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ABSTRACT

In this thesis I introduce visual phrases, complex visual composites like “a

person riding a horse”. Visual phrases often display significantly reduced

visual complexity compared to their component objects, because the ap-

pearance of those objects can change profoundly when they participate in

relations. I introduce a dataset suitable for phrasal recognition that uses fa-

miliar PASCAL object categories, and demonstrate significant experimental

gains resulting from exploiting visual phrases.

I show that a visual phrase detector significantly outperforms a baseline

which detects component objects and reasons about relations, even though

visual phrase training sets tend to be smaller than those for objects. I ar-

gue that any multi-class detection system must decode detector outputs to

produce final results; this is usually done with non-maximum suppression.

I describe a novel decoding procedure that can account accurately for local

context without solving difficult inference problems. I show this decoding

procedure outperforms the state of the art. Finally, I show that decoding a

combination of phrasal and object detectors produces real improvements in

detector results.
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CHAPTER 1

INTRODUCTION

How should one detect complex visual composites, for example “a person

riding a horse”? Conventional wisdom suggests detecting components like

“person” and “horse” independently, and then describing the relation. This

approach is motivated by the very large number of composites that can be

built by very few basic atoms. Also, there will be very few training examples

for most composites due to the increase in specifications.

The main weakness of this argument is that the appearance of the ob-

jects may profoundly change when they participate in relations. For example,

people riding horses take relatively few postures, as do horses with people

on their back. Relations may also create important occlusion regularities.

For instance, one leg of the rider is often occluded by the horse. As a result,

visual composites might be much easier to detect than their participant com-

ponents. One extreme example is a scene (e.g. kitchen). There are quite good

“kitchen” classifiers, but none proceeds by finding “toaster”, “coffeepot”, and

“kettle”, then fusing.

Surprisingly, in the literature, there is no composite intermediate between

objects and scenes. In this thesis, I introduce such intermediate composites,

which I call “visual phrases”. Visual phrases correspond to chunks of

meaning bigger than objects and smaller than scenes. I show that the re-

duction in the visual complexity exhibited by visual phrases is often so great

that very accurate detectors can be trained with little training data. For

example, our “person riding horse” detector works much better than “per-

son” and “horse” detectors while using less training data (see Figure 6.1 for

experimental data). Figure 1.1 shows examples of the cases where best ob-

ject detectors miss objects while the visual phrase detectors correctly localize

visual phrases.

One reasonable concern is that the number of phrases grows exponentially

in the number of objects, and there may not be enough training data for

1



Figure 1.1: Detecting visual phrases is often significantly more accurate than de-
tecting participating objects. In image “a”, the bicycle detector and the person
detector do not have accurate responses whereas our “person next to bicycle” de-
tector correctly finds the visual phrase. In image “b”, the bottle detector does
not produce any sensible detection while our “person drinking from bottle” de-
tector accurately finds instances of the visual phrase. The faces of the children
are blurred here due to privacy concerns. In image “c”, the person detector could
only find one instance of a person while our “person riding bicycle” detector finds
5 instances correctly. In image “d”, neither the dog detector nor the sofa detector
are producing reliable responses but our “dog lying on sofa” detector finds the vi-
sual phrase correctly. I believe that detecting visual phrases are often much easier
than the participating objects as visual phrases exhibit less visual complexity. See
Figure 6.1, and Table 6.1 for quantitative evaluations.
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Figure 1.2: I use visual phrase and object models to make independent pre-
dictions. I then combine the predictions by a decoding algorithm that takes all
detection responses and decides on the final outcome. Note that a) Visual phrase
recognition works better than recognizing the participating objects. For example,
the horse detector does not produce reliable predictions about horses in this pic-
ture while the “person riding horse” detector finds one instance; b) Our decoding
then successfully adds two examples of horses and removes two wrong predictions
of people by looking at other detections in the vicinity.

each visual phrase. Our experience of visual phrases mirrors the experience

of machine translation community with linguistic phrases. The number of

useful visual phrases (phrases) is significantly smaller than the number of

all possible combinations of objects (words). There are many visual phrases

that could occur during tasks but I tend to encounter very few of those.

