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Abstract

Microencapsulated healing agents that possess adequate strength, long shelf-life,

and excellent bonding to the host material are required for self-healing materials.  Urea-
formaldehyde microcapsules containing dicyclopentadiene were prepared by in situ

polymerization in an oil-in-water emulsion that meet these requirements for self-healing

epoxy.  Microcapsules of 10-1000 µm in diameter were produced by appropriate

selection of agitation rate in the range of 200-2000 rpm.  A linear relation exists between
log(mean diameter) and log(agitation rate).  Surface morphology and shell wall thickness

were investigated by optical and electron microscopy.  Microcapsules are composed of a

smooth 160-220 nm inner membrane and a rough, porous outer surface of agglomerated
urea-formaldehyde nanoparticles.  Surface morphology is influenced by pH of the

reacting emulsion and interfacial surface area at the core-water interface.  High yields

(80-90%) of a free flowing powder of spherical microcapsules were produced with a fill
content of 83-92 wt% as determined by CHN analysis.

Keywords: microcapsule, self-healing, dicyclopentadiene, urea formaldehyde, in situ

polymerization, surface morphology
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Introduction
Self-healing polymers and composites with microencapsulated healing agents

offer tremendous potential for providing long-lived structural materials (White et al.
2001).  The microcapsules in self-healing polymers not only store the healing agent

during quiescent states, but provide a mechanical trigger for the self-healing process

when damage occurs in the host material and the capsules rupture.  The key feature of
self-healing materials is the highly engineered microencapsulated healing agent.  The

microcapsules must possess sufficient strength to remain intact during processing of the
host polymer, yet rupture when the polymer is damaged.  High bond strength to the host

polymer combined with a moderate strength microcapsule shell are required.  To provide

long shelf-life the capsules must be impervious to leakage and diffusion of the
encapsulated (liquid) healing agent for considerable time.  These combined

characteristics are achieved with a system based on the in situ polymerization of urea-

formaldehyde (UF) microcapsules encapsulating dicyclopentadiene (DCPD) healing
agent, outlined in Figure 1.  The addition of these microcapsules to an epoxy matrix also

provides a unique toughening mechanism for the composite system (Brown et al. 2002).

Figure 1.  Microencapsulation of DCPD utilizing acid-catalyzed in situ polymerization of

urea with formaldehyde to form capsule wall.
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Here we report on the manufacture of UF microcapsules prepared by in situ

polymerization in an oil-in-water emulsion.  A basic review of the in situ encapsulation

technique has been provided by Baxter (1974), Thies (1987, 1996), and Arshady and

George (1993).  In situ encapsulation of water-immiscible liquids by the reaction of urea
with formaldehyde at acid pH is outlined by Dietrich et al. (1989).  Tan et al. (1991), Yan

et al. (1993), Alexandridou and Kiparissides (1994), and Ovez et al. (1997) have all

shown that microcapsule size can be controlled by adjusting the agitation rate during
microencapsulation.

UF microcapsule diameter and surface morphology significantly influence

capsule rupture behavior and healing agent release in self-healing polymers (White et al.

2001, Brown et al. 2002).  In this paper UF encapsulated DCPD with average diameter

ranging from 10 to 1000 µm are analyzed and the influence of process variables on the

capsule surface morphology is described.

Materials and methods
Materials

Dicyclopentadiene was obtained from Acros Organics (Geel, Belgium) and

purified by filtration and vacuum distillation prior to microencapsulation.  Urea,
ammonium chloride, and formaldehyde were purchased from Fisher Chemicals

(Loughborough, UK).  Resorcinol was obtained from J. T. Baker (Phillipsburg, New

Jersey).  Ethylene maleic anhydride (EMA) copolymer was purchased from Zeeland
Chemicals (Zeeland, Michigan).  All solvents and substances used for preparation of

EMA solution, acid and base solutions and 1-octanol were of analytical grade.

