SCREENING OF SELECTED FLUOROAROMATIC COMPOUNDS FOR USE AS AGRICHEMICALS, I

R. H. Shiley, D. R. Dickerson, Claus Grunwald, and J. R. Willard

Shiley, Richard H

Screening of selected fluoroaromatic compounds for use as agrichemicals, 1 / by R. H. Shiley and others. -- Urbana : Illinois State Geological Survey Division, 1979.

17p. : tables ; 28cm. (Illinois--Geological Survey. Circular ; 508) References: P. 11.

1. Fluoroaromatic compounds, 2. Herbicides--Testing, 3. Fungicides--Testing, I. Title, (Series)

SCREENING OF SELECTED FLUOROAROMATIC COMPOUNDS FOR USE AS AGRICHEMICALS, I

R. H. Shiley, D. R. Dickerson, Claus Grunwald, and J. R. Willard

CONTENTS

Abstract	1
Introduction	1
Experimental procedures	1
Fungicides	1
Foliar disease protectant	2
Curative	2
Systemic	2
Soil fungicide	2
Herbicides	2
Preemergence	2
Postemergence	3
Arabidopsis thaliana (L.) Heynh Assay	3
Tomato pedicel test	3
Ethylene evolution test	3
Results and discussion	3
References	11
Appendix A. Compound index.	12
Appendix B. Other compounds tested for biological activity.	14

TABLES

1.	Organisms causing disease.	2
2.	Fungicide evaluation.	4
3.	Pre- and postemergence herbicide evaluation.	6
4.	Effects on the growth of Arabidopsis thaliana.	9
5.	Tomato pedicel explant test.	10
6.	Ethylene evolution test.	11

ACKNOWLEDGEMENTS

The authors wish to thank the Agricultural Chemical Division of FMC Corporation, Middleport, NY, for their help in the screening program and especially Dr. Arthur A. Ramsey for his help in compiling this data. We also acknowledge the assistance of Dr. Glenn Finger, Alberta Zachay, and Gail Gray and express our gratitude for their efforts.

SCREENING OF SELECTED FLUOROAROMATIC COMPOUNDS FOR USE AS AGRICHEMICALS, I

R. H. Shiley and D. R. Dickerson, Illinois State Geological Survey, Urbana, IL
 Claus Grunwald, Illinois State Natural History Survey, Urbana, IL
 J. R. Willard^{*}, Agricultural Chemical Division, FMC Corporation, Middleport, NY

ABSTRACT

A series of 214 fluoroaromatic compounds were screened for biological activity for use as fungicides and herbicides. Fungicidal activity was tested in the following four categories: foliar, curative, systemic, and soil. In the foliar fungicide evaluation, three of the subject compounds showed slight to moderate activity against leaf spot of sugarbeet and bean rust. As curative agents, six of the compounds showed good activity when compared to Benlate in controlling leaf spot of sugarbeet, bean powdery mildew, and cucumber powdery mildew. Systemically, one compound showed only slight control of tomato bacterial spot. In the soil fungicide evaluation, six of the test compounds showed moderate to good activity against fusarium root rot of bean and cucumber damping-off when compared to Benlate. Of the eleven compounds which exhibited pre- or postemergence herbicidal activity, 2,4,5-trifluorophenoxyacetic acid was the most effective. It is comparable in activity to its chloro analog. Twenty-five field crops and weeds were used in the herbicide evaluation. The testing of the gross effects on the growth of Arabidopsis thaliana and the ethylene evolution test were also used in the screening program.

INTRODUCTION

Forty years of research in organic fluorine chemistry in the laboratories of the Illinois State Geological Survey has made available for research purposes a large number of aromatic fluorine compounds. The Illinois State Geological Survey traditionally has had an interest in plant growth regulators (Finger et al., 1959). As early as 1951, the Botany and Plant Pathology Section of the Illinois State Natural History Survey was testing fluorinated p-benzoguinones for their fungicidal activities (Tehon, 1951). In 1954, Forsberg tested 1-fluoro-3-methyl-4,6-dinitrobenzene and 1,3-difluoro-4,6-dinitrobenzene for protection against Fusarium rot in Gladiolus corms. These compounds were very effective.

*deceased

In 1974, fifty-one fluoroaromatic compounds were tested on several fungi which attack Gladiolus corms, and Poinsettia plants and cause dutch elm disease (Shiley et al., 1975). Seven of the compounds tested had a fungicidal activity equal to or greater than that of mercuric chloride on one or more of the organisms tested.

As a result of these findings and the Geological Survey's recent publication Aromatic Fluorine Chemistry at the Illinois State Geological Survey, Research Notes 1934-1976 (Shiley et al., 1978), coupled with recent advances with the potassium fluoride-halogen exchange reaction on polychloro-benzenes (Forsberg, 1954; Shiley, Dickerson and Finger, 1972/73; Shiley, Dickerson, and Finger, 1978; Shiley et al., 1975; Tehon, 1951) which allows for increased ease of synthesis of these compounds, the desire to test the subject compounds as agrichemicals has been rekindled. Therefore, a new program designed to test 214 aromatic fluorine compounds under industrial and field conditions was undertaken in a cooperative study between the Agricultural Chemical Division of the FMC Corporation (Middleport, NY) and the Illinois State Geological Survey Geochemical Section and under the guidance of the Illinois State Natural History Survey, Botany and Plant Pathology Department. This work will be expanded in the future to include the testing of some of these compounds as insecticides and nematicides.

EXPERIMENTAL PROCEDURES

The synthetic routes and physical constants for the compounds used in this screening program are reported in Illinois State Geological Survey Circular 501 (Shiley et al., 1978). The methods employed in this screening program are the basic testing procedures used by the FMC Corporation Agricultural Chemical Division. The various testing procedures are as follows.

Fungicides

The organisms employed in this biological screening program are described in table 1.

The biological tests used in the screening program are as follows:

- 1. Foliar disease protectant. Test results are reported as the percentage of control of infection due to treatment of the host plant with test chemical one day prior to inoculation with the fungal organism.
- 2. Curative. Test results are reported as the percentage of control of infection due to treatment of the host plant with test chemical one day after inoculation with the fungal organism.
- 3. Systemic. Test results are reported as the percentage of control of infection of the host plant due to treatment of the soil with the test chemical one day prior to inoculation of the plant with the disease organism.
- 4. Soil fungicide.
 - a. Fusarium root rot. Test results are reported as the percentage of control of infection of the plant due to treatment of the soil with test chemical one day prior to inoculation of the soil with fungal organism.
 - b. Cucumber damping-off. Test results are reported as an efficacy index (EI) which compares the effect of the test chemical to that of a standard (Captan). EI greater than 100 indicates that the test chemical is more effective than the standard. Calculation of the efficacy index is shown below. In this test, cucumber seeds are treated with the test chemical, planted in soil, and subsequently inoculated with the disease complex.

$$EI = \frac{\text{Tot. stand}(\text{test chem.})^{-\text{Tot. stand}}(\text{untreated})}{\text{Tot. stand}(\text{Captan stand.})^{-\text{Tot. stand}}(\text{untreated})} \times 100$$

Herbicides

The plant species employed in the preliminary biological screening program are as follows:

Common name	Scientific name
Lima bean	Phaseolus lunatus L.
Sweet corn	Zea mays L.
Wild oats	Avena fatua L.
Lettuce	Lactuca sativa L.
Mustard	Brassica juncea (L.) Czerniak
Crabgrass	Digitaria sanguinalis (L.) Scop.