Further, many visual phrases show substantially reduced visual complexity

compared to independent objects and so one doesn’t need to have a large

number of training examples to accurately learn visual phrases. For example,

our “person riding horse” detector, learned with default settings on only 50

positive examples, significantly outperforms the heavily fine tuned state of

the art models for “horse” and “person” learned on thousands of examples

(see Figure 6.1 and Table 6.1 for more details).

I believe that the current choice of categories as basic atoms of recognition

is arbitrary. I argue that these basic atoms should be chosen by performance

criteria. Opportunism is the key to this principle. Instead of learning some

basic level detectors and using them no matter how good they are, I learn

detectors at different levels and use reliable ones and then decode to obtain

a final interpretation (Figure 1.2). Decoding uses all detection responses to

decide which detections are worth reporting as the final result. Decoding is

an inevitable part of multiple object detection. The decoder may need to

boost some detections and suppress others based on local context.

There is an analogy to machine translation problems where the alignment
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has to be established between phrases and areas of images. One might think

of our system as having a phrase table with entities like “person”, “horse”,

and “person riding horse”. The ultimate goal is to look at all phrases and

find the longest phrase that matches. This procedure is often called decoding

in machine translation. Our decoder has to take into account that some of

the detectors should overlap and when they overlap it has to decide which of

the overlapping detectors are worth reporting.

In this thesis I show the benefits of opportunistically selecting basic atoms

of recognition and the significant gain in directly detecting visual phrases.

Our contributions are: 1) Introducing visual phrases as categories for recog-

nition; 2) Introducing a novel dataset for phrasal recognition; 3) Showing

that considering visual phrases provides a significant gain over state of the

art object detectors coupled with the state of the art methods of modeling

interactions; 4) Introducing a decoding algorithm that takes into account

specific properties of interacting objects in multiple levels of abstraction; 5)

Producing state of the art performance results in multi-class object recogni-

tion.
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CHAPTER 2

RELATED WORKS

Object Recognition: Due to limited space I only mention the most relevant

works in object recognition. Deformable templates [3, 4] and part based

models [5–7] are of the most successful methods in object recognition. In

this thesis I use the state of the art detectors in [8] using deformable part

models. This work considers multiple roots to model the appearance changes

due to viewpoint or inherent intra-class variations.

Object Interactions: All methods that model interactions between ob-

jects neglect the change in the appearance of objects due to interactions with

other objects. I differ from all by taking this effect into account. Gupta et.

al. [9] model these interactions by modeling the prepositions and adjectives

that relate nouns. Yao and Li [10] model the interactions between human

pose and objects by coupling the human pose estimation and object recogni-

tion together. In [11] the interactions between objects is modeled implicitly

in the context of predicting sentences for images. The most relevant to ours

is the work by Desai, Ramanan, and Fowlkes [1]. They encode the interac-

tions between objects by a set of relationships like “on the right of”, “on

the left of”, “on the top of”, etc. They then learn a weight for the interac-

tions of objects in each of these relationship bins and use them to re-weight

the confidence of detectors. I differ from them as I consider the change in

appearance of interacting objects. I show that neglecting the change in the

appearance of interacting objects causes recognition issues, while modeling

it significantly improves recognition results.

Scene Understanding has been one of the mainstream tasks in com-

puter vision. One natural approach is to represent scenes as with global

features that take into account general information about images [12, 13].

An alternative is to consider objects in the scene and discover clusters of

correlated objects [14]. Objects in scenes are not independent and tend to

cluster. I think these clusters might be formed at the phrase level as well.
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There is a neglected semantic gap between scenes and objects. I introduce

visual phrases to cover this gap.