Preparation of microcapsules

Microcapsules were prepared by in situ polymerization in an oil-in-water

emulsion.  At room temperature (20-24°C) 200 ml of deionized water and 50 ml of 2.5
wt% aqueous solution of EMA copolymer were mixed in a 1000 ml beaker.  The beaker

was suspended in a temperature-controlled water bath on a programmable hotplate with

external temperature probe (Dataplate® Digital Hotplate, Cole Palmer).  The solution
was agitated with a digital mixer (Eurostar, IKA Labortechnik) driving a three-bladed,

63.5 mm diameter low-shear mixing propeller (Cole Parmer) placed just above the

bottom of the beaker.
Under agitation, 5.00 g urea, 0.50 g ammonium chloride, and 0.50 g resorcinol

were dissolved in the solution.  The pH was raised from approximately 2.60 to 3.50 by

drop-wise addition of sodium hydroxide (NaOH) and hydrochloric acid (HCl).  One to
two drops of 1-octanol were added to eliminate surface bubbles.  A slow stream of 60 ml

of DCPD was added to form an emulsion and allowed to stabilize for 10 minutes.  After



4

stabilization, 12.67 g of 37 wt% aqueous solution of formaldehyde was added to obtain a
1:1.9 molar ratio of formaldehyde to urea (Sanghvi and Nairn 1992).  The emulsion was

covered and heated at a rate of 1°C min-1 to the target temperature of 55°C.  After four

hours of continuous agitation the mixer and hot plate were switched off.  Once cooled to

ambient temperature, the suspension of microcapsules was separated under vacuum with
a coarse-fritted filter.  The microcapsules were rinsed with deionized water and air dried

for 24-48 h.  A sieve was used to aid in separation of the microcapsules (U.S.A. standard

testing sieves, W. S. Tyler).

Microcapsule size analysis

Microcapsule size analysis was performed with an optical microscope (Optiphot
150S, Nikon) and image analysis software (Global Lab Image V. 3.1, Data Translation).

Mean diameter and standard deviation were determined from data sets of at least 250

measurements.  The size distribution was biased toward small microcapsule diameters as
discussed by Ovez et al. (1997), however the mean and standard deviation captured the

dominant mode of the distribution.

Electron microscopy

Surface morphology and capsule shell thickness were examined by scanning

electron microscopy (XL30 ESEM-FEG, Philips).  Microcapsules were mounted on a
conductive stage and ruptured with a razor blade to facilitate membrane thickness

measurement.  Samples were sputtered with a thin layer (~10 nm) of gold-palladium to
prevent charging under the electron beam.

Elemental analysis

Microcapsule fill content was measured by elemental analysis using a Carbon-

Hydrogen-Nitrogen (CHN) analyzer (CE440, Exeter Analytical Inc.).  Microcapsules

samples combusted at 980°C in an oxygen atmosphere to form CO2, H2O, and NxOy.
Knowing the chemical compositions of UF (C5H8N2O, 53.56 wt% C and 24.98 wt% N)

and DCPD (C10H12, 90.85 wt% C and 0 wt% N), and assuming that water was the only

impurity present in the combusted sample, the weight fractions of UF and DCPD were
calculated as

w w

w w w
UF N

DCPD C N

=

= −

4 003

1 101 2 144

.

. .
(1)

where wC and wN are the weight fractions of C and N obtained by elemental analysis.
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Results and discussion
The processing route described in Figure 1 produces high quality UF

microcapsules with a DCPD core over a wide range of sizes for use in self-healing
structural polymers and polymer composites.  The microcapsules are spherical and free

flowing after drying (see Figure 2).  Yields of the preparation, defined by the ratio of the

mass of recovered microcapsules to the total mass of DCPD core and shell constituents,
are high.  At 550 rpm agitation rate the typical yield is 79-92%.  Fracture of

microcapsules under high shear conditions and nonrecoverable microcapsule buildup on
the reaction beaker result in lower yields as agitation rate increases.  At 1800 rpm

agitation rate, the typical yield is greater than 68%.

Control of diameter

Average microcapsule diameter is controlled by agitation rate as shown in Figure 3.