The following biological tests are used in the screening program:

5. Preemergence. In the preemergence test, the test chemical is sprayed onto the seeds at planting. Test results are recorded after 10 to 14 days. Test results are reported as a qualitative measure of the vigor (V) of standing plants/percentage of plants killed (K). Vigor ratings are assigned as follows:

Vigor ratings

- 1 Severe injury. Plants are not expected to recover.
- 2 Moderate to severe injury. Severe injury to surviving plants.
- 3 Moderate injury. Plants are expected to recover.
- 4 Slight injury. Plants have recovered or are expected to fully recover.
- 5 No effect.

Disease	Fungus	Host plant	Cultivar
Late blight	Phytophthora infestans (Mont.) d By.	tomato (Lycopersicon esculentum L.)	Heinz 1350
Bean rust	Uromyces phaseoli (Pers.) Wint.	bean (<i>Phaseolus vulgaris</i> L.)	Pinto
Rice blast	Pyricularia oryzae Cav.	rice (<i>Oryza sativa</i> L.)	Nova 66
Leaf spot	Cercospora beticola Sacc.	sugarbeet (<i>Beta vulgaris</i> L.)	A436-67R
Bean powdery mildew	Erysiphe polygoni DC.	bean (<i>Phaseolus vulgaris</i> L.)	Bountiful
Bacterial spot	Xanthomonas vesicatoria (Doidge) Dows.	tomato (<i>Lycopersicon esculentum</i> L.)	Heinz 1350
Root rot	<i>Fusarium solani</i> (Mart.) Appel and Wr. f. <i>phaseoli</i> (Burk.) Synyd. and Hans.	bean (<i>Phaseolus vulgaris</i> L.)	Pinto
Damping-off	Pythium ultimum Trow Rhizoctonia solani Keuhn	cucumber (<i>Cucumis sativus</i> L.)	Straight Eight

TABLE 1. Organisms causing diseases.

The plants are also examined for any biological growth responses. These are denoted by the letter R. The growth effects screened for are as follows:

Biological response (R)

- 1 Necrosis
- 2 Stunting
- 3 Desiccation
- 4 Axillary growth stimulation
- 5 Nastic responses
- 6 Necrotic spots
- 7 Growth stimulation
- 8 Defoliation
- 9 Chlorosis
- 10 Intumescence

For example a 20/3/2 rating indicates that 20 percent of the plants were killed by the test chemical treatment, there was moderate injury to surviving plants, and the surviving plants were stunted in growth.

- Postemergence. Test results are reported as in the preemergence test. In the postemergence test, 10 to 14 day old plants are sprayed with the test chemical. Test results are recorded after an additional 10 to 14 days. The same standards for vigor ratings (V) and the biological growth responses (R) are used as those for the preemergence tests.
- 7. Arabidopsis thaliana (L.) Heynh Assay. Arabidopsis seed is placed in a culture tube containing a solidified mixture of test chemical and agarnutrient culture medium. The culture tubes are placed in a growth chamber and grown under controlled environmental conditions for the duration of the plant life cycle (approximately 35 days). The regulatory effects noted are: seed germination, root elongation, root geotropism, number of rosette leaves, fresh weight, abnormal leaf morphology, time to bolting, internode length, days to flowering, abnormal flower morphology, and fruit weight.

The application rates were 0.01, 0.1, 1.0, 10, and 100 ppm.

8. Tomato pedicel test. The pedicel with abscission layer is excised from the flower and set on a filter paper in a petri dish. A solution of the test chemical in acetone is applied to the filter paper. The test is then conducted in a controlled environment chamber, and the inhibition or acceleration of abscission is noted. The number of abscised pedicels is recorded 1, 2, 4, 5, and 7 days following the treatment. The application rates were 0.1, 1.0, 10, 100, and 1000 ppm. Each treatment rate was replicated twice with 10 pedicels. Water was used as a control.

9. Ethylene evolution test. The primary leaf abscission zones including the petiolar base abscission layers are excised from 2 to 3 week old lima bean plants. One mL of test solution is added to a vial containing the test tissue and 0.1 mM of indole acetic acid. The vials are stoppered and placed in a controlled environment chamber. Ethylene evolution is analyzed by gas liquid chromatography 24 hours following treatment. The regulatory effects noted are the induction of ethylene evolution in plant tissue, or the release of ethylene by degradation of the applied chemical. The data is reported as ethylene/mg of tissue.

The rates of application were 0.01, 0.1, 1.0, 10, and 100 ppm. Cycloheximide and Ethephon were used as controls.

RESULTS AND DISCUSSION

The fungicide testing program (table 2) involved four different methods of treatment: foliar, curative, systemic, and soil fungicide.

In the foliar fungicide evaluation, 2,6-difluoro-3,5dinitrochlorobenzene (1)* and 2-fluorobenzoic acid hydrazide (2) showed only slight activity in the control of leaf spot of sugarbeet. 2,2'-Difluoro-5,5'-dihydroxydiphenyl sulfide (3), however, demonstrated moderate activity against bean rust as compared to Daconil 75 WP.

When 2,6-difluoro-3,5-dinitrochlorobenzene (1) and 2fluorobenzoic acid hydrazide (2)' were tested as curative agents against leaf spot of sugarbeet, and against bean and cucumber powdery mildew, moderate to good activity was demonstrated as compared to the test standard Benlate. 2,2'-Difluoro-5,5'-dihydroxydiphenyl sulfide demonstrated good activity at the 450 ppm level against bean powdery mildew, but the activity fell off rapidly at the lower rates.

None of the tested compounds demonstrated any systemic activity on tomato bacterial spot except for 2-trifluoromethyl-4-fluoroaniline (4), and this was only slight.

Activity comparable to Benlate was demonstrated by methyl 2-fluoro-6-hydroxybenzoate (7), and 2,4-dinitro-5-methylfluorobenzene (8) in the control of root rot of bean. Three other compounds including 2-trifluoromethyl-4-fluoroaniline (4) were effective at higher rates of application.