Machine Translation aims at automatic translation from one language

to another one. Statistical translation methods are among successful ap-

proaches. In the common architecture of statistical translation models, there

is a translation model, a language model, and a decoding algorithm. The

decoding algorithm has to decide the final translation given the translation

model, language model, and a query sentence. Word based translations are

usually not desirable as there is no direct mapping between words across

languages and syntactic differences are significant. However, phrasal trans-

lations, which are the inspirations of this work, are fashionable in machine

translation because they allow multiple to multiple translations, use local

context in translation, and allow translation of non-compositional phrases

[15].
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CHAPTER 3

PHRASAL RECOGNITION

Our task is to learn appearance models not only for basic level categories but

also for richer levels of abstractions, visual phrases. Having learned these ap-

pearance models, we show significant gains in considering some visual phrases

as a whole instead of detecting the basic atoms and then modeling the in-

teractions, see Figure 6.1 and Table 6.1. We also consider the problem of

object recognition in a multi-class framework and model the interactions be-

tween categories which includes objects and visual phrases. We show signifi-

cant boost in multi-class recognition performance using our decoding method

along with our visual phrase models comparing to the state of the art basic

level models coupled with the state of the art interaction models.

To this end, we need to have a dataset of phrases and objects. There are

multiple datasets available for object recognition. Unfortunately, there is no

test bed suitable for phrasal recognition. Here, we introduce the first phrasal

recognition dataset.
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CHAPTER 4

PHRASAL RECOGNITION DATASET

I first select 8 object classes from Pascal VOC2008 dataset [16] that are

suitable for modeling the interactions between objects: person, bike, car,

dog, horse, bottle, sofa, and chair. I then add a list of 17 visual phrases

using 8 selected object classes. Our visual phrases are formed by either

an interaction between objects or activities of single objects. These visual

phrases are: person riding horse; person sitting on sofa; person sitting on

chair; person lying on sofa; person lying on beach; person riding bicycle; horse

and rider jumping; person next to horse; person next to bicycle; bicycle next

to car; person jumping; person next to car; dog lying on sofa; dog running;

dog jumping; person running; and person drinking from a bottle. I also add

a background class.

I use Bing image search to gather images for the phrases and manually

filter out irrelevant images. For basic level categories I used Pascal images. I

manually obtain bounding boxes of all the 8 objects along with 17 phrases for

all of the images in the dataset. There are 2769 images (822 negative images)

in our dataset and on average each class has 120 examples. In total there

are 5067 bounding boxes (1796 for visual phrases+3271 for objects) in this

dataset. As expected, the number of training examples decreases as the com-

plexity of the phrase increases. However, the collapse in the visual complexity

of phrases is so great that one doesn’t need to have many training examples

to learn visual phrases(see chapter 4.1). This dataset and the phrase mod-

els are publicly available at http://vision.cs.uiuc.edu/phrasal/. Fig-

ure 4.1 shows examples of images in our dataset.
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Figure 4.1: The phrasal recognition dataset consists of 17 phrases and 8 objects.
There are 2769 images in this dataset and on average 120 images per category.
This figure shows 6 example of 7 different visual phrases in our dataset. Rows cor-
respond to visual phrases: dog jumping; horse and rider jumping; person drinking
from bottle; person jumping; person lying on beach; person lying on sofa; person
next to bicycle.

9



4.1 Appearance models

The appearance models for each category, including objects and visual phrases,

are learnt using the latest version of deformable part models [2]. I learn these

models for each of our 17 phrases in our dataset using provided bounding

boxes. Available models on the 8 categories from Pascal [2] are used as

models for objects in the phrasal recognition dataset. I use these models to

evaluate the benefits of phrasal recognition. Many of visual phrase detectors

have accurately learned the phrase, Figure 6.1. This is mainly due to the fact

that often the appearance of visual phrases has limited variance comparing

to the objects in the phrase. For the same reason, the number of necessary

training examples for training appearance models for visual phrases can of-

ten be very small. Similar to object detectors, some of the visual phrases are

hard to train as they have higher variance in the appearance.

