43 match each other and the performance 

predictions. Minor discrepancies between experimental and simulation results are due to motor 

parameter errors and the fact that saturation is not modeled in simulations. Table 11 summarizes 

the simulation and experimental results. The hybrid LMT (RCC) was not experimentally tested 

due to challenges with the signal amplitude. Low amplitudes have low SNR in the available 

setup, while high amplitudes introduce significant audible oscillations in the speed. Also, high 

amplitudes span most of the minimum-Pin region which makes identifying Pin* a complex task.  

Table 11. Summary of results from simulations and experiments for propulsion load  

 Pin 

(W)  

Pin* 

(W) 

λdr* 

(mV·s) 

Model-based LMT 

convergence time (s) 

Physics-based LMT 

convergence time (s) 

Hybrid LMT 

convergence 

time (s) 

Simulations 380 315 620 <1 ≈15 ≈2 

Experiments 345 315 470 <1 ≈9 N/A 

 

 

4.4.4 Sensitivity Analysis 

Physics-based LMTs are insensitive to errors or inaccuracies in machine parameters 

depending instead on accurate measurements during the loss minimization process. Parameter 

sensitivity remains a concern for model-based and hybrid LMTs despite their superior 

performance. The model-based LMT based on (38) and (39) is used here for parameter 

sensitivity analysis. This analysis is performed by evaluating the difference between Ploss* and 

Ploss under parameter errors (P’loss). The flatness of Pin or Ploss around the minimum, as shown in 

Fig. 4 and Fig. 44, is expected to result in low sensitivity for parameter inaccuracies, except in 

extreme cases.  

Let Ploss be a function ( ) of Ψ parameters, r1 … rΨ, in addition to λdr where  

1( , ,..., )loss drP r r   .    (43) 
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Inaccuracy or error in parameter ri (Δri) results in a drift from the optimal λdr* to a non-optimal 

λ’dr where P’loss is 

1' ( ' , ,..., ,... )loss dr i iP r r r r    .    (44) 

In (38), Ψ=4 where r1=Rs, r2=Rr, r3=Lr, and r4=Lm. Table 12 shows variations in Ploss due to 

variations in r1–r4. The second column in Table 12 is calculated as (Ploss-P’loss)/Ploss.  

Table 12. Sensitivity of Ploss to variation in motor parameters ©2010 IEEE 

Parameter error from nominal Ploss increase from nominal 

+20% Rs 16.84% 

+50% Rs 44.99% 

+30% Rr 4.57% 

+50% Rr 7.51% 

+20% Lr 14.14% 

+50% Lr 36.39% 

-10% Lm 19.74% 

-50% Lm 250.11% 

 

In induction machines, Rr is hard to estimate because it can vary with temperature, 

saturation, and other operating conditions. It is clear in Table 12 that even 50% errors in the Rr 

estimate lead to less than an 8% increase in Ploss where the model-based LMT would converge. 

Other parameters are usually well known and more stable, especially Rs and Lm. Lr=Lm+Llr, 

Ls=Lm+Lls, and Lls, Llr<<Lm; thus, estimates of Lr and Ls are well known. Even so, inaccuracies of 

10 or 20% in these parameters do not cause more than a 20% increase in Ploss. This sensitivity 

analysis suggests that the parameter-inaccuracy concern in the model-based LMT presented here 

might be acceptable given the wide minimum range. Hybrid LMTs have less parameter 

dependence on machine parameters and are expected to have lower sensitivity. Note that 

different model-based LMTs have different parameter sensitivities and the numbers shown in 

Table 12 cannot be generalized.  
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4.5 Comparisons and Remarks 

Based on the comparison from the literature review presented in Sections 2.2.6, 4.1, 4.3 

and 4.4, energy savings in induction machines are possible and achievable. In the pump example 

in Section 4.1, 12% energy savings were shown for a typical HVAC pump. Loss minimization in 

the HEV was shown to be significant with efficiency improvement on the order of 2–4 points. 

Loss minimization in the 1.5 hp machine was also shown to be significant on the same order. A 

long-term target would be to apply LMTs of any kind in all future motor drives where any 

efficiency improvement and loss minimization would have substantial positive effects on the 

global environment, electricity generation, and cost.  

The literature review in Section 2.2 concluded with comparisons of different LMTs, 

based on different drives. Section 4.4 showed dynamic real-time loss minimization of the three 

online LMTs—model-based, physics-based, and hybrid. An important aspect in Sections 4.3 and 

4.4 is that LMTs were compared in a common environment on the same platform. A summary of 

the presented results is shown in Table 13.  

 

Table 13. Summary comparing real-time LMTs ©2010 IEEE 

LMT 
Parameter 

Sensitivity 

Fast 

Convergence 

Convergence to the 

Optimum 
Oscillations Example 

Model-

based 
High Yes Not Guaranteed No ∂Ploss(x)/∂x=0 

Physics-

based 
None Not Guaranteed No Small or Large P&O  

Hybrid Medium Yes Not Guaranteed Small RCC 
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CHAPTER 5 

RELIABILITY MODELING OF INDUCTION MOTOR DRIVE SYSTEMS 

5.1 Drive System Operational Considerations for Reliability Assessment 

Most LMTs can be added to any induction motor drive with no or minor modification.
5
 

This can be achieved by programming the LMT algorithm into the control processor or adding a 

simple analog circuit, e.g., the RCC circuit in the MPPT application shown in [71]. The control 

variable utilized by the LMT is usually a control input to the motor drive, such as V/f, λdr, ωsl, 

etc., and this could affect the drive operation in different ways. Examples were given in Sections 

1.1 and 2.2.2 where flux reduction under high torques could significantly alter the drive system 

operation. In the presence of faults, this altered operation could be catastrophic, especially in 

applications involving critical safety considerations. Therefore, it is important to study, model, 

and analyze drive system reliability under LMTs. There exists no systematic procedure to 

undergo this analysis whether the drive system utilizes an LMT or not. This chapter presents a 

systematic procedure to find an overall expected MTTF of the drive system under an LMT using 

Markov reliability models, and proposes a safe-mode backup scheme.  

While the modeling procedure is essential, it is important to emphasize the concepts of 

system survival and failure. In general a system survives when it is still able to maintain its 

desired function and fails otherwise. The application usually sets the desired function and 

therefore any reliability model should be modified accordingly. Therefore, a drive system does 

not necessarily fail when an essential subsystem completely malfunctions; it could fail while the 

system is still running but unsatisfactorily. An example best describes the effect of the 

application or load on the concepts of survival and failure where the same fault could lead to 

                                                 
5 Much of the results presented in this chapter have been published in [171] or submitted for publication in [9]. 
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system failure in one case but not the other. For example, an EV is desired to maintain the speed 

and torque within a limited bound around the command to prevent catastrophic acceleration and 

deceleration. An HEV electrical system should be maintained within tight current and voltage 

limits to prevent electric hazards. On the other hand, speed and torque bounds are loose for 

applications such as HVAC and irrigation, but extremes such as loss of cold air or irrigation are 

undesired. In these two scenarios, the impact of the faults could be different and will affect the 

overall reliability. If a fault causes the system to run at 50% of the desired speed, an HEV could 

abruptly decelerate and cause accidents while the pump would still run but at lower capacity. 

Thus, the load, environment, safety, and other operational considerations should be addressed 

when modeling the reliability of a drive system. Therefore, the resulting model will differ from 

one application to the next, and the criteria for survival and failure should be carefully 

considered.  

 

5.2 Reliability Theory Preliminaries 

Markov modeling is used here to evaluate the reliability function and MTTF of an IFOC 

induction motor drive system. To establish a Markov model, the system response is evaluated 

under different faults and the system states are determined. The effect of LMTs is addressed by 

varying λdr. This variation is studied as fault coverage—the probability of system survival given 

a fault. In the system presented here, this probability is determined for a sweep over a λdr range. 

Before building the Markov model for this specific drive system, preliminaries of reliability 

evaluation are presented. 
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5.2.1 Example of a Markov Model and State Diagram  

Given a stochastic system, the Markov property can be defined as the dependence of the 

current state on the previous state. For a random variable X, this can be expressed as Pr{Xt=Km | 

Xt-1=Km-1, Xt-2=Km-2,…, X0=Ko} = Pr{Xt=Km | Xt-1=Km-1}, where Xi is the random variable for time 

instant i, and Ks are different values of X [74]. A Markov process satisfies a Markov property. In 

reliability modeling, Markov processes are used to model the system transition from one state to 

another due to fault occurrence or recovery where only the current state affects the transition to a 

future state. A Markov process can thus be modeled as a state diagram with failure and recovery 

rates between states. An example is shown in Fig. 45 where λ1, λ2 are failure rates and μ1, μ2 are 

recovery rates.  

j2

j3

j1

1

2

1

2

 
Fig. 45. Example of a state diagram  

 

 The state-transition matrix Φ can be constructed given a state diagram. For the diagram 

shown in Fig. 45, Φ can be written as  

1 2 1 2

1 1

2 2

0

0

   

 

 

  
 


 
  

Φ= . 

Finding the state-transition matrix is a fundamental step in Markov reliability modeling and is 

essential for the evaluation of the reliability function and MTTF, as will be seen in Section 5.2.3.  
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5.2.2 Important Reliability Concepts 

The reliability or survivor function R(t), MTTF, and fault coverage are three important 

reliability measures. R(t) is the probability that a component or system is still functional at time t 

[74]. This can be modeled as R(t)=Pr{XT > t} where XT is a random variable that represents the 

system time to failure. When R(t) is found, the MTTF is defined as  

0
MTTF ( )R d 



  .      (45) 

The exponential form R(t)=e
-λt

  is a widely used form of R(t), where λ is a fixed failure rate. This 

means that as the component or system ages, R(t) → 0. Markov reliability models usually use 

this exponential R(t), as it simplifies building the state-transition matrix and reliability modeling 

and analysis. This leads to a simple MTTF=1/λ. Components of series-parallel combinations do 

not necessarily have an overall equivalent exponential distribution. More detail about such 

systems is available in [74]. 