^{*}Refers to compound number listed in Appendix A.

				of disease contro dicated rate (ppm)	d.
Compound number	Biological test and chemical used	16.7	50	150	450
Foliar protectant ^a					
	Leaf spot of sugar beet				
1	2,6-Difluoro-3,5-dinitrochlorobenzene	•	0	4	13
2	2-Fluorobenzoic acid hydrazide	•	0	8	3
	Benlate 50 WP ^D	-	98	100	100
	Bean rust				
3	2,2'Difluoro-5,5'-dihydroxydiphenyl sulfide Daconil 75 WP ^b	-	0 80	35 100	71 100
. C			00	100	100
urative ^C	Leaf spot of sugar beet				
1	2,6-Difluoro-3,5-dinitrochlorobenzene	21	48	85	98
2	2-Fluorobenzoic acid hydrazide	10	71	87	98
-	Benlate 50 WP ^b	48	92	94	98
					00
	Bean powdery mildew				
1	2,6-Difluoro-3,5-dinitrochlorobenzene	76	78	85	97
2	2-Fluorobenzoic acid hydrazide	71	87	87	93
3	2,2'-Difluoro-5,5'-dihyroxydiphenyl sulfide Benlate 50 WP ^D	-	0	35	95
	Benlate 50 WP	95	100	100	100
	Cucumber powdery mildew				
1	2,6-Difluoro-3,5-dinitrochlorobenzene Benlate 50 WP ^D	-	0	8	100
	Benlate 50 WP	95	100	100	100
d			(Rate mg/pot)	
/stemic ^d		0.4	1.3	3.8	11.3
	Tomato bacterial spot				
4	2-TrifluoromethyI-4-fluoroaniline	-	0	4	6
oil fungicide					
	Fusarium root rot of bean ^e				
5	N(2-Fluorophenyl)glycine hydrazide	-	-	0	89
6	4-Fluoro-3-nitrobenzoic acid	-	-	0	56
7	Methyl 2-fluoro-6-hydroxybenzoate	19	50	71	71
4	2-Trifluoromethyl-4-fluoroaniline	-	0	40	92
8	2,4-Dinitro-5-methylfluorobenzene Benlate 50 WP ^D	4	36	50	61
	Benlate 50 WP~	15	38	63	70
				cacy index dicated rate	
			at 10	mg/pot)	
			1.3	3.8	11.3
	O service state				
9	<u>Cucumber damping off^f</u> 2-Nitro-3-trifluoromethylphenol Captan ^b		0	63	77
U	b		100	100	100

TABLE 2. Fungicide evaluation.

a b Standard c Testing procedure number 2 d Testing procedure number 3 f Testing procedure number 4a Testing procedure number 4b

When compared to Captan, 2-nitro-3-trifluoromethylphenol (9) showed moderate activity against cucumber damping-off.

Three other fungicidal screening tests were used in this study: the foliar and systemic tomato late blight and the curative rice blast. Little or no fungicidal activity was found in any of these three areas.

In general, the compounds evaluated in the fungicide screening program did not exhibit enough control to warrant continued testing.

The pre- and postemergence herbicide testing results can be found in table 3. The test compounds were subjected to a preliminary screening at the rate of 8.96 kilograms/hectare. Six plant species (lima bean, corn, wild oats, lettuce, mustard, and crabgrass) were used in the screening. If the compounds showed some activity, purple nutsedge was added to the list and they were tested at decreasing application rates from 8.96 to 0.56 kilograms/ hectare. In some cases, as many as twenty-five field crops and weeds were used. 2,4,5-Trifluorophenoxyacetic acid (18) was extensively studied at decreasing rates from 8.96 to 0.07 kilograms/hectare in both the pre- and postemergence evaluation. 2,4,5-Trifluorophenoxyacetic acid (18) showed good activity when compared to 2,4,5,-trichlorophenoxyacetic acid, especially in the preemergence test. However, most of the compounds screened in the preand postemergence herbicide test showed little or no effect at or below the 2.24 kilogram/hectare application rate.

A number of the compounds which exhibited some activity in the pre- and postemergence herbicide testing were further investigated for biological activity by studying their gross effects on the growth of Arabidopsis thaliana (table 4) and subsequently for activity in the tomato explant test (table 5) and the ethylene evolution test (table 6), Arabidopsis thaliana is an excellent test plant for biological testing because of its short life cycle. In a relatively short period of time (approximately 35 days), the gross biological effects starting with seed germination and ending with seed production can be monitored. In this study, 2,4,5-trifluorophenoxyacetic acid (18) exhibited the greatest effect on the growth of the Arabidopsis thaliana plant. This compound was toxic at application rates as low as 1 ppm and had measurable effects on the fresh weight and the fruit weight at 0.01 ppm.

In general, the other compounds tested were toxic at 10 to 100 ppm and showed little effect except on the fresh weight and the fruit weight at doses just below toxic levels. 2-Trifluoromethyl-3,4-dichloro-6-fluoroaniline (22), however, showed an increase in the fresh weight of the *Arabidopsis thaliana* specimen.

At rates less than toxic on all compounds tested for growth effects, root elongation, leaf morphology, and flower morphology were all normal. Root geotropism was positive in all of these cases. Therefore, these factors were omitted from table 4.

Because of its high activity, 2,4,5-trifluorophenoxy-

acetic acid (18) was also evaluated in the tomato pedicel explant test (table 5). In this case the number of abscissions is dramatically inhibited at application rates as low as 0.1 ppm. 2-Fluoro-6-bromobenzoic acid (23) also showed some inhibition at the 1 ppm dose level.

Isopropyl N(3,4-difluorophenyl)carbamate (12), ethyl N(4-fluorophenyl)carbamate (21), and isopropyl N(4-fluorophenyl)carbamate (13) exhibited inhibition only at higher doses near the toxic level. This activity decreased to near the control values at lower doses. The water control values started with one abscission on the first day and rose rapidly to 15 after 7 days.

2-Trifluoromethyl-3,4-dichloro-6-fluoroaniline (22) showed little if any effect on abscission rates. All of the compounds tested in the tomato pedicel explant test were toxic at the 1000 ppm application rate. This application rate was eliminated from table 5.

Five of the subject compounds were evaluated in the ethylene evolution test (table 6). This test is important in the screening of compounds for stimulating ripening of fruits and vegetables. It is difficult to get clear-cut answers from the results of this test. Although the method used in the ethylene evolution test is sound and controls are maintained on variables such as the ages of plants used, the values for cycloheximide and ethephon (controls) vary strikingly with different experiments. Therefore, each group of test plants within the ethylene evolution series must be viewed individually and the results must be considered in a general overview with the other activity evaluations done on each of the compounds. A better judgement of the gross biological effects of each compound tested can then be made.

