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DIFFERENTIAL THERMAL ANALYSIS OF CLAYS AND
SHALES, A CONTROL AND PROSPECTING METHOD*

By

R. E. Grim and R. A. Rowland

Abstract

The differential thermal method, by determining the thermal reactions undergone by
a clay or shale, is a rapid means of identifying the mineral components of such materi-
als, and because the properties of clays and shales depend largely on their mineral com-
position, it is at the same time a rapid method of evaluating the properties of such ma-
terials.

Differential thermal analyses are presented for the pure forms and synthetic mixtures
of the common components of clays and shales, namely, kaolinite, halloysite, illite,

montmorillonite, quartz, gibbsite, boehmite, diaspore, dolomite, calcite, gypsum, or-

ganic material, pyrite, marcasite, goethite, and limonite.

Differential thermal analyses are presented also for a variety of well-known types of

clays, and on the basis of the thermal data for the pure components, the mineral com-
position is indicated. The correlation of mineral composition of clays and shales (as

reflected in the differential thermal curves) with the ceramic properties is discussed as a

basis for using this thermal method for indicating the properties of such materials.

Finally, differential thermal analyses are presented for sequences of samples from the

pits of several operating clay products plants in order to illustrate the way in which the

method can be applied in prospecting and in plant control.

I. Introduction

STUDENTS of clay materials are

.now generally agreed that clays and
shales are composed essentially of

extremely minute crystalline particles of

one or more members of a small group of

minerals known as the clay minerals. 1

The important clay minerals are pri-

marily hydrous aluminum and/or iron

silicate compounds, and when heated to

the fusion point they are subject to a

series of thermal reactions which ac-

company the loss of water and changes in

crystal structure. The intensity of the

thermal reactions and the temperatures

at which they take place are not the same
for all clay minerals because each con-

tains different amounts of water which is

lost at different temperatures and because

all clay minerals do not undergo the same
changes in crystal structure on heating.

Presented at the Forty-Fifth Annual Meeting, The
American Ceramic Society, Pittsburgh, Pa., April 20,

1943 (Structural Clay Products Division). Received Jan-
uary 10, 1944.

1R. E. Grim, Modern Concepts of Clay Materials,
Jour. Geol., vol. 50, No. 3. pp. 225-75 (1942); Ceram. Abs.,
vol. 21, No. 8, p. 177, 1942; Illinois State Geol. Survey
Rept. Investigations, No. 80, 50 pp., 1942.

2R. E. Grim, Relation of Composition to Properties
of C\a.y, Jour. A mer. Ceram. Soc, vol. 22, No. 5, pp. 141-51
(1939); Illinois State Geol. Survey, Information Circ, No. 45,
11 pp. (1939).

A determination of the thermal reactions

of a clay therefore provides data for the

identification of its mineral composition.

The differential thermal analytical pro-

cedure consists of heating the material at

a constant rate up to 1000°C, or as close

to fusion as is possible experimentally,

and recording, by suitable devices, the in-

tensity of the endothermic and exothermic

effects and the temperatures at which
they take place.

The properties of clays and shales de-

pend to a large extent on their clay-

mineral composition. 2 It is usually possi-

ble, therefore, to predict certain proper-

ties of clays and shales from a determina-

tion of their clay-mineral content. The
differential thermal procedure yields

analytical data for the determination of

the mineral composition of a clay in less

than two hours. It is, therefore, a rapid

method of getting important data re-

garding the properties of a clay or shale.

The speed of the method should make it

valuable in plant practice, for example,

in detecting variations in the ceramic

properties of clays that look alike in the

outcrop before they can cause trouble in

the manufacturing process. In the past,

[5]



DIFFERENTIAL THERMAL ANALYSIS

the only rapid methods available required

expensive equipment and highly skilled

manipulation.
There are some ceramic properties,

such as fired color, that are not revealed

by the differential thermal method.
Where such properties are important, the

method is not adequate for plant control

or prospecting. The study of a large

number of samples has shown, however,
that in most cases the significant vari-

ations that occur in the particular clays

used in an operation are indicated by this

method. It will be shown also that the

use of the method in a plant must follow

preliminary work that correlates the

differential curve characteristics and the

ceramic properties of the particular clays

to be used. After such a correlation has
been established, the procedure becomes
routine, and quantitative results may be
obtained.