Fault coverage addresses the system ability to maintain desired operation after a fault 

occurs. The uncertainty of whether the system will survive or fail can be modeled as the 

probability of survival after a fault: C = Pr {system recovers | fault occurs} [170]. This concept 

augments different system fault responses into the system reliability model. An example is 

shown in Fig. 46. The fault coverage C means that the system will transition from state j1 to state 

j2 for C% of the cases when a fault occurs, and for (1-C)% from state j1 to state j3, where 0 ≤ C ≤ 

1. Fault coverage is usually studied by assessing system response to a fault under different 

operating conditions. This can be achieved by varying the system inputs over a range and 

checking the effect of the fault for every input.  
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j2

j3

j1

C

(1 )C 

1

2

 
Fig. 46. Example of a state diagram ©2010 IEEE 

 

5.2.3 Transition Probability 

The transition probabilities from one state to another must be found in order to determine 

R(t). They are based on the state diagram which identifies the states and their interconnection. Pij  

is the transition probability from state i to state j and is time dependent; e.g., the probability of 

transitioning from the initial state to a failure state increases with time. An example of transition 

probabilities is shown in Fig. 47 where a transition to the right is shown but arrows going both 

ways are possible.  

j ki

Pij Pjk
Pii Pjj Pkk

 

Fig. 47. Markov process ©2010 IEEE 

 

Transitions between different states can then be modeled as a probability matrix P which 

is usually sparse because not all states are interconnected. For M+1 states, P can be written as 
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00 01 0

10 11 1

0 1

M

M

M M MM

P t P t P t

P t P t P t

t

P t P t P t

 
 
 
 

  
 
 
 
  

( ) ( ) . . . ( )

( ) ( ) . . . ( )

. . . .
P( )

. . . .

. . . .

( ) ( ) . . . ( )

. 

Different transition probabilities can also be denoted as a row vector to simplify the notation. For 

Kp states, every state is given a number and the P would be  

0 1
P( ) ( ) ( ) . . . ( )

pK
t P t P t P t 

 
. 

In a state transition diagram or Markov model, there are absorbing nodes and non-

absorbing nodes. The latter are usually states where the system fails and can no longer function 

appropriately. If recovery is possible, as shown in Fig. 45, absorbing nodes change to non-

absorbing.  

 

5.2.4 Chapman-Kolmogorov Equations 

Chapman-Kolmogorov equations describe the probability dynamics in a Markov model 

or state diagram. The probability rate of change is dependent on Φ where the probability 

dynamics are given by 

( )
( ) ( )

T
T T Td t

t t
dt

 
P

P Φ P      (46) 

whose derivation is given in [74]. The solution of (46) is straightforward but might require a 

computational tool for large Φ. This solution is given by 

( ) (0)
TT t Tt eP P


.     (47) 
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The initial condition P
T
(0) is a zero vector except for the first element corresponding to the initial 

state P0(0)=1. Once the probabilities are found, system reliability at any time t can be found as  

0

( ) ( )
K

i

i

R t P t


=  ,     (48) 

where Pi(t) is the element of index i in P. Thus, finding Φ and P is fundamental to evaluate R(t) 

and the MTTF.  

 

5.3 Modeling Procedure 

 The reliability modeling procedure can be summarized as follows: 

1. Identify, model, and assess the failure rates of possible faults. 

2. Set desired system performance requirements. 

3. Inject faults and assess system performance. 

4. Identify system states and build Markov model or state diagram. 

5. Assign failure and recovery rates to all branches in the diagram. 

6. Build state-transition matrix and eliminate rows and columns of absorbing states. 

7. Solve (47) to find the probabilities.  

8. Solve (48) to find R(t). 

9. Solve (45) to find the MTTF.  

 

5.3.1 Fault Modes, Models, and Failure Rates 

 The major components of the drive system under study, shown in Fig. 30, are the 

machine, power electronic inverter, current sensors, and speed encoder. The IFOC control 

algorithm is embedded on a reliable DSP that does not involve high power or mechanical 
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movement—it is considered fault-free physically. Short connections are used with circuit breaker 

protection and are also assumed to be fault-free.  Components in the drive system have different 

fault modes and failure rates.  The system-level fault modeling approach is convenient for rapid 

fault impact assessment and reliability evaluation [171] compared to detailed low-level models. 

Fault modes are usually identified from experience and published literature. For example, current 

sensors usually have interface circuitry for DSP compatibility by applying proper gains, but if a 

wrong gain is introduced, it could be considered as a high-level fault.  

 Faults can be lumped into three main categories: machine, power electronics, and sensors 

(including current sensors and speed encoders). Each category has basic fault modes identified in 

the literature [171] and explained here. Among the most common induction machine faults are 

phase-to-phase faults and broken rotor bar faults [172]. The former are caused by insulation 

damage between windings of two or more phases due to higher currents or overheating caused 

by a supply surge or other system faults. The latter are mainly a result of stresses. Power 

electronics faults include an open circuit (OC) in a phase, and a short circuit (SC) between 

inverter switch and ground or the dc bus [84, 96, 173]. These faults are usually caused by current 

or voltage overshoots or overloaded operation of the inverter semiconductors. Under high levels 

or overshoots in currents or voltages, the junction temperature of the switch or diode exceeds the 

maximum allowable limits which are usually 150
 o

C for silicon devices, and 150–200
 o
C or more 

for SiC and newer technologies. Appropriate thermal management designs, discussed in Chapter 

6, are therefore essential for fault prevention in semiconductors such as IGBT-diode pairs in 

motor drive systems. Sensor faults usually disturb the sensor output by causing improper bias, 

gain, noise, or total omission of the signal [174]. These faults could physically occur in the 

sensors, e.g., broken current sensor, or in the interface circuit between the sensor and controller. 
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All faults studied here and in [9, 171] are shown with their acronyms in Table 14. Circuit-level 

machine protection, power electronics drivers and protection, and sensor interface circuitry are 

not explicitly addressed but their effects can be modeled similarly. As faults in each inverter 

phase or current sensor would lead to similar effects in the system response, it is sufficient to 

study those in one phase. Note that redundancy is not considered in Fig. 30. 

Table 14. Fault modes in the drive system under study ©2010 IEEE 

 Speed encoder Current sensor Inverter switch Machine 

Fault Types 

Omission (SEO) Omission (CSO) OC 

 

Phase-to-phase fault (PP) 

Gain (SEG) Gain (CSG) SC to ground (SCG) 

 

Broken rotor bar (BR) 

Constant (SEC) Bias (CSB) SC to dc bus (SCDC)  

 Constant (CSC)   

 

Faults have two different models—signal and circuit-based. Signal models are used for 

sensor faults where the sensor signal is altered by gain, bias, omission, or constant value. This 

model is used in [9, 171, 174] and is flexible for time-domain simulations and experiments. The 

signal fault model used here is shown in Fig. 48. While the gain and bias are straightforward, 

omission is modeled as a zero signal. This is logical for digital encoders and ground short 

circuits of current sensor interface circuitry. Other faults, e.g., a short circuit of the sensor output 

to a dc voltage, can be modeled as constant. In that case, the sensor is stuck at a value which is 

modeled as a saturation port whose upper and lower bounds are the constant value, as shown in 

Fig. 48. 
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Fig. 48. Signal fault model ©2010 IEEE 

 

The actual sensor signal and different faults can be selected, one at a time, using the 

multiport switch. The gain, bias, and constant values are set using a mask of the subsystem 

containing the fault model in Simulink. For simulation, the time at which the fault occurs can be 

selected using a switch at the output. Simulation time in the clock block is used as the reference, 

but in experiments, the clock is replaced by a command button linked to the experimental GUI. 

Circuit-based fault models are used for power electronics and machine faults where they are 

based on physical characteristics and dynamic changes in electrical quantities such as voltages, 

currents, resistance. Contrary to signal fault models, simulation and experimental faults could 

differ. For example, an OC is modeled as an actual switch that is open on the main phase, but 

could cause a singularity in the simulation model solution and therefore should be avoided; 

possible solutions include adding a large snubber resistor across the open-circuit switch, or 

keeping both inverter switches open in that phase.  Among the machine and power electronics 

faults, the BR fault is the most challenging to model. The equivalent Rr should be increased 

under the BR fault even if the induction machine rotor is squirrel cage. Thus, a wound-rotor 

machine model is used with shorted windings and equivalent Rr; when the BR fault occurs, the 

value of Rr is changed. Table 15 shows circuit-based fault models in simulations. Most 
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experimental electrical faults are challenging or dangerous to mimic as they are either 

irreversible or catastrophic; thus simulations are used for these (except for the OC fault) after 

validating the overall simulation model.  

Table 15. Simulation circuit-based fault models for machine and power electronics 

Fault Simulation Model 

OC 

 

Both switches of that phase are open. 

SCG 

 

Switch is turned on between the motor phase and ground. 

SCDC Switch is turned on between the motor phase and dc bus. 

PP Switch is turned on between two motor phases. 

BR Rotor resistance increases.  

 

Every fault has a failure rate which is usually estimated from standards or literature. 

Numerical failure rate values give only an idea of expected system reliability and MTTF. This 

reliability approximation could have positive aspects; e.g., failure rates in [175] are generally 

considered pessimistic and the resulting MTTF from using these numbers leads to conservative 

designs. Failure rate sources include the military handbook [175] and IEEE Standard 500 which 

is obsolete but includes useful information [176]. A better reliability modeling practice is to 

formulate Φ, P, and R(t) symbolically and then use numerical failure rate values for assessment. 

The failure rates of the faults shown in Table 14 are extracted from [85, 106, 175-177], and 

shown in Table 16.  