4.2 Decoding Multiple Detections

Decoding takes all detector responses as input and decides on the final out-

come. Non-maximum suppression (NMS) is the usual form of decoding.

Perfect detectors with excellent tightly tuned models should seldom, if ever,

need decoding because there is no ambiguity in what to report. Current

detectors are not perfect so decoding is a necessary part of every multiclass

object detection method.

One natural decoding strategy, which outperforms NMS, is to model the

interaction between objects by having pairwise terms in the scoring func-

tion [1]. This approach often yields intractable inferences and one needs to

greedily search the space of labels. Pairwise terms are used to model interac-

tions between objects resulting in fiercely intractable combinatorial problems

which are hard to approximate.

Our philosophy is that well designed feature representations should make

it unnecessary to account for pairwise interactions. To do that, detector

responses should be aware of other detectors in a vicinity. I explicitly en-

code this in our feature representation resulting in very fast, exact inference

methods.

Notation: Following the notation of [1], an image is represented as a
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collection of overlapping bounding boxes which are represented by features xi.

Write X = {xi : i = 1...M} as the representation of an image where M is the

total number of bounding boxes for an image. To get these bounding boxes I

run all of the detectors on all of the images. For each bounding box, I know its

position, scale, and the confidence of the detector that reported this bounding

box. I also assume that there are K different categories and yi ∈ {0, 1}
is the label for each bounding box. yi = 1 means that the ith bounding

box should be considered in the final response and yi = 0 is otherwise.

Y = {yi : i = 1...M} is the entire label for image X. ci ∈ {0, 1, ..., K} is

the indicator variable showing the category detector that selected the ith

bounding box. The score of labeling image X with label Y is defined as

S(X, Y ) =
∑

iw
T
ci
xi where i is the index to the ith bounding box in image X

and wci is the set of weights that corresponds to the class of the ith bounding

box. I do not consider the pairwise relationships in the scoring function as

these relationships are encoded in our feature representation (chapter 4.3).

4.3 Representation

I expect our final score for each bounding box to be aware of the results

of all other categories nearby. I explicitly encode this in our feature repre-

sentations. Our representation of an image is based on representations of

bounding boxes obtained on each image using all detectors and consists of

confidences, the amount of overlap and size ratio of neighboring bounding

boxes. To do that I run all of our detectors on each of the images. I consider

three spatial relationships: above, below, and overlapping. For each window,

for each category, and for each of these spatial bins I consider the confidence

of the best scoring window, its overlap, and its size ratio to the represented

window. I also add the confidence of the represented window to the features.

This means that our representation has K × 3× 3 + 1 dimensions.
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CHAPTER 5

INFERENCE AND LEARNING

5.1 Inference

I assume bounding boxes are independent given their features. Our feature

design makes this assumption reasonable and so our inference is exact. Our

inference is

Y ∗ = {y∗i , i = 1...M}

yi
∗ = arg max

yi
wTciΦ(X, yi) (5.1)

where i is the index to bounding boxes and wci is the corresponding

weights for the class of the ith bounding box and Φ(X, yi) generates features

for that bounding box. This is very simple exact inference as yi ∈ {0, 1} and

yi’s are independent.

