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ABSTRACT

The Mahomet Bedrock Valley localizes highly per-

meable sand and gravel aquifers that are the only developed

source of large ground-water supplies in east-central Illi-

nois. These aquifers were studied by quantitative methods
of geologic evaluation, and their three-dimensional config-

urations were determined.

Three hydrostratigraphic units are recognized with-

in the drift. These units correlate with deposits of the Wis

-

consinan, Illinoian, and pre-Illinoian Stages of the Pleisto-

cene Epoch . Pre-Illinoian sand and gravel strata occur with-

in the drift filling the deepest portions of bedrock channels

and constitute aquifers with a potential for increased ground-

water development. These deposits are permeable, may ex-

ceed 150 feet in thickness, and appeartobe present through-

out a large percentage of the bedrock channels . Illinoian

deposits contain a smaller proportion of permeable strata

than pre -Illinoian deposits, but are presently the mostwide-
ly utilized for small and moderate ground-water supplies.

Wisconsinan deposits do not contain extensive permeable
strata except for local occurrence of sand and gravel in de-
pressions on the buried Sangamonian land surface.

Lithofacies maps were prepared for each 100-foot

elevation interval to determine the three-dimensional dis-

tribution of aquifers within the drift. These maps illustrate

one method of defining aquifer distribution in an economic
and expedient manner and they afford the basis for extrapo-

lating limited hydrologic data. Coefficients of transmissi-

bility are estimated from specific-capacity data and are re-

lated to geologic units.
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INTRODUCTION

The development of large ground-water supplies in east-central Illinois

largely depends on the location of permeable sand and gravel strata within glacial

drift and alluvial deposits of the region, particularly the permeable deposits with-

in and adjacent to the buried Mahomet Bedrock Valley. The thick, permeable stra-

ta in this valley system are the only source of large ground-water supplies in east-

central Illinois.

The Mahomet Bedrock Valley region (fig. 1) is covered by drift deposited by
a succession of continental glaciers. The permeable strata within the drift are pres-

ent in a complex depositional pattern. Alluvial deposits not directly associated
with glacial processes also partially fill the present stream valleys.

Hydrogeologic conditions in the drift of the Mahomet Bedrock Valley region

are evaluated in this report. Quantitative mapping technigues are tested as one

method of describing the occurrence and distribution of the water-yielding deposits.

Empirical relationships between subsurface geologic conditions and aguifer coef-

ficients are determined to facilitate extrapolation of hydrologic data.

Previous Investigations

A number of investigations in

east-central Illinois by the State Geo-
logical and Water Surveys have aided in

the search for ground-water supplies.

These earlier reports have been used as

reference material or have been utilized

indirectly in preparing this report.

Foster and Buhle (1951) utilized

the results of electrical earth resistivity

surveys, test drilling, and electric log-

ging of borings near Champaign-Urbana
to make a geological study of glacial-

drift aquifers, and mapped untapped
sources of ground water. Horberg (1945)

first defined the buried Mahomet Bedrock

Valley system and made a bedrock sur-

face contour map of the system. He lat-

er (1950) related the bedrock surface of

Illinois to physiography and Pleistocene

glaciation to aid in the location of bed-

rock valleys and to determine general

ground-water conditions throughout gla-

ciated areas. Still later (1958) he stud-

ied the glacial deposits below the Wis-
consin drift in northeastern and east-cen-

tral Illinois. Selkregg and Kempton (1958)

described the general ground -water con-

ditions in east-central Illinois. Smith

(1950) discussed aquifer characteristics

in the three principal aquifers penetrated

Figure 1 - Index map showing Mahomet
Bedrock Valley region.
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by wells in Champaign County, with specific reference to the area in and adjacent
to Champaign-Urbana. Walton (1965) discussed ground-water recharge to the sand
and gravel aquifers in the Champaign-Urbana region and in other areas of Illinois.
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GEOGRAPHY

Location and Extent of Region

The Mahomet Bedrock Valley region comprises a reach of the buried Maho-
met Bedrock Valley system approximately 100 miles long and areas adjacent to

either side of the valley axis. This segment of the valley lies between the Havana
Lowland on the west and the Kempton-Newark bedrock tributary valley on the east.

The eastern boundary of the Havana Lowland near Armington (fig. 2) is near the

confluence of the Ancient Mississippi channel and the Mahomet Valley.

The region has an area of approximately 3000 square miles, and includes

all or portions of nine counties: Champaign, DeWitt, Douglas, Ford, Logan, Ma-
con, McLean, Piatt, and Tazewell. The principal municipalities within the Maho-
met Valley region are shown in figure 2

.

Physiography and Drainage

The study area lies primarily within the Bloomington Ridged Plain of the Till

Plain Section, Central Lowland Province (Leighton, Ekblaw, and Horberg, 1948, p.

18). The Bloomington Ridged Plain has wide stretches of relatively flat or gentle

undulatory surfaces composed of ground moraine punctuated by a series of low,

broad morainic ridges (fig. 3). The southern limit of this subsection, the Shelby

-

ville Moraine, is the most prominent ridge, and is also the approximate boundary

between Wisconsinan drift to the north and east and Illinoian drift that lies within

the Springfield Plain.

The glacial deposits, possibly up to 400 feet thick, completely conceal the

bedrock topography that is developed primarily on rocks of Pennsylvanian age. The

nearest bedrock exposures are along the Sangamon River immediately southwest of

the study area. Multiple drift sheets mask the irregularities of the bedrock surface

and produce a plain of low relief.

The highest surface elevation in the region, about 900 feet above sea level,

is on the crest of the Bloomington Moraine east of Bloomington, McLean County.

The lowest elevation, about 540 feet above sea level, is in the southwest portion,

where the Sangamon River leaves the area. Thus, the maximum total relief over
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the Mahomet Bedrock Valley region is approximately 360 feet. The local relief

ranges from 10 to 80 feet, except along valleys, where it reaches a maximum of

125 feet.

Many of the nearly flat areas of the ground moraine are artificially drained to

improve agricultural conditions. Natural surface drainage is generally to the south

and southwest. The largest surface drainage system is that of the Sangamon Riv-

er and its tributaries. Other important streams include Salt Creek, Sugar Creek,
Kickapoo Creek, and the Kaskaskia and Embarras River systems (fig. 2).

Climate

The majority of the climatological data were taken from records obtained

at the Morrow Plots Station at the University of Illinois, Urbana (Changnon, 1959).

These data are believed to be representative for the Mahomet Bedrock Valley region.

The climate of east-central Illinois is continental with warm summers and

cold winters. During the coldest month, January, the mean temperature is 27.3° F.

During the warmest month, July, the mean temperature is 75.5° F. The mean an-

nual temperature is 52° F. Temperatures of ground water from wells in the drift av-
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Figure 2 - Geographic map showing surface drainage, principal municipal areas,

and the main axis of the Mahomet Valley.
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erage 55° F. (Hanson, 1950). Figure 4 shows average monthly precipitation, mean
temperature, and average pan evaporation within the region.

Average annual precipitation is 36.30 inches; it has never been less than

24 inches, and the highest amount recorded is 55.64 inches. Precipitation in-

creases to over 38 inches toward the southern edge of the study area (Stout, 1960).

The growing season averages 181 days. The average date for the last kil-

ling frost is April 21; for the first killing frost, it is October 20.

The average annual evaporation measured in a U. S. Weather Bureau stand-

ard Class A pan is 41.77 inches, based on a ten-year period. Changnon (1959, p.

78) uses 0.7 as the Class A pan coefficient for the Morrow Plots Station, making
the potential annual evaporation from the region approximately 29 inches.

Population, Economy, and Water Supplies

The population of the Mahomet Valley region, according to the 1960 cen-
sus (U. S. Bureau of the Census, 1962), was approximately 355,000 persons.

This was about 3.5 percent of the total state population, located within approxi-

mately 5.5 percent of the total state area. The largest centers of population—
Bloomington, Champaign-Urbana, Decatur, Lincoln, and Rantoul— contained about

55 percent of the total or about 194, 000 persons.

:ewell

Figure 3 - Glacial geology map with lines of cross sections.
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The economy of the region is based primarily upon agriculture. Many of

the industrial developments that are concentrated in the large municipal areas are

processing plants for agricultural products.

Of the total population, approximately 80 percent is located within areas

that are served by municipal water systems; the remaining population is served by
private or cooperative systems. As a comparison, within the entire state about 94

percent of the people are supplied by municipal water systems.

Although the Sangamon and Embarras Rivers provide large quantities of sur-

face water, the majority of water supplies are from ground-water sources and are

pumped from sand and gravel aquifers within glacial-drift deposits of the Mahomet
Valley system and adjacent areas. With a few exceptions, such as the villages of

Tuscola and Villa Grove, no major water supplies are obtained from bedrock in the

area. Decatur and Bloomington are the only large municipalities that rely entirely

on surface-water reservoirs for supply. Lincoln uses an infiltration gallery on
Salt Creek, but supplements this supply with water from wells.

Nearly all the wells of the region are drilled by cable-tool, rotary, or re-

verse hydraulic methods. However, some wells are dug and yield small amounts

Figure 4 - Average monthly precipitation, mean temperature, and average pan

evaporation at Morrow Plots station, University of Illinois, Urbana.
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of ground water. Many such dug wells are unreliable due to faulty construction,

lack of sufficient permeability of the shallow deposits, or insufficient depth.