Table 16. Failure rates extracted from the literature for the faults shown in Table 14 ©2010 IEEE 

Failure rate Failures/hour Failure rate Failures/hour 

λSEO 7.4×10
-7 

λCSC 1×10
-7

 

λSEG 1.9×10
-7

 λOC 5×10
-7

 

λSEC 1.9×10
-7

 λSCG 5×10
-7

 

λCSO 1×10
-7

 λSCDC 5×10
-7

 

λCSG 1×10
-7

 λPP 3.2×10
-6

 

λCSB 1×10
-7

 λBR 3.2×10
-6
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5.3.2 Performance Requirements and Fault Impact Assessment 

Desired performance should be defined based on important or critical system measures in 

order to assess the system status after every fault. Performance can vary for the same system, 

e.g., motor drive, based on the application. Among the most common performance notions is that 

the system is performing its function, e.g., cooling, pumping, or manufacturing. The desired 

performance presented in [9, 171] is based on an HEV or EV avoiding any collision after 250 ms 

from the fault occurrence while maintaining speed within a desired range and currents within 

tolerance limits. The fault impact on system performance is assessed to check whether or not it 

meets the desired performance requirements. It is hard to visualize performance requirements 

and the concepts of failure and survival for more than two or three requirements. So, let there be 

two performance requirements, pm1 and pm2. The desired limits are bounded by A1 in Fig. 49. 

Nominal operating conditions are within A1. If the system performance is bounded by A2 after a 

fault, then it survived the fault as shown in Fig. 49 (a); otherwise, it failed as in Fig. 49 (b). Note 

that the requirements may be modeled with ellipsoids [178]. Performance measures and 

requirements for driving conveyors are presented in [179].  

pm1 pm1

pm2 pm2

A2

A1 A1

A2

(a) (b)  
Fig. 49. (a) System survival, (b) system failure ©2010 IEEE 

In the motor drive application studied here, the performance bounds are set for speed, current, 

and settling time of both. It is important to maintain the speed within a desired range and avoid 

dangerous acceleration or deceleration after a fault. Thus, it is desired to bound the speed around 
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the speed command. Over-currents or long-duration current overshoots could also cause a safety 

hazard and jeopardize system operation. They could cause the inverter, connectors, and other 

subsystems to overheat and fail. Over-voltages also cause over-currents, so the over-current 

performance requirement addresses both. While speed and current can overshoot after a fault, the 

system can return to an acceptable state within a settling time, defined as the time needed for a 

signal to recover within performance bounds. An example performance diagram is shown in Fig. 

50 for a dc signal such as speed measurement. For ac signals such as currents, the current peak 

should return to the desired bounds within a certain settling time. The performance requirements 

used for the motor drive system under study are shown in Table 17 and reflect typical desired 

conditions.  

time

Upper 

bound

Lower 

bound

Signal

Fault

Settling time

 
Fig. 50. Example of lower bound, upper bound, and settling time of a signal 

 

Table 17. Performance bounds for the motor drive under study ©2010 IEEE 

Speed Command speed ± 50 rpm 

Current -10 A ≤ Peak ≤ 10 A 

Settling time ≤ 250 ms 

 

5.3.3 Building a Markov Model 

 Once the performance requirements and faults are defined, a Markov model is built after 

fault injection and system performance assessment. The Markov model is a state diagram that 

reflects the system state after every fault. Recovery is not considered here but could be easily 

added to the model. In systems with no recovery, failure is permanent and the failure state is 
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absorbing. System survival after each fault is modeled as a separate state because the response 

differs for various faults. Once a fault is injected, another fault could occur and could be related 

to the first or independent. An example of dependent faults is an OC in an inverter phase which 

could cause over-current in the other two phases. Then a PP fault would occur in the machine. 

Two cascaded faults in the same component or subsystem are not considered, as this probability 

is low. Fault coverage is added to the Markov model, as shown in Fig. 46. Under an LMT 

applied to an IFOC induction motor drive, the control variable λdr is varied over a range, and 

system states are determined for all faults and fault-cascading combinations. Several discrete 

steps of λdr are used in the fault coverage study. Having a large number of steps requires longer 

simulation times to finalize the reliability model.  The total number of system states grows 

exponentially with a large number of faulty components and faults per component. This requires 

significant computational effort and simulation time.  

  

5.4 Drive System Reliability under Loss Minimization 

5.4.1 Model Validation 

The drive simulation model was developed in Simulink using SimPowerSystems blocks 

as shown in Fig. 51 to apply the faults described in Section 5.3.1. The purpose is to avoid 

catastrophic failures in the experimental setup and create a simple fault injection and impact 

assessment scheme. Severe faults could cause the experimental setup to fail or stall due to 

protection circuitry; either will impact the reliability analysis flow and results.  
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Fig. 51. Simulation model in Simulink ©2010 IEEE 

The blocks highlighted in red in Fig. 51 show the fault injection locations. The Speed 

Fault Injection and Current Fault Injection blocks have the structure shown in Fig. 48. The 

SCDC fault is triggered using the Step block between phase a and the dc bus. The SCG fault is 

triggered using Step1 between phase a and ground. The PP fault is triggered using Step2 between 

phases a and b. The SCDC, SCG, and PP faults could also occur on any other phases and the 

results would be similar due to machine symmetry. Step3 triggers the BR fault where the rotor 

resistance is increased from Rr to 1.1×Rr. The 1.1 factor can be changed as desired depending on 

the actual number of intact and broken rotor bars. Note that the effect of inductance change is 

assumed to be negligible [172]. The load shown in Fig. 51 is quadratic as shown in (42) where 

kload =1.816×10
-4

. While this models a propulsion load or fan, it could also be used for certain 

operating points in a vehicle motor drive. The λdr command is shown as flux* for the case when 

λdr=0.4V·s; it is varied for the fault coverage study. 

 Before proceeding with the reliability modeling based on the simulation model shown in 
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Fig. 51, the model was validated against the experimental setup described in Appendix C. A 

similar load characteristic was used and the system was tested under faults shown to survive or 

cause mild failures in simulations. Results that validate the model are shown in Figs. 52–57 for 

SEO, CSC, and OC. There are three main differences between the experimental setup and the 

simulation model: (1) The experimental setup includes an extra torque control loop to avoid 

undesired acceleration or mechanical breakdown of the machine or dynamometer. (2) The setup 

includes protection circuitry which is activated under gate, over-voltage, and over-current faults. 

This circuitry does not interfere with the results shown here, but it could affect the system 

response under other faults. (3) The hysteresis band used in experiments is larger than that in 

simulations due to the limited switching frequency on the DSP and experimental inverter. This 

leads to higher current peaks in the experiments.  
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Fig. 52. SEO simulation results: Actual and command speed (500 

rpm/div, top), current in phase a (10A/div, bottom) ©2010 IEEE 

 
Fig. 53. SEO experimental results: Speed (500 rpm/div, 

top), torque (2 N·m/div, middle) current in phase a 

(10A/div, bottom) ©2010 IEEE 
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Fig. 54. CSC simulation results: Actual and command speed (500 

rpm/div, top), current in phase a (5A/div, bottom) ©2010 IEEE 

 
Fig. 55. CSC experimental results: Speed (500 rpm/div, 

top), torque (2 N·m/div, middle) current in phase a 

(10A/div, bottom) ©2010 IEEE 
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Fig. 56. OC Simulation results Actual and command speed (500 

rpm/div, top), current in phase a (10A/div, bottom) ©2010 IEEE 

 

Fig. 57. OC experimental results: Speed (500 rpm/div, 

top), torque (2 N·m/div, middle) current in phase a 

(10A/div, bottom) ©2010 IEEE 
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The results in Figs. 52-57 for ωm=1000 rpm and λdr=0.4 V·s show that, in general, the 

simulation model matches the experimental setup except for some minor discrepancies, e.g., the 

current peaks explained earlier. Figs. 52 and 53 show that the system fails after the SEO fault—

the speed drops to zero and does not comply with the performance requirements. The system also 

fails after the CSC fault, as shown in Figures 54 and 55, because the current peaks exceed the 

acceptable performance bound of 10 A. Another failure is demonstrated in Figs. 56 and 57 due to 

the OC fault where the speed decreases to zero. In Fig. 56, the phase a current is not exactly zero 

due to the snubber resistance across the OC switch, required to avoid a numerical simulation 

error. But, the current and speed waveforms and responses match and show that the model 

generally behaves as expected. Also, it is important that the response of both experiments and 

simulations under faults match almost perfectly because the faulty states are the decisive factor 

in determining the system states and constructing the Markov model.  

 

5.4.2 Reliability Model 

 Reliability analysis can proceed with fault injection and impact assessment in the 

simulation model. Two fault levels are injected with the following considerations: (1) If the first 

fault occurs in one component, the second fault will occur in another one. The probability of 

having two faults occur consequently in the same component is set to be very low. (2) Any third 

fault is treated as causing the system to fail. Even though this assignment introduces truncation 

errors to the system, the probability that the system survives three consecutive faults is relatively 

small and does not impact the analysis. Also, the final absorbing state (third-level in this case) is 

essential for constructing Φ and solving (47). (3) Faults are injected after the system reaches its 

steady state to avoid amplifying any transient. (4) Once a first-level fault causes the system to 
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fail, the system state is absorbing and no second-level fault is injected. (5) The values used for 

the SEG, SEC, CSG, CSB, and CSC are shown in Table 18. These values are used to illustrate 

the fault effect in Sections 5.4 and 5.5, but can be changed as desired.  

Table 18. Values used for SEG, SEC, CSG, CSC, and CSB ©2010 IEEE 

Fault Type Speed Encoder  Current Sensor 

Gain 1.5 1.5 

Constant 900rpm 3A 

Bias N/A +1A 

 

The first fault level was injected and impact and performance requirements were checked. Fault 

coverage for different λdr commands between 0.2 and 0.6 V·s was studied in 0.1 V·s steps. The 

only fault for which the λdr variation has any effect is CSO where the coverage is c1=4/5. The 

results for the first fault are shown in Table 19 where S and F stand for survival and failure, 

respectively. Notice that 7 of 12 tested faults were survived as shown in Table 19. These seven 

faults are then followed with a second level of faults. The results are shown in Table 20.  