5.2 Learning

Our model is a form of max margin structure learning. The structured label

Y has to be predicted using our decoding model. The objective function

takes the form of:

min
w,ξ

∑
c∈{0,...,K}

1

2
‖ wc ‖22 +λ

N∑
n

ξn (5.2)

s.t.∀n,Hn, S(Xn, Yn)− S(Xn, Hn) ≥ L(Yn, Hn)− ξn

where n ∈ {1, ..., N} is the index to the image and L is the loss between the

hypothesis Hn = {hn,i, hn,i ∈ {0, 1}, i = 1...M} and the true structured label

Yn, ξn is a slack variable, and λ is the tradeoff between the regularization
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and loss. This max margin formulation requires all of the hypotheses to score

lower than the ground truth labels by at least the amount of loss. I model

the loss as hamming loss. Eq. 5.2 can be reformulated as

min
w

∑
c∈{0,...,K}

1

2
‖ wc ‖22 + (5.3)

λ

N∑
n

M∑
i

wTci(φ(Xn, h
∗
n,i)− φ(Xn, yn,i)) + L(H∗n, Yn)

s.t. H∗n = arg max
Hn

M∑
i

wTciφ(Xn, hn,i) + L(Hn, Yn) (5.4)

Fortunately, in this min-max formulation, our inner maximization is exact

and very fast. I solve this optimization problem by subgradient descent

method as follows.

I first randomly initialize wci ’s and solve for H∗’s in the inner maximiza-

tion problem, Eq 5.4. This is an easy maximization as hi ∈ {0, 1} and the

labels for bounding boxes are independent given their features. I then fix the

H∗’s and use the subgradient of the objective function to minimize it. The

step size is 1/t where t is the number of iterations. Having taken one step, I

fix wci ’s and search for H∗ again. I iterate till I converge. The convergence

criteria is set by looking at the consecutive improvements on the objective

value.

When converged, I use w∗ci in the inference model (Eq. 5.1) to rescore the

bounding boxes accordingly and also infer the final labels.
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CHAPTER 6

SINGLE CATEGORY DETECTION

I use deformable part models with default settings [8] to train detectors for

our 17 visual phrases. For objects I use the trained models from [2]. These

models produce state of the art results in the single object detection task

on Pascal dataset. I show significant gain in modeling the visual phrases

comparing to separately detecting participating objects and then modeling

the relations. Figure 6.1 shows Precision-Recall (PR) curves for some of the

visual phrase detectors. I trained these detectors with at most 50 positive

examples. Many of the visual phrase detectors produce promising results.

To further demonstrate the substantial gain in considering visual phrases, I

compare our visual phrase detectors with a baseline that tries to best model

interactions between objects.

The baseline takes the confidence responses of participating object de-

tectors as input and tries to best model the interactions between the objects.

It is challenging to build a perfect detector that takes into account interac-

tions of objects. I, therefore, build a baseline detector that performs on the

test set as best as it can. The performance of the baseline can be regarded

as an optimistic upper bound on how well one could detect visual phrases by

detecting participating objects using the best current detectors. I run detec-

tors for each of the participating objects and consider overlapping responses.

There are multiple ways of modeling the interactions between objects: a) I

extend the bounding boxes of the overlapping responses of participating ob-

jects to estimate the bounding box of the visual phrase. I then compute the

average of the confidences of the bounding boxes of the participating objects

to estimate a score for the estimated bounding box. I then use this score to

produce the PR curves. b) This is similar to “a” but I consider the minimum

of the confidences of participating objects rather than their average. c) This

is similar to “a” and “b” but I use maximum confidence instead of the aver-

age or the minimum. d) I regress the position, scale, and confidence of the

14



Figure 6.1: Precision-Recall curves for detecting 10 visual phrases in our dataset
comparing to the baseline. The comparison to this baseline is biased toward best
possible outcome on the test set. Note the significant gain in detecting visual
phrases compared to detecting objects and describing their relations. The gain
is astonishing because the phrase detectors are trained using at most 50 positive
training examples with default settings while the object detectors are heavily fine
tuned and trained using thousands of examples. Further, The baseline is heavily
biased toward best possible outcome on the test set. Please see Table 6.1 for
detailed AP’s for all of the visual phrases in our dataset.

final phrase prediction against the positions, scales, and confidences of the

participating objects on the test set. To produce the best possible outcome,

I run all of these procedures and pick the one that best performs on the test

set. Estimates of performance of this baseline are generous because I choose

a combination that best performs on the test set. To be more conservative,

I run the baseline with two sets of detectors (state-of-the-art models in [8]

trained on our dataset, and state-of-the-art models in [2]) and pick the best

one.