As the agitation rate is increased, a finer emulsion is obtained, and the average
microcapsule diameter decreases.  Microcapsules with average diameter in the range of

10-1000 µm are obtained by adjusting agitation rate between 200–2000 rpm.  The
standard deviation is less than 35% of the mean value over the entire range of diameters

produced.  Over the agitation rates investigated the relationship between average

diameter and agitation rate is linear in log-log scale, as is the dependence between droplet
size and shear rate as described by Taylor (1932).  Although a logical correlation exists

between agitation rate and shear rate, the connection to Taylor’s work is further

complicated because the fluid flow around the propeller is turbulent, rather than the

Figure 2.  ESEM image of UF microcapsules containing DCPD core.  The microcapsules
were prepared following the procedure in Fig. 1 at 550 rpm agitation rate.
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laminar case analyzed by Taylor (1932).  Microeddies with a range of length scales are
present in the flow as described by Dobetti and Pantaleo (2002).  In the region of flow

away from the propeller, larger length scales dominate, leading to the major mode of the

distribution shown in Figure 4.  Above a characteristic length scale there are no
microcapsules formed, a feature not represented by the normal curve.  In the vicinity of

the propeller blades many smaller microeddies exist resulting in a bias of the size
distribution towards smaller length scales.

Microcapsule shell thickness

The surface morphology and shell wall thickness of microcapsules is investigated

by electron microscopy.  The microcapsule shell has a smooth inner membrane free of

voids or inclusions, and a rough porous morphology on the outer surface, as shown in
Figure 5.  Excess ammonium chloride or resorcinol, addition of smaller volumes of

DCPD, contaminated glassware, an unbalanced or unaligned mixer, and lower initial pH

all dramatically increase the thickness of the outer, permeable layer.  Park et al. (2001)
report that the presence of both a porous and non-porous zone is a common feature of UF

microcapsules.
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Figure 3.  Mean microcapsule diameter vs. agitation rate.  Size analysis was performed

by optical microscopy on data sets of at least 250 measurements at each agitation
rate.  Error bars correspond to one standard deviation of the data.  The solid line

corresponds to a linear fit of the entire data on log-log scale.
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Figure 4.  Microcapsule size distributions.  At 550 rpm agitation rate the mean size is 183

±  42 µm (±1 standard deviation). At 1800 rpm the mean size is 15 ± 5 µm.

Standard normal distribution curves are overlaid with the data.

Figure 5.  Microcapsule surface morphology.  The rough outer surface is composed of

UF nanoparticles (~150 nm) attached to the microcapsule shell.
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The shell wall thickness (of the smooth nonporous inner region) is largely
independent of manufacturing parameters.  Shell wall thickness consistently falls

between 160–220 nm over the full range of microcapsule diameters investigated.

Microcapsules in this range of shell thickness are sufficiently robust to survive handling
and manufacture of self-healing polymers.  When embedded in an epoxy matrix the

microcapsules rupture and release their content at the site of damage (Brown et al. 2002).

The rough porous structure on the outer surface is an agglomeration of UF nanoparticles,
shown in Figure 5.

Microcapsule surface morphology

The bath temperature, solution temperature, and pH were monitored during a

standard microencapsulation process (Figure 6) while simultaneously removing aliquots

from the emulsion bath at periodic intervals and quenching in 20 ml of cold (~15 °C)

water.  A sequence of aliquot images is shown along the bottom border of Figure 6.
Aliquots were imaged optically with incident light with black corresponding to an

optically clear solution and white indicating a milky solution.

I     No shell wall formation.  DCPD separates from
      aqueous solution if agitiation stops.

II    Microcapsules form,  density less than solution,
       clumping occures if agitiation stops.

III   Solution turns milky in appearance, UF
       nanoparticles form in solution.

IV   Solution turns clear, UF nanoparticles attach to
       microcapsule shell, density greater than solution.
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Figure 6.  Temperature and pH profile during microencapsulation.  Aliquot appearance

was obtained by quenching in 15 °C water at periodic intervals and imaging by

reflected  light.
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Four distinct regimes are identified.  In region I (0-50 min) the DCPD emulsion
appears black (clear).  At low agitation rates, individual DCPD droplets are observed.