In addition to the 23 compounds listed in tables 2 to 6, 191 other compounds were tested for biological activity, but because of their poor or complete inactivity these have been omitted from tables 2 to 6 and instead are listed in Appendix B by their chemical names.

ion
uat
eval
icide
herb
apuag.
ternerg
Pos
- and
Pre-
TABLE 3.
щ
8
Z

Compound number Chemical and plant species	Preemergence ^d 10 2-Chloro-G-iodoffuorobenzene Lima Bean Con Wild Oats Lettuce Mustard Croboras Purple Nutsedge	11 Isopropyl N(Z,5-difluorophenyl)carbamate Lima Bean Corn Wild Oats Lettuce Mustard Creboras Purple Nutsedge	12 Isopropyl N(3,4-difluorophenyl)carbamate Lima Bean Corn Wild Oats Lettuce Mustard Crabgras Purple Nutsedge	13 Isopropyi N(4.fluorophenyi)carbamate Lima Bean Oorn Wild Oats Lettuce Mustard Crabgras Purple Nutsedge	14 2.5-Difluorobenzonitrile Lima Bean Corn Wild Oats Lettuce Mustard Croboras Purple Nutsedge	15 Ethyl N(3-trifuoromethylphenyl)carbamate Lima Bean Corn Wild Oats Lettuce Mustard Crobgras Purple Nutsedge	16 Isopropyl N(3-trifuoromethylphenyl)carbamate Lime Bean Oon Wild Oats Lettuce Mustard Cohoose
Er Ka V ^D Rc K V R K V R							8
Evaluation at indicated rate (kilograms/hectare) R K V R K V R K		α, , , α, , , , , , , , , , , , , , , ,	0	00,0,0,0 0,0,0,0 0,0,00 0,0,00 0,0,00 0,0,00 0,0,00 0,0,00 0,000 0,00	0	0	0 4 2 0 3 2 2 0 0 3 0 0 3 0 0 0 0 0 0 0 0 0
2.24 V R	· · · · · · · · · · · · · · · · · · ·	4	0 0 4 . 4 0 . 0	000 0 04 0 4 4 1 1 0 0 1 1 0 1 1		۰ ۰ ۰ ۰ ۰ ۵ ۰ ۵ ۰ ۰ ۰ ۰ ۰ ۰ ۰ ۰ ۰ ۰ ۰ ۰	
 4 48 4 48 7 	· · 000 · · ·		000 000 000 000 000 000			. 000 000 000 000 000 000 000 000 000 0	000000 84848 22222 000000
8.96 V R	0.0769400 0.000.0	••••••••••••••••••••••••••••••••••••••		, . Q • 7773	. 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	0,00,00,00,00,00,00,00,00,00,00,00,00,0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

	8.96 V R	0440000 000			
		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0000000000 . 00	00 0 00 00 00 00 00 00 00 00 00 00 00 0
	⊻				∞ , ~
	4,48 V R				
	4>	14104411		, ወይፋ , ' ይቆቆ , ወይ '	0 4 04
	×	,0000,,		.000000.00.	0 0 0 0 · 0
	R			· · · - · · @ · · · ·	
	2.24 V	. ທ . ທ ຈ	· . M · M N N ·	4 4 4 4	ທ ' 444ທ '
	×	, ° , ° ° , ,	100 60 100 100 95 95 95 95		, 00,00,0
	ľ			. 0	· · · · · ·
	1.12 V	ú	90	· · 4 · · 4 ບ ບ · · · ·	' ' 4 4 ບ ບ '
	×	· · · · ° · ·			. 0000.
ted rate	a a		· 5 чачача · · чач · · чач · чачачач	· · · · · · · · · · · · · · · · · · ·	· · · · · - ·
indica is/hecta	0.56 V		· 4 M M — M 4 M · · · 4 M M · · · M M M · · M M M M	μο	, 4 , Cr Cr , 4 ,
Evaluation at indicated rate (kilograms/hectare)	×		, 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	° °	
Eval	<u>م</u>		· 50 · 0000 · 0 · 00 · · 000000000		
	0.2B V		, 4 M M M M M M M M M M M M M M M M M M		
	×		000000000000000000000000000000000000000		
	α				
	0.14 V		. ๗4..444.0.4444000004000		
	×		000 0000000000000000000000000000000000		
	R		0000.00000.00		
	0.07 V		4 . D . 444440 . D 4440 . 400 D 44 . D		
	×		0,00000,0000,0000,0000,0000,0		
					Aate
	Chemical and plant species	2-Nitro 4-fluorophenoxyacatic acid Lima 8ean Corn Wild Oats Lettuce Mustard Crabgrass Purple Nutsedge	2.4.5-Trifluorophenoxyacetic acid Lima Bean Corn Wild Oats Lettuce Mustard Murphenss Paras Soybean Field Oats Wheat Soybean Field Oats Wheat Bar Grass Graen Foxtail Rice Peanut	2: Fluoro 4-nitrophenol Wheat Barley Guditivated Oats Sorghum Rice Green Corn Wild Oats Lettuce Mustard Crabprass Purple Nutsedge	Ethyl N(3-chloro-4-fluorophenyl)carbamate Lima Bean Corn Wild Oats Littuce Mustard Crabgrass Purple Nutsedge
	Compound number	2	φ	Postemergence [®]	20

