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Abstract 

  The Helicobacter pylori vacuolating cytotoxin (VacA) is a paradigm for 

microbial virulence factors that target and disable host cell mitochondria. VacA 

intoxication triggers mitochondrial dysfunction and metabolic stress, but the 

mechanisms underlying these perturbations in mitochondrial function are poorly 

understood. In this dissertation, we report that infection of gastric epithelial cells 

with H. pylori results in the transition of cellular mitochondria from a 

predominantly filamentous network state to small punctiform organelles, 

suggesting that H. pylori uncouples the dynamic balance between mitochondrial 

fusion and division that normally exists within healthy cells. H. pylori infection 

induces excessive mitochondrial recruitment of the endogenous host protein 

Drp1, which plays a critical role in the regulation of mitochondrial division within 

uninfected healthy cells. The dynamic balance between mitochondrial division 

and fusion is important for maintaining proper functionality of the network. 

However, increased mitochondrial fragmentation could result in metabolic stress 

and cell death. Among H. pylori factors, the vacuolating cytotoxin (VacA) was 

demonstrated to be both essential and sufficient to disrupt mitochondrial 

dynamics. Importantly, specific inhibition of Drp1 activity blocks VacA-induced 

fragmentation of mitochondrial network, as well as activation of mitochondria 

dependent cell death program (apoptosis), a hallmark of H. pylori infection. 

Importantly, Drp1 mediated mitochondrial fission preceded and was required for 

Bax activation, which is critical for VacA dependent cell death mechanism. 
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However, the complete mechanism underlying VacA mediated Bax activation, 

particularly the nature of cellular changes initiated by VacA that linked the de-

regulation of mitochondrial network dynamics to engagement of host apoptotic 

machinery, was not entirely clear. Additional studies reported in Chapter 3 of this 

dissertation demonstrate that VacA induces the activation and mitochondrial 

recruitment of the endogenous stress sensor protein Bid (BH3 interacting death 

domain agonist). Within VacA intoxicated cells, Bid was important for the 

activation of Bax and mitochondrial cell death mechanism. Importantly, Drp1 

GTPase activity was required for Bid activation within VacA intoxicated cells. Our 

results therefore indicate that cellular stress as a result of excessive fission is 

possibly translated to Bax mediated mitochondrial outer membrane 

permeabilization through the stress sensor Bid. Furthermore, Drp1 dependent 

mitochondrial fission also resulted in the increase in cytosolic calcium levels, 

which was required for the activation of the calcium dependent cysteine protease 

called calpain. The proteolytic activity of calpain was required for processing of 

Bid to yield the mitochondrial targeting active fragment called t-Bid (truncated 

Bid).  

We Hypothesize that H. pylori mediated deregulation of mitochondrial 

dynamics promotes bacterial colonization by generating a novel class of 

dysfunctional host cells that are energetically crippled, and unable to respond 

appropriately to infection with H. pylori at the epithelial barrier. 
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Chapter 1: Introduction 

1.1 HELICOBACTER PYLORI 

 Nearly 25 years ago, researchers Barry Marshall and Robin Warren 

discovered the causative agent of peptic ulcer disease as the bacterium 

Helicobacter pylori (82, 83). This discovery shattered the popular perception of 

that the harsh acidic environment of stomach is inhospitable for bacterial 

colonization. In a dramatic demonstration of Koch‟s postulates, Dr. Marshall 

quelled these doubts by ingesting H. pylori culture and subsequently developing 

peptic ulcer disease. Following anti-biotic treatment, he cured the peptic ulcer, 

proving to the scientific community that the disease resulted from H. pylori 

colonization. The discovery not only led to the re-evaluation of the treatment of 

gastro-intestinal disorders, but also spawned numerous initiatives to identify 

probable bacterial causes to diseases considered incurable. For their path 

breaking discovery and for confirming the infectious etiology of peptic ulcer 

disease, Barry Marshall and Robin Warren were jointly awarded the Nobel Prize 

in Physiology or Medicine in 2005 (1, 42, 105).  

 Since the discovery of Helicobacter pylori as a gastro-intestinal pathogen, 

studies have revealed that a significant proportion of world population is infected 

with this bacterium, estimated close to 50-60% in developed countries and 

nearing 100% in some developing nations. H. pylori is a gram negative 

microaerophile known to colonize the gastric mucosa (Fig. 1.1), which provides a 

protective environment for the bacterium, subsequently allowing for bacterial 
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attachment to stomach epithelia (Fig. 1.2) and development of pathology. 

Infection with H. pylori is generally thought to occur during childhood, either 

through oral-oral or fecal-oral routes of transmission (39) and in the absence of 

therapeutic intervention, can last for up to the lifetime of host (43).  Although 

chronic infection with H. pylori is largely manifested as pan-gastritis or gastric 

inflammation and are predominantly asymptomatic, close to 10-20% of infected 

individuals develop more serious outcomes like gastric and duodenal ulcers. 

Notably, close to 1-2% of infected individuals progress to a state of MALT 

(Mucosa Associated Lymphoid Tissue) lymphoma and gastric adenocarcinoma 

(144), which is the second largest cause of cancer related deaths worldwide (61), 

therefore resulting in the classification of H. pylori as a group 1 human 

carcinogen (NIH Consensus Conference, 1994). The fact that the rate of infection 

clearly outpaces the incidence of disease indicates that H. pylori mediated 

disease is complex and multi-factorial. Studies have suggested that successful 

treatment of H. pylori infection resulted in almost 70% reduction in disease 

incidence (101). Thus, the understanding of H. pylori pathobiology has gained 

considerable interest, particularly with regards to understanding the mechanism 

by which the bacteria is able to persist within the harsh environment of human 

stomach for extended periods of time.     

1.1.1 Helicobacter pylori pathogenesis.  

 In addition to being the most successful bacterium to colonize the 

stomach, H. pylori is also the first organism with complete genome sequenced 

from 2 unrelated strains (4, 6, 122). The 1.67 megabases of H. pylori genome 
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code for 1590 predicted ORFs. Despite the small genome, H. pylori strains 

isolated from unrelated patients display remarkable genetic heterogeneity, with 

every isolate appearing to have a unique DNA fingerprint (22). The genetic 

diversity observed within H. pylori could possibly help the bacteria evolve 

strategies to remodel the host gastric epithelia and make it more conducive for 

successful colonization. 

 In order to successfully colonize the host gastric epithelia, H. pylori has to 

overcome environmental stress like the acidic pH, as well as host immune 

defenses. The production of urease by the bacterium, helps in converting urea at 

the site of colonization into ammonium ions, which significantly elevate the pH 

and help in bacterial survival (116). Additionally, H. pylori harbor an arsenal of 

protein toxins that directly modulate the functions of the host cells in order to 

assist in stable colonization within the site of infection. One such toxin is the 

product of the cytotoxin associated gene A (cagA) (63) which is directly injected 

into the host cytoplasm by a type IV secretion system, and activates the NF-kB 

signaling cascade, resulting in the release of inflammatory mediators like IL-8 

(63). Additionally, virulent strains of H. pylori also secrete an exotoxin called 

VacA (Vacuolating cytotoxin A), which as discussed in detail below initiate 

multiple changes within the host epithelial cells, aiding in bacterial persistence 

and colonization (76). 
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1.2 VACUOLATING CYTOTOXIN (VacA)  

 VacA is the only known exotoxin produced by Helicobacter pylori and was 

initially identified as a protein in the H. pylori culture filtrate which was able to 

form large intra-cellular vacuoles within cultured mammalian epithelial cells (76). 

Several studies examining the role of VacA in H. pylori colonization have 

established the importance of VacA, not only in the initial colonization of the 

bacteria, but also in persistence of H. pylori within the host stomach (111). VacA 

has been directly implicated in the development of gastric and duodenal ulcers 

(44). In fact, VacA, introduced orally into mice was able to generate ulcerative 

lesions similar to those found following H. pylori infection (81, 121). Moreover, H. 

pylori colonization was greatly attenuated in isogenic VacA knockout strains, 

compared to wild type strains, underlining the importance of VacA in H. pylori 

pathogenesis (111). 

1.2.1 VacA expression and secretion.  

 VacA is encoded by the chromosomal gene vacA (26, 29, 113) and is 

produced in active form by ~ 50% of H. pylori clinical isolates (5). VacA is initially 

produced as a 140 kDa pro-toxin, which contains a classic leader peptide to Sec-

dependent secretion in Gram negative bacteria (113, 121). The Carboxy-

terminus of VacA displays a region with significant sequence homology to a 

family of gram negative bacterial autotransporters (93). Processing of the pro-

toxin, likely involving cleavage of the leader peptide in the bacterial periplasm, 

yields an 88 kDa mature toxin, that is secreted to the extracellular space as a 
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soluble protein, facilitated by transport across the bacterial outer membrane by a 

Type V autotransporter mechanism (93) (Fig. 1.3). Additionally, VacA can also 

remain associated with the bacterial surface within spatially organized domains 

(65).  

1.2.2 VacA general properties.  

 VacA (88 kDa monomer) assembles as single or double layer, heat 

resistant oligomers in solution at physiological pH (23, 24, 27, 79, 137). Analysis 

of 2-D crystals, as well as electron microscopy and metal replica analysis have 

confirmed that oligomers are composed of either 6-8 monomers (single layer) or 

12-14 monomers (double layer) (2, 40, 79, 107). The monomers assemble in the 

form of either a single layer or double layer of symmetrically arranged petals 

around a central ring, giving rise to a flower shaped oligomeric structure (79) 

(Fig. 1.4). The VacA oligomer is pH sensitive. Protease sensitivity assays, as well 

as circular dichroism and fluorescence spectroscopy measurements have 

indicated that VacA oligomer reversibly dissociates into monomers at acidic or 

alkaline pH, and possibly undergoes significant conformational rearrangements 

thereafter (27, 31, 35, 88).   

 VacA belongs to a class of intracellularly acting toxins called A-B toxins or 

class 3 toxins (33). Showing similarity to A-B toxins, VacA monomers consist of 2 

domains, a 55 kDa domain (p55), analogous to B moiety, responsible for binding 

to cell surface receptors and facilitating the entry of the catalytic A moiety, which 

in the case of VacA is a 33 kDa domain (p33) (84, 106). However studies have 
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suggested that VacA does not entirely follow the classical A-B toxin model, as 

cellular vacuolation, a marker for intracellular VacA action, required the co-

expression of both p33 domain and a small portion of p55 domain within 

transfected HeLa cells, whereas expression of either p33 or p55 alone failed to 

induce vacuolation (142). Studies also show that VacA monomers assemble as 

higher ordered oligomers within vacuolated cells, suggesting that inter-molecular 

interaction between monomers may be critical for VacA intra-cellular function 

(134).   

1.2.3 VacA alleles. 

 The vacA gene is polymorphic (127) (Fig. 1.5), with allelic variation directly 

linked to VacA production and disease incidence within H. pylori infected 

individuals (8, 9). The first region of allelic variation resides within „secretion 

signal‟ or „s region‟. H. pylori strains containing the s1 allele are associated with 

increased VacA production and virulence, indicated by increased gastric disease 

incidence in infected individuals, when compared to the s2 allele variants (8, 9). 

The second region of allelic variation within vacA gene lies in the „middle region‟ 

or „m region‟, with the m1 and m2 allelic variants displaying differential, cell type 

specific binding abilities (98). While both s1m1 and s1m2 are associated with 

disease causing strains as compared to the non disease associated s2 allele, the 

m region allele variants (m1 and m2) are associated with differential tendency to 

develop gastric ulcer disorders (7-9). Individuals infected with H. pylori strains 

harboring m1 vacA allele are more prone to gastric epithelial damage and gastric 

adenocarcinoma than those infected with H. pylori strains harboring m2 allele 
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(75). Further investigations into vacA allelic variations have recently led to the 

discovery of a third allelic variant called „intermediate‟ or i-variant, which lies 

between the signal and middle region (108). Similar to the earlier variants, 

between the i1 and i2 variants, only the i1 variant is significantly associated with 

risk of gastroduodenal diseases in H. pylori infected individuals (94, 108). While 

the correlation between vacA allelic variations to gastric disease state is exciting, 

further investigations need to be conducted to understand the pathophysiology 

behind these correlations.      

1.2.4 Mechanisms of VacA cellular intoxication. 

 In order to colonize a host, bacterial pathogens rely on numerous 

strategies, either involving changes within the pathogens themselves, or, 

effective remodeling of host cells and tissues by a group of protein effectors 

called toxins. Various toxins modulate host cell functions through action on host 

cell surface (receptors), or via traversing host cell membrane and acting directly 

on vital intracellular organelles. Depending on their mechanism of action on host 

cells, toxins are classified into Class 1, 2 or 3. 

 Class 1 toxins, which include superantigens, primarily from S. aureus and 

S. pyogenes, act at the level of host plasma membrane of immune cells, resulting 

in the production of pro-inflammatory cytokines (77). This group also contains 

heat stable toxins from E. coli, which modulate host cell intracellular signaling by 

binding to host cell receptors (56). 
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 Class 2 toxins, similar to Class 1 toxins, also interact with host cell 

membrane. However, they are distinct in their mode of action. These toxins form 

pores on the host plasma membrane, thereby inducing membrane permeability 

changes which ultimately disrupt retention of macromolecules and small solutes 

within cells. Pores formed by Class 2 toxins can range from small pores (1-2 nm) 

to larger pores (approx. 35 nm). Apart from eliciting effects on host osmolarity, 

Class 2 toxins are also shown to modulate cytokine release, activate cellular 

proteases and host apoptotic programs. Class 2 toxins include  Listerolysin O 

(LLO) from L. monocytogenes, Streptolysin O (SLO) from S. pneumomoniae, and 

aerolysin secreted by Aeromonas hydrophila, which have been shown to confer 

anti-phagocytic properties to the bacterium and damage host tissues by virtue of 

their pore forming activity (11, 46, 59). 

 A third class of protein effectors produced by certain pathogenic 

organisms involve proteins that interact with host cells and have broad 

degradative properties. Members of this class include proteases, chitinases, 

nucleases and lipases, which are typically involved in the degradation of 

extracellular matrix and membrane components of host cells. A well known 

example of this class of protein effectors is Bacteroides fragilis enterotoxin (BFT) 

(87).  This zinc-dependent metalloprotease cleaves a number of extracellular 

matrix proteins in vitro leading to diarrhea and fluid accumulation in ligated ileal 

loops.  Infact, the internalization of a number of enteric pathogens such as 

Salmonella sp., E. coli, and enterococcus sp. is shown to be enhanced due to the 

proteolytic activity of BFT (132).  
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 The classes of toxins mentioned above are not required to enter the host 

cell to modulate host cell functions. However, protein effectors of several 

pathogens are required to be transported directly into the host cell cytosol, in 

order to elicit their modulatory functions (14, 45, 114, 135). The direct injection of 

bacterial factors into host cells is shown to be mediated by the bacterial Type III 

and Type IV secretion systems, which are adaptations of the flagellar 

biosynthetic machinery and conjugative pilus machinery, respectively (14, 48). 

This fourth class of toxin is distinct from the other classes mentioned earlier, as 

they modulate the function of only the host cells with which they are in intimate 

contact, as opposed to the capability of a distal mode of action demonstrated by 

toxins from classes 1, 2 and 3. 

 Another class of toxins is called the AB intracellularly-acting toxins. The 

enzymatic activity of AB toxins lies in the A moiety, which covalently modifies the 

intracellular targets to modulate host functions (36). The B moiety is involved in 

binding to the host cell membrane and facilitating the translocation of A moiety 

into the host cytosol (10). The diphtheria toxin from C. diphtheriae, cholera toxin 

from V. cholerae, and shiga toxin from different sources including E. coli 

(O157:H7) and S. dysenteriae are typical examples A-B group of toxins.  

 The mechanism of action of VacA, especially in relation to cellular 

vacuolation, is considered very similar to that of an A-B toxin (60, 107). However, 

studies aimed at identifying VacA domains essential for induction of cellular 

vacuolation have demonstrated the requirement of both p33 domain, and a small 

portion of p55 domain for VacA to elicit its vacuolating activity (142). Therefore, 
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mechanism of cellular action of VacA has features which are not typical of an A-B 

toxin. Infact, VacA is shown to share specific features that belong to different 

classes of toxins mentioned earlier. The ability of VacA to modulate cellular 

interactions in polar epithelial membranes from the cell surface is similar to the 

mechanism of action of Class 1 toxins (24). Moreover, the ability of VacA to form 

membrane channels is reminiscent of Class 2 pore forming toxins (119). 

Interestingly, studies have demonstrated the important role of VacA channel 

activity in cellular vacuolation. It is therefore hypothesized that VacA induced 

cellular vacuolation could be a result of the toxin‟s ability to act both as an 

intracellular acting A-B toxin, as well as a pore forming class 2 toxin (24). 

1.2.5 Cellular effects of VacA. 

VacA is a paradigm for multi-functional intracellular-acting toxins (24) (Fig. 

1.6). The cellular effects of VacA intoxication range from increased anion 

permeability of the cell membrane, loss of trans epithelial electrical resistance 

(TER), to membrane depolarization and cellular vacuolation and modulation of 

cellular apoptotic signaling mechanisms and immune cell functions (37, 102, 104, 

119, 123, 133). An important biochemical function related to most of these 

cellular effects of VacA is the formation of channels on cell membrane. The 

membrane channels formed by VacA are known to mimic anion selective 

channels found within human cells (32).  

 Previous studies suggest a very important role anion channels formed by 

VacA in promoting efficient colonization and persistence of H. pylori within the 
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host. Increased paracellular permeability following channel formation could lead 

to release of low molecular weight nutrients such as pyruvate, as well as ions like 

Nickel and Iron, which help sustain bacterial infection and promote colonization in 

the nutrient starved host environment (100, 119, 123). VacA anion channel 

function has been implicated in the modulation of tight junctions in polarized 

epithelial monolayers, thereby decreasing the trans epithelial electrical resistance 

(TER). Furthermore, VacA anion channels formed within intracellular sites, such 

as membranes of late endosomes and mitochondria, is shown to result in 

vacuolation and mitochondrial membrane depolarization, respectively (119, 124, 

133).   

 However, studies have also reported VacA cellular activities, which do not 

rely on toxin channel activity. These cellular activities involve modulation of 

cellular signaling mechanisms involved in immune cell functions. VacA 

intoxication is shown to result in the upregulation of expression of 

proinflammatory molecules such as cyclooxygenase-2 (COX-2) and 

prostaglandin E2 (PGE2), through the activation of mitogen activated protein 

kinases such as p38 and ERK1/2, as well as activating transcription factor 2 

(ATF2) signaling pathway (64, 91). 

 Previous reports indicate that the immunomodulatory effects of VacA 

range from immunosuppressive functions, such as inhibition of T-cell proliferation 

(52, 117), to pro-inflammatory functions, such as those involving TNF-α and IL-6 

by Mast cells (34, 118), as well as COX-2 by neutrophils and macrophages (64). 

Furthermore, VacA is also shown to interfere with antigen presentation by B cells 
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and phagosome maturation within macrophages (3, 89, 145). Infact, the 

recruitment and retention of the tryptophan-aspartate-containing coat protein 1 

(TACO or coronin 1) within phagosomes is thought to impair the phagocytic 

clearance of H. pylori (145). 

1.2.6 Cellular vacuolation induced by VacA. 

 Cultured mammalian cells develop large cytoplasmic vacuoles following 

intoxication with VacA. H. pylori and VacA induced vacuolation has been 

reported both in vitro and in vivo within various cell types, including primary 

gastric epithelial cells, as well as gastric biopsies from infected individuals (62, 

76, 115, 125). 

 Induction of cellular vacuolation by VacA is potentiated by brief 

acidification followed by reneutralization of the toxin (process referred to as acid 

activation), and the presence of weak base like ammonium ions (26, 35).  

Investigations into the characteristics of VacA induced vacuoles have revealed 

the presence of Rab7 (small GTP binding protein), lysosomal proteins LAMP1 

and Lgp110 on the vacuolar membrane, suggesting that the vacuoles were 

derived from late endosomal and lysosomal compartments within the cells (99, 

100). Consistent with their origin, the vacuoles have an intraluminal acidic pH, 

which enables the vacuolar accumulation of weak bases, including dyes such as 

acridine orange and neutral red, which has been extensively used to visualize 

and quantify cellular vacuolation (30).   
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 VacA anion channel function is important for vacuolation activity of the 

toxin as demonstrated by the inhibition of vacuolation activity using NPPB (anion 

channel inhibitor) and the absence of cellular vacuolation in cells intoxicated with 

channel mutants of VacA (84, 119, 129, 141). A current model for the mechanism 

of VacA-induced vacuole formation proposes that VacA binds to the plasma 

membrane, internalizes, and inserts into endosomal membranes to form anion-

selective membrane channels, a notion supported by localization of VacA to the 

limiting vacuolar membranes (109, 119). VacA channel activity is proposed to 

result in an influx of anions into the endosomes (123), which stimulates increased 

proton pumping by the vacuolar ATPases. However, since protons are relatively 

permeable and have a tendency to leak out of the vacuolar membranes, the 

concerted action of VacA channel activity and electrogenic vacuolar ATPase is 

thought to result in accumulation of protonated, membrane-permeant weak bases 

such as ammonium ions inside endosomes, resulting in their osmotic swelling 

and transformation into vacuoles (53). Direct evidence for this mechanism of 

VacA induced vacuolation comes from TEM studies done on isolated endosomes 

showing the essentiality of VacA channel activity (using VacA channel mutants) 

for osmotic swelling of endosomes (53). 

1.3 VacA AND APOPTOSIS 

 Apoptosis is a highly conserved, genetically encoded cell death program. 

Apoptotic cell death is involved in several important functions such as removal of 

excess or damaged cells, infected cells, cancerous cells, as well as regulation of 

host immune responses and various other physiologically important functions 
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(41, 55, 69, 96, 128). Importantly, deregulation of apoptotic mechanism is known 

to result in several pathologies, including cancer and neurodegenerative 

disorders (13, 78, 146).  

 The signals leading to activation of apoptotic mechanism typically involve 

phosphorylation cascades originating from cell surface receptors, or could 

originate from DNA damage as well as other signals. Within vertebrate cells, 

apoptosis proceeds through mainly two forms of signaling pathways, an “Intrinsic 

pathway” and an “Extrinsic pathway”, each of which activate cell death 

mechanism by activating Executioner Caspase 3 and Caspase 7 (97, 120). The 

Intrinsic pathway involves the release of cytochrome c (Cyt c), an apoptogenic 

factor, from the mitochondria to cytosol following mitochondrial outer membrane 

permeabilization (MOMP). Cyt c binds to monomeric apoptotic activation factor 

(APAF1), leading to APAF1 oligomerization and creation of Apoptosome, which 

recruits Caspase 9, which in turn activates Caspases 3 and 7 (Fig. 1.7). The 

extrinsic pathway involves the activation of Caspase 8 through a death receptor 

ligation mechanism. Although Caspase 8 is known to directly cleave and activate 

Caspases 3 and 7, studies have clearly demonstrated that Caspase 8 can 

proteolytically process and activate the BCL-2 homology 3 (BH3)-interacting 

domain death agonist (BID). BID, a BH3 only protein, translocates to 

mitochondria, where it activates pro-death effector Bcl-2 protein BAX. Activation 

of BAX results in MOMP, thereby inducing cell death by a mechanism involving 

Cyt c dependent Caspase 3 and 7 activation (20).  
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 Persistent infection with Helicobacter pylori has been strongly associated 

with induction of apoptosis within the gastric mucosa (72, 73, 80, 90, 130, 136). 

Infact, induction of host cell apoptosis is considered as a hallmark of H. pylori 

infection, and studies have demonstrated H. pylori mediated cell death within in 

vitro models of infection, as well as within murine and gerbil models of infection 

(68, 103). Although multiple virulence factors produced by H. pylori have been 

shown to mediate pro-apoptotic functions, the exotoxin VacA has been shown to 

be both essential (74) and sufficient (28) for activation of cell death mechanism 

within host cells. 

 Several studies have shown that VacA is a mitochondrial targeting toxin 

(12). Our study, as well as earlier reports have demonstrated that a VacA-GFP 

chimera, consisting of an N-terminal 1-319 residues of mature VacA (49, 67), 

when expressed internally within AZ-521 gastric epithelial cells, as well as in 

HeLa cells, localized to the mitochondria and induced changes correlated with 

mitochondrial damage, as well as cell death. Moreover, significant portion of 

purified VacA when externally applied to cultured mammalian cells, localized to 

the mitochondria (133). Importantly, a recent study reported that the N-terminal 

p34 fragment of VacA is imported into the mitochondria and inserts in the 

mitochondrial inner membrane (38). Additionally, another study reports that the 

p55 subunit is imported along with the p33 subunit, across the mitochondrial 

outer membrane (47). 

  Studies aimed at understanding the functional consequences of VacA-

mitochondrial targeting suggested a toxin induced activation of mitochondrial cell 
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death mechanism (15, 49, 50, 67, 70, 133, 140). Subsequent to binding plasma 

membrane sphingomyelin (57, 58), and potentially additional components (138, 

139), VacA is internalized and localized to cellular mitochondria. One of the early 

consequences of VacA-mitochondrial targeting was the decrease in 

mitochondrial transmembrane potential, indicative of the loss of mitochondrial 

inner membrane integrity (133, 140). This was followed by mitochondrial outer 

membrane permeabilization (MOMP), resulting in the release of Cyt c to the 

cytosol (133). Interestingly, significant reduction in mitochondrial depolarization 

as well as cell death activation was observed when mitochondrial targeting of 

VacA was blocked using the drug cytochalasin-D (51), thereby strongly indicating 

the importance of VacA-mitochondrial targeting in the mechanism of toxin 

induced cell death.  

 Similar to their important role in VacA induced cellular vacuolation, VacA 

anion channel activity was also important for the toxin mediated mitochondrial 

depolarization and Cyt c release into cytosol. Studies carried out in cells that 

were intoxicated with VacA anion channel mutants, VacA P9A and VacA G14A, 

or with purified VacA in the presence of a specific anion channel blocker 5-nitro-

2-(3-propylphenylamino)-benzoic acid (NPPB) (67, 133), demonstrated 

significant reduction in mitochondrial transmembrane potential loss and Cyt c 

release. Consistent with the important role of mitochondrial transmembrane 

potential and Cyt c in mitochondrial energetics, as well as cellular apoptosis 

mechanism, these studies also demonstrated the importance of VacA anion 

channel function in cell death activation following toxin intoxication.  
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 Numerous studies have been carried to elucidate the mechanism of VacA 

induced mitochondrial depolarization and MOMP, which play an important role in 

VacA mediated cell death mechanism. Interestingly, VacA intoxication of 

mitochondria isolated from HeLa cells resulted in loss of mitochondrial 

transmembrane potential, but not mitochondrial Cyt c release (140). This study 

therefore suggested that VacA was sufficient to induce mitochondrial 

depolarization, but required other host cellular effectors for MOMP and Cyt c 

release. Infact, this study identified the cellular pro-apoptotic effector Bcl2-

associated-X protein (Bax) as the host effector required for VacA induced 

MOMP. Importantly, mouse embryonic fibroblast (MEF) in which the bax gene 

was knocked out, displayed almost complete absence of Cyt c release, as well 

as significant reduction in cell death, following VacA intoxication. 

 Induction of host mitochondrial damage and cell death can be beneficial 

for H. pylori colonization and long term persistence. H. pylori infection is routinely 

associated with increased gastric pH (85). Several studies have directly 

attributed this to H. pylori mediated changes in the physiology and survival of 

gastric parietal cells, which are the major sources of gastric acid. It has been 

shown that H. pylori induces apoptosis in isolated, non-transformed Parietal cells 

(92). Also, significant reduction in acid secretion by Parietal cells has been 

reported following treatment with either culture supernatants isolated from 

cultures of toxigenic H. pylori  strains (71), or purified VacA (131). Furthermore, 

H. pylori induced cell death has also been reported in RAW 264.7 macrophages 

(86). In addition to macrophage killing, H. pylori is also shown to prevent 
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phagosome maturation by mediating increased retention of TACO (coronin 1) in 

a VacA dependent manner (145). Furthermore, the limited damage to gastric 

epithelium seen in H. pylori infected stomach could possibly result in release of 

essential nutrients from host cells, which could aid in bacterial persistence within 

a nutrient-starved environment. 