The present paper records differential

thermal analyses for the clay-mineral and
nonclay-mineral components of clays as

well as natural and synthetic mixtures of
these minerals. It records also thermal
analyses for a variety of clay materials

and attempts to show how such analyses

may be used practically to evaluate the
properties of clays.

Fig. 1.—Thermal furnace setup showing two furnaces
with auto-transformer and potentiometer that can be
switched to either furnace.

II. Apparatus and Analytical
Procedure

The differential thermal analyses pre-
sented herein were made in a furnace
consisting of a horizontal tube of Alun-
dum, 12 in. long and 2 in. inside diameter,
wound in the middle with 46 ft. of coiled

Kanthal A wire and surrounded with 4
in. of refractory insulating brick. A
heating rate of approximately 10°C. per
minute was obtained by placing a

motor-driven autotransformer in the line

(Figs. 1 and 2).

The specimen holder was a nickel block
1 in. square and % in. deep with four
holes each 34 in. in diameter and % in.

deep, mounted on an Alundum cylinder
that fitted inside the furnace tube. The
sample was placed in one of the holes of
the specimen holder, and calcined alumi-

num oxide (which undergoes no thermal
reaction up to 1000°C.) was placed in the

other three holes. A platinum-platinum

10% rhodium thermocouple with the

junction in one of the masses of alumi-

num oxide was attached to a reflecting

galvanometer, and the furnace temper-
ature was recorded photographically.

A similar thermocouple was placed in

another of the masses of aluminum oxide

and attached to a potentiometer. The
readings from the potentiometer were
flashed onto the photographic record in

order to evaluate the curve recording the

furnace temperature.
A double-junction differential thermo-

couple, consisting of two platinum leads

joined by platinum 10% rhodium wire,

was placed with one junction in the

sample and the other in the remaining

mass of aluminum oxide. When the
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A CONTROL AND PROSPECTING METHOD

temperature of the sample was greater or

less than that of the aluminum oxide be-

cause of a thermal reaction, a potential

difference was set up in the thermocouple.
The differential thermocouple was at-

tached to a second reflecting galvanom-
eter and the temperature differences

were recorded photographically on the

same sheet used to record the furnace

temperature.

By varying the series resistance in the

differential thermocouple circuit, different

vertical exaggerations can be obtained
for the same temperature difference. Re-
sistances up to 400 ohms were used, and
on the diagrams (Figs. 4 to 17) scale A
represents 100 ohms and scale B repre-

sents 200 ohms series resistance. Varying
the resistance is important because the

magnitude of the thermal reactions is

very different for different minerals. A
vertical scale designed for the thermal
reactions of kaolinite may thus fail to

show the thermal reactions of the micas
because the intensity of the mica thermal
reactions is about one tenth that of

kaolinite.

In Figs. 4 to 17, the differential curves

are presented so that the endothermic
effects (heat taken up) are represented

by deflections downward and exothermic
effects (heat given off) by deflection up-
ward. In Fig. 3, the vertical scales used
in most of the present work are given.

The scales were constructed by measuring
the swing of the galvanometer for known
temperature differences. By applying the

scales to the figures, the temperature
differences represented by the peaks of

each curve can be estimated. The initial

endothermic peak for the partially hy-
drated halloysite, for example, represents

a temperature difference of about 14°C,
that is, the temperature of the hydrated
halloysite lagged about 14°C. behind that

of the furnace to produce this deflection

of the curve. The temperature difference

represented by the peaks can be esti-

mated only because the reactions usually

start gradually, making it necessary to

select an arbitrary base line of no tem-
perature difference. The galvanometer,
moreover, does not always return exactly

to the neutral point at the end of a

thermal reaction. No attempt has been
made to draw a horizontal base line of no
temperature difference because it would
imply a degree of accuracy that the

curves do not possess.

The atmosphere in the furnace during
the analyses of all samples was oxidizing.

Each sample was ground to pass a

60-mesh sieve. Great care was taken to

pack each one the same way in the speci-

men holder and to keep the positions of

the thermocouple junctions constant.

The weight of the sample was determined
for each run.

The apparatus used in the present work
was constructed in the laboratories of the

Illinois State Geological Survey. It

would, of course, be possible to set up
an automatic temperature control for the

furnace heating rate and an automatic
device to record the furnace temperature
and the temperature of the clay speci-

men. Such automatic apparatus might
be desirable for equipment to be used in

actual plant practice.