Many wells are finished in sands so fine grained that gravel or sand packing is re-

guired to avoid pumping fine sediment with the water.

SOURCES OF DATA

The largest source of geologic information used in this study is drillers'

logs from water wells, water and oil test holes, and highway borings. Other

sources include cable tool, rotary, and split-spoon samples from selected wells

and test holes. Hydrologic information is from drillers' logs and from published

reports of the Illinois State Water Survey.

Approximately 850 drillers' logs were selected as controls after examina-
tion of more than 2500 logs of borings available within the study area. Many of

the selected borings penetrate the full thickness of glacial drift. Therefore, re-

ports of these borings were also useful for determination of bedrock surface ele-

vations. Several hundred additional control points for the bedrock surface were
obtained from coal and oil test holes.

Information from each driller' s log should include the following: descrip-

tion of the main rock types encountered, their thickness and depth; indications of

which units are aquifers; description of the casing, including perforated or screened
zones; static water level in the well after drilling is completed; and a report of a

production test if any was made. In actuality, most logs have only a portion of

the above information, and hydrologic data are frequently not included. Several

examples of the geologic portion of typical drillers' logs are given in Appendix A,

together with their interpretations.

Information from the drillers' logs has been supplemented by binocular ex-
amination of samples from control wells, which helps to eliminate personal bias in

reporting and interpreting lithologies given on drillers' logs. To further standard-

ize the interpretation of the logs and to facilitate the evaluation of questionable

logs, a definite set of parameters based on sample-set examination was applied

to drillers' terminology. The relationships between such terminology and geologic

interpretations are given in table 1

.

Several consistent patterns in drillers' terminology are readily observed by
describing sample sets and comparing geologic descriptions to drillers' descrip-

tions of the drift. Most "hardpan, " "sand-gravel-clay, " or "clay" of drillers'

terminology is till; "clay" is occasionally a lacustrine deposit. Most breaks or

weathering zones between till sheets are noted by drillers and are described as

"driftwood, " "green clay, " or "peat."

TECHNIQUES OF QUANTITATIVE MAPPING AND ANALYSIS

The glacial drift deposits of the Mahomet Valley region were analyzed with

guantitative techniques that were originally developed for use in the petroleum
industry. Products of these techniques are maps that show areal variations in pre-

selected parameters, such as center of gravity (center of mass) or spread of perme-
able deposits within a three-dimensional area. Vertical position, thickness, and
distribution of sands and gravels can be obtained by proper interpretation of the maps,
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Previous Work

Quantitative description of unconsolidated deposits has been applied re-

cently to a few ground-water investigations. Meyboom (1960) used quantitative

methods in a hydrogeologic study of a consolidated Cretaceous age sandstone in

southern Alberta, Canada. Zones (1961) constructed a lithofacies map of the al-

luvial fill in Crescent Valley, Nevada, to indicate areas of favorable aquifer de-
velopment. Bredehoeft (1963) utilized sand and clay ratio maps and gravel isolith

maps for a hydrogeologic study of a portion of the lower Humboldt River Basin, Ne-

vada, to illustrate aquifer distribution. Neither Zones nor Bredehoeft attempted to

summarize in detail the vertical distribution of aquifers.

TABLE 1 - GEOLOGIC INTERPRETATION OF DRILLERS' TERMINOLOGY

Geologic interpretation

Drillers'
terminology Drift

Percent of

sand and
gravel*

Sand and
gravel

Interbedded units of sand and gravel 100

Cemented
gravel

All gravel, pebble-sized grains pre-
dominant

100

Gravel and
clay

Pebbles and larger clastic material in
matrix of clay, fine sand, silt; inter-
bedded with lenses of sand, gravel (till)

0-25

Sand All sand, predominantly medium grained
or larger

100

Sandy clay Similar to gravel and clay 0-25

Silty clay No sand or gravel; negligible perme-
ability

Clay Negligible permeability; may be la-
custrine

Hardpan Usually till; negligible permeability 0-100

Organic
zones, drift,
soil, etc.

Usually fine alluvial silts; negli-
gible permeability

Lacustrine Negligible permeability

* In till sections described by drillers, up to 25 percent may be lenses of
permeable elastics. Gravel is considered to have a median grain size of
over 2 mm; sand is considered permeable for purposes of this study if the
median grain size is between .25 mm and 2 mm.
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The use of quantitative hydrogeologic evaluation of unconsolidated earth

materials was demonstrated in a systems analysis of aquifers in Las Vegas Valley,

Nevada, where geologic data were satisfactorily related to hydrologic data to fa-

cilitate construction of an electric analog model (Domenico, Stephenson, and
Maxey, 1964). In this investigation, approximately 350 square miles within the

central portion of the alluvial valley was studied to appraise the water resources

and the geologic framework in which the ground water occurs. The valley is cur-

rently undergoing differential depletion of its water resources; the analog model of

the aquifer systems is used as a water-management tool.

The geologic data for the Las Vegas study were derived basically from

drillers' logs and from control -well sample cuttings. Hydrologic data were derived

from aquifer performance tests. A time-transgressive, three-dimensional interval

between 200 and 700 feet below the ground surface was used as the main mapping
interval, as it contained the majority of the main water- producing zones. The
vertical variability in position and thickness and the lithic percentage of perme-
able deposits within the mapping slice formed the basis of a presentation of geo-
logic conditions necessary in the analog construction. Empirical relationships

were established between subsurface geology and values of the coefficients of

transmissibility and storage, the main aquifer characteristics. (The coefficient

of transmissibility is the product of the coefficient of permeability, expressed in

gallons a day per square foot of aquifer, and aquifer thickness, and is expressed
in terms of gallons a day per linear foot of aquifer. The coefficient of storage is

the volume of water released from or taken into storage within an aquifer per unit

surface area of the aquifer per unit change in the component of head normal to that

surface.) This relationship served as a basis for an extrapolation of hydrologic

data from geologic data, which was significant because many geologic data were
available, whereas hydrologic data were not. Relatively untested portions of aqui-

fers within the area of geologic control were modeled, and pumping effects were
recapitulated with a minimum of adjustment of model components.

Mapping Unit

A mapping unit is a three-dimensional slice of earth material with either

physically recognizable or arbitrary boundaries. Two kinds of mapping units were
used in this study. Surfaces of weathering and erosion (bedrock, Yarmouthian,

and Sangamonian surfaces) were used to separate deposits for some purposes, and

elevation planes were used to separate slices for quantitative mapping. In the

latter case, materials in each even 100-foot slice between 300 and 800 feet of

elevation were described. Materials in those portions of drill holes that neither

end at nor begin at the limiting boundaries of a slice were considered to represent

a full 100- foot slice, and the unpenetrated interval was considered devoid of the

material being mapped.
Factors that influence the selection of a mapping slice include the amount

of relief along the ground and bedrock surfaces and the position of the water table.

Map Types

All map types used in this study show three-dimensional aspects of strati-

graphic variables and were selected because the variables have hydrologic signif-

icance.
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Three paleosurface maps, which show the bedrock surface, the Yarmouth-
ian interglacial surface, and the Sangamonian interglacial surface, were prepared.

The bedrock surface map defines the base of the drift-aquifer systems. The Yar-

mouthian and Sangamonian surface maps define the boundaries of drift sheets.

The glacial-drift thickness map outlines areas of thick and thin drift, which
generally are favorable and unfavorable, respectively, for ground-water development.

Lithofacies maps depict the composition of a stratigraphic unit. One vari-

ety is the percentage map, which shows the ratio of thickness of a selected litho-

logic type to the total thickness of the mapping interval (Forgotson, 1960, p. 86).

Percentage data as used in this study were not contoured on separate maps but are

included on vertical variability maps, described below. Such data have been use-
ful because estimates of the coefficient of transmissibility could be made when the

percentage of permeable elastics within a section, approximate average grain size,

and permeability factors were known. From tests on alluvial aquifers of Pleistocene

age in Nebraska, Keech and Dreeszen (1959) related permeability to sediment size

(table 2). From data on permeability and percentage of aquifer material, estimates

TABLE 2 - COEFFICIENT OF PERMEABILITY RANGE

OF VARIOUS LITHOLOGIC TYPES1

Meinzer units'

Clay and silt < 1 - 100

Sand, very fine, silty 100-300
Sand, fine to medium 300 - 400

Sand, medium 400 - 600

Sand, medium to coarse 600 - 800

Sand, coarse 800 - 900

Sand, very coarse 900 - 1000

Sand and gravel 1000 - 2000

1 Adapted from Keech and Dreeszen, 1959, p. 38.
2 Meinzer units = gallons a day per foot for wa-

ter at 60° F. To convert to darcys, divide

by 18.2.

of the coefficient of transmissibility (T) are made, using the relationship T=Pm,
where P is coefficient of permeability and m is aquifer thickness.

Vertical variability maps depict the vertical position and arrangement of

constituent rock types. Preparation of these maps requires data on the individual

positions and thicknesses of selected rock types within the section being mapped.
Such information is usually available on drillers' logs.

Vertical variability can be shown by a combination of center of gravity and

standard deviation maps, which show relative vertical position of any selected

lithologic type within a mapping section. In this study, the lithology of main in-

terest is sand and/or gravel, the potential water-bearing material within the gla-

cial drift.

Center of gravity maps give the position of the center of mass of sand and

gravel strata, within the mapping slice, in feet from the top of the slice or feet
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below the top, expressed as a percentage of the total thickness of the slice.