 Interestingly, a recent study demonstrated significant cross-talk between 

CagA and VacA, two H. pylori virulence factors associated with increased cellular 

damage and disease pathology. This study showed that CagA significantly 

counteracted VacA mediated apoptosis, by two different mechanisms, depending 

on the tyrosine phosphorylation status of CagA within host cells (95). While the 

phosphorylated CagA interfered with intracellular trafficking of VacA, thereby 

preventing it from reaching mitochondria, the non-phosphorylated CagA, inhibited 

VacA induced apoptosis directly at the level of mitochondria. It is hypothesized 

that by directly counteracting the VacA induced apoptotic effects, CagA aids in 

the survival of H. pylori adhered to the gastric mucosa, thereby protecting the 

colonization niche. At the same time, H. pylori can modulate the host innate and 

adaptive immune response through deregulation of survival mechanism of 

surrounding host cells in a VacA dependent manner.   

 1.4 GAP IN KNOWLEDGE 

  Mitochondrial health is closely linked to cell viability, as these organelles 

produce the energy required for cellular function while at the same time 

functioning as regulators of programmed cell death (55). Accordingly, 
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mitochondrial dysfunction has been increasingly linked to several human 

pathologies, including those associated with cancer (13), inflammatory disorders 

(146), and degenerative diseases (78). Several pathogenic microbes target 

mitochondria (12, 110), but the extent to which pathogen-mediated mitochondrial 

dysfunction promotes bacterial colonization and survival within the host or 

contributes to the pathophysiology associated with bacterial infection is largely 

unexplored. 

 Infection with the gastric pathogen H. pylori is routinely associated with 

host cell mitochondrial damage and activation of cellular apoptosis (90). For H. 

pylori, an increase in cell death within the gastric mucosa may alter the host 

niche in several ways, including the loss of specialized cells, such as gastric 

parietal cells, but also increased cellular proliferation, and gastric atrophy that 

precedes metaplasia, dysplasia, and ultimately cancer (25). Earlier studies have 

clearly identified the vacuolating cytotoxin (VacA) as a critical mediator of H. 

pylori induced host cell death. VacA induces mitochondrial damage resulting in 

mitochondrial dysfunction and activation of mitochondrial dependent cell death 

mechanism. Interestingly, although VacA is shown to be sufficient in inducing 

mitochondrial depolarization, it requires cellular pro-death effector Bax to induce 

MOMP and downstream cell death mechanism (140). Thus far, the exact 

relationship between VacA induced mitochondrial depolarization (dysfunction) 

and subsequent Bax activation is not clear. Moreover, the cellular signaling 

mechanism involved in VacA induced Bax activation and mitochondrial 

recruitment is not entirely understood. Earlier studies have clearly shown that 
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VacA targets mitochondria, and forms channels by inserting into the 

mitochondrial inner membrane (38, 47). VacA channels have been shown to be 

important for both toxin induced mitochondrial dysfunction, as well as cellular Bax 

activation (67, 133, 140). However, the relationship between direct association of 

VacA with the mitochondria and cellular Bax activation is not yet clear. 

1.5 SIGNIFICANCE OF THIS STUDY  

  Within this study, we report that VacA disrupts the morphological 

dynamics of mitochondria as a mechanism to induce gastric epithelial cell death. 

Mitochondria exist in several overall morphologies, which are linked to the health 

of the cell, and change in a dynamic fashion through frequent and repetitive 

cycles of fission and fusion that occur in response to cellular energy demands 

and environmental challenges (126). De-regulation of mitochondrial dynamics 

has increasingly been linked to the pathologies resulting from inflammatory and 

neurodegenerative disorders (21), as well as several cancers (54). However, the 

extent to which the morphological dynamics of mitochondria may be targeted by 

pathogenic microbes during host infection, or are associated with the 

pathophysiology of some infectious diseases, is largely unexplored. Our studies 

revealed that VacA induces activation of the dynamin-related protein 1 (Drp1), 

which is a critical regulator of mitochondrial fission within cells (16-19, 66, 112). 

Moreover, inhibition of VacA-mediated Drp1-dependent fission prevented 

activation of the pro-apoptotic Bcl-2–associated X (Bax) protein, MOMP, and 

death of intoxicated cells. Studies to elucidate the mechanism of VacA induced 

Drp1 activation indicated that VacA channel activity was important for Drp1 
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mitochondrial translocation and mitochondrial fragmentation. Importantly, Drp1 

activity was not required for VacA induced mitochondrial depolarization 

(dysfunction), suggesting that VacA induced mitochondrial dysfunction is possibly 

a trigger for Drp1 mediated fission.  

  The results from this study demonstrate that apoptosis of gastric epithelial 

cells during Hp infection is triggered by VacA-induced disruption of mitochondrial 

morphological dynamics through Drp1-mediated fission. Future work will be 

required to reveal whether other pathogens also promote apoptosis within host 

cells by targeting the morphological dynamics of mitochondria.  

  Although our study clearly demonstrates the role of Drp1 mediated de-

regulation of mitochondrial dynamics in activation of cellular Bax, the exact 

mechanism involved was not entirely clear. Our study here demonstrates that 

VacA induces the activation and mitochondrial recruitment of the endogenous 

stress sensor protein Bid (BH3 interacting death domain agonist), a BH3 domain-

only member of Bcl-2 family of proteins, which is known to target the 

mitochondria and activate Bax in certain cell death mechanisms (143). Within 

VacA intoxicated cells, Bid was important for the activation of Bax and 

mitochondrial cell death mechanism. Importantly, Drp1 GTPase activity was 

required for Bid activation within VacA intoxicated cells. Our results therefore 

indicate that cellular stress as a result of excessive fission is possibly translated 

to Bax mediated mitochondrial outer membrane permeabilization through the 

stress sensor Bid. Studies aimed at characterizing the mechanism of VacA 

mediated Bid activation indicated a non-canonical pathway, independent of 
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caspase-8 activity, but dependent on rise in cytosolic calcium levels. Cellular 

calcium rise resulted in activation of the calcium dependent protease calpain, 

which induced a site specific proteolytic processing required for Bid activation. 

Importantly, Drp1 dependent mitochondrial fission was required for the rise in 

cellular calcium levels. The molecular mechanism underlying fission induced rise 

in cytosolic calcium is presently not clear. Further studies would aim towards 

characterizing the relationship between Drp1 mediated mitochondrial fission and 

de-regulation of cellular calcium homeostasis. 
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Figure 1.1 Helicobacter pylori (H. pylori).  

Electron micrograph of Helicobacter pylori depicting its spiral shape and flagella.  

(Source: Lucinda J. Thompson, Department of Microbiology and Immunology, 

Stanford, CA, USA.) 
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Figure 1.2 H. pylori in a gastric pit.  

Photomicrograph of a section of a biopsy taken from a 35-year-old man and 

stained with Genta stain, shows a gastric pit filled with H. pylori.  

(Pictures taken by Robert M. Genta and David Y. Graham at the Medical Center, 

Houston, TX.) 
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Figure 1.3 Schematic cross-section of H. pylori showing VacA secretion.   

VacA is produced in the cytosol as a 140 kilo Dalton pro-toxin (left).  A secretion 

signal is cleaved from the amino-terminus after Sec-dependent translocation to 

the periplasm.  The carboxyl-terminal auto-transporter domain then inserts into 

the outer membrane, facilitating translocation of the mature, 89 kilo Dalton VacA.  

VacA is often cleaved between amino acids 311 and 312 to form the subunits 

p37 and p58, which remain associated.   
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Figure 1.4 Structure of VacA. 

Electron micrograph of purified VacA (Scale bar = 50nM). (B) Three-dimensional 

top view of wild type VacA replicas. (C) Model of possible interactions between 

VacA monomers in the oligomeric structure and possible interaction between p33 

(previously p37) and p55 (previously p58) fragments of VacA. 

(Source: Reyrat, J. M. et al. 1999. 3D imaging of the 58 kDa cell binding subunit of the 

Helicobacter pylori cytotoxin. J Mol Biol 290:459-70.) 

 

A. B. C. 
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Figure 1.5 vacA gene structure and allelic diversity.  

(A) The amino-terminal signal sequence and carboxy-terminal domain are 

cleaved from the 140-kDa VacA protoxin to yield an 88-kDa mature toxin that is 

secreted into the extracellular space via an autotransporter mechanism.  

(B) The structure of the vacA gene and the secretion and proteolytic processing 

of the VacA protein. 

(Source: Cover, T. L., and S. R. Blanke. 2005. Helicobacter pylori VacA, a 

paradigm for toxin multifunctionality. Nat Rev Microbiol 3:320-32.)

A. B. 
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Figure 1.6 VacA: a paradigm for toxin multifunctionality.  

Intoxication of gastric epithelial cells with VacA results in alterations in 

mitochondrial membrane permeability and apoptosis, stimulation of pro-

inflammatory signaling, increased permeability of plasma membrane and 

alterations in endocytic compartments. 

(Source: Cover, T. L., and S. R. Blanke. 2005. Helicobacter pylori VacA, a 

paradigm for toxin multifunctionality. Nat Rev Microbiol 3:320-32.)
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Figure 1.7 The apoptosis cascade. 

A schematic cross-section of a human cell showing elements of the apoptosis 

cascade.  Two of the earliest events in mitochondrial-mediated apoptosis are 

loss of the transmembrane potential and release of cytochrome c.  Bcl family 

proteins are thought to play a role in the maintenance (or disruption) of the 

membrane potential, but the part which this potential loss plays in apoptosis is 

not clear.  Cytochrome c is released by an unknown mechanism to the cell 

cytosol, where it interacts with APAF-1 and procaspase-9 to form the 

apoptosome.  This complex cleaves procaspase-9 to form caspase-9, which in 

turn cleaves caspace-3.  A caspase cleavage cascade results in wide-spread 

substrate cleavage, nuclear fragmentation, DNA damage and cell death. 
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Chapter 2: Helicobacter pylori VacA engages the mitochondrial 

apoptotic machinery by inducing Drp1-mediated  

mitochondrial fission 

 
2.1 INTRODUCTION 

  Mitochondria preserve cell viability by functioning both as centers for 

energy production, as well as central regulators of calcium homeostasis, 

apoptosis, and development. Some pathogenic microbes usurp the mitochondrial 

apoptotic machinery (4) which, depending on the pathogen and host cell type, 

can block cell death to preserve a colonization niche or, alternatively, induce cell 

death to promote escape from an intracellular niche or circumvent immune 

clearance (44). For the gastric pathogen Helicobacter pylori (Hp), chronic 

infection is associated with increased apoptosis within the gastric mucosa of 

humans (40), mice (31), and Mongolian gerbil models (43). Increased apoptosis 

may alter the gastric environment to promote Hp persistence (11), while at the 

same time, contribute to gastric disease, including peptic ulcers and gastric 

adenocarcinoma (12). Earlier studies have indicated that the vacuolating 

cytotoxin (VacA), an Hp virulence factor that is important for Hp colonization (45) 

and disease pathogenesis (20), is essential (35) and sufficient (14) for inducing 

gastric epithelial cell death. 

  Several studies investigating the mechanism of VacA induced cell death 

indicate that VacA is a mitochondrial-targeting toxin. Subsequent to binding 
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plasma membrane sphingomyelin (27, 28), and potentially additional protein 

components (59, 60), VacA is internalized and induces mitochondrial dysfunction 

and mitochondrial outer membrane permeabilization (MOMP) (56). Intracellular 

VacA localizes to mitochondria (22, 56), and isolated mitochondria rapidly import 

purified VacA beyond the outer membrane (17, 19, 22), resulting in dissipation of 

the mitochondrial trans-membrane potential ( m) (61). VacA-dependent MOMP 

occurs after m dissipation (56), and requires activation of the eukaryotic pro-

apoptotic effector Bax (61). However, the underlying mechanism by which VacA 

triggers Bax-dependent MOMP has not been identified. 

  Within this study, we report that VacA disrupts the morphological 

dynamics of mitochondria as a mechanism to induce gastric epithelial cell death. 

Mitochondria exist in several overall morphologies, which are linked to the health 

of the cell, and change in a dynamic fashion through frequent and repetitive 

cycles of fission and fusion that occur in response to cellular energy demands 

and environmental challenges (52). De-regulation of mitochondrial dynamics has 

increasingly been linked to the pathologies resulting from inflammatory and 

neurodegenerative disorders (10), as well as several cancers (25). However, the 

extent to which the morphological dynamics of mitochondria may be targeted by 

pathogenic microbes during host infection, or are associated with the 

pathophysiology of some infectious diseases, is largely unexplored. Our studies 

revealed that VacA induces activation of the dynamin-related protein 1 (Drp1), 

which is a critical regulator of mitochondrial fission within cells. Moreover, 

inhibition of VacA-mediated Drp1-dependent fission prevented activation of the 
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pro-apoptotic Bcl-2–associated X (Bax) protein, MOMP, and death of intoxicated 

cells. Hp disruption of mitochondrial dynamics during infection is a here-to-fore 

unrecognized strategy by which a pathogenic microbe engages the host’s 

apoptotic machinery. 

  The text of the chapter 2 is similar to similar to the text of paper published 

in the journal Proceedings of the National Academy of Sciences (Jain P, Luo ZQ 

and Blanke SR. 2011. Helicobacter pylori vacuolating cytotoxin (VacA) engages 

the mitochondrial fission machinery to induce host cell death. Proc Natl Acad Sci 

USA; 108 (38): 16032-7). 

 

2.2 MATERIALS AND METHODS 

Bacterial Strains. Hp 60190 (cag PAI+, vacA s1/m1; 49503; ATCC; 

Manassas, VA) was cultured in bisulfite- and sulfite-free brucella broth (BSFB) 

containing 5 g vancomycin/mL (Sigma Aldrich; St. Louis, MO), on a rotary 

platform shaker for 48 h at 37 °C, under 5% CO2 and 10% O2. Hp VM022 

( vacA) (53) and Hp VM084 ( vacA::vacA) were kind gifts from Dr. Timothy 

Cover (Vanderbilt University Medical Center; Nashville, TN) (37). Hp 60190 

derived strains producing VacA (P9A) and VacA (G14A) were constructed and 

cultivated as described previously (37, 56). Hp 26695 (cag PAI+, vacA s1/m1) 

was obtained from ATCC (700392). Hp G27 (cag PAI+, vacA s1/m1) (48) was 

obtained as a kind gift from Dr. Karen Guillemin (University of Oregon; Eugene, 

OR). 
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  Mammalian Cells. AZ-521 human gastric-cancer derived cell line was 

obtained from Japan Health Science Foundation (3940; Tokyo, JP) and 

maintained in MEM (Sigma Aldrich), which when supplemented with glutamine (2 

mM), penicillin (100 U/mL), streptomycin sulfate (1 mg/mL) and 10% fetal bovine 

calf serum, was referred to as “supplemented MEM”. HeLa (CCL-2; ATCC), HEp-

2 (CCL-23; ATCC) and Madin-Darby Canine Kidney II (MDCK) cells (CCL-34; 

ATCC) were maintained in supplemented MEM. AGS cells (CRL-1739; ATCC) 

were maintained in Ham’s F-12 Kaighn’s modification medium (Cellgro; 

Manassas, VA), which when supplemented with glutamine (2 mM), penicillin (100 

U/mL), streptomycin sulfate (1 mg/mL) (Sigma Aldrich) and 10% fetal bovine calf 

serum (JRH Biosciences; Lenexa, KS), was referred to as “supplemented Ham’s 

F-12 medium”. bax+/+ and bax-/- mouse embryonic fibroblasts (MEFs), obtained 

as a kind gift from Dr. Wei-Xing Zong (Stony Brook University; Stony Brook, NY), 

were maintained in DMEM (Cellgro), which when supplemented with glutamine 

(2 mM), penicillin (100 U/mL), streptomycin sulfate (1 mg/mL) and 10% fetal 

bovine calf serum, was referred to as “supplemented DMEM”. All cell lines were 

maintained at 37 °C within a humidified atmosphere and under 5% CO2. 

 

Plasmids. The plasmids pDsRed2-Mito and pAcGFP1-N1 were obtained 

from Clontech (Mountain View, CA). Plasmids pEGFP-Drp1 and pEGFP-DN-

Drp1 (K38A) were a kind gift from Dr. Marina Jendrach (Goethe University; 

Frankfurt/Main, Germany). Plasmid p34(1-319)-EGFP was kind a gift from Dr. 

Joachim Rassow (Ruhr-Universität Bochum; Bochum, Germany). 
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  Transfection. Cells were transfected with the indicated plasmids using 

Lipofectamine-2000 transfection reagent (Invitrogen; Carlsbad, CA), according to 

manufacturer’s instructions.  

Hp Infection of Mammalian Cells. Monolayers of mammalian cells, at 

37 °C within a humidified environment under 5% CO2, were incubated with the 

indicated Hp strains and at the indicated MOI. At the end of incubation, 

monolayers were washed with PBS pH 7.2, and processed for the indicated 

analyses. 

  Analysis of Mitochondrial Fragmentation within AZ-521, AGS and 

Mouse Embryonic Fibroblast Cells. Mammalian cells plated in 8-well culture 

slides (BD Biosciences; Franklin Lakes, NJ), that had been transiently 

transfected with pDsRed2-Mito, a mammalian expression vector that encodes a 

fusion between red fluorescent protein and the mitochondrial targeting sequence 

from subunit VIII of the human cytochrome c oxidase, were infected with Hp (at 

the indicated MOI), or incubated with VacA (at the indicated concentration) or 

HPCF (at the indicated concentration), or mock-treated with PBS pH 7.2. At the 

indicated times, the cells were washed 3 times with PBS pH 7.2, and then fixed 

by incubation with paraformaldehyde (4%) at 37 °C for 20 min. Mitochondrial 

morphology was analyzed by DIC-epifluorescence microscopy. Images were 

processed using DeltaVision SoftWoRx 3.5.1 software suite (Applied Precision; 

Issaquah, WA). Mitochondrial lengths were measured using Imaris 5.7 software 
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(Bitplane; St. Paul, MN). Data were rendered as the average mitochondrial 

lengths obtained by combining data from at least two or three independent 

experiments. In each independent experiment, 15 cells were analyzed from at 

least 4 randomly chosen fields for each treatment. Within each cell, at least 3 

mitochondria were analyzed and mitochondrial lengths measured. Relative 

mitochondrial lengths were calculated as the fold change in average 

mitochondrial length measured in cells treated as indicated relative to those 

measured in mock-treated cells. 

  Generation of Polarized MDCK Monolayers. Polarized MDCK 

monolayers were generated and maintained, as described previously (50). Briefly, 

MDCK cells (2.5 X 105 cells/0.5 mL in supplemented MEM) were seeded onto 12 

mm, 3.0 µm-pore polyester tissue culture transwell inserts (Corning; Corning, 

NY), and incubated at 37 °C and under 5% CO2, with 1.5 mL supplemented MEM 

added in the basal chamber. Cell culture medium in the apical chambers was 

replaced once, 24 h after seeding, with fresh supplemented MEM, while the 

medium in basal chamber was replaced with fresh supplemented MEM daily. The 

plates were maintained at 37 °C in humidified atmosphere and under 5% CO2 for 

at least 4 days prior to experiments. 

 To assess the integrity of polarized monolayers, transwell inserts with 

MDCK cells or mock-seeded transwell inserts (incubated with PBS pH 7.2 alone) 

were incubated at 37 °C and under 5% CO2 with biotin-albumin (50 g/mL, 1.5 

mL; Sigma Aldrich) in supplemented MEM in the transwell basal chamber and 



 53 

supplemented MEM alone (0.5 mL) in the apical chamber. After 1 h, medium 

from the apical and basal chambers were collected and resolved by SDS gel 

electrophoresis, followed by Western blot analysis to probe for biotin-albumin 

using streptavidin-HRP (GE Healthcare; Piscataway, NJ). The presence of biotin-

albumin was detected by chemiluminescence using the Super-signal West Femto 

chemiluminescence detection kit (Thermo Scientific; Rockford, IL). 

   Analysis of Mitochondrial Fragmentation within HeLa, HEp-2 and 

Polarized MDCK Cells. HeLa and HEp-2 cells plated in 8-well culture slides, as 

well as transmembrane polyester inserts containing polarized MDCK monolayers 

were washed twice with PBS pH 7.2 and fixed by incubation with 

paraformaldehyde (4%) for 20 min at 37 °C, followed by permeabilization in PBS 

pH 7.2 containing Triton-X 100 (0.1 %) for 10 min at 4 °C. After washing twice 

with PBS pH 7.2, cells were probed for the mitochondrial marker Tom-20 by 

incubation at 4 °C for overnight with anti-Tom 20 mAb (BD Biosciences) in PBS 

pH 7.2 containing 3% BSA (Sigma Aldrich), followed by incubation at 25 °C for 1 

h with mouse anti-IgG conjugated to Alexa Fluor 488 (Invitrogen) in PBS pH 7.2 

containing 3% BSA. The cells were washed 3 times with PBS pH 7.2 and 

mitochondria were visualized by DIC-epifluorescence microscopy. 

  Preparation of HPCF. The indicated Hp strains were grown in 200 mL 

bisulfite- and sulfite-free brucella broth (BSFB) containing 5 g vancomycin/mL, 

in 1 L culture flasks, on a rotary platform shaker at 37 °C, under 5% CO2 and 



 54 

10% O2. After 48 h, Hp cultures were harvested by centrifugation at 8,000 g for 

30 min at 4 °C. The supernatants were collected, and pellets were 

decontaminated by autoclaving. The supernatants were cooled to 4 °C, and the 

total protein was precipitated by slowly dissolving ammonium sulfate (Sigma 

Aldrich) to 90% saturation with stirring, followed by stirring overnight at 4 °C. The 

precipitates were collected by centrifugation at 8,000 g for 30 min at 4 °C, and 

the pellets were resuspended in 10 mM sodium phosphate buffer pH 7.0. The 

samples were dialyzed at 4 °C into 10 mM sodium phosphate buffer pH 7.0 using 

the Spectra/Por® membrane (molecular weight cut-off (MWCO) 50,000 Daltons 

(Da); Spectrum Laboratories; Rancho Dominguez, CA), concentrated 

approximately 5-fold using an Amicon Ultra Centrifugal Filter Unit (MWCO 50,000 

Da; Sigma Aldrich), and filter sterilized using a 0.2 m vacuum filtration unit 

(Corning), to obtain the final HPCF.  

  The presence of full-length VacA within the HPCFs was confirmed by 

Western blot analysis, using VacA rabbit antiserum (Rockland Immunochemicals; 

Gilbertsville, PA), followed by incubation with HRP conjugated anti-rabbit IgG 

secondary antibody (Cell Signaling Technology; Danvers, MA). The presence of 

VacA was detected by chemiluminescence using the Super-signal West Femto 

chemiluminescence detection kit. VacA concentrations were normalized using 

densitometry analysis (UN-SCAN-IT gel analysis software; Silk Scientific Inc.; 

Orem, Utah) to compare the total pixels of each band against those obtained 

using known concentrations of purified VacA. The HPCFs were used within 

several days of preparation, during which time there was no detectable loss of 
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VacA-induced vacuolation of AZ-521 cells, as determined by quantification of 

cellular vacuolation (15, 28). 

  Heat Inactivation of HPCF. HPCFs (5 mg/mL) were incubated in a 37 °C 

or 95 °C water bath for 30 min, followed by incubation for 10 min at 37 °C. The 

HPCFs were immediately activated by adding 0.1 v/v 300 mM HCl to HPCF 

preparation and incubation for 30 min at 37 °C, followed by neutralization with the 

same volume of 300 mM NaOH. Activated HPCF were incubated with AZ-521 

cells at a final concentration of 0.05 mg/mL. At the indicated times, the AZ-521 

cells were analyzed for changes in mitochondrial morphology relative to cells that 

were mock intoxicated with PBS pH 7.2. 

Intoxication of Mammalian Cells with VacA or HPCF. Mammalian cells 

were incubated at 37 °C and within a humidified environment under 5% CO2 with 

purified VacA or HPCF (both at the indicated concentrations). At the indicated 

times, the cells were processed for specific analyses. 

  Heat Inactivation of Hp. Hp 60190 (12.5 X 108 CFU/mL in 1 mL PBS pH 

7.2) were incubated in a 37 °C or 65 °C water bath for 30 min, and then further 

incubated for 10 min at 37 °C. Immediately, 37 °C- or 65 °C-pretreated Hp were 

incubated with AZ-521 cells (MOI 100) or, alternatively, enumerated by serially 

diluting in PBS pH 7.2, followed by spread-plating onto fresh F-12 agar plates 

(supplemented with 5% FBS and 5 g vancomycin/mL) and incubating the plates 



 56 

at 37 °C, and under 5% CO2 and 10% O2.  After 72 h, CFU/mL were determined 

by direct counting of colonies on the F-12 plates and back calculating the 

appropriate dilution factor. 

  Analysis of Hp Association with AZ-521 cells. Monolayers (85-95% 

confluence) of AZ-521 cells, plated at 0.75 X 105 cells per well, were incubated 

with Hp 60190, Hp VM022 ( vacA), or Hp VM084 ( vacA::vacA) (all at MOI 100) 

at 37 °C and under 5% CO2 and 10% O2. After 8 h, the cell monolayers were 

washed twice with PBS pH 7.2. Each monolayer was gently lysed by incubating 

with 0.1 % Triton X-100 in PBS pH 7.2 (50 L) for 3 min on ice and collected in 

950 L PBS pH 7.2. The cell associated Hp was plated on F-12 media plates 

supplemented with 10% FBS and 5 g vancomycin/mL and incubated at 37 °C 

under 5% CO2 and 10% O2. After 72 h, the CFU/mL was determined by the direct 

counting of colonies on F-12 plates, and back calculating using the appropriate 

dilution-factor. 

Purification of VacA. H. pylori 60190 (49503; ATCC) was cultured, and 

VacA was purified from Hp culture filtrate (HPCF; from Hp broth culture 

described earlier) by anion exchange chromatography using Diethyl aminoethyl 

Sephacel resin (Sigma). VacA was then eluted using 10 mM phosphate buffer pH 

7.0, containing 200 mM sodium chloride. All eluted fractions were collected and 

analyzed by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis 

followed by Coomassie brilliant blue staining and immunoblot analysis using 
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rabbit anti-VacA polyclonal antibody, and purity of the full length toxin in VacA 

containing fractions was assessed to be on an average of 90-95 % pure. 

Additionally, a major fraction of  impurities constitute breakdown products of full 

length toxin including p33 and p55 fragments as found out by western blot 

analysis using polyclonal anti-VacA antibodies showing cross reactive proteins of 

around 33 and 55 kDa size. Fractions demonstrating the greatest degree of 

purity were pooled and stored at 4 °C until use. VacA (s1m1) from Hp 60190, 

was purified and activated, as previously described (13). 

  Heat Inactivation of VacA. Purified VacA (4 M) was incubated in a 

37 °C or 95 °C water bath, followed by further incubation of both samples at 

37 °C for 10 min. Immediately, VacA was activated as described previously (13, 

27, 56), and incubated with AZ-521 cells (at a final concentration of 250 nM). At 

the indicated times, the AZ-521 cells were analyzed for changes in mitochondrial 

morphology relative to cells that were mock intoxicated with PBS pH 7.2. 

  Inactivation of VacA with Anti-VacA Antibody. Purified VacA (0.1 

mg/mL) was pre-incubated on ice with VacA rabbit antiserum (2 mg/mL), a non-

specific rabbit antiserum against Haemophilus ducreyi cytolethal distending toxin 

A (CdtA; 2 mg/mL), or PBS pH 7.2. After 30 min, the VacA-containing samples 

were activated as described previously (13, 27, 56), and immediately incubated 

at 37 °C with AZ-521 cells (250 nM VacA in each sample). At the indicated times, 
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the AZ-521 cells were analyzed for changes in mitochondrial morphology relative 

to cells that were mock intoxicated with PBS pH 7.2. 

  Expression and Purification of Recombinant VacA Proteins. The 

recombinant VacA fragments, p33 (residues 1-312) and p55 (residues 312-821), 

were expressed in E. coli (DH5α) and purified as described previously (51).  