I

1

(p
nu
nti
ပိ
~
3. (
LE 3. (
ABLE 3. (
TABLE 3. (

									ш́	valuatior (kilogi	Evaluation at indicated rate (kilograms/hectare)	ated rai tare)	eu eu										
Compound number	Chemical and plant species		0.07 V	R	×	0.14 V	' ∝	×	0.28 V R	×	0.56 V	96 R	×	1.12 V) ^m	×	2.24 V	۱œ	4,48	œ	×	8.96 V	۲.
8	2.4.5. Trifluorophenoxyacetic acid Lima Bean Cum Cum Mild Oats Mild Oats Pertuce Murstard Murstard Murstard Murstard Murstard Murstard Murstard Sovbean Field Oats Wheat Barley Omion Feal Barley Omion Pea Barn Grass Green Foxtail Barn Grass Green Foxtail Rice Feanut Prickly Sida Cotton Sestania Downy Brome	• • • • ⁸ • • ⁴ • • • • • • • • • • • • • • • • • • •	4.4.00,04,400,04,00,00,00,44,0		. 00080000000. 8383008. 000		0.000000.00.00.00.00.00.00.00.00.00.	• • • • • • • • • • • • • • • • • • •	. 20. 2002	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		000,	0000.380.3800.8000.900.000.200	· M 4 · · M 4 · · · 4 N 4 M · O M M · O N · · O 4	. 0		. N. M.	· · · · · · · · · · · · · · · · · · ·	 · N m · · m 4 · · · M m m · · N m m · N . · · · ·		. e e e	· · · · · · · · · · · · · · · · · · ·	
ar a skill by a vigor 1. Severe injury. Plants a 2. Moderate to severe inj 3. Moderate. Plants are 4. Slight injury. Plants h 5. No effect. 6. Biological response 1. Nercosis 2. Stunted 3. Desiccation 4. Axilitary growth stimu 4. Testing procedure number 5 Testing procedure number 6	% Kill Vigor Vigor 1 - Severe injury. Plants are not expected to recover. 2 - Moderate to severe injury to surviving plants. 3 - Moderate. Plants are expected to recover. 5 - No effect. 6 - No effect. Biological response 6 - Necrotic spots 1 - Necrosis 7 - Growth stimulation 3 - Destication 8 - Axillary growth stimulation 5 - Natic responses 4 - Axillary growth stimulation 5 - Substic responses 6 - Natic responses 7 - Subricor 5 - Natic responses 6 - Natic responses 7 - Offection 8 - Deficien 7 - Subricor 7 - Subricor 8 - Axillary growth stimulation 9 - Chlorosis 5 - Natic responses 10 - Intumescence fing procedure number 6	COVEL																					