Table 19. Results for the first fault level ©2010 IEEE 

Fault 1 Status Fault 1 Status 
SEO F CSC F 
SEG F SCDC S 
SEC F SCG S 
CSO S, c1=4/5 OC F 
CSG S PP S 
CSB S BR S  

 

Table 20. Results for the second fault level ©2010 IEEE 

 Fault 1 

Fault 2 CSO CSG CSB SCDC SCG PP BR 

SEO F F F F F F F 

SEG F F F F F F F 

SEC F S F F F F F 

CSO N/A N/A N/A S, c5=4/5 S, c7=4/5 S S, c9=2/5 

CSG N/A N/A N/A S S S S 

CSB N/A N/A N/A S S S S 

CSC N/A N/A N/A S F S, c8=3/5 F 

SCDC S, c3=1/2 S S N/A N/A S S 

SCG S, c2=3/4 S S N/A N/A S S 

OC F F F N/A N/A F F 

PP S, c3=1/2 S S S, c4=2/5 S, c6=2/5 N/A N/A 

BR S, c3=1/2  S S S S N/A N/A 
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The N/A cells in Table 20 correspond to second faults that cannot occur after the first 

fault in the same component, and c2– c9 are coverage terms. Notice that even after two faults, 

several states survive. The third-level absorbing failure state is a necessity to avoid exponential 

growth of the number of states. The total number of states from Tables 19 and 20 is 52 divided as 

follows: zero-level—one initial state (one state total), first level—seven survival states and one 

failure state which includes all five failures (eight states total), second level—35 survival states 

and seven failure states, each corresponding to system failure after the first and second faults 

occur (42 states total), third level: one failure state (one state total). Thus, the dimensions of the 

sparse Φ are 52×52 and the Markov model is shown in Fig. 73 in Appendix D. Absorbing failure 

states should be eliminated to solve equation (47). As there is a total of nine failure states, the 

new dimensions of Φ are 42×42 and the non-zero elements of Φ are shown in Table 28 in 

Appendix D. 

 With Φ available, equation (47) is solved for P
T
(t), and R(t) is found using equation (48). 

The Mathematica script used to find P
T
(t) and R(t) is shown in Appendix D. For the failure rates 

shown in Table 16, R(t) is  
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Applying equation (45) to R(t) shown in (49) yields an MTTF = 57.2 years = 501×10
3 

hours. 

This MTTF is very impressive for induction motor drive applications, even though most of the 

failure rates from [175] and other sources are conservative. This result shows that augmenting 



103 

 

more motor drives in transportation, propulsion, and industrial applications is a reliable strategy 

for current and future applications.  

 The highest failure rate in Table 16 is associated with the speed encoder. To test system 

impacts of this sensor, all failure rates of other faults are set to be negligible, and the analysis is 

rechecked. The same procedure shown earlier is followed and a reliability function Rse(t) is 

generated. The plots of R(t) and Rse(t) are shown in Fig. 58. The MTTF calculated from Rse(t) is 

742×10
3 

hours. As expected, this MTTF is greater than 501×10
3 

hours because not all faults are 

considered. It shows that the encoder accounts for 68% of the overall reliability impact. While 

this result justifies further research on speed sensorless control, it also suggests that other faults 

should not be ignored and appropriate redundancy, fault detection, and fault isolation should be 

implemented. 

 
Fig. 58. System reliability functions under all faults and only speed encoder faults ©2010 IEEE 

 Table 16 shows that failure rates are either on the order of 10
-6 

or 10
-7 

failures/hour. These 

two orders can be modeled as λhigh and λlow. λhigh is 3.2×10
-6 

failures/hour for PP and BR, and λlow 
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is found to be 3×10
-7 

failures/hour by averaging all other failure rates. The simplified Rs(t) from 

the new Φ is 
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which almost overlaps with R(t) shown in Fig. 58. The MTTF found from Rs(t) is 581×10
3
 hours, 

less than a 16% difference when using R(t). This result suggests that knowing only the order of 

failure rates can lead to acceptable reliability modeling and estimates of R(t) and MTTF. 

 

5.5 Safe-Mode Analysis  

 The results shown in Section 5.4 for speed encoder fault impact suggest that if there is an 

open-loop control that avoids sensor faults, system reliability can improve. While this is a good 

intuitive idea, open-loop controls have poor dynamic response compared to IFOC and other 

closed-loop controls. Thus, even though the effect of sensor faults is eliminated for open-loop 

controllers, their response under other faults is expected to be worse than closed-loop controllers, 

especially when the settling time is among the performance requirements. The work presented in 

[180] follows a procedure similar to that described in Section 5.4, and in [9, 171]. There are two 

main differences between the simulation models used in [180] and Chapter 5: First, [180] uses a 

circuit-based machine model shown in Fig. 18 rather than the induction machine block from 

SimPowerSystems. Second, the controller in [180] uses dq0 controlled voltage sources rather 

than a current-source inverter.  

 The analysis here proceeds with the models presented in [180] as follows. First, the IFOC 

motor drive system reliability is identified to compare its MTTF to that shown in Section 5.4.2. 



105 

 

Second the IFOC drive reliability is estimated without sensor faults in order to check the effect 

of sensors on drive system reliability. Third, the constant-V/f open-loop drive reliability is found 

for machine and power electronics faults where sensor faults have no impact. Finally, a backup 

safe mode, shown in Fig. 10, is tested and its reliability is estimated. The last step also shows the 

effect of the switching delay time as the system transitions between both controllers.  

A procedure similar to that followed in Section 5.4 is used to estimate the IFOC motor 

drive reliability shown in Fig. 59, where ωa is the frequency of an arbitrary reference frame. The 

terms vqs and vds are defined in [181] and shown below for convenience. 
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Fig. 59. Circuit-based motor drive model 
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The resulting MTTF for IFOC in this model is 58.53 years which is only 2.3% longer than that 

shown in Section 5.4.2. This step verifies that the model in Fig. 59, which is very convenient for 

simulating switched control systems with the control inputs vqs and vds, performs as expected. In 

order to determine the effect of sensor faults on drive reliability under IFOC, sensor faults were 

eliminated from the analysis and simulations. This step helps identify the ultimate IFOC 

performance under all faults to achieve the best-case scenario of an ideal safe-mode and mitigate 

sensor faults. Performing this analysis yields an MTTF of 96.63 years, significantly higher than 

58.53 years. This result implies that having an effective open-loop safe-mode that takes over the 

drive system when a sensor fault occurs will lead to a significant increase in the system’s MTTF.  

The most common open-loop induction motor controller is constant V/f. An evaluation of 

its MTTF gives an idea of possible improvement in the combined IFOC-safe-mode drive. As V/f 

control it is not affected by sensor faults, its MTTF is expected to be higher than IFOC. But its 

dynamic response is not enhanced by the corrective feedback under machine and power 

electronics faults as in the IFOC case; thus, its MTTF is expected to be lower than IFOC without 

sensor faults. Reliability modeling and simulations were performed for the open-loop constant 

V/f  drive, and the MTTF was found to be 65.03 years. As expected, this MTTF falls between 

that of IFOC and IFOC without sensor faults. The MTTFs are tabulated in Table 21 and R(t) for 

IFOC and constant V/f are shown in Fig. 60. 
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Fig. 60. R(t) of the motor drive system under IFOC and constant V/f 

 
Table 21. MTTF summary 

Controller MTTF (years) 

IFOC 58.53 

IFOC (no sensor faults) 96.63 

Constant V/f 65.03 

 

Reliability analysis of the safe-mode operation shown in Fig. 10 assumes that the 

decision maker detects sensor faults perfectly. The variable in the safe-mode operation is the 

time between sensor fault occurrence and switching to the open-loop controller. This time is 

notated as tf and it is the only time during which the system operates under a sensor fault. Note 

that the system will switch to the safe mode whether the sensor fault causes failure or not. 

Different values of tf were tested and the reliability model of the drive system was found. 

R(t) for different tf are shown in Fig. 61. As expected, the MTTF increases as tf is smaller. The 

results are tabulated in Table 22.  These results are expected because with larger tf, the system 

would spend more time under the sensor fault before the safe-mode is engaged. During this 

period, higher overshoots could happen, and longer settling times that do not satisfy the 

performance requirements might result.  
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Fig. 61. Effect of tf on the system MTTF 

Table 22. MTTF summary for safe-mode operation for different values of tf 

tf (ms) MTTF (years) 

0 75.36 

5 75.04 

25 74.9 

50 71.56 

100 71.4 

 

The results in Table 22 show that combining IFOC and constant V/f yields MTTFs that 

are higher than those of either IFOC or V/f. But, even for the ideal case when the system 

switches to the safe-mode with tf =0s, the MTTF does not reach that of IFOC without sensor 

faults. This is due to two main reasons. First, the voltages resulting from IFOC and V/f might 

have some discrepancy where vabc does not have synchronous or seemless transition when the 

switching occurs. Thus, it would be worthwhile to study the smooth transition requirements with 

safe-mode switching. Second, when the system is operating under V/f after a sensor fault and a 

new fault occurs in the machine or power electronics, V/f would be less reliable due to its 

dynamic response under these faults. Note that the mathematical derivation of the tf effect on the 

system reliability is not straightforward and is not addressed here for several reasons, which 
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include the use of the nonlinear fifth-order induction machine model, which is hard to fit to 

available dwell-time analysis and the complexity and nonlinearity of the voltage control 

equations shown in (50) and (51).  