Standard deviation maps express the spread of the sand and gravel about

the center of mass of these units. As with the center of gravity data, contouring

the standard deviation data is a preliminary step toward a final vertical variability

map. Adding or subtracting the standard deviation value to the center of gravity

value gives the vertical range that is occupied by the majority of the cumulative

thickness of sand and gravel lenses within the slice (Krumbein and Libby, 1957).

In this study, the center of gravity and standard deviation values were
first superimposed to make one map, which was then subdivided to create a series

of classes. These classes are illustrated by means of patterns on a map, called

a vertical variability map. All points within the same pattern have approximately
equal values for center of gravity and standard deviation. Therefore, the vertical

distribution of sand or gravel within a class shown by a given pattern is the same.
The information obtained from analysis of a vertical variability map is ap-

plied to ground-water development by evaluating the relationships between geolog-
ic characteristics within the classes and data on aquifer characteristics. These
relationships may then serve as a basis for modeling hydrologically or geologically

untested portions of an area where one of these components is known. This proce-

dure is necessary when producing analog models of a basin in order to model the

entire basin.

Computation Method

IBM methodology provides a shortcut to computing the data required for the

vertical variability maps. A program was written for the IBM 7094 facility on the

University of Illinois campus and is given in Appendix B.

The method used for computing the center of gravity and standard deviation

is illustrated in figure 5. The position (h) and thickness (t) of a sand or gravel

unit is determined from a study of a lithologic log for each control point. The h is

computed in feet below the upper limit of the mapping slice to the center of each
sand or gravel unit.

In order to depict the nature of the lithology at any given point, as well as

the position of selected units, it is necessary to incorporate a sand -clay ratio or

a lithic percentage as a supplement to the vertical variability pattern (Forgotson,

1960). In this study, percentage data are plotted with the vertical variability pat-

tern to depict the relative percentage of permeable material in the working slice

and to show horizontal changes in distribution of permeable materials. The need
for this supplement is demonstrated by considering that a thick sand or gravel unit

lying in the middle of a section will have the same relative center of gravity (50

percent) and the same spread (0 percent) as a thin sand or gravel unit lying in the

middle of the section. The percentage figure shows whether the unit is thick or

thin.

GENERAL GEOLOGY

Bedrock and Paleosurface Geology and Topography

The unconsolidated sediments of the Mahomet Bedrock Valley region are

underlain by relatively impermeable bedrock. Permeable sediments in bedrock
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channels are the only aquifers capable of yielding large supplies of ground water.
Aquifers within the drift on the bedrock uplands yield only small to moderate sup-
plies .

The youngest bedrock formations in the region are of Pennsylvanian age, of

the McLeansboro Group, and consist of impermeable shale, with some thin, dis-

continuous lenses of sandstone and limestone. The Pennsylvanian strata occur

Sand
number

Distance
from top(h)

Thickness
in feet (t)

ht h
2

t

1 40 4 160 6400

2 65 1 65 4225

3 74 4 296 21904

4 93 6 558 51894

5 1 13 6 678 76614

6 136 14 1904 258944

Sums : 35 3661 419981

TOTAL THICKNESS
L = 143

(A) (B) (C )

Center of gravity: B/A
3661

35
= 104.6 ft. below top

+ i

i 7/

<
uj -6

5 V, u

d

COG 104 6
Relative center of gravity = x 100=100 x = 73 I %

L 143

of thickness , below fop

c _ (b^/a)
Approximate variance = -— = 1058

A

Approximate standard deviation = \/a v. = 32.5 ft. added

and subtracted from the COG.

Relotive stondard deviation

32.5
op std. dev. x 100 = —— x 100 = 23%

l4o

Figure 5 - Method of computing center of gravity and standard deviation. Modi-

fied from Krumbein and Libby (1957, p. 201). A driller' s log from the NW"{

SWi sec. 36, T. 16 N., R. 5 E., Piatt County, has been used.
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directly below the drift except in portions of Ford, Champaign, and Douglas coun-

ties, where older bedrock formations underlie the drift along the LaSalle Anticlinal

Belt.

The bedrock surface map (fig. 6) used in this study is a compilation of all

data currently available from the following sources: the area north of the Mahomet
Valley is modified from Heigold, McGinnis, and Howard (1964); the remaining por-

tion is based on information in the files of the Illinois State Geological Survey,

including water and oil test holes and completed wells, coal test holes, seismic

records, plus published information. In the portion south of the Mahomet Valley,

all of the control wells and test holes used reached bedrock. The majority of

these were oil or coal tests, however, and do not include information on the lithol-

ogy of the drift deposits. The locations and distribution of control points are shown
in figure 6

.

The positions of several of the major tributary valleys depart somewhat from

an earlier interpretation by Horberg(1950) . Additional data accumulated since 1950

form the basis for making these changes.

The coarse texture of many portions of the bedrock map suggests that only

large valleys are identifiable from existing data. Another factor contributing to a

coarse texture is the 50 -foot contour interval. The tributaries in most instances

are probably not as straight nor as wide as indicated.

Relief on the bedrock surface is 200 to 300 feet. The surface is a product

of preglacial, glacial, and interglacial erosion of strata primarily of Pennsylvanian

age. The majority of the bedrock channels were eroded prior to glaciation of the

region. Several valleys, however, were possibly formed or altered during the

Pleistocene epoch.

The upland bedrock surface is developed primarily on relatively weak shale

that had weathered and eroded to form a subdued topography. The bedrock highs

exerted an influence on subsequent depositional patterns; portions of glacial mo-
raines occur above these highs. Small percentages of permeable materials occur in

the drift deposited over the bedrock uplands; hence these sites are not geologically

favorable for occurrence of large ground-water supplies.

The major feature of the bedrock map is the Mahomet Valley, which takes

its name from the village of Mahomet located over the deepest part of the channel
in Champaign County (fig. 6). The bottom elevation of the valley averages 350 feet,

placing it 200 to 300 feet below adjoining uplands. In contrast, most of the tribu-

taries to this main bedrock valley are 100 to 150 feet in depth.

The gradient of the Mahomet Valley averages approximately 0.25 to 0.3 feet

per mile between Paxton, in Ford County, and Armington, in Tazewell County, a

distance of approximately 100 miles. For comparison, the gradient of the Sangamon
River in the area is about 1 . 9 feet per mile

.

Paleosurface maps of the Yarmouthian and Sangamonian weathered zones

were constructed for comparison with the bedrock surface map to illustrate how
surface topography changed during the filling of bedrock channels. The map of the

Yarmouthian zone (fig. 7), contoured on the basis of about 125 control points from

sample studies and drillers' logs, shows the major valley trends of the bedrock

still in evidence, with the exception of the Middletown Valley, which traverses

southern Macon County, as seen in figure 6. Between 25 and 200 feet of pre-

Illinoian drift were deposited in the Mahomet Valley region prior to formation of

this surface.

Illinoian glaciation greatly disrupted drainage in the Mahomet Valley system.

Figure 8, based on data from 465 control points, shows the surface at the end of
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the Sangamonian, prior to the initiation of Wisconsinan glaciation. A break was
recorded on drillers' logs or seen in sample studies for each control point. At

the close of Sangamonian time, the Mahomet Valley was no longer a prominent

drainageway. Only the low areas remained through Champaign County that sug-

gested prior drainage patterns. Ancestral outlines of the present north-south drain-

age patterns were being established. Between 50 and 22 5 feet of Illinoian drift were
deposited within the Mahomet Valley region.

Widespread occurrence of Sangamonian deposits and weathered zones shows
that the Wisconsinan ice advances did not greatly disrupt the deposits beneath the

Sangamonian surface.

The cross sections (fig. 9) suggest that surface highs and lows parallel the

bedrock highs and lows to varying degrees. In places, bedrock valleys underlie

present-day uplands and have no surface expression, although elsewhere similar

valleys have been partially re -excavated and influence the position of modern
streams. Portions of deposits in the bedrock valleys have undergone greater con-
solidation than deposits over the bedrock uplands; this causes a surficial sag,

which influences the position of modern streams.

A correlation coefficient analysis was made to test the degree that the bed-
rock surface parallels more recent land surfaces. It was concluded that analysis

of present topography cannot be used to predict bedrock surface configuration in

east-central Illinois. Present topography may, however, be a clue in helping to

interpret configuration of buried land surfaces, if such surfaces are not deeply bur-

ied, and assuming these surfaces are correctly identified.

Glacial Drift

Lithology and Hydrologic Properties

Unconsolidated deposits of Pleistocene and Recent ages overlie the eroded

bedrock surface in all of the study area and reach a maximum thickness of over 400

feet in some portions of bedrock channels. These surficial materials represent a

complex series of glacial and post-glacial events (Horberg, 1950, 1953). Basal

sands and gravels deposited in deep bedrock channels give evidence of a source

area to the north and east. Glacial ice did advance into east-central Illinois dur-

ing Kansan, Illinoian, and Wisconsinan time (table 3). Evidence of a Nebraskan
ice advance into eastern Illinois is speculative.

The Mahomet drainage system was blocked by the end of the Illinoian Stage,

during which the maximum development of glaciation in Illinois occurred. Wiscon-
sinan ice progressed to the limit indicated by the Shelbyville Moraine. A series of

roughly parallel morainic ridges was built north of the Shelbyville Moraine as the

Wisconsinan glacier melted and readvanced. Illinoian and older drifts are preserved

beneath the Wisconsinan drift but are generally known only from subsurface records

.