number name Response Control 0.01 0.1 1 100 10 2-Chloro-6-iadd/iuorobsnizene Seedgemination, days 3 5 3 3 4 7 11 Number of coarte leaves 11 103 106 115 104 7 12 103 96 115 104 7 7 10 10 10 10 10 10 10 11 12 103 96 115 104 19 26 7 12 Isopropyl NI3,4dfiluorophenylCarbamate			•			je values fo reatment r	or 4 replica ate (ppm)	itions	
Seed germination, days 3 5 3 3 4 7 Number of rosette laws 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 12 21 21 21 21 21 11 12 21 11 10 10 11 11 19 26 7	Compound number	Chemical name	Response	Control	0.01	0.1	1	10	100
Fresh weight (mg) 121 103 96 115 104 T Rosette boling, days 16 16 16 16 16 16 17 Itermode length (mm) 20 30 38 26 33 T Flowering, days 21	10	2-Chloro-6-iodo	ofluorobenzene						
Number of rostite leaves Internode length (nm) 11 10 11 10 10 10 T Rosette bolting, days Fruit weight (mg) 20 30 38 26 33 T 12 Isopropyl N(3,4-diffuerophenyl forsteamate Seed emmittions 3									7 _b
Roserie boling, days 16 17 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
Internode length (rmn) 20 30 38 26 33 T Fruit weight (rmg) 20.9 ⁶ 18 14 19 26 T 12 Isopropyl N(3,4/difluorophenyl/Larbamate 3									
Flowering, days 21 21 21 21 21 21 21 T 12 Isopropyl N(3,4-diffuorophenyl/carbamate Seted germination, days 3									
Fruit weight (mg) 20.9 ⁶ 18 14 19 26 T 12 Isopropyl N(3,4/iffluorophenyl/larbamate Serie dermination, days 3									
Seed germination, days 3			<u>.</u>						
Seed germination, days 3	12	Isopropyl N(3.4	-difluorophenyl)carbamate						
Fresh-weight (mg) 110 113 111 99 T T Rosette bolting, days 17 17 17 17 17 T T Rosette bolting, days 24 21 23 T T Fruit weight (mg) 13.6 14.4 14.6 15.1 T T 13 Isopropyl N(4:fluorophenyl)Carbamate Seed germination, days 3 3 3 3 3 3 5 5 Rosette bolting, days 11 9 10 9 9 T T Number of rosette leaves 11 9 10 9 9 T T 18 2,4,5-Trifluorophenoxysectic aid Seed germination, days 3 3 3 3 3 5 T 18 2,4,5-Trifluorophenoxysectic aid Seed germination, days 11 9 00 T T T 19 10 17 18 00 T T <		100010000000000000000000000000000000000		3	3	3	3	3	3
Number of rosette leaves Internode length (mm) 10 30 11 31 14.4 14.6 15.1 T T 13 bopropyl N(4-fluorophenyllarbamate Seed germination, days Fresh weight (mg) 110 99 118 95 67 T 14 Mumber of rosette leaves Freit weight (mg) 13.6 16.8 15.2 17.3 3.5 T 18 2,4,5-Trifluorophenoxyacetic acid Fresh weight (mg) 12.1 80 60 T T T 18 2,4,5-Trifluorophenoxyacetic acid Fresh weight (mg) 12.1 80 60 T T T T 19 10 T T T T T T T T T 20 34 18 T T T T T T T									
Internode lengin (mm) 30 31 21 21 23 7 7 13 Isopropyl N(4-fluorophenyl)larbamate 3.6 14.4 14.6 15.1 T T 13 Isopropyl N(4-fluorophenyl)larbamate 3 3 3 3 3 3 3 5 14 14.4 14.6 15.1 T <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
Flowering days 24 21 23 T T 13 Isopropyl N(4-fluorophenyl)carbamate Seed germination, days 3				17	17				
Flowering days 24 21 21 23 T T 13 Isopropyl N(4-fluorophenyl/barbamate Sed germination, days 3			Internode length (mm)	30	31	25	29	Т	т
13 Isopropyl N(4-fluorophenyl)carbamete Seed germination, days 3				24	21	21	23	Т	т
Seed germination, days 3 3 3 3 3 3 3 3 5 Frash weight (mg) 10 99 118 96 67 T Number of rosette leaves 11 9 10 9 9 T Rosette bolting, days 17 17 17 17 17 17 17 Flowering, days 24 21 22 22 24 T Flowering, days 24 21 22 22 24 T Frash weight (mg) 13.6 16.8 15.2 17.3 3.5 T Number of rosette leaves 11 9 10 T T T T Number of rosette leaves 11 9 10 T T T T T Rosette bolting, days 16 16 16 T T T Fresh weight (mg) 20 34 35 5.7 T <td< td=""><td></td><td></td><td>Fruit weight (mg)</td><td>13.6</td><td>14.4</td><td>14.6</td><td>15.1</td><td>т</td><td></td></td<>			Fruit weight (mg)	13.6	14.4	14.6	15.1	т	
Fresh weight (mg) 110 99 118 95 67 T Number of rosette leaves 11 9 10 9 9 7 Rosette bolting, days 17 17 17 17 17 17 17 Internode length (mg) 30 32 32 22 24 T Flowering, days 74 21 22 24 T T Fruit weight (mg) 13.6 16.8 15.2 17.3 3.5 T 18 2,4,5-Trifluorophenoxyacetic acid Seed germination, days 3 3 3 3 3 5 Fresh weight (mg) 121 80 60 T	13	IsopropyI N (4-f	luorophenyl)carbamate						
Number of rosette leaves 11 9 10 9 9 T Rosette bolting, days 17			Seed germination, days	3	3	3	3	3	5
Reserve bolting, days 17 </td <td></td> <td></td> <td>Fresh weight (mg)</td> <td>110</td> <td></td> <td>118</td> <td>95</td> <td>67</td> <td></td>			Fresh weight (mg)	110		118	95	67	
Internode length (mm) Flowering, days 30 24 32 24 32 22 22 24 T T 18 2,4,5-Trifluorophenoxyacetic acid Seed germination, days 3								9	
Flowering, days Fruit weight (mg) 24 21 22 22 24 7 18 2,4,5-Trifluorophenoxyacetic acid Seed gernination, days 3 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>									
Fruit weight (mg) 13.6 16.8 15.2 17.3 3.5 T 18 2,4,5-Trifluorophenoxyacetic acid Seed germination, days 3 <td< td=""><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>			-						
18 2,4,5-Trifluorophenoxyzeti acid Seed germination, days 3									
Seed germination, days 3				10.0	10.0	10.2	17.0	0.0	
Fresh weight (mg) 121 80 60 T T T Number of rosette leaves 11 9 10 T T T Rosette bolting, days 16 16 16 16 16 17 T T Flowering, days 21 21 21 T T T T Z1 Ethyl N(4-fluorophenyl)Carbamate Seed germination, days 4 4 4 4 4 T T Number of rosette leaves 10 9 9 10 T T T Number of rosette leaves 11 129 125 69 T T Number of rosette leaves 10 9 9 10 T T Number of rosette leaves 10 9 9 10 T T Rosette bolting, days 24 22 24 25 T T Fruit weight (mg) 111 156 142 111 147 T Number of rosette leaves 9 10 10	18	2,4,5-Trifluorop		2	2	2	2	2	c
Number of rose te leaves Internode length (nm) 16 16 16 T T T T Rosette bolting, days Internode length (nm) 20 34 18 T T T T Flowering, days 21 21 21 T T T T 21 Ethyl N(4-fluorophenyl)carbamate			-						
Rosette bolting, days Internode length (mm) 16 16 16 T T T Flowering, days Fruit weight (mg) 20 34 18 T T T 21 21 21 21 21 21 21 21 21 7 T T T 21 Ethyl N(4-fluorophenyl)carbamate Seed germination, days 4 4 4 4 4 4 4 4 4 7 T T 21 Ethyl N(4-fluorophenyl)carbamate Seed germination, days 4 4 4 4 4 4 7 T T Number of rosette leaves 10 9 9 10 T T T Rosette bolting, days 24 22 24 25 T T T Fresh weight (mg) 111 156 142 111 147 T 22 2-Trifluoromethyl-3,4-dichoro-6-fluoroaniline Seed germination, days 4 4 4									
Internode length (mm) Flowering, days 20 34 18 T T T T 21 21 21 21 21 21 T					-				
Flowering, days 21 21 21 21 T T T T 21 Ethyl N(4-fluorophenyl)(arbamate Seed germination, days 4 4 4 4 4 4 7 T T T T 21 Ethyl N(4-fluorophenyl)(arbamate Seed germination, days 4 4 4 4 4 7 T									
Fruit weight (mg) 20.9 8.8 3.7 T T T 21 Ethyl N(4-fluorophenyl)carbamate Seed germination, days 4 4 4 4 4 4 7 21 Ethyl N(4-fluorophenyl)carbamate Seed germination, days 4 4 4 4 4 4 7 Number of rosette leaves 10 9 9 10 T T Rosette bolting, days 19 19 19 19 T T Rosette bolting, days 24 22 24 25 T T Freit weight (mg) 23.4 25.6 19.5 5.3 T T 22 2-Trifluoromethyl-3,4-dichloro-6-fluoroaniline Seed germination, days 4 4 4 4 4 Fresh weight (mg) 111 156 142 111 147 T Number of rosette leaves 9 10 10 10 T T Rosette bolting, days 19 19			-		-				