Experience has shown that the portion

of the thermal curves below about 200°C.

is not always precise, whereas the curves

above this temperature can be duplicated

in minute detail. Because the thermal
reactions that take place below about
200°C. are frequently the result of ad-

sorbed water, this part of the curve can

be made more exact by drying the samples
and then subjecting them to a constant

humidity. 3 This procedure cannot be

used for many natural clays where an
irreversible moisture loss may take place

on drying, and for plant control work, it

would be unnecessary in most instances.

3R. E. Grim and R. A. Rowland, Differential Thermal
Analyses of Clay Minerals and Other Hydrous Materials,
Illinois State Gcol. Survey Rept. Investigations, No. 85,
34 pp., 1942; Amer. Mineralogist, vol. 27, No. 11, pp.
746-61; No. 12, pp. 801-18, 1942; Ceram. Abs., vol. 22,
No. 6, p. 107, 1943.
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A CONTROL AND PROSPECTING METHOD 11

III. Differential Thermal Analyses
of Common Clay-Mineral and
NoNCLAY-MlNERAL COMPONENTS

of Clays and Shales

The literature4 contains numerous dif-

ferential thermal analyses of various clay

minerals,5 and consequently only brief

mention is made here of analyses of the

more important types. Differential ther-

mal curves for only a few of the common
nonclay minerals found in clays have
been presented before.

Kaolinite (Fig. 4) shows an intense

endothermic reaction between about 550°

and 650°C, a slight exothermic effect be-

tween about 650° and 950°C, and a very

sharp exothermic reaction between 960°

and 990°C.

Hydrated halloysite (Fig. 4) exhibits a

thermal curve like that of kaolinite except

that the thermal reactions appear to take

place at slightly lower temperatures.

There is also an additional endothermic
reaction between about 100° and 200°C.

Hydrated halloysite changes irreversibly

to halloysite at a low temperature (60°C.)

with a loss of 2H2 and the disappearance

of the initial endothermic peak.

Illite clay minerals (Fig. 4) show en-

dothermic reactions between about 50°

and 250°C, 500° and 650°C, and 850°

and 925°C. They show also an exo-

thermic reaction between about 925°

and 980°C. The thermal reactions are of

relatively slight intensity and may not be

detected in apparatus set up for kao-

linites. The final endothermic and exo-

thermic reactions are subject to con-

siderable variation from one illite to

another, occasionally being so slight that

they are scarcely detectable.

Montmorillonite clay minerals (Fig. 4),

like the illites, show three endothermic
reactions and a final exothermic reaction.

Most montmorillonites provide curves

differing from those of illites by showing

4 (a) F. H. Norton, Critical Study of Differential

Thermal Method for Identification of Clay Minerals,
Jour. Amer, Ceram. Soc, vol. 22, No. 2, pp. 54-63 (1939).

(6) Jean Orcel, Differential Thermal Analysis for
Determination of Constituents of Clays, Laterites, and
Bauxites, Congr. Internal. Mines, Met. Geol. Appl., 7e
Session, Paris, 1935, Geol., I, 359-73; Ceram. Abs., vol. 16,

No. 7 p. 218, 1937.
(c) See also footnote 3.
5For discussion of the changes in the clay minerals

causing the thermal reactions, see R. E. Grim and W. F.
Bradley, Investigation of Effect of Heat on Clay Miner-
als, Illite and Montmorillonite, Jour. Amer. Ceram. Soc,
vol. 23, No. 8, pp. 242-48, 1940; Illinois State Geol. Survey
Rept. Investigations, No. 66, 13 pp., 1940; see also footnote
3.

the second endothermic reaction to be
more intense and taking place at a tem-
perature about 100° higher, that is,

±700°C, and by more intense final endo-
thermic and exothermic reactions. Some
clay minerals that appear to belong to

the montmorillonite group provide ther-

mal curves (California bentonite, Fig. 4)

that cannot yet be distinguished from
those for the illites. The available data
suggest that the latter minerals are iron-

rich and perhaps should be designated as

nontronites.

Quartz (Fig. 5) shows a sharp endother-
mic reaction of very low intensity at

about 565°C, corresponding to the trans-

formation from a to /3 form. It is usually

impossible to detect a thermal reaction

corresponding to the quartz-to-tridymite

transformation at about 870°C.