System complexity can be reduced by using a simplified first-order transfer function of 

the machine, but such an analysis is left for future research. The results shown in this section 

imply that having an open-loop safe-mode controller in an IFOC drive system yields higher 

system reliability. These results also lead to a quantitative analysis of the tf effect which verifies 

that as tf increases, the MTTF decreases.  
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CHAPTER 6 

LOSS ESTIMATION IN POWER SEMICONDUCTORS FOR BETTER INVERTERS 

6.1 Introduction to Electro-Thermal Design Optimization 

Faults addressed in Chapter 5 include those in the machine, power electronics, and 

sensors.
6
 The effect of sensor faults was shown to be reduced in Section 5.5 using an open-loop 

safe-mode controller. Machine faults can be reduced by appropriately cooling the machine, 

reducing the electrical and mechanical stresses, using more than three phases, using multiple 

windings per phase, etc. Semiconductor devices are the remaining components that affect motor 

drive reliability. As mentioned in Section 5.3.1, power electronics SC and OC faults are among 

the common faults in motor drive systems. These are usually caused by thermal management 

problems where their junction temperatures exceed the allowed limit tolerated by semiconductor 

material and packaging. Switches in motor drive systems with several kW ratings are commonly 

IGBTs rather than MOSFETs. IGBTs have no inherent body diode, so a diode is always 

connected in parallel with the IGBT. The operation of an IGBT-based half-bridge inverter is 

discussed in Section 6.2.1 and can be extended to three-phase inverters, common in induction 

motor drives. Approximating and analyzing losses in an inverter helps achieve better cooling 

strategies and thus more reliable operation.  

Losses considered in an IGBT are turn-on, turn-off, and conduction losses where the first 

and second constitute the switching losses. Diode losses are the reverse recovery turn-off 

switching loss and conduction loss. There is always a trade-off between switching and 

conduction losses in IGBTs and diodes: for the same period of time, more switching leads to less 

conduction and vice versa. While switching loss can be evaluated from the voltage-current 

                                                 
6 Some of the results presented in this chapter were published in [182].   
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transient in the switching device, conduction loss is the product of the voltage and current across 

the switch. An example of an IGBT turn-on switching transient is shown in Fig. 62 where Voff 

and Von are the voltages across the IGBT when off and on, respectively; Ion is the current passing 

through the IGBT when on, and ton is the turn-on transient time.  

V, I
Voff

Von

Ion

0 t

ton

 
Fig. 62. Turn-on transient of an IGBT 

The switching energy depends on the intersection between the voltage and current 

waveforms and can be found as  

 
2

off on

sw on off

f

V I
E t t

s
  ,     (52) 

where sf is a switching factor set by the transient shape and toff is the turn-off time. For transients 

that occur at a rate of rt per second, the switching loss can be evaluated as Psw=Esw×rt. If the 

switching occurs periodically at a switching frequency fsw, then rt=fsw. The conduction period 

changes for different rt and the conduction energy (Econd) is  

cond on on condE V I t ,      (53) 

where tcond is the conduction time. Figures 63 (a) and (b) show two different switching patterns 

which would have different total power loss. Switching and conduction are affected by the 

device physics, the number of switching transients, and the switching and conduction times. 

Thus, some minimum combination of these losses should exist.  
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V, I

0 t(a)  
Fig. 63. (a) Longer conduction times and less switching 

V, I

0 t(b)  
(b) More switching and shorter conduction times 

An approach for future optimal electro-thermal designs of power converters is proposed 

here and is based on power loss estimation. An IGBT-diode loss-estimation tool is presented. As 

discussed in Section 2.5, loss estimation is an essential step in the electro-thermal design process 

of power converters. Also, an estimation tool that is model-independent, fast, and 

experimentally-verified to estimate losses under any switching scheme is desired. Such a tool 

enables loss estimation and design evaluation for different devices, control methods, and 

operating points. For example, an IFOC motor drive with a hysteresis-controlled current source 

inverter has several design variables including the IGBT-diode pair selection, hysteresis band, 

maximum possible switching frequency, etc. Accurate and fast loss estimation helps identify the 

optimal power electronics design. The optimization process can also account for the cost of 

semiconductor devices and thermal management system. Thus, losses and cost of an IFOC motor 

drive can be evaluated for different combinations of devices, switching patterns, etc., for rapid 

prototyping. A possible future approach to minimum-loss and cost-effective power electronics 

designs is to find an empirical formula that relates the cost function, including losses, cost, and 

other design criteria, to the design variables. This formula can be found from measurements that 

reflect general characteristics. Curve-fitting could be used for this purpose.  

It is important to note that system-level loss minimization is possible by augmenting 

inverter and machine losses into one cost function. Inverter losses can be modeled using the 

empirical formula described above and augmented to the loss minimization process. In such a 
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scenario, an LMT will be extended to a system level. An example is to have both the machine 

and inverter cost functions with the phase current as the control variable, i.e. stator current in the 

machine. While Ploss is expected to be flat around the minimum-loss point for the machine, losses 

in the inverter decrease significantly with lower currents and the overlay of both functions is 

expected to be as shown in Fig. 64. Note that the general curve shapes are intended in Fig. 64 

based on results shown in the literature, e.g. [53, 122]. Adding both losses to the cost function 

will have a positive effect on penalizing higher currents and thus avoiding operating points close 

to saturation. But, this could drive the minimum-loss point below the current or flux that can 

support the load and should be carefully considered.  
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Fig. 64. Machine and inverter losses for system-level loss minimization 

 

6.2 Proposed Loss-Estimation Tool 

6.2.1 Overview 

The proposed analysis tool analyzes the IGBT and diode states based on the IGBT 

switching pulse, p, and load current, IL, both at a time instant and the previous instant. The time 

step is set by the sampling rate of experimental or simulation data being processed.  The tool is 

independent of IGBT-diode circuit models, detailed knowledge of physical characteristics, 

thermal measurements, and switching scheme. The relationship of these waveforms is given in 
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Table 23 for the upper IGBT (Q) and diode (D) in a half-bridge. The terms i and i-1 refer to the 

current and previous samples, respectively.  IL is assumed to be positive when flowing to the 

load, i.e., when Q conducts. p is 0 when Q is off, and 1 when Q is on. The operation can be 

summarized as follows:  

i) If Q is off and its gate signal changes from 0 to 1, it turns on and current passes through. 

ii) If Q is on and its gate signal changes from 1 to 0, it turns off and its current stops flowing. 

iii) If the current was flowing and is still flowing in Q and Q was on and is still on, then it 

conducts.  

iv) If p changes from 1 to 0, i.e., the lower IGBT is off and then turns on, the current is flowing 

in D and then D turns off.  

v) If p was 1 and is still 1, i.e., the lower IGBT was off and is still off, the current was flowing 

and is still flowing in D, and it conducts.  

 
Table 23. Operation under different current and pulse conditions 

Case Current Direction Gate signal of Q Operation 

i IL(i) ≥ 0  p(i-1)=0 & p(i)=1 Q turns on 

ii IL(i-1) ≥ 0 p(i-1)=1 & p(i)=0 Q turns off 

iii IL(i-1) ≥ 0 & IL(i) ≥ 0 p(i-1)=1 & p(i)=1 Q conducts  

iv IL(i-1) ≤ 0 p(i-1)=1 & p(i)=0 D turns off 

v IL(i-1) ≤ 0 & IL(i) ≤ 0 p(i-1)=1 & p(i)=1 D conducts  

 

Table 23 does not include open circuits, short circuits, or faulty conditions. Figure 65 shows a 

summary of the proposed tool where the main steps involve saving the data, setting up the tool to 

curve-fit the required datasheet curves, and processing the data in software such as MATLAB. 

Note that only the average Vdc is required for curve fitting. This will be explained in Section 

6.2.2. Power loss computation, shown as the last step in Fig. 65, is based on incrementing energy 

losses for the cases in Table 23. Section 6.2.3 explains incrementing energy losses.  
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Measure desired current and 

monitor the switching pulse

Save experimental measurements 

as .CSV or .TXT 

Import & process the current 

and pulse data in MATLAB 

or a similar program

Curve-fit of EQ,on, EQ,off, Erec or (trr 

and Irr), Vce,sat, and Vf from datasheet 

and average Vdc

Compute power losses over 

the time window of the 

measurements
 

Fig. 65. High-level block diagram of the proposed tool 

 

6.2.2 Curve Fitting 

The tool curve-fits EQ,on, EQ,off, and the diode turn-off energy, Erec, or Irr and trr, in 

addition to voltages Vce,sat and Vf . Four or more points given in the datasheet curves are used for 

curve fitting. When Erec is not given, trr and Irr curves are used. Curves are fit as second-order 

polynomials. Minor improvement can be achieved with higher order polynomials or logarithmic 

functions. The functions are scaled depending on the actual Vdc, relative to the voltage in the 

datasheet. 

A simple scheme similar to (13) is followed as the main purpose is to develop a general 

tool for any switching scheme based on datasheet information. Such a scheme provides 

satisfactory results in [123]. The effect of Tj is dropped because this tool is intended to avoid 

temperature measurements. Equation (13) accounts for the different values of Vdc between 
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experiments and datasheet test conditions. If desired, more extensive modeling can be augmented 

in the tool, as in (15). But (15) is dependent on specific IGBT-diode modules, and considering it 

in the tool requires adding a preset number of IGBT-diode pairs whose curves should be 

generated individually in the lab. Experimental results presented later in Section 6.3 show that 

the tool is not significantly affected by using the approximation in (13). In order to study the 

effect of discrepancies between Vg and Vbase, Tj and Tbase, and Rg and Rbase, a case-by-case 

modeling procedure should be followed as in [124] for every module. The ratios of the base 

values to the actual values differ from one application or datasheet test to another, and the 

constants σ, ζ, κ, μ, ς, and δ also differ from a module to another. It is well understood that such 

discrepancies could affect the estimation accuracy, but the effects of such discrepancies are not 

studied here so as to keep the focus on the tool. 

 

6.2.3 Data Processing 

A window is chosen from IL and p measurements. Curve fitting is performed as explained 

in Section 6.2.2, and measurements are fetched by the tool. When the tool detects conduction or 

change in the IGBT or diode state, energy and voltage values are estimated depending on the 

value of IL at the instants i and i-1. The energies are initialized to zero and incremented as shown 

in (54) – (59). Following the conditions in Table 23, EQ,on is incremented as shown in (54) when 

Q turns on; EQ,off is incremented as shown in (55) when Q turns off; EQ,sw is incremented as 

shown in (56) when Q turns on or off; Erec is incremented as shown in (57) when D turns off; 

EQ,cond and ED,cond are incremented as shown in (58) and (59), when Q or D conduct, respectively. 