The DCPD rapidly coalesces to form a distinct second phase floating above the aqueous

solution if agitation is stopped.  During this time period the bath temperature
continuously increases to the set point, the solution temperature lags several minutes

behind the bath temperature, and the pH reduces from 3.50 to about 2.35.  Region II (50-

70 min) is defined by the transition to a cloudy emulsion and an associated slight increase
in pH.  Droplets remain as distinct microcapsules if agitation is stopped.  However, the

microcapsules clump and are too fragile to isolate.  Region III (70-160 min) shows a

transition to milky white emulsion in which the temperature stabilizes and the pH peaks
at about 2.45 and then steadily decreases.  Separable microcapsules appear when

agitation is stopped.  The microcapsule shell reaches its maximum thickness and the
surface morphology transitions from smooth to rough in this region, as shown in Figure

7.  The milky white appearance of aliquot samples directly correlates to the development

of UF nanoparticles in suspension.  Electron micrographs of UF nanoparticles filtered
from the solution and those found in the rough porous outer surface of microcapsules are

indistinguishable.  A stable pH is reached in region IV (160-240 min) and the suspension

becomes clear with easily separated microcapsules.

The onset of rough surface morphology occurs approximately 75 min into the

microencapsulation reaction.  To preserve the smooth surface morphology, attempts were

made to end the reaction at this time.  If agitation is stopped and the reaction is allowed to
cool naturally under ambient conditions, the emulsion forms a single gelatinous structure

and individual microcapsules cannot be obtained.  If agitation is stopped and the reaction

is quenched with ~15 °C water, individual smooth microcapsules are produced, but their

quality is poor.  The microcapsules are difficult to filter and once separated, they turn
yellow over a period of 3-10 days as the DCPD diffuses through the shell.

Figure 7.  Microcapsule surface morphology evolution during Region III.
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During in situ polymerization the urea and formaldehyde react in the water phase
to form a low molecular weight prepolymer.  As the molecular weight of the prepolymer

increases, it deposits at the DCPD-water interface.  The UF ultimately becomes highly

crosslinked and forms the microcapsule shell wall (Thies 1987).  Gelation of bulk UF
resin is attributed to the coalescence of a lyophobic colloidal sol (Pratt et al., 1985),

which is known to precipitate out of solution as the molecular weight increases (Dunker

et al., 1986).  In light of this, the smooth non-porous microcapsule wall is believed to be
the result of the deposition of low molecular weight prepolymer at the DCPD-water

interface while the prepolymer remains soluble.  The formation of UF nanoparticles is

attributed to precipitation of higher molecular weight prepolymer in the aqueous solution,
and their aggregation and deposition on the capsule surface results in the rough, porous

outer layer of the UF shell.
The appearance of UF nanoparticles in the emulsion and their subsequent

deposition on the microcapsule surface occurs during Region III after the pH has dropped

dramatically from initial conditions.  Since the addition phase of UF polymerization is
catalyzed by either acid or base, the precipitous drop in pH leads to a rapid increase in

polymerization rate.  Mehdiabadi et al. (1998) show that as the pH decreases, the rate of

increase in viscosity is accelerated dramatically.  These rapid changes in viscosity at the
DCPD-water interface affect the mechanics of droplet formation and suspension in shear

flow.  Sanghvi and Nairn (1992) conclude that interfacial surface tension was the

dominant factor in controlling surface morphology of emulsion type microcapsules.
Alexandridou et al. (2001) also report that surface morphology is dependent on

functionality of the reactants and pH of the reaction solution.