Gypsum (Fig. 5) shows a double en-

dothermic reaction between about 130°

and 185°C. The first part of the double
reaction is the larger and corresponds to

the loss of V/2 H2O with the change to

the hemihydrate. The second part of the

peak results from the loss of y^ H2O with
the development of anhydrite. The gyp-
sum curves show also a faint exothermic
reaction at about 370° of unknown signifi-

cance.

Gibbsite (Fig. 5) produces a single strong

thermal reaction, endothermic between
about 275° and 375°C.

Diaspore (Fig. 5) shows a strong en-

dothermic reaction between 500° and
600°C. and a very faint exothermic re-

action at about 865°C.

Boehmite (Fig. 5) yields a curve quite

similar to that of diaspore. There is a

suggestion that the thermal reactions take

place at slightly higher temperatures in

boehmite, but this point cannot be con-

sidered as established.

Calcite (Fig. 5) shows an intense en-

dothermic reaction, beginning at about
700°C. and ending abruptly at about
860°C. The galvanometer attached to

the difference thermocouple frequently

swings a short distance past the neutral

point at the end of the carbonate en-

dothermic reaction. As a consequence, a

false suggestion of an exothermic reaction

appears on the thermal curve of samples

containing calcite.
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Dolomite (Fig. 5) shows a double en-

dothermic reaction between about 775°

and 860°C. The final part of the reaction

yields a peak at about the same tem-
perature as that given by calcite.

Clarain and vitrain (Fig. 6), which are

important components of coal, provide
intense exothermic effects beginning at

about 200°C. and ending near 600°C.
The difference in detail shown by the

curves may not be significant so that it

cannot yet be concluded that this ther-

mal method distinguishes between the
components of coal.

Pyrite and marcasite (Fig. 6) show in-

tense exothermic reactions between about
400° and 550°C. plus a slight endothermic
reaction between 600° and 700°C. The
curves suggest that the exothermic re-

action of pyrite extends to a slightly

higher temperature than that of marca-
site.

Limonite and goethite (Fig. 6) samples
investigated gave endothermic reactions

between 250° and 350°C. and between
340° and 425°C, respectively. The
specific hydrates of ferric iron have not
been well characterized, and the data
herein presented are significant only in

indicating the temperature range in

which characteristic endothermic reac-

tions take place.

IV. Differential Thermal Analyses
of Prepared Mixtures of Clay
Minerals and Nonclay Minerals

The thermal curve for the mixture of
equal parts of kaolinite and illite (Fig.

7) is dominated by the thermal reactions

of kaolinite because the thermal reactions

of this mineral are much more intense.

The presence of illite is indicated by the

initial endothermic reaction and the

slight endothermic and exothermic effects

preceding the final kaolinite exothermic
reaction. The second endothermic re-

action of illite takes place at about the

same temperature as the kaolinite endo-
thermic reaction and is therefore con-

cealed.

The montmorillonite and illite are in-

dicated clearly in the thermal curve of a

mixture of equal amounts of these

minerals (Fig. 8) by the endothermic re-

actions at about 550° and 700°C, re-

spectively. It must be emphasized that

such a clear differentiation does not exist

for all mixtures of these two groups of
clay minerals because the second en-
dothermic reaction of some clay minerals
that seem to belong to the montmorillo-
nite group takes place at about the same
temperature as that of illite.

The differentia] thermal curves for the
prepared mixtures of clay minerals and
nonclay minerals (Figs. 7 and 8) show the
possibilities of this method of deter-

mining the components of clay as well as

its limitations. On the basis of these
curves and a large number of additional
unpublished differential thermal analyses,

the following general statements seem
warranted.

The initial endothermal peak is indi-

cative of a clay mineral other than kao-
linite, usually either an illite or montmo-
rillonite inasmuch as these are common
clay-mineral groups. If the reaction is

sharp, that is, takes place within narrow
temperature limits, a montmorillonite
rather than an illite is suggested.

Organic materials give intense exo-

thermic reactions beginning at about
200°C. and continuing until the furnace
has reached 650° to 700°C. The re-

actions are so intense that the endother-
mic reactions taking place in this tem-
perature interval of all the clay minerals
except kaolinite and halloysite are apt
to be concealed.