A flowchart summarizing energy increments is shown in [182]. 
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EQ,on(i)=EQ,on(i-1) + g1IL(i)
2 

+g2|IL(i)|+g3    (54) 

 

EQ,off(i)=EQ,ff(i-1) + g4IL(i)
2 

+ g5|IL(i)|+ g6    (55) 

 

EQ,sw (i)= EQ,on(i) + EQ,off(i)     (56) 

  

Erec(i)=Erec(i-1) + g7IL(i)
2 

+ g8|IL(i)| + g9   (57) 

  

EQ,cond(i)=EQ,cond(i-1)+Vce,sat(i)×|IL(i)|×[t(i)-t(i-1)]   (58) 

   ED,cond(i)=ED,ccond(i-1)+Vf(i)×|I(i)|×[t(i)-t(i-1)],  (59) 

 

where Vce,sat(i)=g10IL(i)
2
+g11|IL(i)|+g12 and Vf(I)=g13IL(i)

2
+ g14|IL(i)|+g15. In (54)–(59) EQ,sw and 

EQ,cond are the IGBT total switching and conduction energies, respectively; ED,cond is the diode 

conduction energy, and all g1-15 are the curve-fitting coefficients for EQ,on, EQ,off, ED,sw, Vce,sat, and 

Vf. When all data points in the selected window are processed, the accumulated energies are 

divided by the window time width to determine the power losses.  

 

6.3 Tool Validation 

 Several methods can be used to validate the tool, including measurements of losses, 

temperatures, or parasitic elements. Direct loss measurements include semiconductor losses, as 

well as copper losses in connectors, and need special considerations under switching voltage and 

current waveforms. The tool uses no parasitic models; thus these are not used for validation. 

Temperature measurements are straightforward but they have two drawbacks. First, thermal 

resistances shown in Fig. 11 must be known. Second, the temperature measurements vary from 

one spot to another on the semiconductor devices. Thermal resistances from the device and heat 

sink datasheets are used to address the first drawback. The second is addressed by assuming a 

uniform temperature distribution across the device area and the hottest spot is at the center.  
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An experimental half-bridge inverter, described in Section 6.3.1, was built to validate the 

tool under periodic and aperiodic switching. Temperature measurements are used to compare 

measured and estimated losses. Validation under PWM periodic switching is shown in Section 

6.3.2, and under aperiodic switching in Section 6.3.3. An example application of the tool for is 

shown in Section 6.3.4.  

 

6.3.1 Experimental Setup 

Verification of the tool based on simulation waveforms was presented in [182]. The tool 

was compared to Melcosim— an industry-standard loss-estimation commercial software from 

Mitsubishi— which uses fixed-frequency PWM and implements (9)–(12). Even though 

comparison with a commercial software is useful for preliminary evaluation, this software 

contains several approximations, e.g., sinusoidal current shape. Here, the verification is achieved 

with calorimetry, in addition to comparison with commercial software.  

The schematic of a simple experimental half-bridge inverter and R-L load is shown in 

Fig. 66 where RL = 1.58 Ω and LL = 3.1 mH. The resistor Rd forms a current path when IL < 0. 

Figure 67 shows the experimental setup where the gate signal comes from the controller for 

either PWM or hysteresis switching.  

LL=3.1 mH

RL=1.576 Ω

Vdc/2

-Vdc/2

IL

Rd

 
Fig. 66. Schematic of the test circuit 
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Fig. 67. Experimental setup 

 

 The tool is independent of the circuit model; thus load information is not required. IL and 

the average Vdc are the required measurements; in addition, p is monitored. The commercial 

software requires measuring the power factor of the fundamental components of IL and load 

voltage and the modulation index of the fundamental component of the load voltage. These were 

obtained using a digital power analyzer but are not required by the tool. The sampling frequency 

of the oscilloscope was 250 kHz when f ≤ 30 Hz and 500 kHz when f > 30 Hz where f is the 

fundamental electrical frequency. These sampling frequencies have larger periods than the IGBT 

and diode turn-on and turn-off times and introduce estimation errors. For better estimation 

accuracy, measurements with higher sampling rates can be used, but these were not available for 

this setup.  

A CM200DY-12NF half-bridge IGBT-diode module was used for testing. The heat sink 

was mounted vertically according to the manufacturer specifications under natural convection 
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cooling. The characteristic curve of Rs-a is shown in Fig. 68 [183]. Rc-s = 0.07 
o
C/W as given in 

the module datasheet. Tc was measured at the module center through a small hole in the heat sink 

as shown in Fig. 69. Using the zero-order model in Fig. 11, if Tc, Ta, Rc-s, and Rs-a are known, PT 

can be estimated as PT = (Tc – Ta)/(Rc-s + Rs-a).  

 
Fig. 68. Heat sink thermal resistance Rs-a [183]  

 

 
Fig. 69. Tc measurement through a hole at the heat sink center 

Two scenarios are studied: the first is fixed-frequency PWM where the commercial 

software is also compared; the second is under hysteretic control, i.e., aperiodic switching. While 

both scenarios verify the tool, the second scenario is also intended to demonstrate an example of 

possible research topics based on the tool—finding a fixed-switching frequency that can be used 

to model losses under hysteresis switching in commercially available loss-estimation tools. 

Given a maximum switching rate (fmax) that can be achieved by hysteresis, it was shown in [182] 

Tc 
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that fmax/2 could be a good approximation to estimate losses under hysteresis using fixed-

frequency tools. 

 

6.3.2 Validation under PWM Switching 

The IGBT switching frequency is set to a fixed known value. Several values of fsw, Vdc, 

and f were used to demonstrate that the tool can be applied for different operating conditions. A 

window of the current and switching pulse is captured over several fundamental cycles. Three 

methods are used to estimate the total power loss: the proposed tool, temperature measurements, 

and the commercial software. For 10
5
 data points, the total run time of the tool did not exceed 1 

minute on a 3.2 GHz, Pentium 4 computer with 1 GB of RAM. A sample result is shown in Fig. 

70 for fsw =10 kHz and f = 15 Hz where IL is not a perfect sinusoid since the R-L load is a first-

order filter. Table 24 shows the results of fixed-frequency operation under PWM with 

measurements used as the reference for error calculation. 

 

 
Fig. 70. PWM switching waveforms: Load voltage across R-L (top, 100 V/div), IL (middle, 10 A/div), logic-level 

switching pulse (bottom, 5 V/div) 

Load 

Voltage 

IL 

p 
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Table 24. Estimates of PT from the tool, measurements, and commercial software under PWM switching 

fsw 

(kHz) 

f 

(Hz) 

Vdc 

(V) 

IL 

(Arms) 

Load 

Voltage 

(Vrms) 

θ 

(deg) 

Tc 

(oC) 

Ta 

(oC) 

Rc-s+Rs-a 

(oC/W) 

PT  

Measured  

(W) 

PT 

Tool  

(W) 

Tool  

Error  

(%) 

PT 

Commercial 

Software (W) 

Commercial 

Software 

Error (%) 

5 50 69.84 7.64 34.29 55.88 42 23 3.07 6.189 7.003 13.15 5.96 -3.699 

10 25 90.17 5.53 43.89 64.73 46 23 3.07 7.492 6.989 -6.71 6.00 -19.913 

10 15 93.96 3.40 45.84 66.52 42 23 3.17 5.994 6.454 7.68 4.35 -27.424 

10 50 70.92 7.39 34.49 56.33 46 23 2.97 7.744 7.719 -0.32 6.88 -11.158 

 

It is clear in Table 24 that the tool performs well compared to measurements and has an 

average absolute error of 7%. As seen in the literature, estimation errors that are less than 15% 

are acceptable in such applications where model uncertainties, curve-fitting approximations, 

and/or sensitive measurements introduce errors. Results from the commercial software show a 

higher average absolute error of 15.58%, which is still useful for virtual prototyping, but less 

accurate than the proposed tool. Results show that the assumption of linear voltage scaling of Esw 

does not significantly affect the tool performance. 

 

6.3.3 Validation under Hysteresis Switching 

Hysteretic current control was implemented in the circuit shown in Fig. 66, resulting in 

aperiodic switching, as shown in Fig. 71. These waveforms are typical for inductive loads, 

including motor drives with hysteresis current control. The tool was compared to power loss 

estimates from temperature measurements as shown in Table 25. These results show that the tool 

is able to estimate the power loss with an average error of 8.5%. The worst case error is less than 

12%. Thus, the tool successfully predicted loss estimates under aperiodic switching using 

datasheet information. These estimates are believed to be the first experimentally validated 

results (using calorimetry) of a loss estimation tool under aperiodic switching.  
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Fig. 71. Hysteresis switching waveforms: Load voltage across R-L (top, 100 V/div), IL (middle, 10 A/div), logic-

level switching pulse (bottom, 5 V/div) 

 

Table 25. Estimates of PT from the tool and measurements under hysteretic switching 

f 

(Hz) 

Vdc 

(V) 

IL 

(Arms) 

Tc 

(oC) 

Ta 

(oC) 

Rc-s+Rs-a 

(oC/W) 

PT 

Measured 

(W) 

PT 

Tool 

(W) 

Tool 

Error 

(%) 

30 88 6.32 56 24 2.97 10.774 11.284 4.73 

15 88.25 4.80 56 24 2.97 10.774 9.507 -11.76 

50 88.6 4.70 58 24 2.97 11.448 10.618 -7.25 

50 86 5.80 58 24 2.97 11.448 10.275 -10.24 

 

6.3.4 Tool Application Example 

 The development of such an accurate loss estimation tool is expected to lead to further 

research in power electronics thermo-electric designs. Such applications include selection of the 

minimum-loss switching scheme for a certain application, design of minimum-loss power 

electronics converters, as explained in Section 6.1, etc. One application of the tool was presented 

in [182] where a fixed-frequency loss-estimation tool was shown to estimate losses under 

variable switching frequencies. For a certain  fmax under hysteresis switching, fmax/2 was shown to 

give accurate loss estimates of IGBT-diode losses. The tool established here was used to rapidly 

Load 

Voltage 

IL 

p 
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estimate losses under different characteristic rates, such as fmax, fmax/2, the average switching 

frequency (favg), and the number of switching instants (fT). No experimental measurements were 

presented in [182] to validate fmax/2 as the acceptable value that can be used in fixed-frequency 

tools. Here, this is validated with calorimetry. 