To evaluate our phrase detectors I test each of the visual phrase models

and the corresponding baseline detector on a test set of approximately 200

images. Each test set has roughly 50 positive and 150 negative examples. The

negative images are selected in a way that they do not contain any example

of participating objects. For phrases that have only one participating object

the baseline would be the corresponding models from [2].

Figure 6.1 depicts comparisons between the visual phrase detection re-

sults and the baseline. Note the significant improvements using visual phrase

detectors trained on only 50 positive examples and default settings compared

to heavily fine tuned object detectors [2] trained on thousands of examples.
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Further, the baseline is learned on the test set. Table 6.1 shows Average

Precision (AP) for all of the visual phrase detectors compared with the re-

sults of the baseline detectors. In most cases our visual phrase detectors

are outperforming the baseline detectors by significant margins despite the

fact that the baseline is designed to perform best on the test set. There are

visual phrases like “dog jumping” where neither the visual phrase detectors,

nor the baseline detectors have promising results. These are hard objects

and visual phrases with unmanageable variance in appearance. The results

in Figure 6.1 and Table 6.1 support of the neglected fact that the appearance

of the objects may change when they interact. Figure 6.1 and Table 6.1 show

amazing gains when considering visual phrases.
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Phrases Phrase Baseline Gain

(Trained with 50 positive images) (AP) (AP) (AP)

Person next to bicycle 0.466 0.252 0.214
Person lying on sofa 0.249 0.022 0.227
Horse and rider jumping 0.870 0.035 0.835
Person drinking from bottle 0.279 0.010 0.269
Person sitting on sofa 0.262 0.033 0.229
Person riding horse 0.787 0.262 0.525
Person riding bicycle 0.669 0.188 0.481
Person next to car 0.443 0.340 0.103
Dog lying on sofa 0.235 0.069 0.166
Bicycle next to car 0.448 0.461 -0.013
Dog Jumping 0.072 0.134 -0.062
Person sitting on chair 0.201 0.141 0.060
Person running 0.718 0.484 0.234
Person lying on beach 0.179 0.140 0.039
Person jumping 0.317 0.036 0.281
Person next to horse 0.351 0.287 0.064
Dog running 0.504 0.160 0.344

Table 6.1: AP scores for all of the visual phrases in our dataset. I compare our
visual phrase detection results with a baseline detector that consists of the state
of the art object detectors coupled with an operator that tries to best model the
relationships between objects. This baseline is biased toward the best possible
outcome on the test set. Note the significant gain (third column) in using visual
phrases compared to an optimistic upper bound for detecting objects and modeling
their relations. Some of the visual phrase detectors like “horse and rider jumping”,
“person riding horse”, “person riding bicycle” show amazing gain. At the same
time, some of the visual phrase detectors like “bicycle next to car” doesn’t work
as well. I demonstrate an opportunistic principle for selecting what detectors to
use based on performance. See chapter 4.2.
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CHAPTER 7

DECODING

I compare our decoding algorithm with that of [1] on our phrase dataset.

This is to evaluate our decoding method with other decoding methods not to

evaluate the merits of phrasal recognition as all of our detectors, including

visual phrase detectors, are provided as input to all decoding methods. I run

all of the detectors for all of the phrases as well as the objects and construct

the features as explained in chapter 4.3. I then use our decoding algorithm

to learn a set of weights that rescore the confidences of the bounding boxes

based on interactions. I compute per class AP, overall AP and mean per

image AP for comparisons. I also learn the model of [1] using the publicly

available code on our dataset. I again rescore the confidences of the bounding

boxes using the weights provided by this model and compute per class AP,

overall AP and mean per image AP. All these three decoding procedures are

learned on visual phrases as well as objects. Our decoding gets an overall

AP of 0.319 and mean per class AP of 0.495 comparing to the overall AP

of 0.313 and mean per class AP of 0.493 for [1] and AP of 0.308 and mean

per class AP of 0.491 for NMS using models in [8]. I believe that encoding

the interactions in the representation makes the models more manageable

comparing to encoding the interactions by pairwise terms in the model and

so resulting in better performance in decoding.