Marcasite and pyrite give intense ex-

othermic reactions in about the same
temperature range as organic material.

The reaction begins at a higher temper-
ature for the sulfides, which sometimes
serves to differentiate them from organic
material.

Under the conditions of making differ-

entia] thermal analyses, the reactions take

place in an interval of time during which
the temperature of the furance increases.

In cases where the reactions take con-

siderable time, the temperature of the

peak of the reaction will vary, depending
on the amount of the mineral causing

the reaction. Thus, in the case of organic

compounds, the temperature of the peak
may vary several hundred degrees, de-

pending on the amount of the material in

the sample analyzed. The temperature
at which the reaction starts in any case is

significant rather than the temperature at

the peak or at the conclusion of the re-

action.
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In cases where intense reactions end
abruptly, the recording galvanometer
shows a tendency to swing past the

neutral point, and the resulting curve will

suggest a reaction that has not taken
place. For example, in the second curve
from the top in Fig. 8, an endothermic re-

action is suggested at about 675°C,
whereas the sample contained nothing
to give a reaction at this temperature.

The reaction for the carbonates is

quite distinctive because it takes place in

a temperature interval (800° to 850°C.)

in which most other clay components
show no reaction. Calcite in quantities

as small as 5% can be closely estimated.

The final exothermic reaction of kao-
linite is sharp, intense, and diagnostic of

this clay mineral.

The final endothermic and exothermic
reactions of illite and montmorillonite
can usually be seen. These reactions are

variable, however, and the variations

seem to increase in mixtures; as a con-

sequence, they must be used with caution.

V. Differential Thermal Analyses
for Clays of Various Types

The differential thermal analyses shown
in Figs. 9 to 12 were selected from several

hundred analyses of a large variety of
clays. They are presented to indicate

the clay-mineral composition of well-

known types of clay and to illustrate the
possibilities of the differential thermal
method in obtaining such data.

Bauxitic kaolin {A), Georgia (Fig. 9)

provides a thermal curve indicating that

it is composed of kaolinite and gibbsite

with the former considerably more abun-
dant. The endothermic reaction at about
325°C. indicates gibbsite, and the other
thermal reactions are those of kaolinite.

Bauxitic kaolin (B), Georgia (Fig. 9)

provides a thermal curve like that of the

foregoing sample except that the size of

the gibbsite reaction is larger than that

of the kaolinite, thereby indicating a re-

latively larger amount of gibbsite in this

sample. The bauxitic kaolin (B) also

shows a slight endothermic reaction at

about 100°C, and the endothermic re-

action at about 600°C. is at a slightly

lower temperature than in the bauxitic

kaolin (A). These latter characteristics

suggest that (B) is actually composed of

halloysite rather than kaolinite or that
the kaolinite is poorly crystalline.

Diaspore clay, Missouri (Fig. 9) gives

a thermal curve with an intense endo-
thermic reaction at about 540°C, indi-

cating the presence of the mineral dia-

spore.

Burley flint clay, Missouri (Fig. 9)

gives a thermal curve that shows the in-

tense endothermic reaction at about 600°

C. and the exothermic reaction at about
960°C. characteristic of kaolinite. A small

amount of diaspore is indicated by the

distinct hump at about 540°C.

Flint clay, Missouri (Fig. 9) supplies a

thermal curve suggesting that kaolinite

is the only component; this curve, how-
ever, provides no explanation for the
flintlike properties.

Flint clay, Ohio (Fig. 9) gives a thermal
curve also showing the thermal reactions

of kaolinite. The intensity of the reac-

tions, however, is smaller than would be
expected if well-crystallized kaolinite

made up the entire clay. This flint clay,

on the basis of the thermal analysis,

apparently contains either a component
which shows no thermal reactions in ad-

ditions to the kaolinite or the kaolinite

itself has caused reactions of low in-

tensity. Other analytical data (micro-

scopic and chemical) suggest that kao-
linite is the dominant component, and
the latter interpretation seems to be the

logical one. A considerable body of evi-

dence has been accumulated showing that

the intensity of the thermal reactions of

the clay minerals generally is reduced as

the crystallinity becomes less perfect.