The Pleistocene classification of the Illinois State Geological Survey (table

3) is based on radiocarbon dates in part and on detailed stratigraphic and geomor-
phic studies. As stated by Morrison and Frye (1965), identification of glacial

stages and substages in the subsurface is frequently made by use of interglacial

geosols, the Sangamon, Yarmouth, and Afton Soils. A geosol is a fundamental soil-

stratigraphic unit (Morrison and Frye, 1965, p. 7). Major geosols develop on gla-

cial deposits during an interglacial stage; weaker geosols are used to differentiate

glacial substages

.
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Standard practice has been to assign the major interglacial stage names to

the major soil horizons encountered in a test hole. In some areas, therefore, till-

like materials have been identified tentatively as Nebraskan, as these materials

occur below the third buried major soil zone encountered in drill holes in the area.

However, the practice of assigning each soil horizon the status of a major geosol
can lead to misinterpretations. Local differences in climate or topography can lead
to relatively strong soil development even though the regional soil development is

weak.
Many of the logs of test holes and wells that penetrate the drift record some

evidence of weathering breaks that are used to subdivide the various glacial epi-

sodes. The most prevalent break is represented by peat-organic silt and/or a green-

ish gray colluvial sequence of the Farmdalian Substage or Sangamonian Stage, or

both. It is possible that no lower Wisconsinan glacial deposits are present with-
in the area and that the Altonian time was characterized by a period of nondeposi-

TABLE 3 - PLEISTOCENE CLASSIFICATION

Radiocarbon dates
Time-stratigraphic subdivision before present

Recent Stage

5,000
Wisconsinan Stage

Valderan Substage

11,000
Twocreekan Substage (interstadial)

12,500
Woodfordian Substage

22,000
Farmdalian Substage (interstadial)

28,000
Altonian Substage

inferred limit

50,000 - 70,000
Sangamonian Stage (interglacial)

Illinoian Stage (glacial)

Yarmouthian Stage (interglacial)

Kansan Stage (glacial)

Aftonian Stage (interglacial)

Nebraskan Stage (glacial)

Early Pleistocene or late Pliocene

1 Modified in part from Frye and Willman, 1960, p. 2-3.
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tion and by colluviation; in this case, the persistent peat-colluvial break repre-

sents the time interval from Sangamonian through Farmdalian time . For this study,

the top of this break was considered the top of the Sangamonian surface; thus it

marks the division between Wisconsinan and underlying Illinoian deposits.

Several lesser breaks are recognized within the Wisconsinan deposits above
the Sangamon Soil. Below the Sangamon Soil, several weathering breaks are rec-

ognized, the most persistent of which is called the Yarmouth Soil.

Glacial drift of the Mahomet Valley region can be divided into three lithol-

ogic units (fig. 9) that are approximately equal to the presently accepted pre-Illi-

noian, Illinoian, and Wisconsinan stratigraphic units. This nomenclature is based
on identification of geosols and nonglacial deposits, such as peat, in the subsur-

face and is designed to reflect hydrostratigraphic subdivisions rather than to re-

flect a stricter time-stratigraphic nomenclature. Hydrostratigraphic units are de-
fined by Maxey (1964, p. 126) as "bodies of rock with considerable lateral extent

that comprise a geologic framework for a reasonably distinct hydrologic system."
The three hydrostratigraphic units used here have different properties in relation

to the occurrence and movement of ground water.

Studies of drill-cutting samples from various water wells show the general

character of the materials in the three recognized operational units. The Wiscon-
sinan deposits generally are fine-grained sediments and are a poor source of

ground water, except for shallow and local occurrences of sand and gravel deposits.

Illinoian deposits contain rather widespread lenses of sand and gravel intercalated

in the glacial drift, and are the most widely utilized for small and moderate ground-

water supplies. Pre-Illinoian deposits occur in a basal position and within the

drift, filling the deepest portions of bedrock channels. Permeable strata within

this hydrostratigraphic unit constitute a source of large ground-water supplies.

Sand and gravel constitute the bulk of the pre-Illinoian deposits. They
include Kansan and possible Nebraskan deposits, occupy a basal position in the

drift, and are closely associated with bedrock channels. The pre-Illinoian depos-
its occur as drift, outwash, valley trains, and reworked coarse till, concentrated

by periodic discharge of glacial meltwater down the bedrock channels. Horberg

(1953, p. 12) referred to these deposits as the Mahomet Sand and considered them
approximately equivalent to the Sankoty Sand of the Peoria region. The Sankoty

Sand (Horberg, 1950, p. 51-52) is present in the Havana Lowland area (fig. 2) and

northward within bedrock channels; it is overlain by Illinoian and older drifts.

The Mahomet and Sankoty Sands actually contain both sand and gravel and are

found in the main bedrock channels

.

The top of the Mahomet and Sankoty Sand is approximately 450 to 500 feet

above sea level. These sands are the oldest unconsolidated deposits within the

drift, with the possible exception of till (?) and/or lacustrine deposits in the bottom

of several bedrock channels. Such fine materials are sometimes reported by drillers

as occurring just above bedrock and actually may signify only the presence of

weathered bedrock. The Sankoty Sand is considered to be derived from weathering

products of sandstones and crystalline rocks in Wisconsin and Minnesota, carried

south through drainageways into the Havana Lowland. The Mahomet Sand, however,

is different mineralogically and had a provenance within glacial terranes. Heavy
and relatively unstable minerals characterize the Mahomet Sand.. An analysis by

Manos (1961) shows abundant garnet, with hornblende, epidote, and small amounts
of pyroxene, an assemblage that is typical of Pleistocene tills.

The sample study log of a test hole in central Piatt County shows the char-

acter of the pre-Illinoian deposits.
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City of Decatur well no. 3, NW^ NE{ NE| sec. 17,

T. 18 N., R. 5E., Willow Branch Township, Piatt

County. Elevation: 680 feet. Drilled by Layne-
We stern Drilling Co., 1954. Sample set no. 24148,
described by D. A. Stephenson.

Depth to

base (feet)

Pleistocene Series

Wisconsinan Stage

Silt, sandy, mottled dark gray and yellow-gray;
till and loess 10

Silt, sandy, gray, calcareous, becoming gravelly

to the bottom, till 27

Silt, sandy, gravelly, pinkish gray-brown, cal-

careous, till 52

Sangamonian Stage

Silt, sandy, clayey, green-gray, calcareous,

colluvium 62

Illinoian Stage

Silt, sandy, gravelly, predominantly gray, zones
of organic silt, calcareous, till and/or collu-

vium 125

Silt, sandy, pinkish brown-gray, calcareous,

becoming gravelly silt at 180 feet, till 200

Pre -Illinoian Stage

Gravel, sandy, silty, subrounded to rounded,

some organic silt and wood, outwash, proba-

bly top of Mahomet Sand, not clean 295

Sand and Gravel, quartzose sand, medium to

coarse grained, clean, Mahomet Sand 315

Silt, sandy, clayey, gray, slightly calcareous,

till or lacustrine, or weathered bedrock 318
Pennsylvanian Series

Shale

Elevation

(feet)

670

653

628

618

555

480

385

365

362

Permeable materials within the Illinoian deposits are both lenticular and
sheetlike and may be found in a basal position or within the section. The Illinoian

drift is composed of till with considerable amounts of sand and gravel interspersed,

locally becoming thick. Permeable materials are more abundant in Illinoian depos-
its than in Wisconsinan deposits, but less abundant than in pre-Illinoian deposits.

The sample study logs of two wells described below illustrate sequences of

Illinoian deposits and show the variable position of sand and gravel deposits with-

in the Illinoian.

L. Mueller well, SE{ SW^ SW| sec. 26, T. 16 N.,

R. 2 E., South Wheatland Township, Macon County.
Elevation: 675 feet. Drilled by Woolen, 1943. Sam-
ple set no. 9544, described by L. Horberg.
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Pleistocene Series

Wisconsinan Stage

Silt, leached, oxidized, till

Silt, gray, pink tint, calcareous, till

Sangamonian Stage

Silt, dark brown, humus
Illinoian Stage

Silt, gray-green, leached, oxidized, colluvium

Silt, light gray, calcareous, till

Sand, medium grained

Gravel, j-inch diameter, clean above, dirty

below
Yarmouthian Stage

Silt, brown, calcareous, sandy
Silt, same as above, and granular gravel

Sand and Gravel, brown, slightly calcareous

Silt, brown, few sand grains, calcareous, loess-

like

Kansan Stage

Silt, similar to above, sandy and gravelly

Silt, gravelly, greenish brown, calcareous, till

Gravel, yellow, oxidized, sandy

Depth to

base (feet)

20

50

55

100

120

Elevation

(feet)

655

625

620

65 610

85 590

90 585

575

105 570

110 565

115 560

555

145 530
170 505

175 500

Village of Kenney well, SE^ NE* SE| sec. 16,

T. 19 N., R. 1 E., Tunbridge Township, DeWitt
County. Elevation: 650 feet. Drilled by Mash-
burn, 1956. Sample set no. 27080, described by

J. Hackett.

Pleistocene Series

Wisconsinan Stage

Silt, noncalcareous, loess

Sand, fine to coarse grained, silty

Sand, medium to coarse grained, silty

Sand, coarse grained, fine gravel, some wood
Illinoian Stage

Sand, fine to coarse grained, fine gravel, very

silty, organic

Sand, fine to coarse grained

Gravel, sandy
Sand, fine to coarse grained

Silt, sandy, gravelly, brown-gray,
till

Sand, medium to coarse grained

Silt, sandy, gravelly, brown-gray,

calcareous,

till

Depth to

base (feet)

9

15

20

25

40

60

70

75

90

95

120

Elevation

(feet)

641

635

630

625

610

590

580

575

560

555

530



base (feet) (feet)

125 525

130 520

150 500

175 475
262 388
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Depth to Elevation

1

Illinoian Stage (cont.)