Seed germination, days 4 4 4 4 4 4 4 4 4 4 4 4 7 Fresh weight (mg) 111 129 125 69 T T Number of rosette leaves 10 9 9 10 T T Rosette bolting, days 19 19 19 19 19 T T Internode length (mm) 26 39 35 24 T T T Flowering, days 24 22 24 25 T T T Fruit weight (mg) 23.4 25.6 19.5 5.3 T T Seed germination, days 4 111 147 T 111 100 10 10 10 10 10<									
Seed germination, days 4 4 4 4 4 4 4 4 4 4 4 4 7 Fresh weight (mg) 111 129 125 69 T T Number of rosette leaves 10 9 9 10 T T Rosette bolting, days 19 19 19 19 19 T T Internode length (mm) 26 39 35 24 T T T Flowering, days 24 22 24 25 T T T Fruit weight (mg) 23.4 25.6 19.5 5.3 T T Seed germination, days 4 111 147 T 111 100 10 10 10 10 10<	21	Ethyl N(4-fluor	ophenyl)carbamate						
Number of rosette leaves 10 9 9 10 T T Rosette bolting, days 19 19 19 19 19 T T Internode length (mm) 26 39 35 24 T T Flowering, days 24 22 24 25 T T Fruit weight (mg) 23.4 25.6 19.5 5.3 T T 22 2-Trifluoromethyl-3,4-dichloro-6-fluoroaniline Seed germination, days 4 4 4 4 4 Fresh weight (mg) 111 156 142 111 147 T Number of rosette leaves 9 10 10 10 T T Rosette bolting, days 19 19 19 19 19 19 T Internode length (mm) 26 33 38 19 28 T Flowering, days 24 23 22.7 27 10 T S				4	4	4	4	4	т
Rosette bolting, days 19 19 19 19 19 19 T T Internode length (mm) 26 39 35 24 T T Flowering, days 24 22 24 25 T T Fruit weight (mg) 23.4 25.6 19.5 5.3 T T 22 2-Trifluoromethyl-3,4-dichloro-6-fluoroaniline Seed germination, days 4 4 4 4 4 4 Fresh weight (mg) 111 156 142 111 147 T Number of rosette leaves 9 10 10 10 T T Rosette bolting, days 19 19 19 19 19 T T Number of rosette leaves 9 10 10 10 T T Rosette bolting, days 19 19 19 19 19 19 19 Internode length (mm) 26 33 38 19 28 T Frowering, days 24 23 22.7			Fresh weight (mg)	111	129	125	69	Т	Т
Internode length (mm) 26 39 35 24 T T Flowering, days 24 22 24 25 T T Z2 2-Trifluoromethyl-3,4-dichloro-6-fluoroaniline 23.4 25.6 19.5 5.3 T T Z2 2-Trifluoromethyl-3,4-dichloro-6-fluoroaniline Seed germination, days 4 4 4 4 4 Fresh weight (mg) 111 156 142 111 147 T Number of rosette leaves 9 10 10 10 10 T T Rosette bolting, days 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 17 T Z3 2-Fluoro-6-bromobenzoic acid Seed germination, days 4 4 4 4 T T Z3 2-Fluoro-6-bromobenzoic acid Seed germination, days 4 4 4 4 T T Z3 2-Fluoro-6-bromobenzoic acid <t< td=""><td></td><td></td><td>Number of rosette leaves</td><td>10</td><td>9</td><td>9</td><td>10</td><td>Т</td><td>Т</td></t<>			Number of rosette leaves	10	9	9	10	Т	Т
Flowering, days 24 22 24 25 T T 22 2-Trifluoromethyl-3,4-dichloro-6-fluoroaniline Seed germination, days 4 4 4 4 4 Seed germination, days 4 4 4 4 4 4 Fresh weight (mg) 111 156 142 111 147 T Number of rosette leaves 9 10 10 10 T T Rosette bolting, days 24 23 22 23 25 T Internode length (mm) 26 33 38 19 28 T Flowering, days 24 23 22 23 25 T Fruit weight (mg) 23.4 23 22.7 27 10 T 23 2-Fluoro-6-bromobenzoic acid Seed germination, days 4 4 4 T T 23 2-Fluoro-6-bromobenzoic acid Seed germination, days 4 4 4 T T Number of rosette leaves 10 9 10 10<			Rosette bolting, days	19	19	19	19	Т	
Fruit weight (mg) 23.4 25.6 19.5 5.3 T T 22 2-Trifluoromethyl-3,4-dichloro-6-fluoroaniline Seed germination, days 4 7 T Number of rosette leaves 9 10 10 10 10 11 125 125 126 T T F Filowering, days 14 14 4 4 T T T Seed germination, days 4 4 4 4 T T			-						
22 2-Trifluoromethyl-3,4-dichloro-6-fluoroaniline Seed germination, days 4 4 4 4 4 4 Fresh weight (mg) 111 156 142 111 147 T Number of rosette leaves 9 10 10 10 T Rosette bolting, days 19 19 19 19 19 T Internode length (mm) 26 33 38 19 28 T Flowering, days 24 23 22 23 25 T Fruit weight (mg) 23.4 23 22.7 27 10 T 23 2-Fluoro-6-bromobenzoic acid Seed germination, days 4 4 4 T T Seed germination, days 111 125 126 T T T Number of rosette leaves 10 9 10 10 T T Rosette bolting, days 19 19 19 19 19 19 T T Rosette bolting, days 19 19 19 19									
Seed germination, days 4 4 4 4 4 4 4 Fresh weight (mg) 111 156 142 111 147 T Number of rosette leaves 9 10 10 10 T Rosette bolting, days 19 11 125 126 T			Fruit weight (mg)	23.4	25.6	19.5	5.3	Т	Т
Fresh weight (mg) 111 156 142 111 147 T Number of rosette leaves 9 10 10 10 T Rosette bolting, days 19 19 19 19 19 19 Internode length (mm) 26 33 38 19 28 T Flowering, days 24 23 22 23 25 T Fruit weight (mg) 23.4 23 22.7 27 10 T 23 2-Fluoro-6-bromobenzoic acid Seed germination, days 4 4 4 T T Keed germination, days 4 4 4 T T T Number of rosette leaves 10 9 10 10 T T Rosette bolting, days 19 19 19 19 19 19 T T Rosette bolting, days 19 19 19 19 19 19 T T Internode length (mm) 26 24 31 25 T T	22	2-Trifluoromet							
Number of rosette leaves 9 10 10 10 T Rosette bolting, days 19 28 T Flowering, days 24 23 22 23 25 T T Frestinged from the rest of			•						
Rosette bolting, days 19 19 19 19 19 19 19 T Internode length (mm) 26 33 38 19 28 T Flowering, days 24 23 22 23 25 T Fruit weight (mg) 23.4 23 22.7 27 10 T Seed germination, days 4 4 4 4 T T Fresh weight (mg) 111 125 126 T T Number of rosette leaves 10 9 10 10 T T Rosette bolting, days 19 19 19 19 19 T T Internode length (mm) 26 24 31 25 T T			0 0						
Internode length (mm) 26 33 38 19 28 T Flowering, days 24 23 22 23 25 T Fruit weight (mg) 23.4 23 22.7 27 10 T Seed germination, days 4 4 4 4 T T Keed germination, days 111 125 125 126 T T Number of rosette leaves 10 9 10 10 T T Rosette bolting, days 19 19 19 19 19 T T Internode length (mm) 26 24 31 25 T T									
Flowering, days 24 23 22 23 25 T 23 2-Fluoro-6-bromobenzoic acid 3 23 22.7 27 10 T 23 2-Fluoro-6-bromobenzoic acid Seed germination, days 4 4 4 4 T T Fresh weight (mg) 111 125 125 126 T T Number of rosette leaves 10 9 10 10 T T Rosette bolting, days 19 19 19 19 19 T T Internode length (mm) 26 24 31 25 T T									
Fruit weight (mg) 23.4 23 22.7 27 10 T 23 2-Fluoro-6-bromobenzoic acid Seed germination, days 4 4 4 T T Fresh weight (mg) 111 125 126 T T Number of rosette leaves 10 9 10 10 T T Rosette bolting, days 19 19 19 19 19 T T Internode length (mm) 26 24 31 25 T T			-						
Seed germination, days 4 4 4 4 T T Fresh weight (mg) 111 125 125 126 T T Number of rosette leaves 10 9 10 10 T T Rosette bolting, days 19 19 19 19 T T Internode length (mm) 26 24 31 25 T T									
Seed germination, days 4 4 4 4 T T Fresh weight (mg) 111 125 125 126 T T Number of rosette leaves 10 9 10 10 T T Rosette bolting, days 19 19 19 19 T T Internode length (mm) 26 24 31 25 T T	22	2 Elucro 6 kar							
Fresh weight (mg)111125126TTNumber of rosette leaves1091010TTRosette bolting, days19191919TTInternode length (mm)26243125TT	20	2-riuoro-o-oror		4	4	4	4	т	т
Number of rosette leaves 10 9 10 T T Rosette bolting, days 19 19 19 T T Internode length (mm) 26 24 31 25 T T									
Rosette bolting, days 19 19 19 T T Internode length (mm) 26 24 31 25 T T			0 0						
Internode length (mm) 26 24 31 25 T T									
Flowering, days 25 25 25 1			Flowering, days	25	25	25	25	Т	Т
Fruit weight (mg) 23.4 26.4 22.4 9.7 T T			Fruit weight (mg)		26.4	22.4	9.7	Т	Т