Ball clays, Tennessee, Mississippi, Eng-
land, and Germany (Fig. 10) exhibit

thermal curves which indicate by the

endothermic reactions at about 600°C.
and the exothermic reactions between
900° and 1000°C. that kaolinite is an im-
portant component. The initial endo-
thermic peaks indicate that some other

clay mineral is also present, and the

character of the peaks suggests that it is

an illite (X-ray diffraction data check the

presence of illite). The English and Ger-
man ball clays show exothermic reactions

beginning about 200°C. and ending about
650°C. that are the result of the burning
of organic material. The curves for the

other dull clays suggest only a trace of

organic material.
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It must be emphasized that the fore-

going statements regarding the ball-clay

samples do not apply to all ball clays. 6

There are American ball clays, for ex-

ample, with considerable organic material.

The thermal curves, moreover, do not in-

dicate another factor that is vital in the

composition of ball clays, namely, that

the illite component must be very low in

iron.

6C. G. Harraan and C. W. Parmelee, Testing and Classi-
fication of Ball Clays: Thermal History, Bull. Amer.
Ceram. Soc, vol. 21, No. 11, pp. 283-86, 1942.

The thermal curves for the ball clays

show the additional fact that in natural

clays composed of illite and kaolinite the

second endothermic and final endo-

thermic and exothermic reactions of the

illite may be completely obliterated.

Kaolin, Illinois (Fig. 10) provides a

curve with thermal reactions indicating

the presence of kaolinite. The kaolinite

thermal reactions are of sufficient in-

tensity to account for the entire com-
position of the clay, but there is an initial

endothermic reaction somewhat similar

to those that have been interpreted as

indicating an illite. X-ray diffraction

analysis shows no illite in this sample,

and another interpretation must be found.

The kaolinite making up the clay is

extremely fine grained and poorly crystal-

line which probably accounts for this

thermal feature.

Soft and hard kaolin, Georgia (Fig. 11)

provide perfect kaolinite thermal curves.

The faint initial endothermic reactions of

the hard kaolin probably mean some im-

perfection in the crystallinity of the kao-

linite.

Plastic kaolin, Georgia (Fig. 11) gives a

thermal curve that is characteristic of

kaolinite with additional endothermic re-

actions at about 700°C. and between 100°

and 200°C. The endothermic reaction at

700°C. suggests the presence of mont-
morillonite. Montmorillonite would ac-

count for the initial endothermic reaction

and also explain the plastic properties of

this kaolin.

Sagger clay, Tennessee (Fig. 11) shows
a thermal curve similar to those of some
of the ball clays. Traces of iron adequate

to cause variations in firing color would,

of course, not be indicated by the thermal

procedure.

Glasspot clay, Germany (Fig. 12) gives

thermal reactions indicating the presence
of kaolinite. The faint initial broad en-
dothermic reaction suggests a small
amount of an illite. The reactions shown
by the thermal curve are not intense
enough to account for all the components
in the sample, and a microscopic analysis

has shown that about 50% of the clay is

composed of very fine quartz.

Wad clay, Tennessee (Fig. 11) shows a
thermal curve about like that of the
glasspot clay except that the first exo-

thermic reaction is larger, indicating rel-

atively more organic material.

Fire clay, Ohio (Fig. 12) is from a clay

deposit used extensively in making steel

ladle brick. The endothermic reaction at

about 575°C. and the final exothermic
reaction indicate the kaolinite type of clay

mineral. The initial broad endothermic
reaction cannot be explained satisfactor-

ily although it is known from other
analytical evidence that the sample con-

tains a considerable amount of an illite.

The sharp exothermic reaction between
400° and 500°C. indicates pyrite. The
sample contains a considerable amount
of quartz, which accounts for the rela-

tively low intensity of the thermal re-

actions.

Plastic fire clay, Missouri (Fig. 12)

exhibits a thermal curve indicating kao-
linite and a smaller amount of an illite.

Slip clay, New York (Fig. 12) contains

carbonate as shown by the endothermic
reaction at about 850°C. and pyrite and
organic material as indicated by the

exothermic reactions between about 300°

and 500°C. Quartz is indicated by the

distinct break in the curve at 575°C.
The intensity of the thermal reaction for

pure quartz is very slight so that a re-

reaction of this intensity indicates a con-

siderable amount (30% + ) of this com-
ponent. The clay-mineral component
cannot be identified, except that kao-

linite is not present because the reactions

caused by the abundant nonclay-mineral
components conceal those of the clay

minerals. If kaolinite were present in

appreciable amounts, it would be evident

because of the intensity of its reactions.