7.1 Phrasal Recognition Helps Object Detection

I learn our decoding and the method of [1] using only the objects (not phrases)

and compare it with the case when I consider both phrases and objects. Ta-

ble 7.1 shows per class AP’s for both our decoding and that of [1] with and

without phrases. Significant gains in the performance of detectors when cou-

pled with visual phrases establish the importance of visual phrases coupled
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bicycle bottle car chair dog horse person sofa
[2] 0.434 0.429 0.329 0.213 0.316 0.438 0.295 0.204
[1] -p 0.431 0.425 0.191 0.225 0.297 0.475 0.204 0.167
[1] +p 0.449 0.435 0.228 0.217 0.316 0.462 0.286 0.204
My+p 0.437 0.434 0.330 0.216 0.329 0.440 0.297 0.218
My -p 0.457 0.435 0.344 0.227 0.335 0.485 0.302 0.260

Table 7.1: Phrasal recognition helps object detection. This table compares the
performance of our decoding with that of [1] with and without visual phrases using
per class AP’s. Adding visual phrases (denoted by +p) helps detection of objects.
This table also shows that our decoding outperforms the state of the art object
detectors of [2] and state of the art multiclass recognition method of [1].

with reliable decoding.

Our decoding helps recognition of single objects using phrases. For exam-

ple, in image “a” of Figure 7.2, a confident “person riding bicycle” detector

helps boosting the bicycle detection and suppressing wrong person predic-

tions. Object detections also help visual phrase recognition. For example, in

image “b” of Figure 7.2, the confident sofa detector boosts the confidence of

the “dog lying on sofa” detections.
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Figure 7.1: Phrasal recognition significantly outperforms detection of participat-
ing objects and then modeling their interactions. This figure shows examples of
visual phrase detections where independent objects couldn’t be found using state
of the art object models. For example, in image “a”, the person detector failed
to localize the lady in the red dress while our “person next to bicycle” detector
localizes her accurately. In image “b”, the person detector fails to localize the baby
and our “person drinking from bottle” detector correctly finds this visual phrase.
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Figure 7.2: Rows 1 and 2 depicts our results before and after decoding, respec-
tively. The same applies to rows 3 and 4. For example, in image “a”, our decoding
boosts the confidence of the bicycle classifier and suppresses the confidences of
wrong person detections using a reliable “person riding bicycle” detection. In im-
age “c”, a confident “dog lying on sofa” detector improves the confidence of the
sofa detection and decreases the confidences of wrong person detections. In image
“d”, the “person sitting on chair” detector increases the confidence of the chair
detection. Our decoding shows that visual phrases help object detection and vice
versa. In image “b”, the confident sofa detection boosts the confidence of “dog
lying on sofa” detection.
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CHAPTER 8

CONCLUSION

In this paper, we introduce visual phrases, show significant gains in con-

sidering them, introduce the phrasal recognition dataset, and a decoding

algorithm that outperforms state of the art methods. Building long enough

phrase tables is still a challenge.

The dimensionality of our features grows with the number of categories.

However, there is no need to consider all of the categories when we model

the interactions. For this reason, one might only consider a fixed number of

categories for each bounding box.

We speculate that the relations between attributes and objects, parts and

objects, visual phrases and scenes, and objects and visual phrases mirror one

another. Future work will investigate systems to decode complete sets of

detections covering the semantic spectrum.
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