Silt, gravelly, brown-gray to light brown, cal-

careous, till

Kansan Stage

Silt, gravelly, light brown, mixed with soil, till

Silt, gravelly, light brown to dark gray, calcare-

ous, till

Gravel, fine grained

Sand, fine to coarse grained, clean from 250 feet

Pennsylvanian Series

Limestone

Hydrologic conditions in the Illinoian deposits are more varied than in the

pre-Illinoian deposits, as relatively impermeable till units are interbedded with

permeable sands and gravels . Water is often of poor quality where it occurs in

association with drift gas generated in the Sangamon Soil. Meents (1960, p. 3)

outlines areas of known drift gas occurrence in east-central Illinois. These occur-

rences, shaded on figure 8, are associated primarily with the Sangamonian weathered

zone in this area

.

As many as four separate glacial advances may be represented by the Wis-
consinan deposits. The ridges considered to be the terminal moraines of these ad-

vances are shown infigure2, with the southernmost, the Shelbyville Moraine, be-

ing the oldest. Moraines frequently appear to overlie bedrock ridges, and there-

fore their prominence is not entirely due to glacial deposition. Furthermore, depos-
its of a given ice advance appear sometimes to continue over and beyond a moraine-

like ridge, with thickness remaining essentially unchanged; thus, portions of mo-
rainic ridges may not necessarily be terminal positions of advancing glaciers.

Drillers' logs usually do not distinguish the separate Wisconsinan drift

sheets but list them as "blue clay" due to the freshness of their appearance in

contrast to underlying Illinoian deposits. Sample studies sometimes permit differ-

entiation of the drifts

.

In Piatt County, the following sequence appears within the "blue clay, " from

the Sangamon Soil upward: (1) a brown-gray till with a pink or red cast that may be

Shelbyville; (2) one or more gray tills that may be Cerro Gordo and possibly Cham-
paign; (3) loess up to 10 to 15 feet thick.

The Wisconsinan deposits are regionally the most barren of sand and gravel

lenses. A sample study of cuttings from a well in Piatt County shows a typical

Wisconsinan sequence.

S. L. Rogers well, NE? NW| SW^ sec. 22, T. 19 N.,

R. 4 E., Goose Creek Township, Piatt County. Ele-

vation: 700 feet. Drilled by Woolen, 1943. Sample

set no. 9384, described by D. A. Stephenson.

Depth to Elevation

base (feet) (feet)

Pleistocene Series

Wisconsinan Stage

Silt, yellow-brown, oxidized, sandy, loess 15 685
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Wisconsinan Stage (cont.)

Silt, sandy, gray, some gravel, till (Cerro

Gordo?)
Silt, sandy, red -gray-brown to dark gray, some
wood, non- to slightly calcareous, till (Shel-

byville ?)

Illinoian Stage

Silt, brown, organic, bog

Sand, gravelly, outwash
Silt, sandy, gray-brown, gravelly, clayey, till

Gravel and silty gravel, sorted gravel over

coarse till

Gravel, sand, and silt, gray, till

Sand, silty, and silt, sandy, gray-brown, till

Gravel
Silt, sandy, gray-brown, till

Kansan (?) Stage

Silt, gray-brown, probably bog
Silt, sandy, brown-gray, till

Silt, sandy, yellow-brown to brown
Pennsylvanian Series

Limestone

Depth to

base (feet)

25

53

Elevation

(feet)

675

647

70 630

75 625

80 620

90 610

105 595

125 575

130 570

140 560

145 555

155 545

170 530

Loess deposits of variable thickness cover the entire region. On uneroded
topography they range between 50 and 150 inches thick (Smith, 1942). They are

not important sources of ground water, except for a few dug wells where sand
lenses are present within the loess. In some areas, Recent alluvium and colluvium

directly overlie the drift, and southwest of the study area these deposits may lo-

cally overlie bedrock. Recent deposits occur mainly in floodplains and at the bases

of steep slopes. In this study, both loess deposits and Recent materials are treat-

ed as part of the drift sequence.

Thickness and Distribution

The drift thickness map (fig. 10) shows the average thickness to be approx-

imately 200 feet, with a minimum value of less than 50 feet and a maximum value

of over 400 feet. Thicker deposits generally are associated with bedrock valleys

or with morainic ridges. Maximum thickness occurs where the Champaign and
Bloomington Moraines cross the deepest part of the Mahomet Valley. Sand and
gravel deposits also are usually thickest where the drift is thickest. The thinnest

drift deposits occur where ground moraine overlies bedrock uplands or where recent

degradation has partially or completely removed the drift.

The drift thickness map can be of some use as an exploration tool, as it

reflects the bedrock channel pattern to a degree, and greater thicknesses of water-

bearing sands and gravels occur most frequently in bedrock channels.
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GROUND-WATER GEOLOGY

Interpretation and Use of Hydrogeologic Maps

Distribution of sand and gravel deposits within the glacial drift of the Ma-
homet Valley region are shown by quantitative maps (figs. 11-15). Maps were
constructed for five separate 100-foot intervals within the glacial drift by utilizing

the data and methods previously described. Maps were not constructed for the

hydrostratigraphic units, as elevation slices are more practical in field applications,

They do not rely on an interpretation of geosols or paleosurfaces, which, as men-
tioned, can be misleading.

The mapping units chosen were the intervals between the elevations of

700 to 799 feet (fig. 11), 600 to 699 feet (fig. 12), 500 to 599 feet (fig. 13),

400 to 499 feet (fig. 14), and 300 to 399 feet (fig. 15). The maps illustrate verti-

cal variability patterns for the sands and gravels within each of the elevation slices,

The patterns are based on a combination of center of gravity and standard deviation

contour maps that are derived from statistical analyses of available subsurface data.

The vertical variability maps show whether a test hole in a given area will

encounter favorable lithologic conditions for a ground-water supply and at what
relative position within an elevation slice these conditions exist. They also show
where nonpermeable deposits will be encountered and at what elevation bedrock

will be encountered. These maps, therefore, may be of use to well drillers, con-

sulting engineers, and land owners in reducing the amount of exploration sometimes
required to locate suitable aquifers in the drift.

Permeable materials within each elevation slice, shown in figures 11 through

15, were placed in one of four possible classes (fig. 16), based on differences in

vertical position and distribution (center of gravity and standard deviation). Each

class has distinct characteristics of vertical distribution and position of permeable

materials different from the other three classes in a slice. By referring to figure

16, one can see that possible occurrences include high or low position for the main

concentration of sand or gravel with either small or wide distribution about the po-

sition of concentration. The center of gravity is divided into high and low position

based on a 0- to 50-foot interval (high center) and a 50- to 100-foot interval (low

center). The standard deviation is divided into small or wide spread based on val-

ues that are to 10 feet (small) and 10 to 50 feet (wide) either side of the center

of gravity.

Information on vertical distribution and position is supplemented on each

map by values of the percentage of permeable materials, given at each control

point. The percentage information shows the relative amount of sand and gravel

within a given elevation slice. As each slice is 100 feet thick, the percentage

number is also the total thickness of permeable material at each point.

The percentage numbers vary in each slice and in each class within a slice.

It has been illustrated earlier that Wisconsinan deposits do not contain as many
water-bearing strata as older Pleistocene deposits; it follows that the higher ele-

vation slices have the lowest percentage averages and that percentage of perme-
able material increases with depth.

Description for the vertical variability classes, lettered from A to D, are

given in table 4. Characteristics and descriptions of each class are similar for

each slice, varying primarily in percentage (total thickness) values.
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Other features on the maps in-

clude the number of district sand and

gravel units at each control point, the

boundaries of areas where no sand or

gravel deposits are present within a giv-

en slice, bedrock contours, and ground-

surface contours. If two or more sand or

gravel lenses are present, the lenses are

separated by intervals of material of low
permeability; thus, the standard devia-

tion is usually large.

The contours outlining areas

where no sand or gravel occur are proba-

bly minimal boundaries. The implication

is that some of the areas shown as con-
taining sand or gravel may in fact contain

none. The density of data controls the

accuracy here . However, sand or gravel

units, when present, have the character-

istics of the class in which they occur.

High

50

A B

C D

50

Center of gravity

100

Distribution of Aquifers Figure 16 - Parameters of vertical vari-

ability classes in each elevation

slice.The heterogeneous distribution of

aquifers within drift makes their location

somewhat unpredictable. However, quan-

titative methods of mapping permit conditions relating to aquifer occurrence to be

categorized by areas.

In a study of a similar complex geologic environment, that of alluvial fans

in a present-day semi-arid zone that was affected by major Pleistocene climatic

changes, Bredehoeft and Farvolden (1964) determined that aquifer distribution could

be predicted from lithofacies analyses of alluvial fan environments in the lower

Humboldt River Basin, Nevada. The study concluded that many of the elastics com-
posing the best aquifers were derived from alluvial fans and reworked and redepos-
ited. The original deposits within the fans generally were not good aquifers.