  Analysis of Drp1 Localization to Mitochondria. Mitochondrial 

localization of Drp1 was analyzed as described previously (33). Mammalian cells 

that had been transiently transfected with pDsRed2-Mito and plated in 8-well 

culture slides, were incubated with Hp (at the indicated MOI) or purified VacA (at 

the indicated concentrations), or Hp culture filtrates (at the indicated 

concentrations). At the indicated times, the monolayers were washed 3 times 

with PBS pH 7.2, fixed by incubation with paraformaldehyde (4%) for 20 min at 

37 °C, permeabilized by incubation with PBS pH 7.2 containing Triton-X 100 

(0.1%) for 10 min at 4 °C, immunostained for Drp1 using anti-Drp1 mAb (BD 

Biosciences), and, finally, incubated at 25 °C for 1 h with mouse anti-IgG 

conjugated to Alexa Fluor 647 (Invitrogen). The cells were imaged using DIC-

epifluorescence microscopy. Drp1 localization to mitochondria was quantified 

using the co-localization module of the DeltaVision SoftWoRx 3.5.1 software 

suite. Results were expressed as the co-localization index, derived from 

calculating the Pearson’s coefficient of correlation, which in this study was a 

measure of co-localization between Drp1 and mitochondria in each z plane of the 
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cell. For each cell, images from an average of 10-20 z planes at a thickness of 

0.2 m were collected. A co-localization index of 1.0 indicates 100% co-

localization of Drp1 to mitochondria, whereas a co-localization index of 0.0 

indicates the absence of detectable co-localization between Drp1 and 

mitochondria. Data were rendered as the average co-localization index obtained 

from analyzing 30 cells from over the course of three independent experiments. 

In each independent experiment, 10 cells were analyzed from at least 4 randomly 

chosen fields for each treatment.  

  Flow Cytometry Assay for Determination of Total Cellular and 

Activated Bax. AZ-521 cells were detached from tissue culture wells by mild 

trypsinization for 3 min at 37 °C with Trypsin EDTA (Cellgro), fixed by incubation 

with paraformaldehyde (4%) for 20 min at 37 °C, followed by permeabilization 

with saponin (0.1 %) in PBS pH 7.2 containing BSA (0.5%) and anti-Bax 2D2 

mAb (1 g/mL; BD Biosciences) in order to stain for total cellular Bax. 

Alternatively, the cells were fixed by incubation with paraformaldehyde (4%) for 

20 min at 37 °C, followed by permeabilization with saponin (0.1 %) in PBS pH 7.2 

containing BSA (0.5%) and anti-Bax Clone 3 mAb in order to stain for activated 

Bax. After 45 min, the cells were washed 3 times with PBS pH 7.2, followed by 

incubation with mouse anti-IgG conjugated to Alexa Fluor 488 (1 g/mL) in PBS 

pH 7.2 containing saponin (0.1 %) and BSA (0.5%) for 30 min on ice and in the 

dark. As a negative control, cells were incubated in the presence of mouse anti-

IgG conjugated to Alexa Fluor 488 (1 g/mL) alone. Cells were washed in PBS 
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pH 7.2 containing saponin (0.1 %) and BSA (0.5%) and resuspended in PBS pH 

7.2. Alexa Fluor 488 fluorescence was quantified by flow cytometry in the FL1 

channel (525/40 nm band pass filter). 10,000 cells were analyzed for each 

sample. 

   Microscopic Analysis of Intracellular Activated Bax. Cells were fixed 

by incubation with paraformaldehyde (4%) for 20 min at 37 °C, followed by 

permeabilization on ice with saponin (0.1 %; Sigma Aldrich) in PBS pH 7.2 

containing BSA (0.5%) and anti-Bax (Clone 3) mAb (1 g/mL; BD Biosciences) in 

order to stain for activated Bax. After 45 min, the cells were washed 3 times with 

PBS pH 7.2, followed by incubation with mouse anti-IgG conjugated to Alexa 

Fluor 647 or Alexa Fluor 488 (1 g/mL) in PBS pH 7.2 containing saponin (0.1 %) 

and BSA (0.5%) for 1 h on ice in the dark. The cells were visualized by DIC-

epifluorescence microscopy, with visible fluorescence indicative of activated Bax. 

In order to enumerate the number of cells displaying active Bax, imaging was 

carried out at a constant time of exposure. All images were deconvolved using 

SoftWoRx constrained iterative deconvolution tool (ratio mode) to remove out of 

focus signal. Following deconvolution, cells displaying visible fluorescence were 

considered to contain active Bax, as opposed to the absence of Bax activation in 

cells that did not display fluorescence. Data were rendered as the percentage of 

cells displaying active Bax within the entire population, and were obtained by 

analyzing over 700 cells from randomly chosen fields over the course of two 

independent experiments.  
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  Analysis of Cyt c Release. Cyt c release was analyzed as described 

previously (6). Briefly, Mammalian cells were fixed by incubation with 

paraformaldehyde (4%) for 20 min at 37 °C, permeabilized by incubation with 

PBS pH 7.2 containing Triton-X 100 (0.1%) for 10 min at 4 °C, immunostained for 

Cyt c by incubating with anti-Cyt c mAb (BD Biosciences), and then further 

incubated with one of two secondary antibodies. In order to visualize Cyt c within 

cells intoxicated with VacA in the presence or absence of mdivi-1, cells were 

further incubated with mouse anti-IgG conjugated to Alexa Fluor 488. 

Alternatively, in order to visualize Cyt c within VacA intoxicated cells over-

expressing either EGFP-Drp1 or EGFP-DN-Drp1 (K38A), cells were further 

incubated with mouse anti-IgG conjugated to Alexa Fluor 647. The cells were 

imaged using DIC-epifluorescence microscopy. Cells with diffuse, non-localized 

fluorescence were scored as having released (cytosolic) Cyt c, while cells with 

punctate fluorescence localized in the perinuclear regions were scored as having 

mitochondrial-localized Cyt c. 

Cell Death. Cell death was measured by flow cytometry, using the Live-

Dead viability/cytotoxicity assay kit (Invitrogen) according to manufacturer’s 

instructions.  

  Analysis of VacA Localization to Mitochondria. AZ521 cells plated in 8-

well culture slides were incubated with purified VacA (100 nM). After 30 min, the 

monolayers were washed 3 times with PBS pH 7.2, fixed by incubation with 
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paraformaldehyde (4%) for 20 min at 37 °C, permeabilized by incubation with 

PBS pH 7.2 containing Triton-X 100 (0.1%) for 10 min at 4 °C, immunostained for 

VacA using anti-VacA rabbit polyclonal Ab, and, mitochondria using anti-Tom 20 

mAb and incubated at 25 °C for 2 h. The cells were washed 3 times with PBS pH 

7.2 followed by incubation with rabbit anti-IgG conjugated to Alexa Fluor 568 and 

mouse anti-IgG conjugated to Alexa Fluor 488 for 1 h at 25 °C. The cells were 

washed 3 times with PBS pH 7.2 and imaged using DIC-epifluorescence 

microscopy. 

  Analysis of Mitochondrial Transmembrane Potential (Δ m). AZ-521 

cells were incubated with TMRE (50 nM; Sigma Aldrich) for 30 min prior to the 

end of each experiment. The cells were detached by mild trypsinization for 3 min 

at 37 °C with Trypsin-EDTA and washed two times with PBS pH 7.2. TMRE 

fluorescence was quantified by flow cytometry in the FL2 channel (575/30 nm 

band pass filter). 10,000 cells were analyzed for each sample. 

Flow Cytometry. Analytical flow cytometry was carried out using a BD 

FACSCanto II flow analyzer (BD Biosciences) located at the R. J. Carver 

Biotechnology Center Flow Cytometry Facility (University of Illinois at Urbana-

Champaign). The flow cytometer was equipped with 70- m nozzle, 488 nm line 

of an air-cooled argon-ion laser, and 400 mV output. The band pass filters used 

for analysis were 525/40 nm, 575/30 nm and 675/30 nm. Cell analysis was 

standardized for scatter and fluorescence by using a suspension of fluorescent 
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beads (Beckman Coulter; Miami, FL). Events were recorded on a log 

fluorescence scale and the geometric mean as well as percent events was 

determined using FCS Express analysis software (De Novo Software; Los 

Angeles, CA). Forward and side scatter properties were considered to exclude 

non-cellular (debris) events from viable and (or) dead cell populations. 

DIC-Epifluorescence Microscopy. Fluorescence and DIC images were 

collected using a Delta Vision RT microscope (Applied Precision), EX 490/20 and 

EM 528/38, EX 555/28 and EM 617/73, EX 640/20 and EM 685/40 using 

Olympus Plan Apo 60X oil objective with NA 1.42 and working distance of 0.17 

nm. Images were processed using DeltaVision SoftWoRx 3.5.1 software suite. 

Statistical Analysis. Unless otherwise indicated, each experiment was 

performed at least three independent times. For those data requiring statistical 

analysis, data were combined from 2 or 3 independent experiments, as indicated, 

with each independent experiment carried out in triplicate. Statistical analyses 

were performed using Microsoft Excel (Version 11.0; Microsoft Corporation; 

Redmond, WA). Unless otherwise noted, error bars represent standard 

deviations. All P values were calculated with the Student’s t test using paired, 

two-tailed distribution. P < 0.05 indicates statistical significance. 
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2.3 RESULTS 

2.3.1 Hp infection and mitochondrial fragmentation.  

While studying cellular responses to Hp, we observed Hp-dependent 

alterations in the structure of cellular mitochondria, similar to those previously 

reported in studies of Hp-infected human stomach adenocarcinoma (AGS) cells 

(2). In uninfected AZ-521 gastric epithelial cells, mitochondria were 

predominantly filamentous networks of interconnected strands (approximately 

15-25 µm in length) (Fig. 2.1 A, E). In contrast, at 8 h post-infection with Hp 

60190, the mitochondrial network structure was highly fragmented, and individual 

mitochondria were visible as punctate organelles that were significantly shorter in 

length (1-2 µm) (Fig. 2.1 B, E). The transition from filamentous to punctate 

structures was also observed with either Hp 26695 or Hp G27, indicating that Hp-

dependent fragmentation of mitochondria is not idiosyncratic to a single strain 

(Fig. 2.2). In addition, Hp-dependent fragmentation was recapitulated across 

cells lines, as observed in studies employing AGS (Fig. 2.3) and polarized Madin-

Darby canine kidney II (MDCK) cells (Fig. 2.4 A, B). Fragmentation occurred at 

multiplicity of infection (MOI) 10, but not at MOI 1 (Fig. 2.5), and was time 

dependent, with progressive fragmentation of the filamentous network observed 

between 2 and 8 h post-infection (Fig. 2.6). 

 

2.3.2 VacA is essential for Hp-induced mitochondrial fragmentation. 

  While characterizing Hp-dependent mitochondrial alterations, we observed 

fragmentation of the mitochondrial network in AZ-521 cells that had been 
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incubated with culture filtrate prepared from Hp 60190 (HPCF), but not with 

HPCF that had been pre-treated at 95 °C (Fig. 2.7). These results suggested that 

a proteinaceous factor released by Hp is responsible for mitochondrial 

fragmentation observed during infection. Consistent with this idea, fragmentation 

was not detected in cells incubated with heat-killed Hp 60190 (Fig. 2.8). 

  Studies indicating the involvement of an extracellular, heat-labile factor in 

Hp-mediated mitochondrial network fragmentation prompted us to evaluate a 

potential role for VacA, which has been previously reported to modulate 

mitochondrial function (22, 34, 56, 57). In contrast to the extensive fragmentation 

of mitochondria induced by Hp 60190 (Fig. 2.1B), an isogenic Hp mutant strain 

lacking a functional vacA gene (Hp ( vacA)) (53) did not induce visible 

mitochondrial fragmentation within AZ-521 cells (Fig. 2.1 C, E), while the 

complemented strain (Hp ( vacA::vacA)) (37) induced robust mitochondrial 

fragmentation (Fig. 2.1 D, E). Differences in the adherence of Hp 60190, Hp 

( vacA), or Hp ( vacA::vacA) to AZ-521 cells were not observed (Fig. 2.9), 

suggesting that the inability of Hp ( vacA) to induce mitochondrial fragmentation 

was not likely due to attenuated cell association. These results support the idea 

that VacA is essential for Hp-dependent mitochondrial fragmentation. 

 

2.3.3 VacA is sufficient to induce mitochondrial fragmentation. 

  Studies to evaluate the sufficiency of VacA for Hp-dependent 

mitochondrial fragmentation revealed that VacA, which had been purified from 
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culture filtrates of Hp 60190, induced the transition of mitochondrial networks into 

significantly shorter punctiform organelles (Fig. 2.10), an effect that was 

abrogated when the toxin was pre-incubated at 95 °C or with VacA antiserum 

(Fig. 2.11). More convincing, however, were studies conducted with recombinant 

VacA comprising the toxin’s amino- and carboxyl-terminal fragments, called p33 

and p55 respectively, that had been expressed separately in E. coli and purified 

(23). The combined p33-p55 fragments induced robust fragmentation, while 

neither p33 nor p55 alone induced detectable alterations in the mitochondrial 

network (Fig. 2.12). Together, these results indicate that VacA is sufficient to 

induce mitochondrial fragmentation. 

  VacA-mediated mitochondrial fragmentation is not idiosyncratic to AZ-521 

cells, as the toxin induced similar morphological changes within AGS cells (Fig. 

2.13), as previously observed (41), and polarized MDCK cells (Fig. 2.14). VacA-

dependent mitochondrial fragmentation was also visible within human cervical 

adenocarcinoma (HeLa) and human larynx carcinoma (HEp-2) cells (Fig. 2.13), 

two non-gastric cell lines that have been previously used to study VacA 

interactions with mitochondria (17, 22). Within AZ-521 cells, mitochondrial 

fragmentation was detected with VacA at concentrations as low as 10 nM, but 

not at 1 nM (Fig. 2.15). Fragmentation was visible within 60 min after exposure of 

the cells to VacA (250 nM), and progressed to almost entirely punctiform 

organelles by 150 min (Fig. 2.16).  
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2.3.4 VacA induces mitochondrial recruitment of Drp1. 

  Cellular mitochondria exist in a dynamic state, constantly dividing and 

fusing by opposing processes (55). An important regulator of mitochondrial 

fission is Drp1 (55), which upon activation is recruited to focal sites of division on 

the mitochondrial outer membrane (46). Studies to evaluate whether VacA-

dependent mitochondrial fragmentation might involve the cellular fission 

machinery revealed that, compared to mock-intoxicated cells, incubation for 4 h 

with purified VacA (from Hp 60190) resulted in a significant increase in Drp1 

localization to mitochondria (Fig. 2.17 A, B). VacA-induced Drp1 localization to 

mitochondria was dose dependent, with significant increases observed at toxin 

concentrations as low as 10 nM (Fig. 2.18). A significant increase in 

mitochondrial localization of Drp1 was also detected in cells infected with Hp 

60190 and Hp ( vacA::vacA), but not with Hp ( vacA), indicating that increased 

Drp1 recruitment to mitochondria within infected cells is VacA-dependent (Fig. 

2.19). These results suggested a possible involvement of the cellular fission 

machinery in VacA-dependent mitochondrial network fragmentation.  

 

2.3.5 Drp1 GTPase activity is important for VacA-dependent mitochondrial 

fragmentation.  

  A critical step during mitochondrial fission is the assembly of Drp1 into 

spiral chains at  the mitochondrial scission sites (29), which is driven by the 

intrinsic GTPase activity of Drp1 (21). To evaluate the importance of Drp1 

function for VacA-dependent mitochondrial fission, AZ-521 cells were intoxicated 
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with VacA in the absence or presence of the mitochondrial division inhibitor 

mdivi-1, which specifically blocks Drp1 self assembly and GTPase activity (8). 

These studies revealed that mdivi-1 significantly inhibits VacA-dependent 

mitochondrial fragmentation in AZ-521 cells (Fig. 2.20 A, B), as well as in AGS 

cells (Fig. 2.21). Mitochondrial fragmentation was also significantly inhibited by 

mdivi-1 in AZ-521 cells infected with Hp 60190 (Fig. 2.22). Together, these data 

indicate that Hp- and VacA-dependent mitochondrial fragmentation requires Drp1 

GTPase activity, thereby implicating the involvement of the cellular mitochondrial 

fission machinery. 

 

2.3.6 Drp1-mitochondrial localization is important for VacA-dependent 

mitochondrial fragmentation.  

  Further validation of Drp1 involvement came from studies using AZ-521 

cells over-expressing either Drp1 fused to enhanced green fluorescence protein, 

EGFP-Drp1 or a dominant-negative form of Drp1, EGFP-DN-Drp1 (K38A), which 

inhibits Drp1 association with the mitochondrial outer membrane (30). VacA-

intoxicated cells over-expressing EGFP-DN-Drp1 (K38A) demonstrated 

significantly reduced mitochondrial fragmentation than those over-expressing 

EGFP-Drp1 (Fig. 2.23 A, B). These results further support the functional 

importance of the cellular fission machinery for VacA-mediated mitochondrial 

fragmentation. 
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2.3.7 Drp1-dependent mitochondrial fission precedes and is important for 

VacA-induced Bax activation.  

  To evaluate whether VacA-mediated mitochondrial fragmentation may be 

linked to cell death, we first investigated whether Drp1-dependent mitochondrial 

fission is required for activation of the pro-apoptotic Bcl-2 effector, Bax, as 

reported within VacA intoxicated cells (61). Notably, several studies have 

reported significant cross-talk between Drp1- and Bax-mediated cellular 

processes (32, 54). Within this study, we observed a significant decrease in Bax 

activation in AZ-521 cells incubated with VacA in the presence of the Drp1 

inhibitor mdivi-1 (Fig. 2.24). The overall cellular levels of Bax were unaltered in 

cells that had been incubated with mdivi-1 and/or VacA (Fig. 2.25). Consistent 

with the results obtained using mdivi-1, VacA-dependent Bax activation was also 

inhibited in AZ-521 cells over-expressing EGFP-DN-Drp1 (K38A) (Fig. 2.26). 

Although mitochondrial fragmentation was clearly visible by 60 min in AZ-521 

cells incubated with VacA, (Fig. 2.16), a significant increase in the fraction of 

cells with activated Bax was not detected until 2 h, and the fraction of cells with 

activated Bax continued to increase through 8 h (Fig. 2.27). Together, these 

results suggest that within VacA intoxicated cells, Drp1-mediated mitochondrial 

fission precedes and is important for Bax activation. 
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2.3.8 Bax is not essential for Drp1-dependent mitochondrial fission in 

VacA-intoxicated cells.  

  Studies to evaluate the essentiality of cellular Bax for mitochondrial 

network fragmentation revealed clearly visible fragmentation in both bax+/+ and 

bax-/- mouse embryonic fibroblasts (MEFs) that had been incubated with VacA 

(Fig. 2.28). These results suggest that Bax is not required for Drp1-dependent 

mitochondrial fission within VacA-intoxicated cells. 

 

2.3.9 Drp1-dependent fission is important for VacA-induced MOMP.  

Within VacA-intoxicated cells, Bax activation is associated with MOMP, as 

manifested by release of mitochondrial cytochrome c (Cyt c) into the cytosol (61). 

Studies to evaluate the relationship between MOMP and Drp1-dependent 

mitochondrial fission revealed that the fraction of AZ-521 cells with Cyt c 

released from mitochondria into the cytosol had not increased after 1 h 

incubation with VacA (Fig. 2.29), although mitochondrial fragmentation was 

evident at this same time point (Fig. 2.16). However, there was a significant 

increase in the fraction of cells with Cyt c released from mitochondria into the 

cytosol by 2 h, and the fraction continued to increase through 8 h (Fig. 2.29), 

similar to the kinetics of Bax activation (Fig. 2.27), indicating that VacA-mediated 

mitochondrial fragmentation precedes MOMP. Cyt c release was significantly 

inhibited in the presence of the Drp1 inhibitor mdivi-1 (Fig. 2.30 A, B). In addition, 

Cyt c release in response to VacA was visibly reduced in cells over-expressing 
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EGFP-DN-Drp1 (K38A) (Fig. 2.31). These results suggest that enhanced 

mitochondrial fission promotes MOMP within VacA intoxicated cells. 

 

2.3.10 VacA-mediated Drp1 activation is important for toxin-dependent cell 

death.  

  VacA-dependent MOMP precedes and is necessary for cell death (56, 61). 

Studies to evaluate the importance of Drp1 revealed that cell death was 

significantly reduced in AZ-521 (Fig. 2.32) or AGS cells (Fig. 2.33) that were 

incubated with VacA in the presence of mdivi-1. These results indicate that Drp1-

dependent fission is important for VacA-induced cell death, and suggest that the 

disruption of cellular mitochondrial dynamics plays an important role in activation 

of cell death mechanism following Hp infection. 

 

2.3.11 VacA anion channel activity is important for mitochondrial 

fragmentation.  

Anion-selective, membrane channels formed by VacA were earlier 

reported to be important for toxin-dependent MOMP and cell death (56). Studies 

to evaluate whether VacA channel activity is also required for toxin-dependent 

disruption of mitochondrial dynamics revealed the absence of detectable 

mitochondrial fragmentation in cells exposed to two mutant forms of toxin (Fig. 

2.34 A, B), VacA (P9A) or VacA (G14A) (62), each of which had been previously 

shown to be attenuated in membrane channel-forming activity (38). Additionally, 

ectopic expression of the amino-terminal p34 domain of VacA, which contains 
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the residues required for VacA channel activity (38), directly within the cytosol of 

transiently transfected AZ-521 cells, resulted in morphological changes, including 

apparent fragmentation in the cellular mitochondrial network (Fig. 2.35). Finally, 

we confirmed that there was significantly less Bax activation (Fig. 2.36) and cell 

death (Fig. 2.37) in AZ-521 monolayers exposed to VacA (P9A) or VacA (G14A) 

than cells exposed to wild-type toxin. These data indicate that VacA membrane 

channel activity is important for the activation of Drp1-dependent mitochondrial 

fission within intoxicated cells. 

         

2.4 DISCUSSION 

 Mitochondrial health is closely linked to cell viability, as these organelles 

produce the energy required for cellular function while at the same time 

functioning as regulators of programmed cell death (63). Accordingly, 

mitochondrial dysfunction has been increasingly linked to several human 

pathologies, including those associated with cancer (26), inflammatory disorders 

(5), and degenerative diseases (65).  

 Here, we demonstrated that Hp infection of gastric epithelial cells disrupts 

the morphological dynamics of mitochondria by a mechanism dependent on the 

mitochondrial acting exotoxin, VacA. While mitochondrial fragmentation has been 

previously observed in cells infected with Hp (2) or intoxicated with VacA (41), 

our studies revealed that Drp1-mediated mitochondrial fission precedes and is 

important for induction of VacA-dependent cell death. For Hp, an increase in cell 

death within the gastric mucosa may alter the host niche in several ways, 
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including the loss of specialized cells, such as gastric parietal cells, but also 

increased cellular proliferation, and gastric atrophy that precedes metaplasia, 

dysplasia, and ultimately cancer (36, 58, 64). 

 A causal link between Drp1 and the cellular apoptotic machinery has been 

reported within diverse organisms such as yeast (18) and Drosophila (24). In 

contrast, down-regulation of Drp1 expression within HeLa or COS-7 cells did not 

prevent Bax-dependent apoptosis induced by ultraviolet radiation or actinomycin 

D (42). In addition, a recent report indicated that cell death does not result from 

the perturbation of mitochondrial dynamics in cells infected with Listeria 

monocytogenes (47), indicating that cell death is not an obligate outcome of 

disrupting mitochondrial dynamics. Thus, potential roles for Drp1 in 

mitochondrial-dependent cell death may ultimately be dictated by factors such as 

cell/tissue type, or the nature of the pro-death stimulus. 

 Our results indicate that Drp1-mitochondrial localization and GTPase 

activity is required for activation of Bax in VacA-intoxicated cells (Fig. 2.24). 

Recent studies have demonstrated that functional crosstalk between Drp1 and 

Bax exists in some cases (3). One study identified Drp1 as the factor within rat 

brain extracts that stimulates Bax activity and mitochondrial Cyt c release, but in 

a manner that is independent of its GTPase activity (39), suggesting fundamental 

differences with Drp1-dependent Bax activation in VacA-intoxicated cells, which 

requires Drp1 GTPase activity (Fig. 2.24). On the other hand, Bax was reported 

to co-localize with Drp1 at mitochondrial scission sites (32), and promote 

sumoylation of Drp1, which is required for stable association of Drp1 with 



 74 

mitochondria (54). Furthermore, Bax was reported to influence redistribution of 

Drp1 to mitochondria through release of the mitochondrial effector DDP/TIMM8a 

(1). Our data indicate that Bax is not required for Drp1-mediated fission, 

suggesting that within VacA-intoxicated cells, crosstalk between Drp1 and Bax 

may be uni-directional (e.g. Drp1-dependent fission as a trigger for Bax-mediated 

MOMP). Currently, we are investigating the mechanism by which Drp1-

dependent fission results in Bax activation and MOMP within VacA-intoxicated 

cells. 

  The mechanism by which VacA induces Drp1-dependent mitochondrial 

fission is not clear. Our data indicate that VacA channel activity is required for 

toxin-dependent mitochondrial fragmentation (Fig. 2.34 A, B), but the cellular site 

at which toxin channel activity is required for fragmentation has not been 

identified. Because ectopic expression of p34-EGFP directly within the cytosol of 

AZ-521 cells alters mitochondrial morphology (Fig. 2.35), it is unlikely that VacA 

membrane channels formed on the surface of mammalian cells (49) are required 

for toxin-mediated activation of Drp1-dependent mitochondrial fission. 

Alternatively, VacA might act directly at mitochondria, as several previous studies 

reported that a portion of VacA taken up from the cell surface localizes to this 

organelle (7, 41, 56). Preliminary studies to address a possible relationship 

between the location of intracellular VacA and the perturbation of mitochondrial 

dynamics revealed that VacA localization to mitochondria (Fig. 2.38) is evident 

within AZ-521 cells at 30 min, prior to the earliest time (60 min) that visible 

mitochondrial fragmentation was detected after exposure to toxin (Fig. 2.16). 
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While these data are consistent with the idea that VacA may act directly at 

mitochondria to induce Drp1-mediated fission, we cannot currently rule out the 

possibility that VacA-mediated mitochondrial fragmentation is triggered 

independently of toxin localization to mitochondria. In support of this latter 

possibility, a recent study reported that localization of VacA to mitochondria is 

delayed within MEFs lacking both Bax and the related effector Bcl-2 homologous 

antagonist/killer (Bak) (7), although our data clearly indicate that Bax is not 

required for VacA-induced Drp1-mediated mitochondrial fission (Fig. 2.28). 

  Preliminary studies to address the relationship between mitochondrial 

dysfunction and fission within VacA intoxicated cells revealed that Drp1 activity is 

not required for VacA-mediated dissipation of mitochondrial transmembrane 

potential ( m) (Fig. 2.39), suggesting that fission in VacA intoxicated cells is not 

likely the trigger for mitochondrial dysfunction. However, it remains possible that 

VacA-induced m dissipation induces Drp1-dependent fission. Support for this 

idea comes from unrelated studies which demonstrated that mitochondrial 

depolarization in HeLa cells induced a sustained cytosolic calcium rise, followed 

by calcineurin mediated dephosphorylation of Drp1 at Ser637 as a mechanism to 

drive Drp1 translocation to mitochondria (9). VacA is sufficient to induce m 

dissipation (61) and increases in cytosolic calcium (16), but a potential link 

between elevated cellular calcium or calcineurin action and Drp1-dependent 

mitochondrial fission within VacA-intoxicated cells remains to be evaluated. 
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  In summary, these results demonstrate that apoptosis of gastric epithelial 

cells during Hp infection is triggered by VacA-induced disruption of mitochondrial 

morphological dynamics through Drp1-mediated fission, which both precedes 

and is required for Bax-dependent remodeling of the mitochondrial outer 

membrane. Future work will be required to reveal whether other pathogens also 

promote host cell death by targeting the morphological dynamics of mitochondria. 
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Figure 2.1 H. pylori induces mitochondrial fragmentation within AZ-521 cells in a 
VacA dependent manner.  
 
AZ-521 cells transfected with pDsRed2-Mito were incubated at 37 °C and under 5% CO2 

for 8 h with Hp 60190 (B), Hp VM022 ( vacA) (C), Hp VM084 ( vacA::vacA) (D) or 
mock-infected with PBS pH 7.2 (A). (A-D) Scale bar = 5 µm. (E) Data from A-D were 
rendered as mitochondrial length relative to mock infected cells. Data were combined 
from 3 independent experiments where, in each, 45 randomly chosen mitochondria were 
analyzed (3 mitochondria in each of the 15 cells). Error bars indicate standard deviations. 