Fuller s earth, Georgia (Fig. 12) con-

tains montmorillonite, according to the

thermal curve data. The exothermic re-
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action between 400° and 500°C. indicates

pyrite, and the endothermic peak between
500° and 600°C. suggests nontronite or

illite, probably the latter.

VI. Correlation of Differential
Thermal Characteristics and

Ceramic Properties

The thermal curves of the various

types of clay illustrate certain general re-

lationships between clay composition, as

reflected in the curves, and ceramic

properties that may be summarized as

follows

:

(a) An endothermic reaction below
about 200°C. usually indicates the pres-

ence of montmorillonite or illite. A clay

material containing these components is

apt to have high plasticity and high

shrinkage and will probably be nonre-

factory and will burn red. In general, the

larger this reaction, the higher are the

plasticity and shrinkage.

(b) Endothermic reactions between
about 300° and 550°C. usually indicate a

hydroxide of alumina or ferric iron oxide.

If the component is a hydroxide of

alumina, the clay will be very refractory

and will have low shrinkage.

(c) A broad exothermic reaction be-

tween about 200° and 600°C. is the result

of organic material. Clays yielding such
thermal reactions will frequently be very
plastic and will require careful burning to

insure complete oxidation of the carbon
without ruining the ware.

(d) A sharp exothermic reaction be-

between 400° and 500°C. indicates pyrite

or marcasite.

(e) A sharp intense endothermic re-

action at about 600°C. and a sharp exo-

thermic reaction at about 975°C. indi-

dicates the presence of kaolinite. A clay

with this component is apt to be refrac-

tory and light firing and to have low plas-

ticity and a relatively long vitrification

range.

(/) A clay with a slight endothermic
reaction at about 500° or 700°C, followed

by another endothermic reaction at about
900°C, and then a final slight exothermic
reaction is composed of illite or mont-
morillonite. A clay containing either of

these clay minerals is not refractory or

light firing and is apt to have a short

vitrification range. If the component
is montmorillonite, it will also have high
plasticity and shrinkage.

(g) A small endothermic break at

575°C. shows the presence of considerable

free silica (quartz) which will reduce the

plasticity and shrinkage of the clay.

(h) A sharp intense endothermic re-

action at about 850°C. indicates the

presence of carbonate and therefore a

clay requiring careful preparation and
firing technique.

It must be emphasized that experience

and caution are necessary in interpreting

the composition and properties from the

differential thermal curve of a clay. In

studying a large number of clays, some
curves will be encountered that cannot
be evaluated satisfactorily without ad-

ditional analytical data from optical,

X-ray, or chemical analyses.

VII. Application of Differential
Thermal Procedure to Prospecting

The curves shown in Figs. 13 to 17

represent differential thermal analyses of
sequences of samples collected from the

mines of several operating clay products
plants. These figures illustrate the varia-

tions in curve characteristics that can be
expected within a single pit and therefore

the variations in ceramic properties that

can be detected by this method.

{A) Refractory Brick Plant in Central

Illinois (Pennsylvanian, Cheltenhayn Un-
derclay)-. The mine shows 6 to 12 feet

of gray-brown underclay that usually

appears homogeneous from top to bottom.
At some places in the mine, however, a

sandy zone is present in the middle of the

bed; at other places, a greenish shaly clay

is interstratified in the lower part of the

clay.

The curves in Fig. 13 show the differ-

ential thermal characteristics of samples
collected at intervals from the top to the

bottom of the mine and at different lateral

positions. Curves a and b from samples
near the top of the mine indicate a kao-
linite clay with some illite and a con-

siderable amount of pyrite. Curves c and
d from samples near the bottom of the

mine at the same location (as a and b)

indicate a clay composed of illite without
kaolinite. Curve c also shows the presence

of pyrite. Curves e and / from samples
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near the top and bottom, respectively, at

another location in the mine indicate a

clay composed of kaolinite with some
illite and pyrite. The amount of kaolinite

is larger and the amount of illite and
pyrite is smaller at the location of e and/
than that of a and b.

The plasticity and refractoriness of the

clays vary as the relative amounts of

illite and kaolinite vary. Samples e and
/ with the higher kaolinite content are

more refractory than a and b from the

same vertical position but at a different

location in the mine. Samples c and d
without kaolinite are nonrefractory.