The same experimental setup described earlier was used to update Table 25 with the 

results from the commercial software at fmax/2 where fmax=50,000 switching instants/second. 

Again, the tool only requires measurements of IL, p, and Vdc, but the commercial software 

requires more measurements shown in Table 26. Results from the commercial software at fmax/2 

have higher errors than the tool, with an average of 14.46%.  These results are still useful as 

preliminary approximations of the losses.  

Table 26. Estimates of PT from the tool, measurements, and commercial software under hysteretic switching 

f 

(Hz) 

Vdc 

(V) 

IL 

(Arms) 

Load 

Voltage 

(Vrms) 

θ 

(degrees) 

Tc 

(oC) 

Ta 

(oC) 

Rc-s+Rs-a 

(oC/W) 

PT 

Measured 

(W) 

PT 

Tool 

(W) 

Tool 

Error  

(%) 

PT  @ fmax/2 

Commercial 

Software (W)  

Commercial 

Software 

Error (%) 
30 88 6.32 42.55 62.14 56 24 2.97 10.774 11.284 4.73 10.49 -2.64 

15 88.25 4.80 42.20 64.00 56 24 2.97 10.774 9.507 -11.76 8.90 -17.34 

50 88.6 4.70 42.50 63.00 58 24 2.97 11.448 10.618 -7.25 8.80 -23.13 

50 86 5.80 42.00 62.10 58 24 2.97 11.448 10.275 -10.24 9.77 -14.66 
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CHAPTER 7 

CONCLUSIONS AND OPEN RESEARCH TOPICS 

This dissertation presented a system-level approach to design and analyze a better IFOC 

induction motor drive system for present and future applications. Improvements from the 

efficiency perspective addressed real-time minimum-loss operation. LMTs were reviewed, 

categorized, and analyzed. Model-based, physics-based, and hybrid LMT categories were 

compared. Hybrid LMTs, which were first categorized as a separate group in [18, 19], were also 

emphasized. Three main LMT applications were studied in detail: pump, HEV, and propulsion 

system. Energy savings greater than 10% were shown in the pump application under the LMT. 

Around 5% energy savings were shown in the HEV application, and similar savings in the 

propulsion application. Most of these results were validated experimentally. Sensitivity analysis 

of a specific model-based LMT was presented. Results showed that even large inaccuracies in Rr 

lead to an insignificant shift from the minimum power loss. LMTs will yield significant global 

energy savings when utilized in machines operating with electronic drives and are an essential 

add-on to any future motor drive.  

Among the hybrid LMTs available in the literature, RCC was studied thoroughly from 

various perspectives. RCC as VC was briefly introduced. A detailed comparison of RCC and ES 

proved that they are essentially the same, with the only difference being the source of the 

perturbations utilized to achieve the extremum—RCC uses inherent ripple to estimate the 

objective function gradient while modern ES utilizes sinusoidal perturbation injections. 

Mathematically, RCC and ES were derived and found to be similar and their Lyapunov stability 

was analyzed. The link between RCC and ES was first established here and is expected to lead to 

further explorations in both control methods. 
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The application of RCC as an LMT was studied thoroughly. The high-frequency problem 

was of special interest, and the main reason behind the inability of RCC to work as an LMT was 

found—energy storage in the magnetizing and leakage inductances. A compensator that helps 

RCC utilize higher frequencies was derived and simulated in both time and frequency domains. 

This compensator and its design guidelines complete the design phase of RCC application to 

induction motor drives.  

Due to the LMT effect on the induction motor drive system operation, reliability 

modeling of the system is essential. A complete systematic procedure was presented here as 

previous attempts to establish a reliability model of an induction motor drive system were 

incomplete. Faults in the machine, power electronics, and sensors were studied. Mathematical 

analysis and drive simulations, which were experimentally verified, yielded a Markov reliability 

model and an MTTF of 57.2 years. The systematic procedure can be easily modified for higher 

or lower levels of detail. In order to enhance the system reliability, an open-loop constant V/f 

controller is engaged whenever a sensor fault occurs. The effect of wait time before switching to 

the safe-mode was qualitatively studied; the MTTF decreased when the wait time increased. In 

general, the MTTF improved to over 70 years, i.e., 22.3%. Such a safe-mode drive can be key in 

future applications that require high safety and reliability standards, such as vehicles.  

Better thermo-electric design procedures are desired as power electronics faults are 

among the major faults that occur in the drive. Problems in the thermal management of power 

electronics cause severe faults in the inverter and drive—OC and SC faults. Loss estimation in 

IGBTs and diodes, the most common semiconductors in modern motor drives, is essential for 

designing better and cost-effective thermal management systems. This reduces power electronics 

faults. A loss estimation tool that works under any switching scheme was presented. The tool 
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requires only three measurements: current in a phase, gate signal in that phase, and an average 

Vdc. This tool was experimentally shown to estimate losses under both fixed-frequency and 

variable switching schemes with an average error of 8%. This tool is expected to lead to several 

future research topics in the optimal design of power electronics converters while considering the 

effects of different switching patterns. An application was studied here—identifying a fixed-

switching frequency that can be used in fixed-frequency tools to estimate losses under variable 

switching patterns, specifically, hysteresis.  

Thus, the loss estimation tool will lead to better inverter designs, which in turn will lead 

to higher drive system reliability. In parallel with this, the MTTF of the drive system under 

minimum-loss operation was shown to be large, and energy savings were achieved. The 

procedures, designs, results, and analyses presented in this dissertation will to lead to better 

induction motor drive systems from the perspective of efficiency, reliability, and power 

electronics.  

Several research topics remain open and should be addressed. One topic is a survey of 

possible energy savings when LMTs are applied globally. Global savings were demonstrated 

here, but accurate market surveys could be more attractive for possible commercialization of 

LMTs through government and private funding programs. Another topic is to analyze system 

reliability for different performance requirements in various applications. The choice of 

performance requirements for different applications could significantly affect the resulting 

MTTF. Another topic is to experimentally apply RCC with compensation and 

modulation/demodulation techniques similar to ES in order to overcome the high-frequency and 

low SNR problems, respectively. Other RCC- and ES-related topics include a deeper 

understanding of the link between RCC and VC—although both have a common characteristic of 
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utilizing perturbations for control purposes, the link between them has not yet been well 

established. Another topic is to generalize the link between RCC and ES for any perturbation 

waveform since only sinusoidal, exponential, and triangular waveforms were studied here; also, 

mathematical results in the works of Nesić and Kristić on stability, choice of the perturbation 

frequency and amplitude, and applications of ES to different system forms, can be extended to 

RCC. One more open research topic is to augment optimal power electronics designs, i.e., choice 

of devices, switching scheme, operating voltages, etc., to the loss estimation tool to generate 

several designs. Among them one or more optimal designs are chosen. Such a procedure would 

be valuable in showing power electronics design trade-offs and the effect of better thermo-

electric designs on the overall drive system reliability. The models developed for optimal power 

electronics designs can also be added to machine loss models to achieve system-level loss 

minimization.  
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APPENDIX A 

INPUT POWER TRANSFER FUNCTION, FIELD-ORIENTED CONTROL 

EQUATIONS, AND MACHINE PARAMETERS 

The induction machine model in the dq0 synchronous frame is shown in Fig. 18 where ωe 

replaces ωa. For a squirrel-cage induction machine, the rotor voltages are zero, and for balanced 

conditions, the 0-voltages are zero. The derivation of (29) proceeds as follows: 

Let 2

m r sD L L L  , then mr
qs qs qr

LL
i

D D
 


  and mr

ds ds dr

LL
i

D D
 


  . Also, 

qs s qs qs e dsv R i s     and ds s ds ds e qsv R i s     where s is the Laplace domain derivative. 

 
3

2
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       (64) 

If Pin is considered negative as  
3

2
in qs qs ds dsP v i v i


  , then 

 2

3
2 2

2

in m
ds e qs r s ds m s dr

dr

P L
s D D L R L R

D
    



 
   


.      (65) 
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The choice of negative or positive Pin does not affect the optimal λdr, but the phase at the 

optimum would be either 90
o 
or 270

o
. The values of λds, λqs, and ωe are chosen for an operating 

point of Te and ωr, where 
2

p

r m

n
  and the relation between Te and ωm is a known load 

characteristic. λdr is stepped to find its optimal value; thus, it is assumed to be known and the 

other unknowns are: 

4

3

r e
qs

p m dr

L T
i

n L 
           (66) 

dr
ds

m

i
L


                  (67) 

m
qr qs

r

L
i i

L
         (68) 

qs s qs m qrL i L i                (69) 

ds s dsL i                     (70) 

where idr=λqr=0 under IFOC.  ωr is known for a given Te and load, and ωe can be estimated as 

qs r

e r sl r

ds r

i R

i L
       .                    (71) 

Machine parameters are given in Table 27.  