 78 

PBS pH 7.2 Hp 60190

Hp 26695 Hp G27

DICmitochondria DICmitochondria

DICmitochondria DICmitochondria

 

 
Figure 2.2 H. pylori induced mitochondrial fragmentation within AZ-521 cells is not 
idiosyncratic to a particular Hp strain.  
 
AZ-521 cells transfected with pDsRed2-Mito were incubated at 37 °C and under 5% CO2 

for 8 h with Hp 60190, Hp 26695 and Hp G27, each at MOI 100 or mock-infected with 
PBS pH 7.2. The cells were evaluated for mitochondrial fragmentation by DIC-
epifluorescence microscopy. Images reveal the morphology of fluorescently stained 
mitochondria and are representative of those collected from 2 independent experiments. 
Scale bar = 5 µm.  
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Figure 2.3 H. pylori induces mitochondrial fragmentation within AGS gastric 
epithelial cells. 
 
AGS cells transfected with pDsRed2-Mito were incubated at 37 °C and under 5% CO2 

for 8 h with Hp 60190 (MOI 100) or mock-infected with PBS pH 7.2. The cells were 
evaluated for mitochondrial fragmentation by DIC-epifluorescence microscopy. Images 
reveal the morphology of fluorescently stained mitochondria and are representative of 
those collected from 3 independent experiments. Scale bar = 5 µm.  
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Figure 2.4 H. pylori induces mitochondrial fragmentation within polarized MDCK 
cells. 
 
(A) Polarized MDCK cells were incubated at 37 °C and under 5% CO2 for 8 h with Hp 

60190 (MOI 100) or mock-infected with PBS pH 7.2. The cells were fixed, 
permeabilized and immunostained with Tom-20 as a mitochondrial marker. The cells 
were evaluated for mitochondrial fragmentation by DIC-epifluorescence microscopy. 
Images reveal the morphology of fluorescently stained mitochondria and are 
representative of those collected from 2 independent experiments. Scale bar = 5 µm. 
  

(B) The integrity of the polarized MDCK monolayer was evaluated by monitoring the 
passage of biotin-BSA (50 µg/mL) from the transwell basal chamber through either 
the MDCK monolayer or mock-seeded transwell inserts (in the absence of cells) into 
the apical chamber. The presence of biotin-BSA within the apical or basal chamber 
was assessed by Western blot analysis, using the streptavidin-HRP conjugate, and 
chemiluminescence signal development. The Western blot data are representative of 
those collected from two independent experiments, each with two independent 
MDCK monolayers. 
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Figure 2.5 H. pylori induces mitochondrial fragmentation within AZ-521 cells in an 
MOI dependent manner. 
 
AZ-521 cells transfected with pDsRed2-Mito were incubated at 37 °C and under 5% CO2 

for 8 h with Hp 60190 at the indicated MOI or mock-infected with PBS pH 7.2. The cells 
were evaluated for mitochondrial fragmentation by DIC-epifluorescence microscopy. 
Images reveal the morphology of fluorescently stained mitochondria and are 
representative of those collected from 3 independent experiments. Scale bar = 5 µm.  
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Figure 2.6 H. pylori induces mitochondrial fragmentation within AZ-521 cells in a 
time dependent manner. 
 
AZ-521 cells transfected with pDsRed2-Mito were incubated at 37 °C and under 5% CO2 

for indicated time periods with Hp 60190 at MOI 100 or mock-infected with PBS pH 7.2. 
The cells were evaluated for mitochondrial fragmentation by DIC-epifluorescence 
microscopy. Mitochondrial lengths were measured using Imaris 5.7 (Bitplane) software. 
Data are representative of those collected from 3 independent experiments where, in 
each, 45 randomly chosen mitochondria were analyzed (3 mitochondria in each of the 
15 cells). Error bars indicate standard deviations. Statistical difference was calculated for 
differences in mitochondrial lengths between Hp infected cells or cells treated with PBS 
pH 7.2 at the indicated time periods and cells treated with PBS pH 7.2 for 2 h.  
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Figure 2.7 A proteinaceous factor within Hp culture filtrate is responsible for 
mitochondrial fragmentation within AZ-521 cells.  
 
AZ-521 cells transfected with pDsRed2-Mito were incubated at 37 °C and under 5% CO2 
for 8 h with Hp culture filtrate that had been preincubated at 37 °C or 95 °C, or mock-
treated with PBS pH 7.2. The cells were evaluated for mitochondrial fragmentation by 
DIC-epifluorescence microscopy. Images reveal the morphology of fluorescently stained 
mitochondria and are representative of those collected from 3 independent experiments. 
Scale bar = 5 µm.  
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Figure 2.8 Analysis of Hp dependent mitochondrial fragmentation.  
 
AZ-521 cells transfected with pDsRed2-Mito were incubated at 37 °C and under 5% CO2 
for 8 h with Hp 60190 at MOI 100 that had been preincubated at 37 °C or 65 °C, or 
mock-treated with PBS pH 7.2. The cells were evaluated for mitochondrial fragmentation 
by DIC-epifluorescence microscopy. Images reveal the morphology of fluorescently 
stained mitochondria and are representative of those collected from 3 independent 
experiments. Scale bar = 5 µm.  
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Figure 2.9 Analysis of the association of vacA+ and vacA- Hp strains with AZ-521 
cells.  
 
AZ-521 cells were incubated at 37 °C and under 5% CO2 with Hp 60190, Hp VM022 

( vacA), Hp VM084 ( vacA::vacA) (all at MOI 100), or mock-infected with PBS pH 7.2. 
After 1 h, the monolayers were washed 2 times with PBS pH 7.2, lysed, and Hp 
associated with AZ-521 cells in each treatment was quantified by dilution plating and 
direct CFU counting. Data are rendered as the average CFU/mL obtained from 
combining data collected from two independent experiments, each conducted in 
triplicate. Error bars indicate standard deviations. Statistical significance was calculated 

for differences in CFU/mL between Hp 60190 (WT) and Hp VM022 ( vacA) or Hp 

VM084 ( vacA::vacA). 
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Figure 2.10 VacA induces mitochondrial fragmentation within AZ-521 gastric 
epithelial cells. 
 
AZ-521 cells transfected with pDsRed2-Mito were incubated at 37 °C and under 5% CO2 

for 4 h with purified VacA (250 nM) or mock-treated with PBS pH 7.2. The cells were 
evaluated for mitochondrial fragmentation by DIC-epifluorescence microscopy. Images 
reveal the morphology of fluorescently stained mitochondria and are representative of 
those collected from 3 independent experiments. Scale bar = 5 µm. 
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Figure 2.11 VacA is important for the induction of mitochondrial fragmentation 
within AZ-521 cells.  
 
AZ-521 cells transfected with pDsRed2-Mito were incubated at 37 °C and under 5% CO2 
for 4 h with VacA (250 nM) that had been preincubated at 37 °C or 95 °C, or, for 30 min 
on ice with VacA antiserum (2 mg/mL) or a non-specific H. ducreyi CdtA antiserum (2 
mg/mL). Additionally, the cells were mock-treated with PBS pH 7.2. The cells were 
evaluated for mitochondrial fragmentation by DIC-epifluorescence microscopy. Images 
reveal the morphology of fluorescently stained mitochondria and are representative of 
those collected from 3 independent experiments. Scale bar = 5 µm.  
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Figure 2.12 VacA is sufficient for the induction of mitochondrial fragmentation 
within AZ-521 cells.  
 
AZ-521 cells transfected with pDsRed2-Mito were incubated at 37 °C and under 5% CO2 
for 4 h with recombinant p33, p55 or p33 plus p55 (each at 250 nM). Additionally, the 
cells were mock-treated with 25 mM HEPES pH 8.8 containing 5% glycerol and 0.1 nM 
β-ME. The cells were evaluated for mitochondrial fragmentation by DIC-epifluorescence 

microscopy. Images reveal the morphology of fluorescently stained mitochondria and are 
representative of those collected from 2 independent experiments. Scale bar = 5 µm. 
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Figure 2.13 VacA induces mitochondrial fission in AGS, HeLa and HEp-2 cells.  
 
AGS cells that had been previously transfected with pDsRed2-Mito, or HeLa and HEp-2 
cells, were incubated at 37 °C and under 5% CO2 with VacA (250 nM for AGS cells; 500 
nM for HeLa and HEp-2 cells). Additionally, the cells were mock intoxicated with PBS pH 
7.2. After 4 h (AGS), or 8 h (HeLa and HEp-2) the cells were fixed (AGS) or, fixed, 
permeabilized, and immunostained for Tom-20 as a mitochondrial marker (HeLa and 
HEp-2), and cellular mitochondria were visualized by DIC-epifluorescence microscopy.  
The images reveal the morphology of fluorescently stained mitochondria, and are 

representative of those collected from three independent experiments. Scale bar = 5 m. 
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Figure 2.14 VacA induces mitochondrial fission in polarized MDCK cells.  
 
Polarized MDCK cells were incubated at 37 °C and under 5% CO2 with VacA (500 nM). 
Additionally, the cells were mock intoxicated with PBS pH 7.2. After 4 h the cells were 
fixed, permeabilized, and immunostained for Tom-20 as a mitochondrial marker and 
cellular mitochondria were visualized by DIC-epifluorescence microscopy.  The images 
reveal the morphology of fluorescently stained mitochondria, and are representative of 

those collected from two independent experiments. Scale bar = 5 m. 
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Figure 2.15 VacA induces mitochondrial fragmentation within AZ-521 gastric cells 
in a toxin dose dependent manner. 
 
AZ-521 cells transfected with pDsRed2-Mito were incubated at 37 °C and under 5% CO2 

for 4 h with purified VacA at the indicated concentrations or mock-treated with PBS pH 
7.2. The cells were evaluated for mitochondrial fragmentation by DIC-epifluorescence 
microscopy. Mitochondrial lengths were measured using Imaris 5.7 (Bitplane) software. 
The data are rendered as the average mitochondrial length obtained by combining data 
from three independent experiments where, in each, 45 randomly chosen mitochondria 
were analyzed (3 mitochondria in each of the 15 cells). Statistical significance was 
calculated for differences in mitochondrial lengths between cells incubated with VacA at 
the indicated concentrations and cells that were mock intoxicated with PBS pH 7.2.  
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Figure 2.16 VacA induces mitochondrial fragmentation within 1 h of intoxication in 
AZ-521 cells. 
 
AZ-521 cells transfected with pDsRed2-Mito were incubated at 37 °C and under 5% CO2 

with purified VacA (250 nM) or mock-treated with PBS pH 7.2. Mitochondria within each 
representative cell were monitored for the indicated time periods using live cell imaging. 
Images reveal the morphology of fluorescently stained mitochondria and are 
representative of those collected from 2 independent experiments. Scale bar = 5 µm. 
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Figure 2.17 VacA induces mitochondrial targeting of the cellular fission protein 
Drp1. 
 

(A) AZ-521 cells transfected with pDsRed2-Mito were incubated at 37 °C and under 
5% CO2 for 4 h with purified VacA (250 nM) or mock-treated with PBS pH 7.2. 
The cells were fixed, permeabilized and immunostained for Drp1. Colocalization 
of Drp1 to mitochondria was studied using DIC-epifluorescence microscopy. 
Images reveal the morphology of fluorescently stained mitochondria (in red), as 
well as cellular location of Drp1 (in green). Images are representative of those 
collected from 3 independent experiments. Scale bar = 5 µm. 
 

(B) Mitochondrial-Drp1 co-localization index determined by combining data obtained 
from 3 independent experiments. Error bars indicate standard deviations. 
Statistical difference was calculated for differences in mitochondrial-Drp1 co-
localization index between VacA treated cells or cells treated with PBS pH 7.2.    
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Figure 2.18 VacA induces mitochondrial targeting of the cellular fission protein 
Drp1 in a toxin dose dependent manner. 
 
AZ-521 cells that had been previously transfected with pDsRed2-Mito were incubated at 
37 °C and under 5% CO2 with VacA (at the indicated concentrations), or mock-
intoxicated with PBS pH 7.2. After 4 h, the cells were fixed, permeabilized, and 
immunostained for cellular Drp1. Localization of Drp1 to mitochondria was determined 
using DIC-epifluorescence microscopy followed by co-localization analysis. The data are 
rendered as the average Drp1-mitochondrial co-localization obtained by combining data 
from two independent experiments. In each independent experiment, 15 randomly 
chosen, pDsRed2-Mito transfected cells were analyzed. Error bars indicate standard 
deviations. Statistical significance was calculated for differences in co-localization 
indices between cells incubated with VacA at the indicated concentrations and those 
cells mock intoxicated with PBS pH 7.2.  
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Figure 2.19 VacA is important for Hp induced mitochondrial targeting of the 
cellular fission protein Drp1 in AZ-521 cells. 
 
AZ-521 cells that had been previously transfected with pDsRed2-Mito were incubated at 

37 °C and under 5% CO2 with Hp 60190, Hp VM022 ( vacA), Hp VM084 ( vacA::vacA) 
(all at MOI 100), or mock-infected with PBS pH 7.2. After 4 h, the cells were fixed, 
permeabilized, and immunostained for cellular Drp1. Localization of Drp1 to 
mitochondria was determined using DIC-epifluorescence microscopy followed by co-
localization analysis. The data are rendered as the average Drp1-mitochondrial co-
localization obtained by combining data from three independent experiments. In each 
independent experiment, 15 randomly chosen, pDsRed2-Mito transfected cells were 
analyzed. Error bars indicate standard deviations. Statistical significance was calculated 
for differences in co-localization indices between cells infected with Hp and cells mock 
infected with PBS pH 7.2. 
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Figure 2.20 Drp1 is important for VacA induced mitochondrial fragmentation in 
AZ-521 cells. 
 
(A) AZ-521 cells previously transfected with pDsRed2-Mito were incubated at 37 °C and 

under 5% CO2 with VacA (250 nM) or mock-treated with PBS pH 7.2, both in the 

absence or presence of the small molecule Drp1 inhibitor mdivi-1 (50 M). After 4 h 
the cells were fixed and cellular mitochondria were visualized by DIC-
epifluorescence microscopy. The images reveal the morphology of fluorescently 
stained mitochondria and are representative of those collected from three 

independent experiments. Scale bar = 5 m. 
  

(B) Mitochondrial lengths were measured using Imaris 5.7 (Bitplane) software. 
The data are rendered as the average mitochondrial length obtained by combining 
data from three independent experiments where, in each, 45 randomly chosen 
mitochondria were analyzed (3 mitochondria in each of the 15 cells). Error bars 
indicate standard deviations.  
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Figure 2.21 Drp1 is important for VacA induced mitochondrial fragmentation in 
AGS cells. 
 
AGS cells previously transfected with pDsRed2-Mito were incubated at 37 °C and under 
5% CO2 with VacA (250 nM) or mock-treated with PBS pH 7.2, both in the absence or 

presence of the small molecule Drp1 inhibitor mdivi-1 (50 M). After 4 h the cells were 
fixed and cellular mitochondria were visualized by DIC-epifluorescence microscopy. The 
images reveal the morphology of fluorescently stained mitochondria and are 

representative of those collected from three independent experiments. Scale bar = 5 m.  
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Figure 2.22 Drp1 is important for Hp induced mitochondrial fragmentation in AZ-
521 cells. 
 
AZ-521 cells previously transfected with pDsRed2-Mito were incubated at 37 °C and 
under 5% CO2 with Hp 60190 (MOI 100) or mock-treated with PBS pH 7.2, both in the 

absence or presence of the small molecule Drp1 inhibitor mdivi-1 (50 M). After 8 h the 
cells were fixed and cellular mitochondria were visualized by DIC-epifluorescence 
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Figure 2.22 (cont.) microscopy. The images reveal the morphology of fluorescently 
stained mitochondria and are representative of those collected from three independent 

experiments. Scale bar = 5 m.  
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Figure 2.23 Drp1 is important for VacA induced mitochondrial fragmentation in 
AZ-521 cells. 
 
(A) AZ-521 cells previously transfected with pDsRed2-Mito and co-transfected with 

either pEGFP-Drp1 or pEGFP-DN-Drp1 (K38A), were incubated at 37 °C and under 
5% CO2 with VacA (250 nM) or mock-treated with PBS pH 7.2. After 4 h the cells 
were fixed and cellular mitochondria were visualized by DIC-epifluorescence 
microscopy. The images reveal the morphology of fluorescently stained mitochondria 
and are representative of those collected from three independent experiments. Scale 

bar = 5 m. 
  

(B) Mitochondrial lengths were measured using Imaris 5.7 (Bitplane) software. 
The data are rendered as the average mitochondrial length obtained by combining 
data from three independent experiments. Error bars indicate standard deviations.  
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Figure 2.24 Drp1 is important for VacA induced Bax activation in AZ-521 cells. 
 
AZ-521 cells were incubated at 37 °C and under 5% CO2 with VacA (250 nM) or mock-
treated with PBS pH 7.2, both in the absence or presence of the small molecule Drp1 

inhibitor mdivi-1 (50 M). After 18 h the cells were fixed, permeabilized and 
immunostained for active Bax. Cellular fluorescence, indicative of active Bax was 
quantified using flow cytometry. The data were combined from three independent 
experiments. Error bars indicate standard deviations.  
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Figure 2.25 Treatment with the Drp1 inhibitor mdivi-1 does not alter endogenous 
Bax levels within AZ-521 cells. 
  
AZ-521 cells were incubated at 37 °C and under 5% CO2 with VacA (250 nM) or mock-
treated with PBS pH 7.2, both in the absence or presence of the small molecule Drp1 

inhibitor mdivi-1 (50 M). After 8 h the cells were fixed, permeabilized and 
immunostained for endogenous Bax. Cellular fluorescence, indicative of intracellular Bax 
(total cellular Bax) levels was quantified using flow cytometry. The data were rendered 
as the fold change in total cellular Bax between cells incubated with VacA, and those 
mock-intoxicated with PBS pH 7.2, both in the presence or absence of mdivi-1 and were 
obtained by combining data from two independent experiments, each conducted in     
triplicate. Error bars indicate standard deviations. Statistical significance was calculated 
for fold differences in Bax levels between cells incubated with PBS pH 7.2 alone versus 
cells pre-treated with mdivi-1 or cells treated with VacA in the presence or absence of 
mdivi-1. 
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Figure 2.26 Drp1 is important for VacA induced Bax activation in AZ-521 cells. 
 
AZ-521 cells transfected with either pEGFP-Drp1 or pEGFP-DN-Drp1 (K38A) were 
incubated at 37 °C and under 5% CO2 with VacA (250 nM) or mock-treated with PBS pH 
7.2. After 18 h the cells were fixed, permeabilized and immunostained for active Bax. 
Intracellular active Bax within each cell was visualized by DIC-epifluorescence 
microscopy. The images are representative of those collected from three independent 

experiments. Scale bar = 5 m. 
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Figure 2.27 Time dependent Bax activation within AZ-521 cells following VacA 
intoxication. 
 
AZ-521 cells were incubated at 37 °C and under CO2 with VacA (250 nM) or mock-
treated with PBS pH 7.2. After the indicated time periods, the cells were fixed,  
permeabilized and immunostained for active Bax. Intracellular active Bax within each cell 
was visualized by DIC-epifluorescence microscopy. Data were rendered as the fraction 
of entire population of cells incubated with VacA or PBS pH 7.2 that display active Bax, 
at the indicated time periods. Data were obtained by analyzing over 700 cells from 
randomly chosen fields over the course of two independent experiments. Error bars 
indicate standard deviations. Statistical significance was calculated for differences in the 
fraction of total cells that display Bax activation between cells treated with VacA and 
those treated with PBS pH 7.2, or between cells intoxicated with VacA for indicated time 
periods versus those intoxicated for 1 h. 
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Figure 2.28 Cellular Bax is not required for VacA induced mitochondrial fission. 
 
bax+/+ or bax-/- MEFs cells previously transfected with pDsRed2-Mito were incubated at 
37 °C and under 5% CO2 with VacA (500 nM) or mock-treated with PBS pH 7.2. After 8 
h the cells were fixed and cellular mitochondria were visualized by DIC-epifluorescence 
microscopy. The images reveal the morphology of fluorescently stained mitochondria 
and are representative of those collected from three independent experiments. Scale bar 

= 5 m.  
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Figure 2.29 Time dependence of VacA induced Cyt c release from mitochondria to 
cytosol within AZ-521 cells. 
 
AZ-521 cells were incubated at 37 °C and under 5% CO2 with VacA (250 nM) or mock-
treated with PBS pH 7.2. After the indicated time periods, the cells were fixed, 
permeabilized and immunostained for Cyt c. Intracellular location of Cyt c within each 
cell was visualized by DIC-epifluorescence microscopy. Data were rendered as the 
fraction of entire population of cells incubated with VacA or PBS pH 7.2 that display Cyt 
c release, at the indicated time periods. Data were obtained by analyzing over 1000 cells 
from randomly chosen fields over the course of two independent experiments. Error bars 
indicate standard deviations. Statistical significance was calculated for differences in the 
fraction of total cells that display Cyt c release between cells intoxicated with VacA and 
those treated with PBS pH 7.2, or between cells intoxicated with VacA for indicated time 
periods versus those intoxicated for 1 h. 
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Figure 2.30 Drp1 is important for VacA induced release of Cyt c from the 
mitochondrial inter-membrane space to cytosol. 
 
(A) AZ-521 cells were incubated at 37 °C and under 5% CO2 with VacA (250 nM) or 

mock-treated with PBS pH 7.2, both in the absence or presence of the small 

molecule Drp1 inhibitor mdivi-1 (50 M). After 8 h the cells were fixed, permeabilized 
and immunostained for Cyt c. Intracellular location of Cyt c within each cell was 
visualized by DIC-epifluorescence microscopy. The images are representative of 

those collected from three independent experiments. Scale bar = 5 m. 
 

(B) Data were rendered as the fraction of entire population of cells incubated with VacA 
or PBS pH 7.2 that display Cyt c release. Data were obtained by analyzing over 1000 
cells from randomly chosen fields over the course of three independent experiments. 
Error bars indicate standard deviations.  
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Figure 2.31 Drp1 is important for VacA induced release of Cyt c from the 
mitochondrial inter-membrane space in AZ-521 cells. 
 
AZ-521 cells previously transfected with either pEGFP-Drp1 or pEGFP-DN-Drp1 (K38A) 
were incubated at 37 °C and under 5% CO2 with VacA (250 nM) or mock-treated with 
PBS pH 7.2. After 8 h the cells were fixed, permeabilized and immunostained for Cyt c. 
Intracellular location of Cyt c within each cell was visualized by DIC-epifluorescence 
microscopy. The images are representative of those collected from three independent 

experiments. Scale bar = 5 m. 
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Figure 2.32 Drp1 is important for VacA induced cell death in AZ-521 cells. 
 
AZ-521 cells were incubated at 37 °C and under 5% CO2 with VacA (250 nM) or mock-
treated with PBS pH 7.2, both in the absence or presence of the small molecule Drp1 

inhibitor mdivi-1 (50 M). After 24 h, cell viability was determined with the Live-Dead  
viability/cytotoxicity assay kit, using flow cytometry. The data were rendered as the fold 
increase in dead cells following VacA intoxication relative to cells mock-treated with PBS 
pH 7.2, obtained by combining data collected from three independent experiments, each 
conducted in triplicate. Error bars indicate standard deviations.  
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Figure 2.33 Drp1 is important for VacA induced cell death in AGS cells. 
 
AGS cells were incubated at 37 °C and under 5% CO2 with VacA (250 nM) or mock-

treated with PBS pH 7.2, both in the absence or presence of mdivi-1 (50 M). After 24 h, 
cell viability was determined with the Live-Dead viability/cytotoxicity assay kit, using flow 
cytometry. The data were rendered as the fold increase in dead cells following VacA 
intoxication relative to cells mock-treated with PBS pH 7.2, obtained by combining data 
collected from two independent experiments, each conducted in triplicate. Error bars 
indicate standard deviations. Statistical significance was calculated for fold differences in 
cell death between cells intoxicated with VacA versus cells treated with PBS pH 7.2 in 
the presence or absence of mdivi-1. 
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Figure 2.34 VacA anion channel function is important for mitochondrial 
fragmentation in AZ-521 cells. 
 
(A) AZ-521 cells previously transfected with pDsRed2-Mito were incubated at 37 °C and 

under 5% CO2 with Hp culture filtrates (0.05 mg/ml) containing wild-type VacA, VacA 
(P9A), VacA (G14A), or with PBS pH 7.2. After 4 h the cells were fixed and cellular 
mitochondria were visualized by DIC-epifluorescence microscopy. The images reveal 
the morphology of fluorescently stained mitochondria and are representative of those 

collected from three independent experiments. Scale bar = 5 m. 
 

(B) Mitochondrial lengths were measured using Imaris 5.7 (Bitplane) software. The data 
are rendered as the average mitochondrial length obtained by combining data from 
three independent experiments. Error bars indicate standard deviations. Statistical 
significance was calculated for fold differences in mitochondrial lengths between 
cells mock-intoxicated with PBS pH 7.2 versus cells that were incubated with VacA 
(WT), VacA (P9A) or VacA (G14A).  
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Figure 2.35 The p34 domain of VacA is sufficient to induce mitochondrial 
fragmentation in AZ-521 cells. 

 
AZ-521 cells were transfected with plasmids encoding p34-EGFP (residues 1-319) or 
EGFP.  After 24 h or 48 h the cells were fixed, permeabilized, and immunostained for 
Tom-20 as a mitochondrial marker, followed by visualization of cellular mitochondria, as 
well as p34-EGFP and EGFP using DIC-epifluorescence microscopy. Images include, as 
indicated, mitochondria (red), p34-EGFP or EGFP (green). Arrows (white) indicate cells 
positive for p34-EGFP or EGFP expression. Images are representative of those 

collected over the course of two independent experiments (n=60). Scale bar = 5 m.  
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Figure 2.36 VacA anion channel function is important for Bax activation in AZ-521 
cells. 
 
AZ-521 cells were incubated at 37 °C and under 5% CO2 with Hp culture filtrates (0.05 
mg/ml) containing wild-type VacA, VacA (P9A), VacA (G14A), or with PBS pH 7.2. After 
18 h, the cells were fixed, permeabilized, and immunostained for activated Bax. The 
data were rendered as the fold change in activated Bax levels between cells incubated 
with the indicated Hp culture filtrates compared to monolayers mock-intoxicated with 
PBS pH 7.2, obtained by combining data collected from three independent experiments, 
each conducted in triplicate. Error bars indicate standard deviations. Statistical 
significance was calculated for differences in fold-activated Bax between cells mock-
intoxicated with PBS pH 7.2 and those cells incubated with wild-type VacA, VacA (P9A), 
VacA (G14A).  
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Figure 2.37 VacA anion channel function is important for induction of cell death in 
AZ-521 cells. 
 
AZ-521 cells were incubated at 37 °C and under 5% CO2 with Hp culture filtrates (0.05 
mg/ml) containing wild-type VacA, VacA (P9A), VacA (G14A), or with PBS pH 7.2. After 
24 h, the percentage of dead cells was determined using the Live-Dead 
viability/cytotoxicity assay kit. The data were rendered as the fold increase in dead cells 
between monolayers incubated with the indicated HPCF relative to monolayers mock-
intoxicated with PBS pH 7.2, obtained by combining data collected from three 
independent experiments, each conducted in triplicate. Error bars indicate standard 
deviations. Statistical significance was calculated for differences in relative cell death 
between cells mock-intoxicated with PBS pH 7.2 and those cells incubated with wild-type 
VacA, VacA (P9A), VacA (G14A).  
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Figure 2.38 VacA localizes to mitochondria within AZ-521 cells. 
 
AZ-521 cells were incubated with VacA (100 nM) at 37 °C and under 5% CO2. After 30 
min, the cells were fixed, permeabilized, and immunostained for VacA, as well as Tom- 
20 as a mitochondrial marker and analyzed for localization of VacA to mitochondria. 
Image includes, as indicated, mitochondria (red), VacA (green), and VacA co-localized 
to mitochondria (yellow). Image is representative of those collected over the course of 

three independent experiments. Scale bar = 5 m.  
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Figure 2.39 Drp1 dependent mitochondrial fission does not influence VacA 
induced mitochondrial dysfunction within AZ-521 cells. 
 