A similar phenomenon occurred in the Mahomet Valley region. The drift

served as a source for coarse elastics that were subsequently reworked and rede-

posited as fluvial or glaciofluvial sediments, free of large amounts of fine-grained

materials. The bedrock topography and subsequent surface topographic patterns

were controls on the depositional environments of these elastics. Pluvial condi-

tions during interglacial stages and fluvial conditions associated with glaciation

resulted in sculpturing of the various paleosurfaces and concentration of clastic

deposits in depression areas. Many sand and gravel units are located in depres-

sions that are related to either bedrock, Yarmouthian, or Sangamonian surfaces.

Greatest thicknesses of sand and gravel occur where these depressions mark the

juncture of tributary systems.
Many of the sand and gravel units have a preferred orientation, with elon-

gation in a north-south direction, parallel to direction of ice movement and to re-

gional slopes. Locally, the elongation is parallel to east-west drainage patterns
that filled major bedrock channels, especially for the basal deposits of the pre-
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Illinoian Stage (s). This directional property may be an important factor in deter-

mining hydrologic boundaries.

The 700- to 799 -foot slice (fig. 11) is composed entirely of Wisconsinan
and Illinoian deposits. The thickest aquifers generally are in Classes C (high cen-
ter, wide spread) and D (low center, wide spread) of figure 16. Classes B (low

center, small spread) and D include segments of the Sangamon Soil zone; sand and

gravel deposits frequently are associated with low-lying portions of this zone.

Many of the clastic deposits are lenses within the till, rather than deposits in sags.

The A (high center, small spread) and C classes occur primarily on the upland areas

of McLean and Champaign Counties, and generally are within the margins of topo-

graphic highs associated with terminal moraines. High percentages of permeable
material are associated with areas of outwash extending south and west from the

Champaign Moraine.

The 600- to 699-foot slice (fig. 12) is composed primarily of Illinoian depo-
sits, although Wisconsinan deposits are present in the eastern portion of the area.

The Sangamonian, Yarmouthian, and bedrock surfaces all influenced depositional

patterns of this slice to a degree. The best aquifers are likely to occur in Class
D. High percentages of sand and gravel, such as in Champaign County, are con-
centrated along low sags on the Yarmouthian surface and on the Sangamonian sur-

face. Additional high percentage values are associated with places on the Yar-

mouthian surface where tributary valleys join. In most cases, lowest percentages

of permeable material are associated with the highest upland surfaces.

The 500- to 599-foot slice (fig. 13) contains few Wisconsinan deposits,

but is composed predominantly of Illinoian and pre-Illinoian deposits. At present,

there are more water wells completed in this slice than in any of the other slices .

The greatest thicknesses of permeable materials occur in Class D, although Classes
B and C also contain thick permeable lenses. Much of the Yarmouth Soil is within

this slice, and its configuration controlled deposition of elastics in much of the

A and C classes. Erosion during Yarmouthian time removed some thick gravel

lenses; this is illustrated in the area of well number 39 of cross section B-B 1

,

figure 9. Clastic depositional patterns in the B and D classes were influenced by

the configuration of the bedrock surface, and many high percentage values occur

in areas above bedrock valleys. Generally, in this slice, high center of gravity

of permeable material occurs over high upland surfaces.

The 400- to 499-foot slice (fig. 14) is composed essentially of pre-Illinoian

deposits. Depositional patterns of material in this slice were controlled largely

by the configuration of the bedrock surface. The slice includes much fluvial mate-
rial considered to be Mahomet Sand. Percentages of permeable materials are high-
up to 100 percent— in areas such as T. 18 N., R. 5 E. Class B contains the best

aquifers, as all elastics are one continuous unit in that class and, therefore, have
zero spread. Percentage values decrease in Class A, corresponding to a decrease
in the thickness of sand and gravel. Generally, D classes occur at the confluence

of bedrock channel tributaries coincident with high percentage values, where elas-

tics have been concentrated. The lack of permeable deposits in the valley in T.

16 N., R. 1-3 E., indicates it was not a through -drainageway to the extent the

Mahomet Valley was.
Deposits in the 300- to 399-foot slice (fig. 15) fall only in Class A and

are composed of pre-Illinoian sediments. The center of gravity of permeable mate-
rials is high, averaging only 14 feet below the top of the slice. Generally, the

total interval above bedrock in this slice is continuous sand or gravel; the percen-

tage figures, where present, indicate the amount of permeable material, in feet,
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above the bedrock. Grain sizes of the sand and gravel are in the range of medium-
to very coarse-grained sand and fine- to medium-grained gravel (standard Went-
worth scale limits).

The nature of deposits in the Harris Valley, in northern Piatt County, is

uncertain, and recent exploratory drilling has raised the question as to whether a

valley actually exists. Geophysical evidence shows the existence of a valley

(L. D. McGinnis, 1965, personal communication), and data from oil test holes de-
termined the presence and location of a valley, though no lithologic logs are avail-

able for it. However, results of exploratory drilling for a water supply in an area

south of Farmer City indicate that bedrock elevations may be at least 140 feet high-

er than indicated for the Harris Valley. The bedrock ridge that trends north-south

through R. 5 E., T. 20 and 21 N. (fig. 6), may be continuous.

General Hydrology

Ground water in the Mahomet Valley region is derived from precipitation and
underflow into the area through bedrock and bedrock valleys. Also, some of the

intermittent streams, or upland reaches of streams, act as line sources of ground

water and are considered influent streams. Perennial streams act as drains on the

ground -water system along most of their reaches, with a ground -water gradient

toward the stream. Locally, the natural direction of ground -water movement is

reversed by pumpage of wells near streams.

Two types of glacial drift have previously been discussed: unstratified

drift, or till, and stratified drift. The till was deposited directly by ice and con-
sists of a heterogeneous mixture of clay, silt, sand, and gravel. Generally, these

tills have a matrix of silt or clayey silt and have low permeabilities, except for

fracture permeability in moderately indurated tills. At most places, till is suffi-

ciently impermeable that it forms an aquitard between productive aquifers. Dug
wells in till may yield a few gallons of water per minute but commonly rely upon
storage capacity to be economically useful. Norris (1962) gathered evidence that

vertical permeability in tills is reasonably uniform over fairly large distances. He
concludes that permeability values of till can be extrapolated regionally and ap-

plied with reasonable confidence in estimating recharge rates of ground water

through till. Permeability values for the till commonly exceed 0.01 gpd/sq ft.

Stratified sediments may occur above, below, or as lenses interbedded

within a till, or as relatively continuous deposits in bedrock channels or depres-

sions. The most widespread stratified deposits are outwash sands and gravels in

the bedrock channels or in channels of formerly weathered zones. Water generally

occurs in stratified deposits under semiconfined or confined conditions. Therefore,

such water-yielding deposits are considered to represent an artesian condition and

the water level rises above the level of first encounter. Walton (1965, p. 33) gives

the recharge rates for glacial sand and gravel aquifers as ranging between 115, 000

to 500, 000 gpd/sq mi. The lower rate is for an area where the sand and gravel

aquifer is overlain by thick glacial drift consisting largely of till. Where sand and

gravel deposits are present from the surface to bedrock, recharge rates commonly
exceed 300,000 gpd/sq mi (over 6 inches of rainfall).

The aquifers are enclosed by relatively impermeable material (aquitards),

usually the silty till described above, or, in the case of the basal elastics, the

Pennsylvanian shale forms the bottom aquitard. The aquitards are saturated if they

occur below the water table but yield little water during short time intervals. Re-
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charge to the sand and gravel units occurs as vertical leakage through the aquitards

Rate of this leakage is controlled by vertical permeabilities, the thickness of con-
fining beds, and head differences.

Drift aquifers vary in their capacity to transmit and yield water. Reported

yields of wells penetrating the pre-Illinoian deposits range from 5 gallons per min-

ute (gpm) to 3000 gpm, Illinoian deposits from 3 gpm to 885 gpm, and Wisconsinan
deposits from 3 gpm to 510 gpm.

Relation of Permeability to Geologic Conditions

The most common hydrologic information available from drillers' logs are

pumping and nonpumping water levels, rate of discharge of water from a pumping
well, and length of well-development tests. A specific capacity (Q/s) can be cal-

culated for each well or test hole with this information. Specific capacity is de-

fined as the yield of the well per foot of drawdown for a stated pumping period and
rate. It is expressed in gallons per minute per foot of drawdown (gpm/ft). The

higher the value of Q/s, the more productive is the aquifer in which a given well

is bottomed.

A theoretical relationship between specific capacity and the coefficient of

transmissibility (T) exists that permits one factor to be determined if the other is

known. If specific capacity is known, T can be found. Then, using thickness

information for aquifers, which also is obtained from drillers' logs, a coefficient

of permeability (P) can be calculated from a general equation: P=T/m.
Assuming a well discharging at a constant rate in a homogeneous, isotropic,

nonleaky artesian aquifer infinite in areal extent, the theoretical specific capacity

is related to the coefficient of transmissibility in the following manner (equation

modified from Walton, 1962, p. 12):

Q/s=T/ 264 log 10 (Tt/l.87 r^S)-65.5l

where

Q = pumping rate, in gallons per minute

s = drawdown of the well, in feet, which
equals the nonpumping water level mi-

nus the pumping water level

T = coefficient of transmissibility, in gal-

lons a day per foot of aquifer

t = pumping period in days

rw = effective well radius, in feet

S = storage coefficient

Q/s = specific capacity, in gallons per mi-

nute per foot of drawdown.