Table 27. Machine parameters 

Motor Parameters Test Motor HEV Machine 

Rated power 1.5 hp 10 hp 
Rated speed 1750 rpm 1746 rpm 

Number of poles (np) 4 4 

Referred rotor resistance (Rr’) 0.7309 Ω 0.01438 Ω 

Stator resistance (Rs) 1.5293 Ω 0.0248 Ω 

Referred rotor leakage inductance (Llr’) 0.005343 H 114e-6 H 

Stator leakage inductance (Lls) 0.00356 H 114e-6 H 

Magnetizing inductance (Lm) 0.19778 H 0.0036 H 

Core Loss (Rc) 505 Ω 19 Ω 

Inertia (J) 0.01 Kg.m
2
 0.03 Kg.m

2
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APPENDIX B 

LOAD SUPPORT ISSUES 

The derivation of the lower limit on λdr proceeds as follows:  

 
3

4

p

e qr dr dr qr

n
T i i  

          
(72) 
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(73) 
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
   .              (74) 

Under IFOC, 0qr  , c

dr dr  , and c

o oP P where the c superscript resembles a command 

quantity. Thus, 
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But c
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c
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m

P
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
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4

3

c
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m qs p

T L

L i n
  .                  (78) 

Therefore, if the maximum allowed iqs is its rated value irated,  

4

3

c
c e r
dr

m rated p

T L

L i n
  .                     (79) 

Another bound on λdr can be found as follows:  



132 

 

With λqs given in (A.10), 
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For
 ,max0 qs qs   ,  

,max
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
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For λqs given in (69), qs ls qs ls ratedL i L i   if iqr>0. Thus,  

4

3

c

dr

p m ls rated

T

n L L i

  .                    (88) 
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The derivation of Pin,s is as follows: 

The objective is to find Pin given in (60) as a function of λdr so that a shift in λdr can be 

introduced. When the three-phase induction machine is operating under IFOC and in steady-

state, the following is true:  

4 1
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r s e e s
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For a shift in λdr given by Δλ, Pin,s can be found as follows:  
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APPENDIX C 

EXPERIMENTAL SETUP 

The experimental setup is shown in Fig. 72.  

 
Fig. 72. Experimental setup of the 1.5 hp induction machine ©2010 IEEE 

The setup consists of the following main components: 

 Modular inverter (inverter+control): three-phase inverter rated at 400 V, 10 A with a 

built-in control board. The control board utilizes the eZdspF2812 [184] which is based on 

the TMS320F2812 DSP from Texas Instruments (TI). The eZdspF2812 can be 

programmed using MATLAB/Simulink graphical programming. C code is generated 

from the graphical program (block diagram) and compiled to the DSP using Code 

Composer Studio from TI. Fixed-point math is used in the block diagram as described in 

[185]. Details about the Simulink blocks used in the DSP are discussed in [186]. The 

DSP communicates with the computer in real time through real-time data exchange 
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(RTDX). Users can program a GUI to send and receive data to the DSP in real time using 

RTDX.  

 Dynamometer and controller: The dynamometer is a hysteresis dynamometer controlled 

using the DSP6001 from Magtrol. The dynamometer acts as the load on the induction 

machine shaft and can be controlled in either speed or torque modes. In the setup shown 

in Fig. C.1, speed control is implemented on the DSP using IFOC, and torque control is 

applied using the dynamometer. Serial communication between the dynamometer 

controller and the PC allows the user to send torque commands to the dynamometer from 

the same GUI that runs IFOC. This helps achieve simultaneous torque and speed control. 

Details about the controller and its setup with the hysteresis dynamometer are available in 

[187].  

 Induction motor: The three-phase induction motor used in the setup has a power rating of 

1.5 hp. Its parameters are given in Table A.1 as the ―Test motor.‖ 

 Rectifier: Straightforward three-phase diode rectifier supplied by the 208 V line-line in 

the lab and yields around 300 V dc bus. The frontend of the modular inverter is not used 

in these experiments as RCC would potentially use rectifier ripple at 360 Hz which is 

filtered out in the frontend, but available in the rectifier used.  

 Measurements: Two main pieces of measurement equipment are used. The first and 

essential one is the Yokogawa WT1600 digital power analyzer which can monitor up to 

six phases simultaneously. This analyzer can compute power, power factor, harmonic 

distortion, and several other important power-related measurements. Its documentation is 

available at [188]. Other measurements are available on the Tektronix oscilloscope model 

TDS 3034.  
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APPENDIX D 

MARKOV MODEL AND STATE TRANSITION MATRIX 

The Markov model of the drive system under IFOC is shown in Fig. 73. 
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Fig. 73. Markov model of the induction motor drive system under IFOC 
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Non-zero elements in the state-transition matrix Φ are shown in Table 28.  

Table 28. Non-zero elements of the state transition matrix 

Element Value 

Φ[1,1] -(c1λCSO + λCSG+ λCSB + λSCDC + λSCG + λPP + λBR + λF1)  

Φ[1,2] c1λCSO 

Φ[2,2] -(c3λSCDC + c2λSCG + c3λPP + c3λBR + λF2) 

Φ[2,9] c3λSCDC 

Φ[2,10] c2λSCG 

Φ[2,11] c3λPP 

Φ[2,12] c3λBR 

Φ[3,3] -(λSEC+ λSCDC + λSCG + λPP + λBR + λF3) 

Φ[3,13] λSEC 

Φ[4,4] -( λSCDC + λSCG + λPP + λBR + λF4) 

Φ[5,5] -(λCSC + λCSG + λCSB + c5λCSO + c4λPP + λBR + λF5) 

Φ[5,23] c4λPP 

Φ[5,24] λCSC 

Φ[5,26] c5λCSO 

Φ[6,6] -( c7λCSO + λCSG + λCSB + c6λPP + λBR + λF6) 

Φ[6,28] c7λCSO 

Φ[6,31] c6λPP 

Φ[7,7] -(λCSO + λCSG + λCSB + c8 λCSC + λSCDC + λSCG + λF7) 

Φ[7,33] λCSO 

Φ[7,36] c8 λCSC 

Φ[8,8] -(c9λCSO + λCSG + λCSB + λSCDC + λSCG + λF8) 

Φ[8,39] c9λCSO 

Φ[1,3], Φ[5,25], Φ[6,29], Φ[7,34], Φ[8,40] λCSG 

Φ[1,4], Φ[5,27], Φ[6,30], Φ[7,35], Φ[8,41] λCSB 

Φ[1,5], Φ[3,14], Φ[4,21], Φ[7,37], Φ[8,42] λSCDC 

Φ[1,6], Φ[3,15], Φ[4,20], Φ[7,38], Φ[8,43] λSCG 

Φ[1,7], Φ[3,16], Φ[4,19] λPP 

Φ[1,8], Φ[3,17], Φ[4,18], Φ[5,22], Φ[6,32] λBR 

Diagonal elements Φ[i,i] 

i=9, 10, 14, 15, 20, 21, 24– 30. 
λSEC + λSEO + λSEG + λPP + λBR 

Diagonal elements Φ[i,i] 

i=11, 12, 16–19, 33–36, 39–41. 
λSEC + λSEO + λSEG + λSCDC + λSCG + λOC 

Φ[13,13] λSCDC + λSCG + λOC + λPP + λBR 

Diagonal elements Φ[i,i] 

i=22, 23, 31, 32, 37, 38, 42, 43. 
λSEC + λSEO + λSEG + λOC + λCSG + λCSB + λCSC 

 

Mathematica script for finding the MTTF of the drive system under IFOC: 

Clear["Global`*"] 

l0=-(locs (1-c1)+lgcs+lbcs+lscdc+lscg+lpp+lbr+lf1); 

l1=-(lscdc (1-c3)+lscg (1-c2)+lpp (1-c3)+lbr (1-c3)+lf2); 

l2=-(lcse+lscdc+lscg+lpp+lbr+lf3); 

l3=-(lbr+lpp+lscg+lscdc+lf4); 

l4=-(lbr+lpp (1-c4)+lccs+lgcs+locs (1-c5)+lf5); 

l5=-(locs (1-c7)+lgcs+lbcs+lpp (1-c6)+lbr+lf6); 
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l6=-(locs (1-c9)+lgcs+lbcs+lccs (1-c8)+lscdc+lscg+lf7); 

l7=-(locs+lgcs+lbcs+lscdc+lscg+lf8); 

 

lf1=lose+lgse+lcse+lccs+loc+c1*locs; 

lf2=lose+lgse+lcse+loc+c2*lscg+c3*(lscdc+lpp+lbr); 

lf3=lose+lgse+loc; 

lf4=lose+lgse+lcse+loc; 

lf5=lose+lgse+lcse+c4*lpp+c5*locs; 

lf6=lose+lgse+lcse+lccs+c6*lpp+c7*locs; 

lf7=lose+lgse+lcse+loc+c8*lccs; 

lf8=lose+lgse+lcse+loc+lccs+c9*locs;  

 

ll1=lcse+lose+lgse+lpp+lbr; 

ll2=lscdc+lscg+loc+lcse+lose+lgse; 

ll3=lscdc+lscg+loc+lbr+lpp; 

ll4=lcse+lose+lgse+locs+lgcs+lbcs+lccs 

 

K=… (NOTE: K is very large to show here, but K = Φ) 

 

"Finding the Transpose of K" 

KT=Transpose[K]; 

 

"Finding the exponential of K_Transpose" 

eKT=MatrixExp[KT*t]; 

 

"Finding the dimensions of the exponential to set the size of 

the initial condition of the probability array" 

Dim=Dimensions[eKT] 

p0=ConstantArray[0,Dim[[1]]]; 

p0[[1]]=1; 

p0; 

 

"Final probability result" 

P=eKT.p0; 

 

"Finding zero layer probability" 

P0=P[[1]]; 

 

"Finding first layer probability" 

P1=P[[2;;8]]; 

P1sum=Total[P1]; 

 

"Finding second layer probability" 

P2=P[[9;;42]]; 
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P2sum=Total[P2]; 

 

lscdc=2*10^(-6)*10^(-6); 

lscg=2*10^(-6)*10^(-6); 

locs=1*10^(-7)*10^(-7); 

lgcs=1*10^(-7)*10^(-7); 

lbcs=1*10^(-7)*10^(-7); 

lccs=1*10^(-7)*10^(-7); 

lose=7.4*10^(-7)*10^(0); 

lgse=4.2*10^(-7)*10^(0); 

lcse=1.9*10^(-7)*10^(0); 

loc=1*10^(-7)*10^(-7); 

lbr=1*10^(-7)*10^(-7); 

lpp=1*10^(-7)*10^(-7); 

c1=1/5; 

c2=3/4; 

c3=1/2; 

c4=2/5; 

c5=4/5; 

c6=2/5; 

c7=4/5; 

c8=2/5; 

c9=2/5; 

 

"Finding Reliability" 

R=Total[P] 

 

"Fidning MTTF" 

MTTF=Integrate[R,{t,0,} 
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