(B) Refractory Brick Plant in Northern

Illinois (Pennsylvanian
y
Lower Pottsville

Underclay) : The pit shows 5 feet of gray-

brown underclay (samples a b, c, d) grad-

ing below into one foot of gray-white

underclay (sample e).

The curves in Fig. 14 show that all the

samples from the pit at this plant con-

tain kaolinite, illite, pyrite, and organic

material. The intensity of the reactions

in a and b is less than would be expected
for clays composed only of these minerals,

and it is likely therefore that they also

contain a considerable amount of free

silica. The curves indicate that the

relative abundance of these component
minerals varies in clays selected from
different places in the pit. The ceramic
properties of the clay change with these

variations in composition.

(C) Face Brick Plant in Northern Illi-

nois (Pennsylvanian, Sheffield Shale) : The
pit shows about 16 feet of yellow-green

shale (samples a, b, c) grading below into

about 8 feet of blue-gray shale (samples

d, e).

The curves in Fig. 15 show that all the

samples from this pit are composed es-

sentially of an illite. Samples a and b

contain also a high percentage of quartz
(free silica) as is shown by the endother-
mic break at about 575°C. and by the

relatively low intensity of the thermal re-

actions in comparison with those of the

other samples. All the samples show some
organic material, but d and e have more
than the others. Samples r, d, and e

contain pyrite, and e contains also a con-

siderable amount of carbonate.

The ceramic properties of the material

vary with the foregoing variations in

mineral composition; for example, the

plasticity and the shrinkage decrease as

the relative abundance of quartz in-

creases.

(D) Face Brick Plant in Southern Illi-

nois (Pennsylvanian
y
Shale Overlying Col-

linsville Limestone)-. This pit shows 10
feet of brown shale (samples a and b)

overlying 24 feet of blue shale (samples
c, d, e,f).

All of the samples from this pit, as

shown by the curves in Fig. 16, are com-
posed essentially of illite. The slight

endothermic hump at about 575°C. in all

the curves indicates the presence of a con-

siderable amount of quartz. Each sample
also contains organic material, and the

curves indicate that this material is least

abundant in the top (a) and bottom (/)
samples.

The greatest variation in the composi-
tion of the samples from this pit is in the

relative abundance of the illite as shown
by the variation in the intensity of the

illite thermal reactions. The plasticity

and shrinkage of the clay vary with this

change in composition.
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Fig. 17.—Samples from clay pit of common brick plant,

Chicago, 111., 50 ohms series resistance.



A CONTROL AND PROSPECTING METHOD 23

(E) Common Brick Plant\ Chicago
,

Illinois {Pleistocene Till) : This pit shows
about 18 feet of light gray-blue till

(sample a) overlying about 15 feet of

dark gray till (sample d). The upper and
lower tills are frequently separated by a

thin (1+ foot) bed of gray silt.

Samples a and d (Fig. 17) are raw
glacial till with such large amounts of

carbonate and organic material that the

other components are concealed. Samples
b^ c, and e are the clay-size grade (—2
micron) of several tills from which the

carbonate has been removed. These
curves show that the dominant compo-
nent of the clay-size grade is an illite.

The curves show also that there is con-

siderable variation in the composition of

the clay grade which can be expected to

cause important variations in ceramic

properties. A distinct variation thus

occurs in the amount of organic material,

and curve e shows an endothermic re-

action between 600° and 700°C. sug-

gesting the presence of some montmoril-
lonite-type clay mineral.

It is evident from the foregoing differ-

ential thermal analyses of pit samples
that the method is adequate to detect

variations in the composition of clays and
shales in a single pit that are responsible

for significant variations in ceramic
properties. The method is therefore a

rapid means of evaluating the properties

of clays and shales for plant control and
prospecting. Before the method could be
put to full use in a plant, however, it

would be necessary to run a considerable

number of curves of a range of samples
representing the particular clays to be
used and for which determinations of
properties were available. These pre-

liminary curves would provide a correla-

tion of curve characteristics with clay

properties and would form the basis for

the later interpretation of the curves of
samples with unknown properties. Only
after these data were at hand could trust-

worthy interpretation of properties be
made from the thermal curves.

Illinois State Geological Survey

Report of Investigations No. 96

1944