AZ-521 cells were incubated at 37 °C and under 5% CO2 with VacA (250 nM) or mock-

treated with PBS pH 7.2, both in the absence or presence of mdivi-1 (50 M). After 4 h, 

the relative m was determined using flow cytometry analysis of TMRE (50 nM)-stained 
cells. The data are rendered as the fold change in TMRE uptake in cells intoxicated with 
VacA relative to cells mock-intoxicated with PBS pH 7.2, obtained by combining data 
collected from three independent experiments, each conducted in triplicate. Error bars 
indicate standard deviations. Statistical significance was calculated for differences in 

m between cells mock-intoxicated with PBS pH 7.2 versus cells incubated with mdivi-
1 or cells incubated with VacA in the presence or absence of mdivi-1. 
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Chapter 3: Helicobacter pylori VacA induces Bax activation 

through activation and mitochondrial recruitment of the cell 

stress sensor ‘Bid’  

 
3.1 INTRODUCTION 

  Chronic infection of the human gastric mucosa with the gastric pathogen 

Helicobacter pylori (Hp) is a significant risk factor for the development of peptic 

ulcer disease or gastric cancer (13). Hp infection is strongly associated with 

increased apoptosis within the gastric mucosa of humans (48), mice (32), and 

Mongolian gerbil models (53) and is considered as important for Hp persistence 

and disease pathophysiology (12, 13). The induction of cell death following Hp 

infection is influenced by a complex interplay between several host and Hp 

factors. The vacuolating cytotoxin A or VacA, a multi-functional virulence factor 

produced by Hp, is shown to be both essential (38) and sufficient (15) for 

inducing gastric epithelial cell death. Earlier studies have reported that the 

cellular pro-death effector Bcl-2 associated X factor or Bax, is essential for VacA 

induced mitochondrial outer membrane permeabilization and cell death (75). In a 

recent study, we demonstrated that VacA intoxication resulted in the 

fragmentation of cellular mitochondrial network through excessive activation of 

the mitochondrial fission protein Drp1 (31). Drp1 mediated mitochondrial fission 

preceded and was required for Bax activation and cell death mechanism. 

However, the complete mechanism underlying VacA mediated Bax activation, 

particularly the nature of cellular changes initiated by VacA that linked the de-
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regulation of mitochondrial network dynamics to engagement of host apoptotic 

machinery, was not entirely clear.  

  Our study here demonstrates that VacA induces the activation and 

mitochondrial recruitment of the endogenous stress sensor protein Bid (BH3 

interacting death domain agonist), a BH3 domain-only protein of the Bcl2 family 

which is known directly activate Bax in certain cell death mechanisms (19, 20). 

Within VacA intoxicated cells, Bid was important for the activation of Bax and 

mitochondrial cell death mechanism. Importantly, Drp1 GTPase activity was 

required for Bid activation within VacA intoxicated cells. Our results therefore 

indicate that cellular stress as a result of excessive fission is possibly translated 

to Bax mediated mitochondrial outer membrane permeabilization through the 

stress sensor Bid. Furthermore, Drp1 dependent mitochondrial fission also 

resulted in the increase in cytosolic calcium levels, which was required for the 

activation of the calcium dependent cysteine protease called calpain. The 

proteolytic activity of calpain was required for processing of Bid to yield the 

mitochondrial targeting active fragment called t-Bid (truncated Bid).  

  Studies here identify the molecular mechanism underlying the activation of 

the cellular pro-death effector Bax, following VacA induced Drp1 mediated 

mitochondrial fission. Our results indicate that excessive mitochondrial fission 

following VacA intoxication results in activation and mitochondrial recruitment of 

the “direct-activator” of Bax called Bid, by a mechanism dependent on disruption 

of cellular calcium homeostasis and activation of calcium depend protease 

calpain. 
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3.2 MATERIALS AND METHODS 

 

  Bacterial Strains. Hp 60190 (cag PAI+, vacA s1/m1; 49503; ATCC; 

Manassas, VA) was cultured in bisulfite- and sulfite-free brucella broth (BSFB) 

containing 5 g vancomycin/mL (Sigma Aldrich; St. Louis, MO), on a rotary 

platform shaker for 48 h at 37 °C, under 5% CO2 and 10% O2. Hp VM022 

( vacA) (69) was a  kind gift from Dr. Timothy Cover (Vanderbilt University 

Medical Center; Nashville, TN). Hp 60190 derived strains producing VacA (P9A) 

and VacA (G14A) were constructed and cultivated as described previously (42, 

73). 

 

  Cell Lines. AZ-521 cells (3940; Japan Health Science Foundation) were 

maintained in minimum essential medium (MEM; Sigma Aldrich), which when 

supplemented with glutamine (2 mM), penicillin (100 U/mL), streptomycin sulfate 

(1 mg/mL) (Sigma Aldrich) and 10% fetal bovine calf serum (JRH Biosciences; 

Lenexa, KS), was referred to as “supplemented MEM”. The cells were 

maintained at 37 °C within a humidified atmosphere and under 5% CO2. 

 

Plasmids. The plasmid pDsRed2-Mito was obtained from Clontech 

Laboratories (Mountain View, CA). The plasmid pBABE Bid p22 GFP was 

obtained from addgene (Cambridge, MA). 
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  Transfection. Cells were transfected with the indicated plasmids using 

Lipofectamine-2000 transfection reagent (Invitrogen; Carlsbad, CA), according to 

manufacturer‟s instructions. 

 

  H. pylori culture filtrates (HPCF). The indicated Hp strains were grown 

in 200 mL bisulfite- and sulfite-free brucella broth (BSFB) containing 5 g 

vancomycin/mL, in 1 L culture flasks, on a rotary platform shaker at 37 °C, under 

5% CO2 and 10% O2. After 48 h, Hp cultures were harvested by centrifugation at 

8,000 g for 30 min at 4 °C. The supernatants were collected, and pellets were 

decontaminated by autoclaving. The supernatants were cooled to 4 °C, and the 

total protein was precipitated by slowly dissolving ammonium sulfate (Sigma 

Aldrich) to 90% saturation with stirring, followed by stirring overnight at 4 °C. The 

precipitates were collected by centrifugation at 8,000 g for 30 min at 4 °C, and 

the pellets were resuspended in 10 mM sodium phosphate buffer pH 7.0. The 

samples were dialyzed at 4 °C into 10 mM sodium phosphate buffer pH 7.0 using 

the Spectra/Por® membrane (molecular weight cut-off (MWCO) 50,000 Daltons 

(Da); Spectrum Laboratories; Rancho Dominguez, CA), concentrated 

approximately 5-fold using an Amicon Ultra Centrifugal Filter Unit (MWCO 50,000 

Da; Sigma Aldrich), and filter sterilized using a 0.2 m vacuum filtration unit 

(Corning), to obtain the final HPCF. The presence of full-length VacA within the 

HPCFs was confirmed by Western blot analysis, using VacA rabbit antiserum 

(Rockland Immunochemicals; Gilbertsville, PA), followed by incubation with HRP 
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conjugated anti-rabbit IgG secondary antibody (Cell Signaling Technology; 

Danvers, MA). The presence of VacA was detected by chemiluminescence using 

the Super-signal West Femto chemiluminescence detection kit (Thermo 

Scientific; Waltham, MA). VacA concentrations were normalized using 

densitometry analysis (UN-SCAN-IT gel analysis software; Silk Scientific Inc.; 

Orem, Utah) to compare the total pixels of each band against those obtained 

using known concentrations of purified VacA. The HPCFs were used within 

several days of preparation, during which time there was no detectable loss of 

VacA-induced vacuolation of AZ-521 cells, as determined by quantification of 

cellular vacuolation (16, 29). 

 

  VacA Purification. VacA (s1m1) from Hp 60190 (49503; ATCC), was 

purified and activated, as previously described (14). H. pylori 60190 was cultured, 

and VacA was purified from Hp culture filtrate (HPCF; from Hp broth culture 

described earlier) by anion exchange chromatography using Diethyl amino ethyl 

Sephacel resin (Sigma Aldrich). VacA was then eluted using 10 mM phosphate 

buffer pH 7.0, containing 200 mM sodium chloride. All eluted fractions were 

collected and analyzed by sodium dodecyl sulfate (SDS)-polyacrylamide gel 

electrophoresis followed by Coomassie brilliant blue staining and immunoblot 

analysis using rabbit anti-VacA polyclonal antibody, and purity of the full length 

toxin in VacA containing fractions was assessed to be on an average of 90-95 % 

pure. Fractions demonstrating the greatest degree of purity were pooled and 

stored at 4 °C until use.  
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  Heat Inactivation of Hp. Hp 60190 (12.5 X 108 CFU/mL in 1 mL PBS pH 

7.2) were incubated in a 37 °C or 65 °C water bath for 30 min, and then further 

incubated for 10 min at 37 °C. Immediately, 37 °C- or 65 °C-pretreated Hp were 

incubated with AZ-521 cells (MOI 100) or, alternatively, enumerated by serially 

diluting in PBS pH 7.2, followed by spread-plating onto fresh F-12 agar plates 

(supplemented with 5% FBS and 5 g vancomycin/mL) and incubating the plates 

at 37 °C, and under 5% CO2 and 10% O2.  After 72 h, CFU/mL was determined 

by direct counting of colonies on the F-12 plates and back calculating the 

appropriate dilution factor. 

 

  Heat Inactivation of VacA. Purified VacA (4 M) was incubated in a 

37 °C or 95 °C water bath, followed by further incubation of both samples at 

37 °C for 10 min. Immediately, VacA was activated as described previously (14, 

28, 73), and incubated with AZ-521 cells (at a final concentration of 250 nM). At 

the indicated times, the processing of Bid to t-Bid was determined within lysates 

of AZ-521 cells that were intoxicated with VacA or mock intoxicated with PBS pH 

7.2. 

 

  Preparation of Whole Cell Lysates. The cultured mammalian epithelial 

cells were collected following brief trypsinization. Cells were pelleted at 400 g for 

5 min at 4 °C and washed two times in ice cold PBS pH 7.2. The cells were 

incubated on ice in lysis buffer (20 mM HEPES pH 7.5, 10 mM KCl, 150 mM 



 122 

Sucrose, 1.5 mM MgCl2, 1 mM EDTA, 1 mM EGTA) supplemented with protease 

inhibition cocktail set III (539134; EMD chemicals; Gibbstown, NJ) for 30 min. 

The cell suspension in lysis buffer was then passed 25 times through a 30 ½ 

gauge needle to break open the cells. Cell lysate was centrifuged at 1000 g for 5 

min at 4 °C to remove unbroken cells, membrane and nuclear debris. 

Supernatant was collected and protein concentrations were determined using 

Bradford assay.  

 

Analysis of processing of Bid to t-Bid. Proteins within whole cell lysates 

were resolved in 12-15% SDS-polyacrylamide gels and transferred onto 

Immobilon PVDF transfer membrane with a pore size of 0.2 µm (ISEQ08100; 

Millipore; Billerica, MA). The PVDF membranes were incubated with blocking 

buffer (5% nonfat milk in tris buffered saline or TBS) to block nonspecific binding 

sites. Membranes were incubated with anti-Bid monoclonal antibody (BD 

Biosciences; San Jose, CA) diluted in blocking buffer for overnight at 4 °C. 

Membranes were washed with TBS plus 0.1 % Tween-20 (TBS-T) and incubated 

with species specific HRP-conjugated secondary antibody for 1 h at RT. 

Membranes were washed with TBS-T and developed using Super-signal West 

Femto chemiluminescence detection kit. 

 

  Analysis of Bid Localization to Mitochondria. AZ-521 cells were 

transiently transfected with pBABE p22 GFP. After 24 h, cells were incubated 

purified VacA (at the indicated concentrations). At the indicated times, the 
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monolayers were stained with mitotracker red (Invitrogen) to visualize 

mitochondria, washed 3 times with PBS pH 7.2 and fixed by incubation with 

paraformaldehyde (4%) for 20 min at 37 °C. The cells were imaged using DIC-

epifluorescence microscopy. Bid localization to mitochondria was quantified 

using the co-localization module of the DeltaVision SoftWoRx 3.5.1 software 

suite. Results were expressed as the co-localization index, derived from 

calculating the Pearson‟s coefficient of correlation, which in this study was a 

measure of co-localization between Bid and mitochondria in each z plane of the 

cell. For each cell, images from an average of 10-20 z planes at a thickness of 

0.2 m were collected. A co-localization index of 1.0 indicates 100% co-

localization of Bid to mitochondria, whereas a co-localization index of 0.0 

indicates the absence of detectable co-localization between Bid and 

mitochondria. Data were rendered as the average co-localization index obtained 

from analyzing 30 cells from over the course of three independent experiments. 

In each independent experiment, 10 cells were analyzed from at least 4 randomly 

chosen fields for each treatment.  

 

Bid siRNA knock-down. AZ-521 cells were transfected with siRNA 

targeted against Bid (Human) or scrambled AllStars negative control siRNA 

(Qiagen; Valencia, CA) in Opti-MEM (Invitrogen) without antibiotics 

(Penicillin/Streptomycin) and serum (10% FBS), using lipofectamine 2000 

transfection reagent (Invitrogen). The siRNA-liposome mixture was applied to the 

cells at ~80% confluence in a 6 well cell culture dish (Corning; Corning, NY) 
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containing 1.5 ml of Opti-MEM. Cells were further incubated at 37 °C within a 

humidified environment and 5% CO2 atmosphere for 6 h, following which opti-

MEM was replaced with supplemented minimum essential medium 

(supplemented MEM). Cells were incubated at 37 °C within a humidified 

environment and 5% CO2 atmosphere for additional 48 h. The expression levels 

of Bid were analyzed by western blot within whole cell lysates, as described 

earlier. 

 

Determination of cytosolic calcium. AZ-521 cells were pre-loaded with 

10 µM Fluo-3 AM (Sigma Aldrich) for 30 min in PBS pH 7.2 (Sigma Aldrich) 

containing 0.02% Pluronic F-127 (Invitrogen) at 37 °C and 5% CO2 in dark. The 

PBS used in this study was devoid of Ca2+ or Mg2+ salts. The cells were washed 

twice with PBS pH 7.2 and resuspended in fresh supplemented MEM (containing 

0.2 g/L dissolved Cacl2.2H2O). The cells were further incubated for 30 min at 

37 °C and 5% CO2 in dark to allow for de-esterification of Fluo-3 AM. The cells 

were treated with VacA or PBS pH 7.2 and cellular calcium levels were 

monitored by flow cytometry analysis of Fluo-3 fluorescence in the FL1 channel. 

Cell counts in all samples were normalized to 10000 cells. 

  

Determination of cellular calpain activity. AZ-521 cells were pre-loaded 

with 1 µM CMAC t-Boc-Leu-Met (Sigma Aldrich), a specific cell permeable 

substrate for calpain, for 30 min. Cells were then treated with VacA or PBS pH 

7.2 and further incubated at 37 °C and 5% CO2 for required periods of time. 
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Analysis of AMC fluorescence, generated as a result of substrate cleavage by 

active calpain was carried out in a Synergy 2 BioTek fluorescence plate reader 

(BioTek; Winooski, VT) using band pass filter with EX 360/40 and EM 460/40.  

 

  Determination of Cellular Bax Activation. AZ-521 cells were detached 

from tissue culture wells by mild trypsinization for 3 min at 37 °C with Trypsin 

EDTA (Cellgro), fixed by incubation with paraformaldehyde (4%) for 20 min at 

37 °C, followed by permeabilization with saponin (0.1 %) in PBS pH 7.2 

containing BSA (0.5%) and anti-Bax Clone 3 mAb (1 g/mL; BD Biosciences) in 

order to stain for activated Bax. After 45 min, the cells were washed 3 times with 

PBS pH 7.2, followed by incubation with mouse anti-IgG conjugated to Alexa 

Fluor 488 (1 g/mL) in PBS pH 7.2 containing saponin (0.1 %) and BSA (0.5%) 

for 30 min on ice and in the dark. As a negative control, cells were incubated in 

the presence of mouse anti-IgG conjugated to Alexa Fluor 488 (1 g/mL) alone. 

Cells were washed in PBS pH 7.2 containing saponin (0.1 %) and BSA (0.5%) 

and resuspended in PBS pH 7.2. Alexa Fluor 488 fluorescence was quantified by 

flow cytometry in the FL1 channel (525/40 nm band pass filter). 10,000 cells were 

analyzed for each sample. 

  Quantitative measurement of VacA mediated cellular caspase-8 

activation. AZ-521 cells were cultured overnight at a seeding density of 2X105 

cells/ml in 37 °C and under 5% CO2 atmosphere and were treated with purified 

VacA or PBS pH 7.2. After appropriate time periods of incubation, the cells were 
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collected by brief trypsinization, washed 2 times with PBS pH 7.2 and incubated 

with CaspGLOW Fluorescein active caspase 8 staining kit (BioVision) for 30 min 

at 37 °C and under 5% CO2 atmosphere, according to manufacturer‟s 

instructions. The cells were washed 3 times with PBS pH 7.2 and the fluorescein 

signal was quantified by flow cytometry in the FL1 channel (525/40 nm band 

pass filter). 10,000 cells were analyzed for each sample. 

 

Determination of Cell Death. Cell death was measured by flow cytometry, 

using the Live-Dead viability/cytotoxicity assay kit (Invitrogen) according to 

manufacturer‟s instructions.  

 

DIC-Epifluorescence Microscopy. Fluorescence and DIC images were 

collected using a Delta Vision RT microscope (Applied Precision), EX 490/20 and 

EM 528/38, EX 555/28 and EM 617/73, EX 640/20 and EM 685/40 using 

Olympus Plan Apo 60X oil objective with NA 1.42 and working distance of 0.17 

nm. Images were processed using DeltaVision SoftWoRx 3.5.1 software suite. 

 

Flow Cytometry. Analytical flow cytometry was carried out using a BD 

FACSCanto II flow analyzer (BD Biosciences) located at the R. J. Carver 

Biotechnology Center Flow Cytometry Facility (University of Illinois at Urbana-

Champaign). The flow cytometer was equipped with 70- m nozzle, 488 nm line 

of an air-cooled argon-ion laser, and 400 mV output. The band pass filters used 

for analysis were 525/40 nm, 575/30 nm and 675/30 nm. Cell analysis was 
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standardized for scatter and fluorescence by using a suspension of fluorescent 

beads (Beckman Coulter; Miami, FL). Events were recorded on a log 

fluorescence scale and the geometric mean as well as percent events was 

determined using FCS Express analysis software (De Novo Software; Los 

Angeles, CA). Forward and side scatter properties were considered to exclude 

non-cellular (debris) events from viable and (or) dead cell populations. 

Statistical Analysis. Unless otherwise indicated, each experiment was 

performed at least three independent times. For those data requiring statistical 

analysis, data were combined from 2 or 3 independent experiments, as indicated, 

with each independent experiment carried out in triplicate. Statistical analyses 

were performed using Microsoft Excel (Version 11.0; Microsoft Corporation; 

Redmond, WA). Unless otherwise noted, error bars represent standard 

deviations. All P values were calculated with the Student‟s t test using paired, 

two-tailed distribution. P < 0.05 indicates statistical significance. 

 

3.3 RESULTS 

3.3.1 Hp infection results in the activation of the pro-apoptotic cell stress 

sensor protein ‘Bid’.  

Our earlier work demonstrated that the deregulation of mitochondrial 

dynamics by the vacuolating cytotoxin (VacA) produced by Hp, was important for 

activation of the pro-apoptotic effector protein „Bax‟ (31). The activation of Bax is 

an important step towards commitment of a cell to undergo cell death following 
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VacA intoxication (75). However, the mechanism underlying Bax activation 

following VacA induced mitochondrial fragmentation remained unclear. Earlier 

studies have clearly indicated that the stress sensor protein, BH3 interacting-

domain death agonist „Bid‟ which belongs to the BH3 domain-only sub-family of 

Bcl2 proteins is typically associated with the activation of Bax following the 

receipt of stress related death inducing signals (19, 20, 34). Bid is processed to 

„t-Bid‟, a mitochondrial targeted fragment which induces conformational changes 

within Bax at the mitochondrial outer membrane, resulting in Bax oligomerization 

and channel formation (20, 27, 37, 39, 40, 63). Therefore we hypothesized that 

metabolic stress resulting from excessive mitochondrial fission could result in a 

Bid mediated Bax activation.  

 To evaluate this possibility, we characterized the processing of Bid to t-Bid 

within whole cell lysates prepared from cultured AZ-521 gastric epithelial cells 

that were intoxicated with Hp. We observed significant increase in t-Bid cross 

reactive material within 8 h of infection in the lysates obtained from cells that 

were infected with Hp 60190 (MOI 100), when compared to cells that were 

treated with Hp 60190 (MOI 100) that were pre-incubated at 65 °C for 30 min or 

with PBS pH 7.2 under similar conditions (Fig. 3.1).  

 

3.3.2 VacA is essential for the processing of Bid to t-Bid.   

Our earlier work had demonstrated that VacA was essential for Hp 

induced mitochondrial fission and cellular Bax activation (31). To evaluate the 

importance of VacA in Hp mediated generation of t-Bid, we infected AZ-521 cells 
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with an isogenic Hp 60190 mutant strain lacking a functional vacA gene [Hp 

( vacA)] (MOI 100). Interestingly, compared to detectable and significant 

increase in the generation of t-Bid within lysates of cells infected with Hp 60190, 

we did not detect any t-Bid cross reactive material within lysates of cells 

intoxicated with the mutant strain [Hp ( vacA)], within 8 h of infection (Fig. 3.2). 

These data indicate VacA was important for Hp mediated processing of Bid to t-

Bid.   

 

3.3.3 VacA is sufficient to induce the processing of Bid to t-Bid.  

  Studies to evaluate the sufficiency of VacA in Hp mediated processing of 

Bid to t-Bid revealed that VacA, when purified from Hp culture filtrate, induced 

significant increase in generation of t-Bid within 8 h of intoxication in AZ-521 cells 

(Fig. 3.3). However, the generation of t-Bid was not observed following 

intoxication of AZ-521 cells with VacA that had been pre-incubated at 95 °C 

within 8 h of intoxication (Fig.3.3). Detectable processing of Bid to t-bid was 

observed within 4 h of VacA treatment (Fig. 3.4). These data clearly indicate that 

VacA was sufficient in inducing the processing of Bid to t-Bid.  

 

3.3.4 VacA induces mitochondrial localization of Bid.  

Bid is a cytosolic protein that is recruited to mitochondrial outer membrane 

following receipt of death inducing signal(s), where it is believed to activate the 

death effector protein Bax, by a mechanism that is still not completely understood 

(51). In order to evaluate the intracellular distribution of Bid, AZ-521 cells were 



 130 

transfected with a plasmid encoding Bid-GFP (pBABE Bid p22 GFP). Additionally, 

to visualize mitochondria, the cells were co-transfected with a plasmid encoding 

a mitochondrial targeted RFP (pDsRed2-mito). The cells were treated with either 

purified VacA (250 nM) or PBS pH 7.2 and Bid-GFP, as well as mitochondrial-

RFP fluorescence was monitored by epi-fluorescence microscopy. After 4 h of 

incubation, while cells treated with PBS pH 7.2 displayed a predominantly diffuse 

GFP fluorescence indicative of a cytosolic distribution of Bid-GFP, cells 

intoxicated with VacA displayed highly distinct GFP puncta, that predominantly 

colocalized with mitochondria within cells, indicative of the targeting of Bid-GFP 

to mitochondria (Fig. 3.5 A, B).   

 

3.3.5 VacA induced activation and mitochondrial targeting of Bid is 

important for toxin mediated Bax activation and cell death.  

Our data thus far indicated that VacA was both essential and sufficient to 

induce the processing of Bid to t-Bid. To evaluate the importance of VacA 

induced processing to Bid to t-Bid in the mitochondrial cell death mechanism, we 

monitored VacA induced Bax activation in AZ-521 cells following partial 

knockdown of Bid expression using Bid specific siRNA (Fig. 3.6). AZ-521 cells 

that were transfected with Bid specific siRNA, displayed significant reduction in 

Bax activation within 18 h of intoxication with VacA (250 nM), compared to cells 

that were transfected with a non-specific siRNA (Fig. 3.7). Furthermore, 

significant reduction in Bax activation was also observed within cells that were 

intoxicated with VacA (250 nM) for 18 h in the presence of a small molecule 
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chemical inhibitor BI6C9, which specifically blocks the association of t-Bid to the 

mitochondria (36), compared to cells intoxicated with VacA in the absence of 

BI6C9 (Fig. 3.8). Finally, there was significantly less Bax activation in Bid knock-

out MEFs (MEFbid-/bid-) incubated with VacA than in wild-type MEFs (MEFbid+/bid+) 

incubated with the toxin (Fig. 3.9). These data support a model that VacA 

mediated Bax activation occurs by a Bid-dependent mechanism. 

 Earlier studies have clearly indicated that Bax activation is important for 

the commitment of cells to undergo cell death following VacA intoxication (75). 

Consistent with this idea, AZ-521 cells that were transfected with Bid siRNA, 

displayed significant reduction in cell death within 24 h of intoxication with VacA 

(250 nM), compared to cells that were transfected with a non-specific siRNA (Fig. 

3.10). Additionally, significant reduction in cell death was also observed within 

cells that were intoxicated with VacA (250 nM) for 24 h in the presence BI6C9, 

compared to cells intoxicated with VacA in the absence of BI6C9 (Fig. 3.11). 

 

3.3.6 VacA induced activation of the mitochondrial fission factor Drp1 is 

important for the processing of Bid to t-Bid.   

Our earlier work had demonstrated that Drp1 mediated mitochondrial 

fragmentation was important for VacA induced Bax activation within AZ-521 cells 

(31). However, the underlying mechanism by which Drp1 influences Bax 

activation was not clear. Our data thus far indicate a critical role of Bid in inducing 

Bax activation within VacA intoxicated cells. Therefore, we wished to evaluate 
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the causal relationship between VacA induced Drp1 activation and the 

processing of Bid to t-Bid.  

 While investigating the role of Drp1 in Bid processing following Hp 

infection, we observed considerable reduction in the generation of t-Bid within 

cells infected with Hp 60190 (MOI 10 and 100) for 8 h in the presence of the 

Drp1 GTPase inhibitor Mdivi-1, compared with cells infected with Hp 60190 in the 

absence of Mdivi-1 (50 µM) (Fig. 3.12). Additionally, intoxication of AZ-521 cells 

with VacA (100 and 250 nM) for 4 h in the presence of Mdivi-1 (50 µM) resulted 

in considerable reduction in the processing of Bid to t-Bid (Fig. 3.13). These data 

therefore indicate that VacA induced Drp1 dependent mitochondrial fission is 

important for the processing of Bid to t-Bid.  

 

3.3.7 VacA anion channel activity is important for the processing of Bid to 

t-Bid.   

Earlier studies clearly indicate that the ability of VacA to form anion 

channels in host cell membranes is important for several changes induced within 

cells following VacA intoxication, including mitochondrial dysfunction, Bax 

activation and Cyt c release (8, 73, 74). Previously, we had demonstrated that 

VacA anion channel activity is important for the Drp1 dependent mitochondrial 

fission mechanism (31). Since our data thus far suggest that VacA induced 

mitochondrial fission is important for the generation of t-Bid, we wished to 

evaluate the importance of VacA anion channel function in the processing of Bid 

to t-Bid. AZ-521 cells were intoxicated with Hp culture filtrates (HPCF; 0.05 
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mg/mL) from Hp strains expressing wild-type VacA, or 2 mutant forms of toxin, 

VacA (P9A) or VacA (G14A), each of which had been previously shown to be 

attenuated in membrane channel-forming ability (43). We observed almost a 

complete absence of detectable Bid processing in cells that were intoxicated with 

HPCF containing VacA(P9A) or VacA(G14A), while cells intoxicated HPCF 

containing wild-type VacA demonstrated robust processing of Bid to t-Bid, within 

8 h of intoxication (Fig. 3.14).  

 

3.3.8 Cellular calpain activity is important for VacA induced processing of 

Bid to t-Bid.   

Processing of full-length Bid to t-Bid is known to occur following activation 

of different classes of proteases (10, 20, 27, 39, 41, 55, 62-64). The aspartate-

specific cysteine protease, capsase-8, has been commonly associated with Bid 

processing within cells during the death receptor mediated or extrinsic cell death 

mechanism (20, 27). In fact, we did observe significant increase in activated 

caspase-8 within AZ-521 cells that were intoxicated with purified VacA (250 nM) 

relative to cells treated with PBS pH 7.2. However, significant increase in 

detection of activated caspase-8 was observed only after 8 h of treatment with 

VacA (Fig. 3.15), whereas the processing of Bid was detected within 4 h of VacA 

intoxication(Fig. 3.4). Our data, therefore suggested that within the context of 

VacA intoxication, the processing of Bid was not likely initiated by caspase-8. 