Although acceptable levels of surface roughness for self-healing applications
were obtained by the standard microencapsulation process, two modified processes were

also investigated in an attempt to control surface morphology.  First, a

microencapsulation was carried out at constant pH conditions (Figure 8) by drop-wise
addition of NaOH and HCl.  Aliquot analysis of Region III reveals a milky white

emulsion with separable microcapsules.  However, the UF nanoparticles remained in

suspension and did not deposit onto the microcapsule surface.  The presence of
suspended nanoparticles made the filtration process cumbersome and yields were low

(<10%).  As shown in Figure 9a, the microcapsules produced by this method possessed a

smooth surface morphology, free of nanoparticle agglomeration.
Surface roughness also decreased as the agitation rate increased.  For a fixed

volume of encapsulated DCPD, increasing the agitation rate reduced the mean

microcapsule diameter and increased the DCPD-water interfacial area.  To further
investigate  the effect of  interfacial  area for a fixed size  of microcapsule,  the volume of

DCPD  added to the  emulsion was increased from 60 ml to 180 ml while maintaining the
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III   Solution turns milky in appearance, UF
       nanoparticles form in solution and remain
       isolated from microcapsules.

I     No shell wall formation.  DCPD separates from
      aqueous solution if agitiation stops.

II    Microcapsules form,  density less than solution,
       clumping occures if agitiation stops.
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Figure 8.  Temperature and pH profile during microencapsulation while maintaining

constant pH conditions.

Figure 9.  Surface morphology of smooth microcapsules obtained through (a) constant pH

conditions and (b) increased interfacial area (180 ml DCPD).  Microencapsulation

at 550 rpm agitation rate (183 µm mean diameter).
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same agitation rate of 550 rpm.  As shown in Figure 10, the emulsion transitioned
directly to a clear suspension of distinct, easily filtered microcapsules in region III.  The

formation of UF nanoparticles was inhibited and the resulting microcapsules had smooth

surface morphology (Figure 9b).  The microcapsules were free flowing, and yields were
high (>85%).

Microcapsule fill content

Elemental analysis was performed on microcapsules to determine their fill

content.  Immediately following manufacturing and drying, microcapsules contain 83-92

wt% DCPD and 6-12 wt% UF, as measured by CHN analysis.  The unidentified weight
was accounted for by water absorption and UF chemical structure variation (Rammon et

al. 1986).  After 30 days exposed to ambient laboratory conditions the average fill

content decreased by 2.3 wt%.  When used for self-healing epoxy, microcapsules are
embedded in the matrix well within this time frame.  The surrounding matrix also limits

further diffusion of DCPD through the microcapsule shell.

I     No shell wall formation.  DCPD separates from
      aqueous solution if agitiation stops.

II    Microcapsules form,  density less than solution,
       clumping occures if agitiation stops.

III   Solution remains clear, no clumping of agitation
       stops, density less than solution.
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Figure 10.  Temperature and pH profile during microencapsulation for increased
interfacial area condition. The volume of DCPD encapsulated was increased from

60 ml to 180 ml while maintaining 550 rpm agitation rate.
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Conclusions
A process for the microencapsulation of dicyclopentadiene (DCPD) by in situ

polymerization of urea-formaldehyde (UF) in an oil-in-water emulsion was developed to
fulfill requirements for self-healing material applications.  Microcapsules with average

diameter in the range of 10-1000 µm were manufactured by varying the rate of agitation

over the range 200-2000 rpm.  As the agitation rate increased, the mean diameter
decreased.  Spherical microcapsules were obtained in the form of a free flowing powder,

exhibiting no agglomeration and yields of the preparation were high.  Microcapsule shell
thickness was 160-220 nm, providing excellent storage and release properties for self-

healing applications.  During the microencapsulation process UF nanoparticles formed

and deposited on the microcapsule surface producing a rough surface morphology.
Surface roughness enhanced mechanical adhesion of the microcapsules when embedded

in a polymer and improved performance in self-healing applications.  The UF

nanoparticles were prevented from depositing on the microcapsule surface by carrying
out the reaction under constant pH conditions, but yields were low.  Increasing the core-

water interfacial area produced microcapsules with smooth surface morphology with high

yields.  Fill content was 83-92 wt% and remained high for the time period required for
manufacture of self-healing polymers and polymer composites.
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