This equation also requires that the well penetrates and is uncased through

the total saturated thickness of the aquifer, that well loss is negligible, and that

the effective radius of the well has not been extended beyond the casing radius by
drilling and well-development operations. Errors that result when these conditions
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of r^/t and of the storage coefficient.
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TABLE 5 - HYDRAULIC PROPERTIES OF HYDROSTRATIGRAPHIC UNITS

Unit

Specific
capacity

Q/s(gpm/ft)
Transmissivity

T(gpd/ft)
Thickness

m(ft)
Permeability
P(gPd/ft2)

Wisconsinan 0.1 to 1 to

27.0 54,000 20 2,700

Illinoian 0.1 to 120 to 4 to 30 to

57.0 110,000 32 3,440

Pre-Illinoian 0.2 to 3 to

146.0 700,000 10 70,000

are violated are partly compensatory; however, the conditions usually adversely

affect specific capacity, and actually the coefficient of transmissibility is greater

than that computed from specific capacity data.

The specific capacity data available include considerable range in pumping
period, radius, and discharge from the well. Therefore, graphs were prepared for

relating specific capacity and transmissibility in several possible combinations of

these factors. An estimate of the storage coefficient of 0.001 was substituted into

the equation. This value is indicative of semiconfined conditions that probably

best fit the actual situation. Figure 17 shows the limiting range of best fit lines

by using the following data: pumping periods of 2, 6, 12, and 24 hours; radii of

3, 6, and 9 inches; and S values of 0.01 to 0.0001. To construct figure 17, as-

sumed values of transmissibility of 10,000 and 100,000 were selected; the above
values of r^/t were used and various relationships calculated. A storage coeffi-

cient of 0.01 would move the lower boundary to a position F, as shown; if the

storage coefficient were selected as 0.0001, the upper boundary would move to

position A, as indicated. A mistake in estimating the storage coefficient does not

cause a large error in the value of transmissibility.

The specific capacity variations with pumping period are in a downward di-

rection with increased time; with radius increase, specific capacity increases, but

not proportionately.

From the graph relationships shown in figure 17 and specific capacity from

drillers' logs, a transmissibility range can be estimated for each control point.

From this, a coefficient of permeability can be computed. A range of permeability

values was computed for the hydrostratigraphic units by this method (table 5).

The values of permeability computed from drillers' logs are probably low
in most cases due to the nature of the many assumptions described above. Well
losses due to turbulent flow around the vicinity of a pumped well tend to give a

greater drawdown than would exist under less turbulent conditions. The greater

drawdown results in a lower specific capacity and a subsequent lower transmissi-

bility and permeability determination. However, this is offset partially by the

fact that most wells are likely to have a larger effective radius than that of the

drilled hole, because of development during completion and pumping.
Transmissivities and permeabilities calculated from specific capacity data

for the hydrostratigraphic units and for various slices and classes are given in

tables 5 and 6.



40 ILLINOIS STATE GEOLOGICAL SURVEY CIRCULAR 409

TABLE 6 - AVERAGE PERMEABILITY (in gpd/ft ) OF
CLASSES IN VERTICAL VARIABILITY MAPS

CI ass

Slice A B C D

300 - 399 1090 — — —
400 - 499 993 2153 3817 1077

500 - 599 1876 2560 1181 885

600 - 699 1351 1489 1351 3138

700 - 799 178 1053 — 1200

The transmissibility for a given area in the slice maps of figures 1 1 to 15

can be estimated by multiplying the average sand and gravel thickness in a class

as taken from table 4 by the average permeability of that class as taken from

table 6.

Permeabilities of the hydrostratigraphic units increase downward, indicating

a general grain-size increase of clastic deposits from theWisconsinan deposits to

the pre-Illinoian deposits in bedrock channels.

Permeability data for each class of the vertical variability slice maps (fig-

ures 11-15) show that a general agreement exists between high average permeabili-

ties and the classes of highest average lithic percentage of sand and gravel.

Significance of Quantitative Methods

The successful solution of hydrologic problems depends upon the coverage

and validity of hydrologic data. In many investigations, data from aguifer perfor-

mance tests are limited or nonexistent, and there is neither sufficient finances nor

time to accumulate these data. On the other hand, subsurface geologic information

in the form of drillers' and geophysical logs may be comparatively abundant. The

drillers' logs may include sufficient hydrologic data to permit estimates of aguifer

characteristics on the basis of theoretical relationships. Quantitative geologic

mapping technigues allow satisfactory use of the basic drillers' information for a

variety of purposes. These methods have the advantages of being reasonably eco-

nomical and expedient. Application of these techniques in conjunction with a lim-

ited aguifer testing program may provide an effective means for evaluating the re-

gional transmissive and storage properties of unconsolidated materials in a basin.

As the aguifers in drift are neither homogeneous nor isotropic with respect to per-

meability, these evaluations will be approximate.

The quantitative mapping techniques also allow satisfactory use of geologic

data for construction of hydrologic models of aquifers. These in turn can be con-

verted to analog models for study of aguifer responses to pumping. For example,

guantitative mapping and hydrologic extrapolations result in improved transmissi-

bility maps. The transmissibility values can be converted to values of electrical

resistance and an electric analog model can be constructed (Walton and Prickett,

1963).
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CONCLUSIONS

This investigation has emphasized the study and definition of permeable

zones within the glacial drift of the Mahomet Valley region of east-central Illinois.

A method of quantitative hydrogeologic mapping, which resulted in a three-dimen-

sional analysis of drift of the Mahomet Valley region, was demonstrated.

Specific conclusions are as follows:

1. Three hydrostratigraphic units are present in the Mahomet Valley region.

These units correspond approximately to Wisconsinan, Illinoian, and pre-Illinoian

Pleistocene deposits. Percentage of permeable material in these units increases

from Wisconsinan to pre-Illinoian.

Wisconsinan deposits are generally above 62 5 feet in elevation and contain
aquifers that are only locally prominent. Illinoian deposits are generally between
625 feet and 500 feet in elevation and contain relatively widespread aquifers. Be-

low 525 feet, generally, are pre-Illinoian deposits that contain high percentages of

coarse sand and gravel aquifers that fill the major bedrock channels.
A preferred orientation exists for many of the sand and gravel lenses, with

elongation in a general north-south direction, parallel to direction of ice movement
and to regional slope. Many of the aquifers are located in depressions that are

related to either bedrock, Yarmouthian, or Sangamonian surfaces. Greatest thick-

nesses of sand and gravel occur where these depressions mark the juncture of tri-

butary systems.

2. The quantitative methods utilized illustrate how limited data can be de-

veloped for a hydrogeologic analysis. These methods were chosen as one way to

define the three-dimensional configuration of permeable materials in an economical
and expedient manner.

Geological parameters to illustrate distribution of coarse-grained material

are expressed as summation products of vertical position, thickness, and areal

variation. These parameters are combined in vertical variability pattern maps for

different elevation slices, and a series of classes are created in each slice. Each

class has distinct characteristics of vertical and horizontal position of permeable
materials including possible combinations of high and low center of gravity with

either small or wide spreads. Percentage data are also included for each class.

This quantitative procedure results in a satisfactory representation of the subsur-

face geologic conditions, leads to development of hydrologic data through empiri-

cal relationships with geologic data, and serves as a method of defining hydrogeo-
logic conditions that can be modeled by analogs.

Potential areas of ground-water development are indicated with proper inter-

pretation of the vertical variability maps. Sand and gravel deposits, if present,

are likely to have the characteristics of the class in which they occur. These slice

maps thus are useful to those seeking ground-water supplies.

3. A correlation analysis shows that features of the present topography

cannot be used to predict bedrock topography in east-central Illinois . However,
present topography may be a clue in helping to interpret the configuration of buried

land surfaces if such surfaces are not deeply buried.

4. Aquifers within the three hydrostratigraphic units vary in their capacity

to transmit and to yield water. From theoretical relationships between transmissibility

and specific capacity, an average permeability was determined for the various units.

From data available, permeability is shown as increasing downward, indicative of

a general grain-size increase of clastic deposits from the Wisconsinan deposits to

deposits in bedrock channels

.
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Permeability data for each class of vertical variability slice maps indicate

that a general agreement exists between high average permeabilities and the classes
of highest average lithic percentages of sand and gravel, as would be expected.

5. Drillers' logs have been shown to be of sufficient accuracy to warrant

their use for preliminary analysis when more sophisticated data are not available

or cannot be obtained due to budget limitations. The geologic and hydrologic data

of these logs generally are consistent and reliable when descriptions of sample
sets are used for control. Despite the variations in drillers' lithologic descriptions,

this information is useful. Drillers' logs are especially useful in hydrogeologic

studies if information also is given on well yield to permit specific capacity to be

determined.
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APPENDIX A

Geologic Interpretation of Drillers' Logs

Section A

A drift sequence that includes multiple weathering zones is given here for

comparison of information given on a driller' s log and a geologic interpretation.

No sample set was available for description.

Weldon City test hole, SE^ sec. 9, T. 19 N.,

R. 4 E., Nixon Township, DeWitt County.
Elevation: 710 feet. The total depth is 378

feet, of which 298 feet is drift. Drilled by

Johnson and Son.