 Several studies have suggested that the calcium dependent cysteine 

protease, calpain is also capable of processing Bid, but at a site distinct from the 
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one recognized by caspase-8 (10, 41). In fact, earlier studies have demonstrated 

an increase in cellular calpain activity following Hp infection (50, 71). Notably, we 

observed significant increase in cellular calpain activity in AZ-521 cells, within 1 h 

of intoxication with purified VacA (250 nM), relative of cells treated with PBS pH 

7.2 (Fig. 3.16). Additionally, cells that were intoxicated with increasing 

concentrations of VacA for 4 h, demonstrated significant increase in calpain 

activity at VacA concentration as low as 10 nM, but not at 1 nM, relative to cells 

treated with PBS pH 7.2 (Fig. 3.17). To evaluate the importance of cellular 

calpain activity in VacA mediated Bid activation and mitochondrial targeting, we 

investigated the cellular location of Bid within AZ-521 cells that were intoxicated 

with VacA (250 nM), in the presence or absence of the N-acetyl-L-leucine-L-

leucine-L-methionine peptide or ALLM (20 µM) (calbiochem), which is a specific 

chemical inhibitor of calpains (49). The cellular location of Bid within AZ-521 cells 

was predominantly cytosolic in the presence of ALLM, even after 4 h of 

intoxication with VacA (250 nM), as compared to visible localization of Bid-GFP 

puncta with the mitochondria in cells intoxicated with VacA in the absence of 

ALLM (Fig. 3.18). Our results therefore indicate that calpain function is required 

for the mitochondrial translocation of Bid.  

 

3.3.9 VacA mediated rise in cytosolic calcium levels is important for cellular 

calpain activity and Bid processing.   

Studies evaluating cellular effects of VacA within multiple cell lines have 

clearly demonstrated that VacA disrupts the cellular calcium homeostasis (17, 
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71). Calcium concentration within cells is tightly regulated (3, 7). Disruption of 

calcium homeostasis could result in activation of various calcium dependent 

enzymes and proteases, thereby activating the molecular switch initiating 

signaling processes whose effects range from alteration in gene expression to 

regulation of cellular metabolism and cell death. Notably, calpain activation is 

known to occur in the presence of elevated concentrations of calcium (45, 56). 

Additionally, calcium independent mechanism of calpain activation has also been 

reported (26, 60). Within this study, intoxication of AZ-521 cells with purified 

VacA (250 nM) resulted in significant rise in cytosolic calcium levels within 2 h of 

intoxication (Fig. 3.19). Furthermore, significant increases in cytosolic calcium 

levels was observed within 4 h following intoxication with VacA at concentrations 

as low as 10 nM, but not at 1 nM (Fig. 3.20). To evaluate the importance of VacA 

induced elevation of calcium levels in cellular calpain function, we monitored 

cellular calpain activity in the presence or absence of a specific cell membrane 

permeable chemical chelator of calcium called BAPTA-AM (Calbiochem). 

Following 4 h of VacA treatment, we observed a significant reduction in cellular 

calpain activity within cells intoxicated in the presence of BAPTA-AM than in the 

absence of the chelator (Fig. 3.21).  

 

3.3.10 VacA induced rise in cellular calcium levels and calpain activity are 

important for toxin mediated Bax activation.  

Our data thus far indicated that VacA induced processing of Bid to t-Bid is 

important for the activation of Bax and host cell death mechanism. Additionally, 
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we have shown that VacA mediated translocation of Bid to mitochondria is 

directly influenced by a calcium dependent calpain activation mechanism. To 

evaluate the role of cytosolic calcium rise in VacA induced Bax activation we 

monitored the levels of active Bax within AZ-521 cells intoxicated with VacA (250 

nM) in the presence or absence of the cell permeable calcium chelator BAPTA-

AM. Following 18 h of VacA treatment, we observed a significant reduction in 

cellular Bax activation within cells intoxicated in the presence of BAPTA-AM than 

in the absence of the chelator (Fig. 3.22). Furthermore, we observed a significant 

reduction in cell death within AZ-521 cells that were intoxicated with VacA (250 

nM) for 24 h in the presence of BAPTA-AM than in the absence of the chelator 

(Fig. 3.23). Notably, we also observed a significant reduction in Bax activation 

(Fig. 3.24) within cells that were intoxicated with VacA (250 nM), for 18 h in the 

presence of the calpain inhibitor ALLM than in the absence of the inhibitor. These 

results are consistent with our model in which VacA induced elevation in 

cytosolic calcium levels is important for Bax activation through an increase in 

calpain mediated activation of Bid. 

 

3.3.11 Drp1 activity is important for VacA mediated rise in cytosolic calcium 

levels and calpain activity.  

 Our data thus far characterizes the mechanism of VacA mediated 

activation of Bax, which involves the activation of Bid in a calcium and calpain 

dependent manner. We have also shown that processing of Bid to t-Bid was 

influenced by the activity of the mitochondrial fission factor, Drp1. However, it 



 137 

was not clear whether Drp1 influences Bid activation through a mechanism 

involving calcium dependent calpain activation. To evaluate the relationship 

between cellular Drp1 activity and rise in calcium levels following VacA 

intoxication, we monitored cellular calcium levels within AZ-521 cells intoxicated 

with VacA (250 nM) in the presence or absence of the Drp1 inhibitor Mdivi-1. 

After 8 h of VacA treatment, we observed a significant reduction in cellular 

calcium levels within cells intoxicated in the presence of Mdivi-1 than in the 

absence of the inhibitor (Fig. 3.25). Consistent with the important role of cytosolic 

calcium in cellular calpain activity, we observed a significant reduction in calpain 

activity within cells that were intoxicated with VacA (250 nM) for 8 h in the 

presence of Mdivi-1 than in the absence of the inhibitor (Fig. 3.26). These data 

strongly suggest that Drp1 mediated fragmentation of mitochondrial network 

clearly influences the cellular calcium homeostasis, thereby resulting in calpain 

activation and processing of Bid to t-Bid. 

 

3.4 DISCUSSION 

Mitochondria, besides being the center for generation of metabolic energy 

within cells (22), are also known to function as central sensors and executioners 

of programmed cell death mechanism (5). The vacuolating cytotoxin produced by 

Helicobacter pylori, VacA, is known to directly target the mitochondria and 

activate mitochondrial cell death mechanism within host cells (23, 44, 73, 75). 

Studies evaluating the mechanism underlying VacA mediated cell death indicate 

a critical role of the multi-domain (BH1-3) pro-death effector Bax in the 
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permeabilization of the mitochondrial outer membrane, thereby committing the 

cell to undergo cell death (75). However, the exact mechanism underlying VacA 

induced Bax activation remained unclear. Previously, we showed that VacA 

intoxication resulted in excessive activation of the mitochondrial fission factor 

Drp1 within host cells, resulting in the deregulation of mitochondrial network 

dynamics, favoring increased mitochondrial fragmentation. Drp1 mediated 

mitochondrial fragmentation occurred within 1 h of VacA cellular intoxication and 

was important for subsequent Bax activation and induction of mitochondrial cell 

death mechanism (31). However, the molecular mechanism linking the early 

mitochondrial effects of VacA, i.e. mitochondrial dysfunction and network 

fragmentation, to subsequent activation of Bax and cellular commitment to 

undergo cell death remained unclear.  

Current models of Bax activation indicate that changes in Bax leading to 

mitochondrial outer membrane permeabilization are critically influenced by 

members of the BH3 (Bcl-2 homology domain)-only Bcl2 (B cell lymphoma) 

family, which belong to either the “sensitizer” or “direct activator” class of BH3-

only proteins (11). Within these models, key events that lead to activation of Bax 

involve either association of BH3 domain-only proteins to members of the anti-

apoptotic Bcl2 proteins, thereby alleviating repression on Bax, or direct activation 

of Bax, leading to homo-oligomerization of Bax at the mitochondrial outer 

membrane. While “sensitizer” BH3 domain-only proteins activate Bax via binding 

with anti-apoptotic Bcl2 protein, “direct activator” BH3 domain-only proteins are 
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known to directly activate Bax oligomerization at the mitochondrial outer 

membrane.  

 Our results here indicate that VacA induced Bax activation is mediated by 

the activation and mitochondrial recruitment of the cellular stress sensor protein 

Bid (BH3 interacting death domain agonist) which belongs to the “direct activator” 

sub-family of BH3 domain-only proteins (72). The involvement of Bid in Bax 

activation, although widely reported, is dependent on the nature of death 

activating signal. For example, during T-cell apoptosis following staurosporine 

treatment (4), or TRAIL induced cell death within human rhabdomyosarcoma 

(RMS) cells (54), cellular Bax was activated by Cathepsin D or sphingosine, 

respectively, in a Bid-independent manner. However, in this study we have 

demonstrated that activation of Bid is critical to VacA induced Bax activation and 

cell death. Within Bid knock-out mouse embryonic fibroblasts, as well as in AZ-

521 gastric epithelial cells where Bid levels were knocked down using Bid 

specific siRNA, we observed significant reduction in VacA induced Bax activation 

and cell death, suggesting a vital role of Bid in VacA induced mitochondrial cell 

death mechanism.  

Unlike many Bcl-2 family proteins, full length Bid (fl-Bid), a 22 kDa protein, 

lacks the C-terminal hydrophobic membrane targeting domain and therefore is 

predominantly localized to the cytosol in healthy cells. However, following receipt 

of stress/death stimuli, fl-Bid is proteolytically processed by specific proteases to 

yield a smaller ~15 kDa NH2-terminal truncated fragment, called t-Bid (truncated-

Bid), which inserts into the mitochondrial outer membrane via the exposed 
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membrane interacting domain (65). The mitochondrial targeting of t-Bid has been 

shown to be important for Bax activation, possibly through direct interaction with 

Bax at the mitochondrial membrane (19, 70), but so far, the mechanism remains 

largely unclear. In certain instances, for example in mammary epithelial cells 

undergoing anoikis following detachment from extra-cellular matrix (ECM), 

membrane association of fl-Bid has also been reported (68). Therefore, the exact 

role of mitochondrial targeting of t-Bid in mitochondrial cell death mechanism is 

not entirely clear. Within our study we demonstrate that fl-Bid is processed to t-

Bid within AZ-521 cells that were either infected with Hp or intoxicated with 

purified VacA. Furthermore, we show that t-Bid progressively targets the cellular 

mitochondria at time periods earlier to detectable mitochondrial outer membrane 

permeabilization within VacA treated cells. Importantly, experiments conducted 

with a small molecule Bid inhibitor, BI6C9, which specifically inhibits the targeting 

of t-Bid to mitochondria (2), significantly reduced Bax activation as well as the 

induction of cell death, indicating the importance of Bid activation and 

mitochondrial targeting in the activation of mitochondrial cell death mechanism 

following VacA intoxication. 

 How might Bid influence VacA‟s ability to induce Drp1 mediated 

mitochondrial fragmentation within cells, which we had earlier reported to be 

important for Bax activation (31)? The relationship between Bid induced 

mitochondrial damage and activation of mitochondrial fission mechanism is not 

very clear. Bid is shown to be required for induction of mitochondrial fission 

during oxidative stress induced mitochondrial damage (66). Similarly, Bik, an ER 
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localized BH3 domain-only protein was shown to induce Drp1 mediated inner 

mitochondrial cristae reorganization (25).  Additionally, Drp1 was required for t-

Bid dependent Bax oligomerization, but in a mechanism independent of Drp1 

GTPase activity (47). However, it has also been reported that components of 

mitochondrial fission machinery are a part of multi-molecular signaling complexes 

within mitochondrial membrane in which t-Bid and Bax are recruited (24). 

Furthermore, BH3 peptides derived from Bid and Bim, another BH3 domain-only 

protein, were shown to be sufficient in inducing mitochondrial dysfunction and 

network fragmentation (61). Within our study, inhibition of mitochondrial 

translocation of Bid by the small molecule Bid inhibitor BI6C9 did not affect VacA 

induced mitochondrial fragmentation. However, inhibition of mitochondrial fission 

by the small molecule Drp1 inhibitor mdivi-1 visibly reduced the processing of fl-

Bid to t-Bid following infection with Hp, as well as intoxication with purified VacA, 

indicating that mitochondrial fragmentation was required for Bid activation. While 

it was clear that Drp1 mediated mitochondrial fission occurred earlier to and was 

required for Bid activation, the underlying molecular mechanism remained 

unclear. 

Studies so far have indicated that Bid processing can occur following 

processing by a variety of cellular proteases depending on the stress/death 

inducing signal. Cellular apoptosis initiated following the engagement of the Fas 

(CD-95 or APO-1) receptor results in the activation of initiator cysteine-aspartate 

protease, caspase 8 which acts residue Asp 59 of fl-Bid to generate t-Bid (62). 

Our studies indicated significant increase in the activation of caspase 8 following 
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VacA intoxication of AZ-521 cells, however caspase 8 activity was observed at 

time points much later to those observed for Bid processing and mitochondrial 

targeting, therefore ruling out the involvement of caspase-8 in the initiation of Bid 

processing. An alternate mechanism of Bid processing, typically observed under 

conditions of elevated cytosolic calcium levels involves the calcium dependent 

protease calpain, which processes fl-Bid between residues Gly-70 and Arg-71 

(41). Within our study, we observed a significant increase in calpain activity 

following VacA intoxication, at time points similar to that observed for Bid 

activation. Importantly, inhibition of calpain function within cells resulted in 

significant decrease in the mitochondrial targeting of Bid, as well as Bax 

activation and cell death, underscoring the importance of calpain activity in VacA 

mediated mitochondrial cell death mechanism. Calpains are ubiquitous cytosolic 

cysteine proteases, which undergo conformational change following calcium 

binding that allows for proper realignment of the protease active-site residues 

(46). However, calcium independent mechanisms for calpain activation have also 

been reported (1). Studies conducted thus far to investigate the relationship 

between VacA and changes in cellular calcium homeostasis have primarily 

focused on effects of VacA intoxication in immune cells. VacA has been shown to 

induce rise in cytosolic calcium levels within RBL-2H3 mast cells (17) and human 

eosinophils (35), leading to production and secretion of pro-inflammatory 

cytokines and chemokines, respectively. Interestingly, VacA intoxication did not 

induce changes in cytosolic calcium levels within primary human B cells and Th 

cells (67). In fact, VacA prevented the influx of calcium from extracellular milieu 
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into intoxicated T-cells by virtue of VacA anion channels formed in the cell 

membrane (6). Therefore, the effect of VacA on cellular calcium homeostasis 

seems to depend on the type and function of the cells being studied. Within our 

study, we observed a significant increase in cytosolic calcium levels within 2 h of 

VacA intoxication in AZ-521 gastric epithelial cells. Importantly, chelation of 

cytosolic calcium by BAPTA-AM, resulted in significant inhibition of cellular 

calpain function, Bid processing, Bax activation and cell death. These results 

therefore indicate that early changes in cellular calcium levels play a critical role 

in the engagement of cellular apoptotic machinery following VacA treatment. 

Notably, we did not observe any significant increase in cytosolic calcium levels 

within AZ-521 cells that were intoxicated with VacA anion channel activity 

deficient mutants. Previously, we had reported that VacA anion channel forming 

ability is required for the toxin‟s ability to induce excessive activation of the 

cellular mitochondrial fission machinery, and was important for subsequent Bax 

activation and mitochondrial cell death mechanism (31). Our results thus far 

indicate that the deregulation of cellular calcium homeostasis and mitochondrial 

dynamics by membrane channels formed by VacA are critical for activation of cell 

death program within AZ-521 cells. 

But what is the causal relationship between VacA induced rise in cytosolic 

calcium levels and activation of Drp1 mediated mitochondrial fission? Earlier 

studies have identified significant trafficking of calcium from ER to mitochondria 

through multiple contact sites between the organelles (52). In fact mitochondria 

are considered to play an important role in cellular calcium buffering. Additionally, 
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studies have indicated an important role of calcium in the maintenance of 

mitochondrial network dynamics within cells. Rise in cytosolic calcium levels has 

been shown to inhibit mitochondrial movement along microtubules, thereby 

mediating redistribution of the network (30, 59). Interestingly, mitochondrial 

calcium overload was shown to induce mitochondrial fission within prostate 

cancer cells (33). Studies investigating the molecular mechanism of calcium 

induced mitochondrial fission have demonstrated significant crosstalk between 

calcium dependent phosphatases or kinases, and Drp1. The activation of 

phosphatase calcineurin under conditions of sustained calcium increase has 

been shown to result in the activation of Drp1 through dephosphorylation at the 

Ser 637 residue within Drp1 (9). Also, the activation of CaMKIalpha following rise 

in cellular calcium was shown to mediate Drp1 activation through 

phosphorylation at Ser 600 residue within Drp1 (30). However, within our studies 

we observed that inhibition of mitochondrial fragmentation within cells resulted in 

a significant decrease in the ability of VacA to mediate an increase of cytosolic 

calcium levels, indicating that Drp1 mediated mitochondrial fission was required 

for increase in cellular calcium. The molecular mechanism underlying fission 

induced rise in cytosolic calcium is presently not clear. Earlier studies have 

revealed significant cross-talk between mitochondria and endoplasmic reticulum 

(ER) which is the main intra-cellular calcium store within a cell (18). The ER-

mitochondria connections are known to play an important role in the buffering of 

cytosolic calcium levels (57, 58). Additionally, a recent study suggested that ER 

wraps around the mitochondria at specific contact sites (21). Furthermore, the 
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study also indicates that the fission protein Drp1 targets the mitochondria 

specifically at the contact sites with ER. It is therefore possible that increased 

fragmentation of the mitochondrial network may decrease ER-mitochondria 

cross-talk within cells due to loss of contact sites, therefore decreasing the 

calcium buffering capacity of the cell. It is also possible that Drp1 targeted to the 

ER-mitochondrial contact sites may actively participate in the remodeling of ER 

membranes, thereby mediating calcium release from ER. The role of ER-

mitochondria association in VacA induced rise in cytosolic calcium is not yet clear 

and is currently under investigation.  

Our study here provides critical insights into the mechanism by which 

VacA induces the activation of Bax, a critical mediator of mitochondrial cell death. 

Our data indicates that the activation and mitochondrial recruitment of the cell 

stress sensor protein Bid is critical to activation of Bax following VacA induced 

Drp1 mediated mitochondrial fission.  
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Figure 3.1 VacA is important for Hp induced Bid processing.  
 
AZ-521 cells were incubated at 37 °C and under 5% CO2 with Hp 60190 (MOI 100) that 
were pre-incubated at 37 °C or 65 °C for 30 min, or mock-infected with PBS pH 7.2. 
After 8 h, the cells were lysed and proteins within the whole cell lysates were resolved 
on a 15 % SDS-poly acrylamide gel, transferred onto 0.2 µm PVDF membranes and 
immnostained with polyclonal anti-Bid antibody to detect full-length Bid (Fl-Bid; 22 kDa) 
or truncated Bid (t-Bid; 15 kDa).  Lysates were immunostained with monoclonal anti-
actin antibody to confirm equal loading between wells. Data are representative of results 
obtained from 2 independent experiments.  
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Figure 3.2 VacA is important for Hp induced Bid processing.  
 
(A) AZ-521 cells were incubated at 37 °C and under 5% CO2 with Hp 60190 and Hp 

VM022 ( vacA) or mock-infected with PBS pH 7.2. After 8 h, the cells were lysed and 
proteins within the whole cell lysates were resolved on a 15 % SDS-poly acrylamide gel, 
transferred onto 0.2 µm PVDF membranes and immnostained with polyclonal anti-Bid 
antibody to detect full-length Bid (Fl-Bid; 22 kDa) or truncated Bid (t-Bid; 15 kDa).  
Lysates were immunostained with monoclonal anti-actin antibody to confirm equal 
loading between wells. Data are representative of results obtained from 3 independent 
experiments.  

 
(B) Densitometry analysis was carried out on the western blots using UN-SCAN-IT 
Gel analysis software (Silk Scientific, Orem, Utah). The pixel region of each t-Bid cross-
reactive material band was analyzed, the background subtracted. Average pixels were 
determined over the course of 3 independent experiments. Error bars indicate standard 
deviations. 
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Figure 3.3 VacA induces Bid processing in AZ-521 cells.  
 
AZ-521 cells were incubated at 37 °C and under 5% CO2 with purified VacA (at the 
indicated concentrations) or with purified VacA (250 nM) pre-incubated at 95 °C, or 
mock-intoxicated with PBS pH 7.2. After 8 h, the cells were lysed and proteins within the 
whole cell lysates were resolved on a 15 % SDS-poly acrylamide gel, transferred onto 
0.2 µm PVDF membranes and immnostained with polyclonal anti-Bid antibody to detect 
full-length Bid (Fl-Bid; 22 kDa) or truncated Bid (t-Bid; 15 kDa).  Lysates were 
immunostained with monoclonal anti-actin antibody to confirm equal loading between 
wells. Data are representative of results obtained from 2 independent experiments. 
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Figure 3.4 VacA induces Bid processing in AZ-521 cells within 4 h of intoxication.  
 
AZ-521 cells were incubated at 37 °C and under 5% CO2 with purified VacA (250 nM) or 
mock-intoxicated with PBS pH 7.2. At the indicated time periods, the cells were lysed 
and proteins within the whole cell lysates were resolved on a 15 % SDS-poly acrylamide 
gel, transferred onto 0.2 µm PVDF membranes and immnostained with polyclonal anti-
Bid antibody to detect full-length Bid (Fl-Bid; 22 kDa) or truncated Bid (t-Bid; 15 kDa).  
Lysates were immunostained with monoclonal anti-actin antibody to confirm equal 
loading between wells. Data are representative of results obtained from 3 independent 
experiments. 
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Figure 3.5 VacA intoxication results in the mitochondrial targeting of Bid. 
 
(A) AZ-521 cells transfected with pBABE Bid-GFP and stained with mitotracker red 
were incubated at 37 °C and under 5% CO2 with purified VacA (250 nM) or mock- 
intoxicated with PBS pH 7.2. After 4 h, the cellular location of Bid (green) and 
mitochondria (red) were visualized by DIC-epifluorescence microscopy. Images are 
representative of those collected from 3 independent experiments. Scale bar = 20 µm. 
  
(B) Localization of Bid-GFP to mitochondria was quantified by co-localization 
analysis. The data are rendered as the average Bid-GFP-mitochondrial colocalization 
index obtained from combining data from three independent experiments. In each 
independent experiment, 15 randomly chosen, pBABE Bid GFP transfected cells were 
analyzed. Error bars indicate standard deviations. Statistical significance was calculated 
for differences in colocalization indices between cells mock-intoxicated with PBS pH 7.2 
versus cells incubated with VacA. 
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Figure 3.6 siRNA mediated knock-down of endogenous Bid expression in AZ-521 
cells. 
 
AZ-521 cells were transfected with Bid specific siRNA or a non-specific (scrambled) 
siRNA and incubated at 37 °C and under 5% CO2. After 48 h, the cells were lysed and 
proteins within the whole cell lysates were resolved on a 15 % SDS-poly acrylamide gel, 
transferred onto 0.2 µm PVDF membranes and immnostained with polyclonal anti-Bid 
antibody to detect full-length Bid (Fl-Bid; 22 kDa).  Lysates were immunostained with 
monoclonal anti-actin antibody to confirm equal loading between wells. Data are 
representative of results obtained from 2 independent experiments. 
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Figure 3.7 Bid is important for VacA induced Bax activation in AZ-521 cells. 

 
AZ-521 cells were transfected with Bid specific siRNA or a non-specific (scrambled) 
siRNA and incubated at 37 °C and under 5% CO2. After 48 h, the cells were incubated at 
37 °C and under 5% CO2 with VacA (250 nM) or mock-treated with PBS pH 7.2. After 18 
h the cells were fixed, permeabilized and immunostained for active Bax. Cellular 
fluorescence, indicative of active Bax was quantified using flow cytometry. The data 
were combined from three independent experiments. Error bars indicate standard 
deviations. Statistical significance was calculated for differences in VacA induced Bax 
activation between non-specific siRNA transfected cells versus cells that were 
transfected with Bid specific siRNA. 
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Figure 3.8 Mitochondrial targeting of Bid is important for VacA induced Bax 
activation in AZ-521 cells. 

 
AZ-521 cells were incubated at 37 °C and under 5% CO2 with VacA (250 nM) or mock-
treated with PBS pH 7.2, in the presence or absence of the small molecule inhibitor of 
Bid, BI6C9 (25 µM). After 18 h the cells were fixed, permeabilized and immunostained 
for active Bax. Cellular fluorescence, indicative of active Bax was quantified using flow 
cytometry. The data were combined from three independent experiments. Error bars 
indicate standard deviations. Statistical significance was calculated for differences in Bax 
activation between cells treated with VacA in the absence of BI6C9 versus cells that 
were treated with VacA in the presence of BI6C9. 
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Figure 3.9 Bid is required for VacA induced Bax activation. 

 
Wild-type and Bid knock-out mouse embryonic fibroblasts (MEFs) were incubated at 
37 °C and under 5% CO2 with purified VacA (250 nM). After 24 h, the cells were fixed, 
permeabilized and immunostained for active Bax. Cellular fluorescence, indicative of 
active Bax was quantified using flow cytometry. The data were combined from three 
independent experiments. Error bars indicate standard deviations. Statistical significance 
was calculated for differences in VacA induced Bax activation within wild-type MEFs 
versus Bid knock-out MEFs. 
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Figure 3.10 Bid is important for VacA induced cell death in AZ-521 cells. 
 

AZ-521 cells were transfected with Bid specific siRNA or a non-specific (scrambled) 
siRNA and incubated at 37 °C and under 5% CO2. After 48 h, the cells were incubated at 
37 °C and under 5% CO2 with VacA (250 nM) or mock-treated with PBS pH 7.2. After 24 
h, cell death was determined using the Live-Dead viability/cytotoxicity assay kit and 
quantified using flow cytometry. The data were combined from three independent 
experiments. Error bars indicate standard deviations. Statistical significance was 
calculated for differences in VacA induced cell death between non-specific siRNA 
transfected cells versus cells that were transfected with Bid specific siRNA. 
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Figure 3.11 Mitochondrial targeting of Bid is important for VacA induced cell death 
in AZ-521 cells. 

 
AZ-521 cells were incubated at 37 °C and under 5% CO2 with VacA (250 nM) or mock-
treated with PBS pH 7.2, in the presence or absence of the small molecule inhibitor of 
Bid, BI6C9 (25 µM). After 24 h, the percentage of dead cells was determined using the 
Live-Dead viability/cytotoxicity assay kit and quantified using flow cytometry. The data 
were combined from three independent experiments. Error bars indicate standard 
deviations. Statistical significance was calculated for differences in cell death between 
cells treated with VacA in the absence of BI6C9 versus cells that were treated with VacA 
in the presence of BI6C9. 
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Figure 3.12 GTPase function of the cellular fission protein Drp1 is required for Hp 
induced Bid processing in AZ-521 cells.  
 
AZ-521 cells were incubated at 37 °C and under 5% CO2 with Hp 60190 (MOI 10 and 
100) or mock-infected with PBS pH 7.2, in the presence or absence of the small 
molecule Drp1 inhibitor, mdivi-1. After 8 h, the cells were lysed and proteins within the 
whole cell lysates were resolved on a 15 % SDS-poly acrylamide gel, transferred onto 
0.2 µm PVDF membranes and immnostained with polyclonal anti-Bid antibody to detect 
full-length Bid (Fl-Bid; 22 kDa) or truncated Bid (t-Bid; 15 kDa).  Lysates were 
immunostained with monoclonal anti-actin antibody to confirm equal loading between 
wells. Data are representative of results obtained from 2 independent experiments. 
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Figure 3.13 GTPase function of the cellular fission protein Drp1 is required for 
VacA induced Bid processing in AZ-521 cells.  
 
AZ-521 cells were incubated at 37 °C and under 5% CO2 with purified VacA (250 nM) or 
mock-intoxicated with PBS pH 7.2, in the presence or absence of the small molecule 
Drp1 inhibitor, mdivi-1. After 8 h, the cells were lysed and proteins within the whole cell 
lysates were resolved on a 15 % SDS-poly acrylamide gel, transferred onto 0.2 µm 
PVDF membranes and immnostained with polyclonal anti-Bid antibody to detect full-
length Bid (Fl-Bid; 22 kDa) or truncated Bid (t-Bid; 15 kDa).  Lysates were 
immunostained with monoclonal anti-actin antibody to confirm equal loading between 
wells. Data are representative of results obtained from 2 independent experiments.  
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Figure 3.14 VacA anion channel function is required for Bid processing in AZ-521 
cells.  
 
AZ-521 cells were incubated at 37 °C and under 5% CO2 with 0.5 mg/ml HPCF 
containing VacA (WT), VacA(P9A) or VacA(G14A) or mock-intoxicated with PBS pH 7.2. 
After 8 h, the cells were lysed and proteins within the whole cell lysates were resolved 
on a 15 % SDS-poly acrylamide gel, transferred onto 0.2 µm PVDF membranes and 
immnostained with polyclonal anti-Bid antibody to detect full-length Bid (Fl-Bid; 22 kDa) 
or truncated Bid (t-Bid; 15 kDa).  Lysates were immunostained with monoclonal anti-
actin antibody to confirm equal loading between wells. Data are representative of results 
obtained from 3 independent experiments.  
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Figure 3.15 VacA intoxication results in caspase 8 activation. 
 
AZ-521 cells were incubated at 37 °C and under 5% CO2 with purified VacA (250 nM) or 
mock-intoxicated with PBS pH 7.2. At the indicated time periods, the cells were collected 
by brief trypsinization, washed 2 times with PBS pH 7.2 and incubated with CaspGLOW 
Fluorescein active caspase 8 staining kit (BioVision) for 30 min at 37 °C and under 5% 
CO2 atmosphere, according to manufacturer‟s instructions. The fluorescein signal within 
cells was quantified by flow cytometry in the FL1 channel (525/40 nm band pass filter). 
10,000 cells were analyzed for each sample. Error bars indicate standard deviations. 
Statistical significance was calculated for fold differences in mean fluorescence values 
between cells mock-intoxicated with PBS pH 7.2 versus cells incubated with VacA for 
each of the time periods tested.  
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Figure 3.16 VacA induces increase in cellular calpain activity. 
 
AZ-521 cells were incubated at 37 °C and under 5% CO2 with purified VacA (250 nM) or 
mock-intoxicated with PBS pH 7.2, in the presence of fluorogenic calpain substrate t-
Boc-LLVY-AMC to detect calpain activity. At the indicated time periods, generation of 
fluorogenic product AMC was quantified using a microplate reader with appropriate 
filters. The data are rendered as the fold change in relative fluorescence unit (RFU) in 
VacA treated cells, relative to cells treated with PBS pH 7.2 and were obtained from 
combining data from three independent experiments. Error bars indicate standard 
deviations. Statistical significance was calculated for fold differences in RFU between 
cells mock-intoxicated with PBS pH 7.2 versus cells incubated with VacA at each of the 
time periods tested.  
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Figure 3.17 VacA induces increase in cellular calpain activity in a toxin dose 
dependent manner. 
 
AZ-521 cells were incubated at 37 °C and under 5% CO2 with purified VacA (at the 
indicated concentrations) or mock-intoxicated with PBS pH 7.2, in the presence of 
fluorogenic calpain substrate t-Boc-LLVY-AMC to detect calpain activity. After 4 h, the 
generation of fluorogenic product AMC was quantified using a microplate reader with 
appropriate filters. The data are rendered as the fold change in relative fluorescence unit 
(RFU) in VacA treated cells, relative to cells treated with PBS pH 7.2 and were obtained 
from combining data from three independent experiments. Error bars indicate standard 
deviations. Statistical significance was calculated for fold differences in RFU between 
cells mock-intoxicated with PBS pH 7.2 versus cells incubated with VacA for each of the 
concentrations tested.  
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Figure 3.18 Calpain activity is important for VacA induced targeting of Bid to 
mitochondria. 
 
AZ-521 cells transfected with pBABE Bid-GFP and stained with mitotracker red were 
incubated at 37 °C and under 5% CO2 with purified VacA (250 nM) or mock-intoxicated 
with PBS pH 7.2, in the presence of absence of the calpain inhibitor ALLM (20 µM). After 
4 h, the cellular location of Bid (green) and mitochondria (red) were visualized by DIC-
epifluorescence microscopy. Images are representative of those collected from 3 
independent experiments. Scale bar = 30 µm.  
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Figure 3.19 VacA induces rise in cytosolic calcium levels. 
 
AZ-521 cells that were preloaded with calcium sensitive fluorescence probe Fluo-3 AM, 
were incubated at 37 °C and under 5% CO2 with purified VacA (250 nM) or mock- 
intoxicated with PBS pH 7.2. At the indicated time periods, cellular fluorescence was 
quantified by flow cytometry in the FL1 channel (525/40 nm band pass filter). 10,000 
cells were analyzed for each sample. Error bars indicate standard deviations. Statistical 
significance was calculated for fold differences in mean fluorescence values between 
cells mock-intoxicated with PBS pH 7.2 at 0.5 h versus cells incubated with PBS pH 7.2 
or VacA for all the time periods tested.  
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Figure 3.20 VacA induces rise in cytosolic calcium levels in a toxin dose 
dependent manner. 
 
AZ-521 cells that were preloaded with calcium sensitive fluorescence probe Fluo-3 AM, 
were incubated at 37 °C and under 5% CO2 with purified VacA (at the indicated 
concentrations) or mock-intoxicated with PBS pH 7.2. After 4 h, cellular fluorescence 
was quantified by flow cytometry in the FL1 channel (525/40 nm band pass filter). 10,000 
cells were analyzed for each sample. Error bars indicate standard deviations. Statistical 
significance was calculated for fold differences in mean fluorescence values between 
cells mock-intoxicated with PBS pH 7.2 versus cells incubated with each of the indicated 
concentrations of VacA.  
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Figure 3.21 Cellular calcium is required for VacA induced calpain activation. 
 
AZ-521 cells were incubated at 37 °C and under 5% CO2 with purified VacA (250 nM) or 
mock-intoxicated with PBS pH 7.2, in the presence of the fluorogenic calpain substrate t-
Boc-LLVY-AMC, as well as in the presence or absence of the cell permeable calcium 
chelator BAPTA-AM (10 µM). After 4 h, generation of fluorogenic product AMC was 
quantified using a microplate reader with appropriate filters. The data are rendered as 
the fold change in relative fluorescence unit (RFU) in VacA treated cells, relative to cells 
treated with PBS pH 7.2 and were obtained from combining data from two independent 
experiments. Error bars indicate standard deviations. Statistical significance was 
calculated for fold differences in RFU between cells intoxicated with VacA in the 
absence of BAPTA-AM versus cells intoxicated with VacA in the presence of BAPTA-AM.  
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Figure 3.22 Cellular calcium is required for VacA induced Bax activation. 
 
AZ-521 cells were incubated at 37 °C and under 5% CO2 with purified VacA (250 nM) or 
mock-intoxicated with PBS pH 7.2, in the presence or absence of the calcium chelator 
BAPTA-AM (10 µM). After 18 h, the cells were fixed, permeabilized and immunostained 
for active Bax. Quantification of Bax activation was carried out by flow cytometry 
analysis. The data were rendered as the fold increase in Bax activation following VacA 
intoxication relative to cells mock-treated with PBS pH 7.2, obtained from combining 
data collected from three independent experiments, each conducted in triplicate. Error 
bars indicate standard deviations. Statistical significance was calculated for fold 
differences in Bax activation following VacA intoxication in the presence of BAPTA-AM 
versus the activation of Bax following VacA intoxication in the absence of BAPTA-AM.  
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Figure 3.23 Cellular calcium is required for VacA induced cell death. 
 
AZ-521 cells were incubated at 37 °C and under 5% CO2 with purified VacA (250 nM) or 
mock-intoxicated with PBS pH 7.2, in the presence of the calcium chelator BAPTA-AM 
(10 µM). After 24 h, the cells were evaluated for cell death using Live-Dead 
viability/cytotoxicity assay kit. Quantification of cell death was carried out by flow 
cytometry analysis. The data were rendered as the fold increase in cell death following 
VacA intoxication relative to cells mock-treated with PBS pH 7.2, obtained from 
combining data collected from three independent experiments, each conducted in 
triplicate. Error bars indicate standard deviations. Statistical significance was calculated 
for fold differences in cell death following VacA intoxication in the presence of BAPTA-
AM versus cell death induced following VacA intoxication in the absence of BAPTA-AM.  
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Figure 3.24 Cellular calpain activity is required for VacA induced Bax activation. 
 
AZ-521 cells were incubated at 37 °C and under 5% CO2 with purified VacA (250 nM) or 
mock-intoxicated with PBS pH 7.2, in the presence of the calpain inhibitor ALLM (20 µM). 
After 18 h, the cells were fixed, permeabilized and immunostained for active Bax. 
Quantification of Bax activation was carried out by flow cytometry analysis. The data 
were rendered as the fold increase in Bax activation following VacA intoxication relative 
to cells mock-treated with PBS pH 7.2. Error bars indicate standard deviations. 
Statistical significance was calculated for fold differences in Bax activation following 
VacA intoxication in the presence of ALLM versus the activation of Bax following VacA 
intoxication in the absence of ALLM.  
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Figure 3.25 Drp1 activity is required for VacA induced rise in cytosolic calcium. 
 
AZ-521 cells that were preloaded with calcium sensitive fluorescence probe Fluo-3 AM, 
were incubated at 37 °C and under 5% CO2 with purified VacA (at the indicated 
concentrations) or mock-intoxicated with PBS pH 7.2, in the presence or absence of the 
Drp1 inhibitor mdivi-1 (50 µM). After 4 h, cellular fluorescence was quantified by flow 
cytometry in the FL1 channel (525/40 nm band pass filter). 10,000 cells were analyzed 
for each sample. Error bars indicate standard deviations. Statistical significance was 
calculated for fold differences in mean fluorescence values between cells intoxicated 
with VacA in the presence of mdivi-1 versus those intoxicated with VacA in the absence 
of mdivi-1.  
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Figure 3.26 Drp1 activity is required for VacA induced activation of cellular calpain. 
 
AZ-521 cells were incubated at 37 °C and under 5% CO2 with purified VacA (at the 
indicated concentrations) or mock-intoxicated with PBS pH 7.2, in the presence of 
fluorogenic calpain substrate t-Boc-LLVY-AMC, as well as in the presence or absence of 
the Drp1 inhibitor mdivi-1 (50 µM). After 4 h, the generation of fluorogenic product AMC 
was quantified using a microplate reader with appropriate filters. The data are rendered 
as the fold change in relative fluorescence unit (RFU) in VacA treated cells, relative to 
cells treated with PBS pH 7.2 and were obtained from combining data from two 
independent experiments. Error bars indicate standard deviations. Statistical significance 
was calculated for fold differences in RFU between cells intoxicated with VacA in the 
presence of mdivi-1 versus those intoxicated with VacA in the absence of mdivi-1.  
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Chapter 4: Characterization of mitochondrial outer membrane 

permeabilization and nature of cell death following intoxication 

of AZ-521 gastric epithelial cells with VacA 

 
4.1 INTRODUCTION 

Infection with the gastric pathogen H. pylori is routinely associated with 

host cell mitochondrial damage and activation of programmed cell death within 

gastric epithelial cells (5, 19, 23, 25, 27, 32, 34, 39). For Hp, an increase in cell 

death within the gastric mucosa may alter the host niche in several ways, 

including the loss of specialized cells, such as gastric parietal cells, but also an 

increase in cellular proliferation, and gastric atrophy that precedes metaplasia, 

dysplasia, and ultimately cancer (7, 8). Earlier studies have clearly identified the 

vacuolating cytotoxin (VacA) as a critical mediator of H. pylori induced host cell 

death. VacA induces mitochondrial damage which results in the activation of 

mitochondria dependent cell death mechanism. In fact, studies have indicated 

that VacA is both essential (21) and sufficient (10) to activate the mitochondrial 

cell death mechanism within the host cells. VacA has been shown to induce an 

early depolarization of mitochondria, resulting in mitochondrial dysfunction, 

followed by the release of the pro-death effector Cyt c from mitochondrial 

intermembrane space to cytosol (36), which is an important step that irreversibly 

commits the cell to undergo cell death. Interestingly, although VacA was shown 

to be sufficient in inducing mitochondrial depolarization, it requires the cellular 

pro-death effector Bax to induce mitochondrial outer membrane permeabilization 
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and activation of downstream cell death mechanism (38). However, the extent to 

which VacA induces damage at the mitochondrial outer membrane, as well as 

the nature of cell death mechanism induced following VacA intoxication is not 

completely understood.  

Based on morphological and biochemical features exhibited by a dying 

cell, several modalities of cell death have been described which include caspase 

dependent and independent apoptosis, programmed necrosis, autophagic cell 

death and mitotic catastrophe (16). Induction of programmed cell death or 

apoptosis following pathogen infection provides the pathogen with means to 

remodel the host environment by inducing cell death in an immunologically silent 

manner. Studies have identified distinct cellular changes which act as markers 

that enable the differentiation of apoptotic cell death from other forms of cell 

death. A widely used marker used in identifying apoptotic cells is the exposure of 

Phosphatidylserine (PtdSer or PS) from the inner leaflet of plasma membrane, to 

the outer leaflet in apoptotic cells (14, 15), which can be fluorescently tagged 

using fluorescently tagged Annexin V, a protein known to bind with high affinity to 

PS (29). Annexin V labeling of PS is commonly used in combination with the 

DNA binding fluorescent dye propidium iodide, which enters cells following 

plasma membrane permeabilization during late stages of apoptosis (18).  Our 

studies here demonstrate a time and VacA dose dependent increase in PS 

exposure, as well as plasma membrane permeabilization within VacA intoxicated 

AZ-521 cells. These results therefore indicate that VacA induces the activation of 

programmed cell death or apoptosis. Additionally, we demonstrate that the 
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presence of the weak base ammonium chloride (NH4Cl) in cell culture medium 

potentiated VacA mediated exposure of PS, as well as permeabilization of 

plasma membrane within host cells. 

Studies to characterize the extent of VacA induced mitochondrial damage 

demonstrated that VacA induced extensive permeabilization of mitochondrial 

outer membrane (MOMP) within AZ-521 cells. VacA induced mitochondrial outer 

membrane permeabilization resulted in the release of multiple pro-death effectors 

from the mitochondrial inter-membrane space including Cytochrome c, 

Smac/DIABLO (Second mitochondria derived activator of caspase) and AIF 

(Apoptosis inducing factor). However, Cyt c and Smac/DIABLO were released 

into the cytosol considerably earlier than AIF, indicating that the release of pro-

death effectors from mitochondria was temporally regulated. While Cyt c and 

Smac/DIABLO are known mediators of caspase dependent cell death 

mechanism (31), AIF is known to translocate directly to the nucleus and induce 

DNA damage resulting in cell death in a caspase independent manner (22, 30). 

Consistent with the known consequences of Cyt c and Smac/DIABLO release 

from mitochondrial inter-membrane space to cytosol, we demonstrate significant 

activation of both initiator caspases 8 and 9, as well as the effector caspase 3 

following VacA induced mitochondrial outer membrane permeabilization. Notably, 

the release of pro-death effectors from mitochondria to cytosol, as well as 

activation of caspases is further indicative of apoptotic cell death mechanism.  

 The induction of cell death at the site of infection can sometimes be 

beneficial for the invading pathogen, allowing efficient colonization and 
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persistence, as well as access to nutrients from the dead cells. Furthermore, 

mitochondrial damage and cell death could incapacitate the innate and adaptive 

immune responses mounted against the pathogen.  Our data indicates that VacA 

induces the activation of apoptotic cell death program within host cells through 

extensive, but regulated permeabilization of mitochondrial outer membrane.  

4.2 MATERIALS AND METHODS 

 

  Bacterial Strains. Hp 60190 (cag PAI+, vacA s1/m1; 49503; ATCC; 

Manassas, VA) was cultured in bisulfite- and sulfite-free brucella broth (BSFB) 

containing 5 g vancomycin/mL (Sigma Aldrich; St. Louis, MO), on a rotary 

platform shaker for 48 h at 37 °C, under 5% CO2 and 10% O2.  

 

  Cell Lines. AZ-521 cells (3940; Japan Health Science Foundation) were 

maintained in minimum essential medium (MEM; Sigma Aldrich), which when 

supplemented with glutamine (2 mM), penicillin (100 U/mL), streptomycin sulfate 

(1 mg/mL) (Sigma Aldrich) and 10% fetal bovine calf serum (JRH Biosciences; 

Lenexa, KS), was referred to as “supplemented MEM”. The cells were 

maintained at 37 °C within a humidified atmosphere and under 5% CO2. 

 

  VacA Purification. Helicobacter pylori 60190 were cultured, and VacA 

was purified from HPCF as described previously (9). 
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Determination of Cell Death. AZ-521 cells were cultured overnight at a 

seeding density of 2X105 cells/ml in 37 °C and under 5% CO2 atmosphere and 

were treated with purified VacA at indicated concentrations or mock-intoxicated 

with PBS pH 7.2. At the indicated time periods, the cells were collected by brief 

trypsinization, washed 2 times with PBS pH 7.2 and incubated with Annexin-V 

conjugated to alexa fluor 488 and propidium iodide provided in the apoptosis 

detection kit (Molecular probes, V13241) and analyzed by flow cytometry in the 

FL1 and FL3 channels respectively. Live and dead cell were differentiated as 

follows: Viable cells (Annexin V-, PI -), early apoptotic cells (Annexin V+, PI -) 

and late apoptotic cells (Annexin V+, PI +). Cell counts in all samples were 

normalized to 10000 cells.  

 

Quantitative measurement of VacA mediated mitochondrial IMS 

factor release. AZ-521 cells were cultured overnight at a seeding density of 

2X105 cells/ml in 37 °C and under 5% CO2 atmosphere and were treated with 

purified VacA at indicated concentrations or mock-intoxicated with PBS pH 7.2. 

At the indicated time periods, the cells were permeabilized with 0.05% digitonin 

(500 μg/ml in PBS pH 7.2 with 100 mM KCl) for 10 min on ice. Cells were fixed in 

4% paraformaldehyde for 20 min at room temperature, washed 2 times in PBS 

pH 7.2 and incubated in blocking buffer (3% BSA and 0.05% saponin in PBS pH 

7.2) for 1h. Cells were incubated for overnight at 4 °C with anti-Cyt c antibody 

(6H2.B4) (BD Biosciences), anti-AIF antibody (Epitomics) and anti-

Smac/DIABLO FITC antibody (Assay Designs) in blocking buffer. Cells were 
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washed twice in PBS pH 7.2 and incubated with goat anti rabbit IgG (H+L) alexa 

488 conjugate (Molecular probes) to quantify AIF and with goat anti mouse IgG 

(H+L) alexa 488 conjugate (Molecular probes) to quantify Cyt c, for 1h at room 

temperature. Alexa 488 and FITC fluorescence was quantified by flow cytometry 

in the FL1 channel. Cells with low alexa 488 fluorescence were regarded as 

having increased cytoplasmic levels of Cyt c or AIF and cells with low FITC 

fluorescence were regarded as having increased cytoplasmic levels of 

Smac/DIABLO. Cells with high fluorescence were regarded as having intact 

mitochondrial outer membrane with little to no release of mitochondrial IMS 

factors into the cytosol. Cell counts in all samples were normalized to 10000 

cells. 

  Quantitative measurement of VacA mediated cellular caspase 

activation. AZ-521 cells were cultured overnight at a seeding density of 2X105 

cells/ml in 37 °C and under 5% CO2 atmosphere and were treated with purified 

VacA at indicated concentrations or mock-intoxicated with PBS pH 7.2. At the 

indicated time periods, the cells were collected by brief trypsinization, washed 2 

times with PBS pH 7.2 and incubated with CaspGLOW Fluorescein active 

caspase 8, 9 or 3 staining kit (BioVision) for 30 min at 37 °C and under 5% CO2 

atmosphere, according to manufacturer’s instructions. The cells were washed 3 

times with PBS pH 7.2 and the fluorescein signal was quantified by flow 

cytometry in the FL1 channel (525/40 nm band pass filter). 10,000 cells were 

analyzed for each sample. 
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Flow Cytometry. Analytical flow cytometry was carried out using a BD 

FACSCanto II flow analyzer (BD Biosciences) located at the R. J. Carver 

Biotechnology Center Flow Cytometry Facility (University of Illinois at Urbana-

Champaign). The flow cytometer was equipped with 70- m nozzle, 488 nm line 

of an air-cooled argon-ion laser, and 400 mV output. The band pass filters used 

for analysis were 525/40 nm, 575/30 nm and 675/30 nm. Cell analysis was 

standardized for scatter and fluorescence by using a suspension of fluorescent 

beads (Beckman Coulter; Miami, FL). Events were recorded on a log 

fluorescence scale and the geometric mean as well as percent events was 

determined using FCS Express analysis software (De Novo Software; Los 

Angeles, CA). Forward and side scatter properties were considered to exclude 

non-cellular (debris) events from viable and (or) dead cell populations. 

Statistical Analysis. Unless otherwise indicated, each experiment was 

performed at least three independent times. For those data requiring statistical 

analysis, data were combined from 2 or 3 independent experiments, as indicated, 

with each independent experiment carried out in triplicate. Statistical analyses 

were performed using Microsoft Excel (Version 11.0; Microsoft Corporation; 

Redmond, WA). Unless otherwise noted, error bars represent standard 

deviations. All P values were calculated with the Student’s t test using paired, 

two-tailed distribution. P < 0.05 indicates statistical significance. 
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4.3 RESULTS 

 

4.3.1 VacA induces the activation of apoptotic cell death mechanism within 

AZ-521 gastric epithelial cells. 

In order to explore the mechanism underlying VacA mediated cell death, 

we evaluated AZ-521 cells for the presence of known markers of cellular 

apoptosis. Early indications of cellular apoptosis involve the dramatic increase in 

the exposure of Phosphatidylserine (PtdSer or PS), normally found in the inner 

leaflet of plasma membrane, to the outer leaflet in apoptotic cells (14, 15). The 

exposure of PS occurs very early during apoptosis and enables recognition of 

apoptotic cells by phagocytes through interaction with specific receptors on 

phagocyte cell surface. Interestingly, cells in early stages of apoptosis still retain 

their membrane integrity. However, the integrity of plasma membrane becomes 

increasingly compromised during late stages of apoptotic cell death. We 

therefore evaluated the presence of the markers of early and late stages of 

apoptosis in AZ-521 cells. Monolayers of AZ-521 cells were incubated at 37 °C, 

and under 5% CO2 with purified VacA (250 nM) or PBS pH 7.2. After 24 h, the 

cells were stained with alexa 488 conjugated Annexin V, a Ca2+ dependent PS 

binding protein, to detect PS exposed on cell surface, as well as the DNA binding 

dye Propidium Iodide (PI), that specifically enters the cells in which the 

membrane integrity is compromised. Cells with increased Annexin V labeling 

alone indicated early apoptosis, and cells with increased labeling with both 

Annexin V and PI indicated late apoptosis. We observed a significant increase in 
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Annexin V labeling and PI uptake within cells intoxicated with purified VacA, 

compared to cells that were treated with PBS pH 7.2 alone, suggesting that VacA 

induced the activation of apoptotic cell death mechanism (Fig. 4.1). Additionally, 

significant increases in Annexin V labeling and PI uptake was observed in cells 

intoxicated with purified VacA at concentration as low as 10 nM, but not at 1 nM 

(Fig. 4.2). 

 

4.3.2 Role of serum (10% FBS) in VacA induced cellular apoptosis. 

To evaluate the requirements of VacA induced cell death in AZ-521 cells, 

we investigated the relationship between serum (10% FBS) present in the cell 

culture medium and the capacity of the toxin to induce cellular apoptosis. 

Notably, an earlier study had demonstrated that a high molecular weight factor 

present within Fetal calf serum (FCS) attenuated the binding of VacA to its 

putative receptor RPTP-β on the surface of AZ-521 cells, thereby significantly 

inhibiting toxin mediated cellular vacuolation (20). In order to evaluate the 

relationship between VacA induced cell death and serum, AZ-521 cells were 

incubated at 37 °C, and under 5% CO2 for overnight in cell culture medium 

containing 10 % FBS and following 3 washes with PBS pH 7.2, the cells were 

incubated at 37 °C, and under 5% CO2 with either fresh medium containing 10% 

FBS or with medium devoid of serum. After 30 min, the cells were further 

incubated with purified VacA (250 nM) or PBS pH 7.2. After 24 h, the cells were 

stained with alexa fluor 488 conjugated Annexin V, as well as Propidium Iodide 

(PI). We observed a significant increase in Annexin V labeling and PI uptake 
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within cells intoxicated with purified VacA at concentrations as low as 10 nM, 

both in the presence and absence of 10% FBS, compared to cells that were 

treated with PBS pH 7.2 alone (Fig. 4.3). However, the role of serum in VacA 

induced activation of cell death remains in-conclusive due to the lack of a clear 

trend within the preliminary data obtained so far (Fig. 4.3). 

 

4.3.3 VacA induced activation of cellular apoptosis is potentiated in the 

presence of ammonium chloride (NH4Cl).  

Previous studies have also reported that the degree of cellular vacuolation 

is enhanced in the presence of ammonium chloride (11, 24), which is proposed 

to enhance the swelling of the vacuoles induced by VacA. To explore whether 

ammonium chloride also enhances VacA mediated apoptosis, AZ-521 cells were 

incubated at 37 °C, and under 5% CO2 with different concentrations of purified 

VacA or with PBS pH 7.2, in the presence or absence of 5 mM ammonium 

chloride. After 24 h, the cells were stained with alexa fluor 488 conjugated 

Annexin V, as well as Propidium Iodide (PI). We observed a significant decrease 

in Annexin V labeling and PI uptake within cells intoxicated with purified VacA at 

concentrations as low as 10 nM, in the absence of ammonium chloride than in 

the presence of ammonium chloride (Fig. 4.4). Our data therefore indicates that 

ammonium chloride is important for efficient induction of cell death within AZ-521 

cells following VacA intoxication. 
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4.3.4 VacA induces extensive permeabilization of mitochondrial outer 

membrane, resulting in the release of multiple pro-apoptotic effectors from 

mitochondrial inter-membrane space to cytosol. 

Mitochondrial inter-membrane space (IMS) is a storehouse for multiple cell 

death effector proteins like Cytochrome c (Cyt c), Second mitochondria derived 

activator of caspase (Smac/DIABLO) and Apoptosis inducing factor (AIF). After 

release into the cytosol, these proteins activate cell death pathways, by both 

caspase dependent and independent mechanisms. While Cyt c (4) and 

Smac/DIABLO (13) are known to participate in caspase dependent cell death 

pathways, AIF is known to translocate directly to the nucleus and induce DNA 

damage resulting in cell death in a caspase independent manner (33). Cyt c 

release is considered as a critical step for the activation of cellular caspases like 

caspase 3 and caspase 9, the release of other IMS factors like Smac/DIABLO 

has been shown to further enhance Cyt c mediated caspase activation, by 

relieving inhibition of caspase activity by a group of proteins called Inhibitor of 

Apoptosis proteins or IAPs (13). Moreover, in certain cases of cell death, 

activation of caspases also leads to further increase in MOMP and causes the 

release of additional IMS factors like AIF (2, 17), which can further potentiate cell 

death in a caspase-independent manner. The extent of permeabilization of the 

mitochondrial outer membrane (MOMP) therefore determines not only the rate at 

which cell death is induced, but also the mechanism of cell death that follows the 

release of any or all of the IMS proteins. To determine the extent of VacA 

mediated MOMP and to explore the role of MOMP as a possible mechanism of 
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VacA induced cell death, we studied the release Cyt c, Smac/DIABLO and AIF 

following incubation of cells with VacA. AZ-521 cells were incubated at 37 °C, 

and under 5% CO2 with purified VacA or PBS pH 7.2.  The cells were 

differentially permeabilized to wash off the cytosolic contents, while maintaining 

the integrity of the mitochondrial membranes. The cells were fixed, mitochondrial 

membrane permeabilized and immunostained for Cyt c and AIF using primary 

antibodies against each of these proteins, followed by detection with secondary 

antibody conjugated to alexa fluor 488 dye. Detection of Smac/DIABLO was 

carried out by intracellular staining with anti-Smac/DIABLO antibody conjugated 

to FITC (Assay Designs). A decrease in alexa-488 and FITC fluorescence 

indicated the release of proteins from mitochondrial IMS into cytosol. These 

experiments revealed that VacA induced extensive permeabilization of 

mitochondrial outer membrane, resulting in the release of Cyt c, Smac/DIABLO 

and AIF from the mitochondrial intermembrane space to cytosol (Fig. 4.5). 