Driller' s log

Soil and yellow clay

Blue clay

Sand
Blue clay

Drift, black, some water
Green to blue clay

Blue clay, hard

Sand, water

Blue clay, hard

Black gumbo
Black drift

Green clay

Sand, fine, water

Blue clay, soft

Hardpan
Blue clay, hard over

soft

Brown drift

Green clay

Sand, water

Depth to

base i(ft) Geologic interpretation

Pleistocene Series

Wisconsinan Stage

18 Loess and weathered till

33 Till, gray
34 Sand
67 Till, gray

Sangamonian Stage

69 Peat

72 Colluvium and/or till,

gray-green
Illinoian Stage

99 Till, gray, indurated

99. 5 Sand
139 Till, gray

Yarmouthian (?) Stage

145 Peat and organic silt

152 Peat

158 Colluvium and/or till,

gray-green

158. 5 Sand, fine grained

Pre -Illinoian Stage (?)

164 Till, gray

165 Till

241 Till, gray

243

260

260.3

Pre-lllinoian (?) Weath-
ered Zone

Peat, organic silt

Colluvium and/or till,

gray-green

Sand
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Section A - Continued

Driller' s log

Depth to

base (ft) Geologic interpretation

Blue clay

Brown drift

Sand, water

Green clay

Soapstone

281

289

289.3
298

378

Pre-Illinoian Stage (?)

Till, gray

Pre-Illinoian (?) Weath-
ered Zone

Peat, organic silt

Sand
Colluvium and/or weathered

bedrock, gray-green

Pennsylvanian Series

Shale

Section B

A representative section of pre-Illinoian basal elastics is shown in the log

of this test hole.

City of Decatur test hole no. 3, NW* NE| NE|
sec. 17, T. 18 N., R. 5 E., Willow Branch Town-
ship, Piatt County. Elevation: 680 feet. The to-

tal depth is 318 feet, of which 315 feet is drift.

Drilled by Layne -Western, 1954. Sample set no. 24148,

described by D. A. Stephenson.

Driller' s log

Depth to

base (ft)

Geologic
interpretation

Depth to

base (ft)

Soil and yellow 10

clay

Blue clay 19

Sand, gravel, 26

and boulders

Blue clay 80

Pleistocene Series

Wisconsinan Stage

Silt, mottled dark gray

and yellow-gray, sandy,

loess and till 10

Silt, gray, calcareous,

sandy, becoming grav-

ly to the bottom, till 27

Silt, pinkish gray-brown,

sandy, gravelly, cal-

careous, till 52

Sangamonian Stage

Silt, green-gray, sandy,

clayey, calcareous,

colluvium 62



HYDROGEOLOGY OF THE MAHOMET BEDROCK VALLEY 47

Section B - Continued

Depth to Geologic Depth to

Driller' s log base (ft) interpretation base (ft)

Illinoian Stage

Gray clay 110 Silt, predominantly gray,

sandy, gravelly, zones
of organic silt, calcare-

ous, till and/or collu-

vium 125

Gray clay 180 Silt, pinkish brown-gray,

sandy, calcareous, be-

coming silt, gravelly,

at 180 feet, till 200

Pre -Illinoian Stage

Gravel, subrounded to

rounded, sandy, silty,

some organic silt and

wood, not too clean,

outwash, probably top

of the Mahomet Sand 295

Sand and Gravel, quartzose

sand, predominantly medium
to coarse grained; Mahomet

Sand, gravel 315 Sand, clean 315

Silt, gray, sandy, clayey,

slightly calcareous, till

(?) or weathered bedrock 318

Pennsylvanian Series

Shale 318 Shale

Section C

This log illustrates the range of materials described by drillers as "hardpan."

Mansfield City well, SW^ NE^ NE{ sec. 10, T.

20 N., R. 6 E., Blue Ridge Township, Piatt Coun-
ty. Elevation: 725 feet. The total depth is 215

feet, of which 214.5 feet is drift. Drilled by

Woolen Bros . , 1938. Sample set no. 2718, de-

scribed by D. A. Stephenson.

Depth to Geologic Depth to

Driller' s log base (ft) interpretation base (ft)

Pleistocene Series

Wisconsinan Stage
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Section C - Continued

Driller
1

s log

Depth to

base (ft)

Geologic
interpretation

Depth to

base (ft)

Yellow clay

Blue clay 20

Green clay 25

Hardpan 40

Gravel, dry 42

Hardpan, soft

Clay, soft, sandy
Hardpan
Hardpan, sand

streaks

Hardpan, soft,

sand seams

Hardpan

Sand, clay

Hardpan

Sand, clay

Hardpan, sand

51.5

57

68

15 Silt, yellow-brown to brown,

sandy, loess and till 15

Silt, dark gray-green to

green-gray, sandy, non-
to slightly calcareous;

colluvium of intra -Wis-
consin break 22

Silt, gray and yellow-gray,

gravelly, oxidized, non-
calcareous at top, till 40

Gravel, Sand, and Silt, gray,

slightly calcareous, prob-

ably till 42.5
Sangamonian Stage

Silt, green-gray, gravelly,

sandy, moderately calcareous,

colluvium 51.5

Post-Sangamon Deposits

Silt, gray, sandy, calcareous,

till 60

Silt and gravel, gray and tan,

74 calcareous, till 74

Gravel, some very coarse-

grained sand, not clean,

outwash or very gravelly

80 till 80

Sand and Silt, gray-brown,

calcareous, not clean, till

85 or sandy outwash, some
varved (?) lacustrine ma-

88 terial at 87 feet 88

Silt, gray and yellow-brown,
sandy, calcareous, becomes
red-gray-brown to bottom,

till 101

Silt, dark gray, sandy, cal-

careous, till 122

Silt, very dark gray, clayey,

150 sandy, calcareous, till 128

Silt, dark gray, sandy, cal-

careous, till 144

155 Silt, yellow- to red-gray-

brown, sandy, calcareous,

161 till 161
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Section C - Continued

Depth to

Driller' s log base (ft)

Geologic
interpretation

Depth to

base (ft)

Hardpan 192

Gumbo, hardpan 200

Sand, coarse

grained

Sand, gravel

210

214

Silt, very dark gray-brown,
granular gravel, sandy,

calcareous, organic ma-
terial, till and organic

silt

No samples
Silt, gray, varved, very

calcareous, lacustrine

Sand, medium to coarse

grained, becoming clean

and slightly gravelly at

204 feet; outwash, prob-

ably Mahomet Sand
Gravel, very coarse grained,

becoming medium to fine

grained toward bottom; out-

wash, Mahomet Sand
Pennsylvanian Series

177

181

198

208

214.5

Sandstone 215 Sandstone 215



50 ILLINOIS STATE GEOLOGICAL SURVEY CIRCULAR 409

APPENDIX B

IBM Program for Vertical Variability Mapping Data

The moment method for continuous distributions is described in most text-

books on statistics (for example, Arkin and Colton, 1956; or Mode, 1951). In using

such methods for the present application, the intervals between sand and gravel

occurrences and the thicknesses of these segments are irregular. Krumbein and

Libby (1957, p. 208-211) give a detailed discussion of derivations of equations

for discontinuous distributions, shown in figure 5, directly from theory.

Following is a digital computer program that is designed to obtain center

of gravity and standard deviation of any selected units. The program, written for

an IBM 7094 at the Digital Computer Laboratory of the University of Illinois, was
used to calculate vertical variability parameters for sand and gravel lenses within

the glacial drift of east-central Illinois. If the distance between clastic lenses

(h
1

s) or thicknesses of clastic lenses (t
1

s) exceeds eight in number, statement

101 must be increased to allow for this expansion; the corresponding "RIT" state-

ments would also have to be modified.

IBM 7094 PROGRAM

Columns
1 5 7

C VERTICAL VARIABILITY

DIMENSION H(100), T(100)

100 FORMAT (215.F5.0)

101 FORMAT (8F5.0)

102 FORMAT (3X, 1H1, 10X, 3HCOG, 7X, 4HRCOG, 8X, 2HAV, 9X, 3HASD, 8X, 3HRSD)

103 FORMAT (IX, 14, F14. 1, F10. 3, F12 .0, Fl 1 .0, F10. 3)

104 FORMAT (14)

WOT 6, 102

RIT 7, 104, JAY

DO 220 J = 1, JAY

A=0.0
B=0.0
C=0.0
RIT 7, 100, 1, NMX, X
rx=x
DO 200 N= 1, NMX, LX

RIT 7, 101, H(N), H(N+l),H(N+2),H(N+3),H(N+4),H(N+5),H(N+6),
lH(N+7)

200 RIT 7, 101, T(N), T(N+1), T(N+2), T(N+3), T(N+4), T(N+5), T(N+6),

lT(N+7)

DO 210 N= l.NMX
A = A+T(N)
HT=H(N)*T(N)
B=B+HT

210 C=C+HT*H(N)
COG=B/A
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IBM PROGRAM- Continued

Columns
1 5 7

rcog = cog/x
AV=C/A-(B/A)**2
ASD=SQRT(AV)
RSD = ASD/X
WOT 6, 103, I, COG, RCOG, AV, ASD, RSD

220 CONTINUE
END



Illinois State Geological Survey Circular 409

51 p., 17 figs., 6 tables, app., 1967

Printed by Authority of State of Illinois, Ch. 127, IRS, Par. 58.25





CIRCULAR 409

ILLINOIS STATE GEOLOGICAL SURVEY
URBANA