Furthermore, these results also suggest that VacA induced cell death probably 

involves both caspase dependent and independent mechanisms. 

It has been reported that MOMP as a result of certain death stimuli can be 

a highly regulated process and can lead to activation of diverse cell death 

pathways depending on the release of specific IMS factors to the cytosol. In 

order to explore the relationship between Cyt c release and the release of other 

IMS factors and their role in VacA induced cell death, we studied VacA induced 

Cyt c release and release of other mitochondrial IMS factors like Smac/DIABLO, 

and AIF, at different VacA concentrations after 24 h of intoxication. AZ-521 cells 
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were incubated at 37 °C, and under 5% CO2 with increasing concentrations of 

purified VacA or PBS pH 7.2. After 24 h, the cells were immunostained as 

described earlier for Cyt c and AIF using primary antibodies against each of 

these proteins, followed by detection with secondary antibody conjugated to 

alexa fluor 488 dye. The release of Smac/DIABLO was quantified by intracellular 

staining of AZ-521 cells with anti-Smac/DIABLO-FITC conjugated antibody 

(Assay Designs), followed by monitoring the FITC fluorescence within cells by 

flow cytometry. Our data indicated a progressive increase in the release of Cyt c, 

Smac/DIABLO and AIF in a VacA dose dependent manner (Fig. 4.6 A-C). These 

data therefore suggest that VacA intoxication results in extensive release of 

mitochondrial inter-membrane space effectors to cytosol.  

 

4.3.5 VacA induced permeabilization of mitochondrial outer membrane 

results in a temporally regulated release of different mitochondrial inter-

membrane space effectors to the cytosol. 

In order to further characterize the relationship between Cyt c release and 

the release of other IMS factors and their role in VacA induced cell death, we 

studied the temporal relationship between VacA induced Cyt c release and the 

release of Smac/DIABLO and AIF, at different time periods following VacA 

intoxication. AZ-521 cells were incubated at 37 °C, and under 5% CO2 with 

purified VacA (250 nM) or PBS pH 7.2 for different time periods followed by 

analysis of Cyt c, Smac/DIABLO and AIF release. Our data indicate that VacA 

induced MOMP results in release of Cyt c and Smac/DIABLO much earlier to AIF 
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release (Fig. 4.7). We hypothesize that Cyt c and Smac/DIABLO release could 

probably result in activation of cellular proteases such as caspases or cysteine 

proteases like calpains that could result in further permeabilization of 

mitochondrial outer membrane and release of AIF, which could further enhance 

the activation of mitochondria dependent cell death mechanism.  

 

4.3.6 VacA induces activation of caspases 8, 9 and 3 within AZ-521 cells. 

 Our earlier results suggested that VacA induces the activation of a 

caspase dependent cell death mechanism. We therefore wished to directly 

evaluate the activation of caspases 8, 9 and 3 within AZ-521 cells following VacA 

intoxication. Caspases 8 and 9 belong to the “Initiator” family of caspases, which 

are activated during the “death receptor” mediated cell death mechanism and 

“mitochondrial” cell death mechanism, respectively. Caspase 3 belongs to the 

“Executioner” family of caspases, and is activated by the “Initiator” caspase 8 or 

9 (26, 37). AZ-521 cells were incubated at 37 °C, and under 5% CO2 with 

increasing concentration of purified VacA or PBS pH 7.2. After 18 h, the cells 

were incubated with CaspGLOW in situ caspase staining reagent, specific for 

each of caspase 8, 9 or 3. The assay utilized specific caspase inhibitors that 

were conjugated with Fluorescein Isothiocyanate (FITC), which bound 

specifically with only the active caspases within each cell. Increase in caspase 

activity therefore resulted in increased FITC labeling of the cell, which could be 

quantified by flow cytometry. We observed a significant, VacA dose dependent 

increase in the activation of Caspase 8, 9 and 3 within AZ-521 cells intoxicated 
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with VacA, compared to cells treated with PBS pH 7.2 (Fig.4.8). Our data 

therefore indicated that VacA intoxication resulted in cellular caspase activation. 

 

4.4 DISCUSSION  

 Our experiments support the model that VacA induces cell death primarily 

through an apoptotic mechanism. Cells exposed to VacA almost always 

demonstrated exposure of phosphatidyl serine to the outer leaflet of plasma 

membrane, as well as increase in plasma membrane permeability by 24 h. We 

could not detect an appreciable number of cells with increased PI uptake in the 

absence of PS exposure, which could occur by non-apoptotic mechanisms.  

 Previous studies have reported that the supplementation of 5 mM 

ammonium chloride in the tissue culture medium significantly enhances the 

degree of cellular vacuolation within VacA intoxicated cells (11, 24). We therefore 

evaluated the effects of ammonium chloride on VacA induced cell death.  In the 

absence of ammonium chloride, significant decrease in VacA induced PS 

exposure and PI uptake were observed when compared to cells that were 

intoxicated with VacA in the presence of ammonium chloride. These results 

indicate that the presence of 5 mM ammonium chloride was required for efficient 

activation of cellular apoptosis following VacA intoxication. The presence of 

serum has also been shown to influence the cellular effects of VacA intoxication. 

An earlier study indicated that VacA induced cellular vacuolation was potentiated 

under reduced serum concentrations (12). This study hypothesized that VacA 

associates with an unidentified serum component, thereby reducing the effective 
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concentration of the active molecule. However, inhibitory effects of serum were 

seen only at VacA concentrations below 10 nM. Furthermore, it has been 

demonstrated that a high molecular weight factor present within Fetal calf serum 

(FCS) attenuated the binding of VacA to its putative receptor RPTP-β on the 

surface of AZ-521 cells, thereby significantly inhibiting toxin mediated cellular 

vacuolation (20). However, the results of our experiments studying the effect of 

serum on VacA induced cell death have so far been inconclusive. Preliminary 

data, thus far, have not indicated a significant difference in the ability of VacA to 

induce cell death in the presence or absence of serum.  

 An important consequence of VacA induced mitochondrial damage is the 

permeabilization of mitochondrial outer membrane (MOMP) and release of Cyt c 

from the mitochondrial inter membrane space to cytosol. The release of Cyt c is 

required for the formation of the multi-protein complex called apoptosome which 

acts as a platform for caspase activation, and therefore commits the cell to 

undergo cell death (1). Besides Cyt c, the mitochondrial inter membrane space is 

also a reservoir of other pro-death effectors like Smac/DIABLO (Second 

mitochondria derived activator of caspase) and AIF (Apoptosis inducing factor). 

While Cyt c and Smac/DIABLO are known to participate in caspase dependent 

cell death pathways, AIF is known to translocate directly to the nucleus and 

induce DNA damage resulting in cell death in a caspase independent manner 

(22).  Although the mechanism of VacA induced MOMP and Cyt c release has 

been studied earlier, the extent of mitochondrial outer membrane 

permeabilization was not entirely understood. Our study demonstrates that VacA 
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induced mitochondrial outer membrane permeabilization resulted in release of 

Smac/DIABLO, as well as AIF, in addition to Cyt c. Consistent with the role of Cyt 

c and Smac/DIABLO in caspase activation within cells, we observed significant 

increases in the activation of caspases 8, 9 and 3 within VacA intoxicated AZ-521 

cells. Interestingly, AIF release was observed at considerably later time periods 

when compared to the release of Cyt c and Smac/DIABLO. Earlier studies have 

indicated the involvement of the cellular protease calpain in AIF release from 

mitochondria (6, 28), although calpain independent AIF release has also been 

reported (35).  Additionally, AIF release from mitochondria is also shown to be 

mediated by caspase activation (3). Our studies have demonstrated that VacA 

intoxication results in significant increases in cellular calpain activity within 1 h of 

intoxication (Chapter 3) as well as caspase activation within AZ-521 cells.  

However, the involvement of either calpains or caspases in VacA induced AIF 

release within AZ-521 cells is not entirely clear and would be evaluated in future 

studies.  

 Our data demonstrates that VacA induces extensive and temporally 

regulated permeabilization of mitochondrial outer membrane, resulting in the 

release of multiple pro-death effectors to the cytosol. These results suggest the 

involvement of both caspase-dependent and -independent cell death 

mechanisms in VacA induced cellular apoptosis. Further studies are needed to 

identify the essentiality of these effectors in VacA induced cell death, as well as 

identify the molecular mechanism underlying their release from mitochondria.  
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Figures 
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Figure 4.1 VacA induces cellular apoptosis. 
 
AZ-521 cells were incubated at 37 °C and under 5% CO2 with purified VacA (250 nM) or 
mock-intoxicated with PBS pH 7.2. After 24 h, the cells were incubated with Annexin-V 
conjugated to alexa fluor 488 and propidium iodide provided in the apoptosis detection 
kit (Molecular probes, V13241) and analyzed by flow cytometry in the FL1 and FL3 
channels respectively. Live and dead cell were differentiated as follows: Viable cells 
(Annexin V-, PI -), early apoptotic cells (Annexin V+, PI -) and late apoptotic cells 
(Annexin V+, PI +). Cell counts in all samples were normalized to 10000 cells. Data are 
representative of results obtained from at least 4 independent experiments. 
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Figure 4.2 VacA induces cellular apoptosis in a toxin dose dependent manner. 

AZ-521 cells were incubated at 37 °C and under 5% CO2 with purified VacA (at the 
indicated concentrations) or mock-intoxicated with PBS pH 7.2. After 24 h, the cells were 
incubated with (A) Annexin-V conjugated to alexa fluor 488 to determine PS exposed in 
the outer leaflet of the plasma membrane and (B) propidium iodide to monitor 
permeabilization of plasma membrane, provided in the apoptosis detection kit (Molecular 
probes, V13241). All samples were analyzed by flow cytometry in the FL1 (A) and FL3 
(B) channels. Cell counts in all samples were normalized to 10000 cells. Data are 
representative of results obtained from at least 4 independent experiments. Error bars 
indicate standard deviations. Statistical significance was calculated for fold differences in 
PS exposure (A) or PI uptake (B) between cells mock-intoxicated with PBS pH 7.2 
versus cells incubated with indicated concentrations of VacA. 
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Figure 4.3 Effect of serum on VacA induced cellular apoptosis. 

AZ-521 cells were incubated at 37 °C and under 5% CO2 with purified VacA (at the 
indicated concentrations) or mock-intoxicated with PBS pH 7.2, in the presence or 
absence of serum (10% FBS). After 24 h, the cells were incubated with (A) Annexin-V 
conjugated to alexa fluor 488 to determine PS exposed in the outer leaflet of the plasma 
membrane and (B) propidium iodide to monitor permeabilization of plasma membrane, 
provided in the apoptosis detection kit (Molecular probes, V13241). All samples were 
analyzed by flow cytometry in the FL1 (A) and FL3 (B) channels. Cell counts in all 
samples were normalized to 10000 cells. Data are representative of results obtained 
from at least 3 independent experiments. Error bars indicate standard deviations. 
Statistical significance was calculated for fold differences in PS exposure (A) or PI 
uptake (B) between cells intoxicated with VacA in the presence of serum versus those 
intoxicated in the absence of serum. 
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Figure 4.4 Effect of ammonium chloride on VacA induced cellular apoptosis. 

AZ-521 cells were incubated at 37 °C and under 5% CO2 with purified VacA (at the 
indicated concentrations) or mock-intoxicated with PBS pH 7.2, in the presence or 
absence of ammonium chloride (5 mM). After 24 h, the cells were incubated with (A) 
Annexin-V conjugated to alexa fluor 488 to determine PS exposed in the outer leaflet of 
the plasma membrane and (B) propidium iodide to monitor permeabilization of plasma 
membrane, provided in the apoptosis detection kit (Molecular probes, V13241). All 
samples were analyzed by flow cytometry in the FL1 (A) and FL3 (B) channels. Cell 
counts in all samples were normalized to 10000 cells. Data are representative of results 
obtained from at least 3 independent experiments. Error bars indicate standard 
deviations. Statistical significance was calculated for fold differences in PS exposure (A) 
or PI uptake (B) between cells intoxicated with VacA in the presence of ammonium 
chloride versus those intoxicated in the absence of ammonium chloride. 
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Figure 4.5 VacA intoxication results in the release of Cyt c, Smac/DIABLO and AIF 
from the mitochondrial inter-membrane space to cytosol. 

AZ-521 cells were incubated at 37 °C and under 5% CO2 with purified VacA (250 nM) or 
mock-intoxicated with PBS pH 7.2. After 24 h, the cells were permeabilized with 0.05% 
digitonin (500 μg/ml in PBS pH 7.2 with 100 mM KCl), fixed in 4% paraformaldehyde and 
incubated in blocking buffer (3% BSA and 0.05% saponin in PBS pH 7.2) for 1h. Cells 
were immunostained with anti-Cyt c antibody (6H2.B4; BD) or anti-AIF antibody 
(Epitomics) followed by incubation with goat anti rabbit IgG (H+L) alexa 488 conjugate 
(Molecular probes) to detect Cyt c or AIF, respectively. To detect Smac/DIABLO, cells 
were incubated with anti-Smac/DIABLO FITC antibody (Assay Designs) in blocking 
buffer. Alexa 488 and FITC fluorescence was quantified by flow cytometry in the FL1 
channel. Cells with low alexa 488 fluorescence were regarded as having increased 
cytoplasmic levels of Cyt c or AIF and cells with low FITC fluorescence were regarded 
as having increased cytoplasmic levels of Smac/DIABLO. Cells with high fluorescence 
were regarded as having intact mitochondrial outer membrane with little to no release of 
mitochondrial IMS factors into the cytosol. Cell counts in all samples were normalized to 
10000 cells. Data are representative of results obtained from at least 3 independent 
experiments. 
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Figure 4.6 VacA intoxication results in the release of Cyt c, Smac/DIABLO and AIF 
from the mitochondrial inter-membrane space to cytosol in a toxin dose 
dependent manner. 

AZ-521 cells were incubated at 37 °C and under 5% CO2 with purified VacA (at the 
indicated concentrations) or mock-intoxicated with PBS pH 7.2. After 24 h, the cells were 
permeabilized with 0.05% digitonin (500 μg/ml in PBS pH 7.2 with 100 mM KCl), fixed in 
4% paraformaldehyde and incubated in blocking buffer (3% BSA and 0.05% saponin in 
PBS pH 7.2) for 1h. (A, C) Cells were immunostained with anti-Cyt c antibody (6H2.B4; 
BD) or anti-AIF antibody (Epitomics) followed by incubation with goat anti rabbit IgG 
(H+L) alexa 488 conjugate (Molecular probes) to detect (A) Cyt c or (C) AIF, 
respectively. (B) To detect Smac/DIABLO, cells were incubated with anti-Smac/DIABLO 
FITC antibody (Assay Designs) in blocking buffer. (A, C) Alexa 488 and (B) FITC 
fluorescence was quantified by flow cytometry in the FL1 channel. Cells with low alexa 
488 fluorescence were regarded as having increased cytoplasmic levels of Cyt c or AIF 
and cells with low FITC fluorescence were regarded as having increased cytoplasmic 
levels of Smac/DIABLO. Cells with high fluorescence were regarded as having intact 
mitochondrial outer membrane with little to no release of mitochondrial IMS factors into 
the cytosol. Cell counts in all samples were normalized to 10000 cells. Data are 
representative of results obtained from at least 2 independent experiments. Error bars 
indicate standard deviations. Statistical significance was calculated for fold differences in 
Cyt c (A), Smac/DIABLO (B) or AIF release (C) between cells intoxicated with 1 nM 
VacA versus those intoxicated with increasing concentrations of VacA. 
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Figure 4.7 VacA intoxication results in a temporally ordered release of Cyt c, 
Smac/DIABLO and AIF from the mitochondrial inter-membrane space to cytosol. 

AZ-521 cells were incubated at 37 °C and under 5% CO2 with purified VacA (250 nM) or 
mock-intoxicated with PBS pH 7.2. At the indicated time periods, the cells were 
permeabilized with 0.05% digitonin (500 μg/ml in PBS pH 7.2 with 100 mM KCl), fixed in 
4% paraformaldehyde and incubated in blocking buffer (3% BSA and 0.05% saponin in 
PBS pH 7.2) for 1h. Cells were immunostained with anti-Cyt c antibody (6H2.B4; BD) or 
anti-AIF antibody (Epitomics) followed by incubation with goat anti rabbit IgG (H+L) alexa 
488 conjugate (Molecular probes) to detect Cyt c or AIF, respectively. To detect 
Smac/DIABLO, cells were incubated with anti-Smac/DIABLO FITC antibody (Assay 
Designs) in blocking buffer. Alexa 488 and FITC fluorescence was quantified by flow 
cytometry in the FL1 channel. Cells with low alexa 488 fluorescence were regarded as 
having increased cytoplasmic levels of Cyt c or AIF and cells with low FITC fluorescence 
were regarded as having increased cytoplasmic levels of Smac/DIABLO. Cells with high 
fluorescence were regarded as having intact mitochondrial outer membrane with little to 
no release of mitochondrial IMS factors into the cytosol. Cell counts in all samples were 
normalized to 10000 cells. Data are representative of results obtained from at least 3 
independent experiments. Error bars indicate standard deviations. Statistical significance 
was calculated for fold differences in Cyt c, Smac/DIABLO or AIF release between cells 
mock-intoxicated with PBS pH 7.2 versus those intoxicated with VacA at each time 
period tested. 
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Figure 4.8 VacA induces activation of caspases 8, 9 and 3 in AZ-521 cells. 

AZ-521 cells were incubated at 37 °C and under 5% CO2 with purified VacA (250 nM) or 
mock-intoxicated with PBS pH 7.2. After 24 h, the cells were incubated with CaspGLOW 
Fluorescein active caspase 8, 9 or 3 staining kit (BioVision) and cellular fluorescence 
associated with active caspases was quantified by flow cytometry in the FL1 channel 
(525/40 nm band pass filter). Cell counts in all samples were normalized to 10000 cells. 
Data are representative of results obtained from at least 2 independent experiments. 
Error bars indicate standard deviations. Statistical significance was calculated for fold 
differences in caspase 8, 9 or 3 activation between cells mock-intoxicated with PBS pH 
7.2 versus those intoxicated with each of the indicated concentrations of VacA. 
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Chapter 5: Conclusions and Future Work 

  

 The overall objective of the work described in this dissertation was to 

evaluate and characterize the mechanism underlying the activation of 

programmed cell death within host cell following Helicobacter pylori (Hp) infection. 

Chronic infection with Hp is associated with increased cell death within the 

gastric mucosa of humans (24), mice (18), and Mongolian gerbil models (25). Hp 

induced gastric epithelial cell death contributes towards remodeling of the gastric 

mucosa in a manner which favors Hp persistence (4), while at the same time, 

could eventually contribute towards generation of gastric disease, including 

peptic ulcers and gastric adenocarcinoma (5). The vacuolating cytotoxin (VacA), 

an Hp virulence factor, has been shown to be critical for Hp colonization (28) and 

disease pathogenesis (12). Notably, VacA has been shown to be both essential 

(20) and sufficient (6) for inducing gastric epithelial cell death. 

 Studies that aimed at identifying the mechanism of VacA mediated host 

cell death, have demonstrated that VacA is a mitochondrial acting toxin. 

Subsequent to binding plasma membrane sphingomyelin (16, 17), and potentially 

additional protein components (36, 37), VacA is internalized and localizes to 

mitochondria (13, 35). Furthermore, studies have shown that isolated 

mitochondria rapidly import purified VacA beyond the outer membrane (10, 13). 

Studies thus far have identified significant changes in the mitochondrial inner and 

outer membrane integrity following VacA intoxication, which resulted in 

mitochondrial dysfunction and release of pro-apoptotic factor Cyt c into cytosol, 



 205 

respectively, prior to detectible increase in host cell death (35, 38). These studies 

therefore indicated that VacA induced the activation of mitochondria dependent 

cell death mechanism. Importantly, while VacA is sufficient to induce 

mitochondrial inner membrane permeabilization which leads to mitochondrial 

dysfunction, the activation of the endogenous host cell death-effector Bcl-2–

associated X (Bax) protein or Bax, was required for toxin mediated mitochondrial 

outer membrane permeabilization and Cyt c release (38). However, the 

mechanism underlying Bax activation remained poorly understood. 

 Within our study, we report that VacA disrupts the morphological dynamics 

of mitochondria as a mechanism to induce gastric epithelial cell death. Cellular 

mitochondria exist as highly interconnected network of extended strands 

throughout the cell. The mitochondrial network is known to change in a dynamic 

fashion through frequent and repetitive cycles of fission and fusion that occur in 

response to cellular energy demands and environmental challenges (32). 

Therefore, changes in the mitochondrial morphology are emerging as reliable 

indicators of cellular health. Our results indicate that VacA intoxication resulted in 

the hyper-activation and mitochondrial targeting of the cellular fission protein 

Drp1, a dynamin-related GTPase which induces the fragmentation of 

mitochondrial strands under conditions of prolonged mitochondrial dysfunction or 

cellular stress (31). Importantly, Drp1 activity was important for VacA mediated 

cell death within cultured gastric epithelial cells. Investigations into the 

relationship between Drp1 activity and cellular Bax activation, which is also 

important for VacA induced cell death mechanism, indicated that Drp1 mediated 
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mitochondrial fragmentation was required for Bax activation. To evaluate the 

mechanism of Drp1 activation, we investigated the relationship between Drp1 

activity and VacA induced mitochondrial depolarization (dysfunction). Earlier 

studies have reported that Drp1 dependent mitochondrial fission is required for 

efficiently weeding out dysfunctional regions from the functional mitochondrial 

network, thereby maintaining the overall functionality of the network (31). Within 

our study, we found that inhibition of cellular Drp1 function did not have any 

significant effect on VacA induced mitochondrial dysfunction. These data 

therefore suggest that VacA induced mitochondrial inner membrane 

permeabilization and prolonged dysfunction, could be the trigger for increased 

activation of Drp1. Our study therefore identified a possible mechanism that links 

VacA induced mitochondrial dysfunction and disruption of mitochondrial network 

dynamics to Bax dependent mitochondrial outer membrane permeabilization. 

Furthermore, our study provides critical insights into the mechanism by which 

VacA engages the cell death-effector Bax to activate the mitochondrial cell death 

mechanism. The de-regulation of mitochondrial dynamics has increasingly been 

linked to the pathologies resulting from inflammatory and neurodegenerative 

disorders (3), as well as several cancers (14). However, the extent to which the 

morphological dynamics of mitochondria may be targeted by pathogenic 

microbes during host infection, or are associated with the pathophysiology of 

some infectious diseases, has so far been largely unexplored. The disruption of 

mitochondrial dynamics during Hp infection is a here-to-fore unrecognized 

strategy by which a pathogenic microbe engages the host’s apoptotic machinery. 
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 Although our study demonstrated the importance of Drp1 mediated 

mitochondrial fission in Bax activation following VacA intoxication, the nature of 

cellular changes initiated by VacA following the de-regulation of mitochondrial 

network dynamics which resulted in the engagement of host apoptotic machinery, 

particularly Bax, was not entirely clear. Due to the importance of mitochondrial 

network in cellular energy production and distribution, increased fragmentation of 

the mitochondrial network could result in decreased energy production and 

metabolic stress within cells. In order to evaluate the possibility of a mechanism 

linking cellular stress as a result of excessive mitochondrial fission to VacA 

induced Bax activation, we studied the involvement of known Bcl2 family proteins 

that directly influence Bax activation under conditions of cell stress. Current 

models of Bax activation indicate that changes in Bax leading to MOMP are 

critically influenced by members of the BH3 (Bcl-2 homology domain)-only Bcl2 

(B cell lymphoma) family, which belong to either the “sensitizer” or “direct 

activator” class of BH3-only proteins (2). While “sensitizer” BH3-only proteins 

activate Bax via binding with anti-apoptotic Bcl2 protein, “direct activator” BH3-

only proteins are known to directly activate Bax oligomerization at the 

mitochondrial outer membrane.  

 Our results demonstrated that the cellular stress sensor protein Bid (BH3 

interacting death domain agonist) which belongs to the “direct activator” sub-

family of BH3 domain-only proteins (34) played an important role in VacA 

induced Bax activation. VacA intoxication resulted in the processing of Bid to its 

mitochondria targeted active fragment called t-Bid (truncated Bid) (9, 15, 19, 21, 
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22, 29). Inhibition of Bid processing and mitochondrial translocation prevented 

VacA induced Bax activation and cell death. Importantly, inhibition of Drp1 

mediated mitochondrial fission led to significantly decreased Bid processing 

within VacA intoxicated cells. Our results therefore indicate a mechanism where 

de-regulation of mitochondrial dynamics results in the activation of Bax through 

the activation and mitochondrial recruitment of the cell stress sensor protein Bid. 

 Bid processing can occur following processing by a variety of cellular 

proteases, such as the cysteine-aspartate protease, caspase 8 or the calcium 

dependent cysteine protease, calpain, depending on the stress/death inducing 

signal (1, 9, 15, 23). Within VacA intoxicated cells, we observed the activation of 

both caspase 8 and calpain. However, while calpain activation occurred at time 

periods similar to those observed for Bid processing, the activation of caspase 8 

was observed at significantly later time periods. Importantly, the mitochondrial 

translocation of Bid was considerably reduced following inhibition of cellular 

calpain activity. Studies to further characterize the mechanism of VacA induced 

calpain activation revealed significant elevation in cytosolic calcium levels at time 

points similar to detectable calpain activation. Notably, chemical chelation of 

cytosolic calcium resulted in significant inhibition of VacA induced calpain 

activation, Bax activation and cell death. These results therefore indicated that 

early rise in cytosolic calcium levels following VacA intoxication was important for 

engaging the mitochondrial cell death machinery.  

  Significantly, studies which aimed at evaluating the relationship between 

VacA induced de-regulation of mitochondrial network dynamics and disruption of 
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cellular calcium homeostasis demonstrated that Drp1 mediated mitochondrial 

fission was required for VacA induced rise in cytosolic calcium levels. The 

mechanism underlying Drp1 dependent rise in cytosolic calcium is not currently 

understood. Studies have revealed significant cross-talk between mitochondria 

and endoplasmic reticulum (ER) which is the main intra-cellular calcium store 

within a cell (7). The ER-mitochondria connections are known to play an 

important role in the buffering of cytosolic calcium levels (26, 27). Additionally, a 

recent study suggested that ER wraps around the mitochondria at specific 

contact sites (11). Furthermore, the study also indicates that the fission protein 

Drp1 targets the mitochondria specifically at the contact sites with ER. Future 

studies would evaluate the effects of VacA induced mitochondrial network 

fragmentation on ER-mitochondria connections and related capacity of cells to 

buffer changes in cytosolic calcium levels. Additionally, the relationship between 

Drp1 and ER morphology would also be investigated.  

 Thus far, our results indicate that the BH3 domain-only protein Bid is 

important for VacA mediated Bax activation. Bid belongs to an important class of 

cellular proteins called BH3 domain-only Bcl2 proteins that act as sentinels for 

stress signals and are responsible for relaying the stress signal to pro-death 

effectors such as Bax, thereby inducing Bax mediated mitochondrial outer 

membrane permeabilization (8, 30, 33). BH3 domain-only proteins can be 

classified into either “sensitizers” or “de-repressors”, which include proteins like 

Bad and Noxa, or “direct activators” which include proteins like Bid and Bim (2). 

Within these models, key events that lead to activation of Bax involve either 
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association of BH3-only proteins to members of the anti-apoptotic Bcl2 proteins, 

thereby alleviating repression on Bax, or direct activation of Bax, leading to 

homo-oligomerization of Bax at the mitochondrial outer membrane. While 

sensitizer (de-repressor) BH3-only proteins activate Bax via binding with anti-

apoptotic Bcl2 protein, direct activator BH3-only proteins are known to directly 

activate Bax oligomerization at the mitochondrial outer membrane. However, the 

relative contribution of the different members of the BH3 domain-only proteins in 

VacA induced mitochondrial outer membrane permeabilization remains poorly 

understood. Future work would aim to evaluate the importance of the various 

BH3 domin-only proteins in VacA induced Bax activation. Particularly, it would be 

interesting to see whether certain degree of functional cross-talk exists between 

the different BH3 domain-only proteins. 
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Figure 5.1 Model illustrating the proposed mechanism for VacA induced 

activation of mitochondria dependent host cell death.  
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