^aTesting procedure number 7 ^bT = Toxic ^cValue for a single surviving replicate

				Nu	mber abscissed out of 20^b rate (ppm)	Ł
Compound number	Chemical name	Day	0.1	1	10	100
12	Isopropyl N(3,4-difluorophenyl)carbamate	1	-	3	1	0
		2	-	11	5	т ^с
		3	-	12	5	т
		4	-	12	5	Т
		5	-	12	5	т
		7	-	12	5	Т
13	Isopropyl N(4-fluorophenyl)carbamate	1	_	8	3	0
15	isopropyr in (4-nabrophenyr) carbanate	2		9	7	1
		4		13	9	2
		5	_	13	10	2
		7	-	13	10	2
18	2,4,5-Trifluorophenoxyacetic acid	1	2	1	1	1
		2	3	1	3	1
		4	4	4	3	Ť
		5	4	4	4	Ť
		7	4	4	4	Ť
21	Ethyl N(4-fluorophenyl)carbamate	1	-	2	3	2
		2	-	12	11	2
		4	-	16	11	2 2
		5	-	16	11	2
		7	-	16	11	Ť
22	2-TrifluoromethyI-3,4-dichloro-6-fluoroaniline	1	-	5	7	5
		2	-	9	13	10
		4	-	11	14	11
		5	-	11	14	11
		7		12	14	11
23	2-Fluoro-6-bromobenzoic acid	1	-	1	2	0
		2	-	8	3	0
		4	-	8	3	1
		5	-	10	3	1
		7	-	10	3	1

^aTesting procedure number 8. ^bWater control values were 1 on the first day and rose rapidly to 15 after 7 days. ^cT = Toxic.

TABLE 6.	Ethylene	evolution	test
----------	----------	-----------	------

Compound number	Chemical name	Ethylene/mg tissue ^b rate (ppm)				
		0.01	0.1	1	10	100
10	2-Chloro-6-iodofluorobenzene	8	13	15	17	3
18	2,4,5-Trifluorophenoxyacetic acid	7	28	5	11	50
	Cycloheximide ^C	13	7	8	4	2
	Ethephon ^C	9	15	28	284	2788
	Untreated check ^d	8	13	17	13	16
20	Ethyl N(3-chloro-4-fluorophenyl)carbamate	27	57	47	117	4
	Cycloheximide ^C	16	24	10	6	2
	Ethephon ^C	16	36	33	192	216
	Untreated check ^d	32	18	50	61	18
22	2-Trifluoromethyl-3,4-dichloro-6-fluoroaniline	151	71	107	118	68
23	2-Fluoro-6-bromobenzoic acid	60	79	83	89	58
	Cycloheximide ^C	5,663	214	244	74	9
	Ethephon ^C	112	90	373	2,034	25,005
	Untreated check ^d	112	72	145	111	58

^aTesting procedure number 9.

b Average of two replicates.

Standard. d

Average of 5 replicates.

REFERENCES

- DICKERSON, D. R., G. C. FINGER, and R. H. SHILEY, 1972, Reaction products of pentachlorobenzene with potassium fluoride in dimethyl sulfoxide: Transactions of the Illinois State Academy of Science, v. 65, nos. 3 and 4, p. 75-80. (Illinois State Geological Survey reprint 1974-F, 6 p.)
- DICKERSON, D. R., G. C. FINGER, and R. H. SHILEY, 1973/ 1974, Polyphenyl fluorides: Journal of Fluorine Chemistry, v. 3, p. 113-116. (Illinois State Geological Survey reprint 1973-1, 4 p.)
- FINGER, G. C., D. R. DICKERSON, and R. H. SHILEY, 1971/ 1972. Fluorination of 1,2,3,4 and 1,2,3,5 tetrahalobenzenes with potassium fluoride in dimethyl sulfone: Journal of Fluorine Chemistry, v. 1, p. 415-425. (Illinois State Geological Survey reprint 1972-M, 11 p.)
- FINGER, G. C., M. J. GORTATOWSKI, R. H. SHILEY, and R. H. WHITE, 1959, Aromatic fluorine compounds. VIII. Plant growth regulators and intermediates: Journal of the American Chemical Society, v. 81, p. 94-101. (Illinois State Geological Survey reprint 1959-G, 8 p.)
- FINGER, G. C., R. H. SHILEY, and D. R. DICKERSON, 1974, A synthesis of 1,2,3,4-tetrafluorobenzene by KF fluorination:

Journal of Fluorine Chemistry, v. 4, p. 111-113. (Illinois State Geological Survey reprint 1974-K, 3 p.)

- FORSBERG, J. L., 1954, A summary of 1953 gladiolus disease control tests in Illinois: Illinois State Florists Bulletin, p. 153.
- SHILEY, R. H., D. R. DICKERSON, and G. C. FINGER, 1972/ 1973, Fluorination of 1,2,3-,1,2,4-, and 1,3,5-trihalobenzenes with potassium fluoride in dimethyl sulfone: Journal of Fluorine Chemistry, v. 2, p. 19-26. (Illinois State Geological Survey reprint 1972-T, 8 p.)
- SHILEY, R. H., D. R. DICKERSON and G. C. FINGER, 1978, Aromatic fluorine chemistry at the Illinois State Geological Survey, Research notes, 1934-1976: Illinois State Geological Survey Circular 501, 114 p.
- SHILEY, R. H. J. L. FORSBERG, R. S. PERRY, D. R. DICKERSON, and G. C. FINGER, 1975, Fungicidal activity of some fluoroaromatic compounds: Journal of Fluorine Chemistry, v. 5, p. 371-376. (Illinois State Geological Survey reprint 1975-A, 6 p.)
- TEHON, L. R., 1951, Fungistatic potencies of fluorinated p-benzoquinones: Science, v. 114, p. 663.

Number	Name	Empirical formula	Molecular weight	Structure
1	2,6-Difluoro-3,5-dinitrochlorobenzene	$C_6 HCIF_2 N_2 O_4$	238.53	
2	2-Fluorobenzoic acid hydrazide	$C_7H_7FN_2O$	154.14	
3	2,2'-Difluoro-5,5'-dihydroxydiphenyl sulfide	$C_{12}H_{8}F_{2}O_{2}S$	254.25	$\left\langle \bigcirc \right\rangle^{F} - s - \left\langle \bigcirc \right\rangle^{F} OH$
4	2-Trifluoromethyl-4-fluoroaniline	C ₇ H ₅ F ₄ N	179.12	F NH2
5	N(2·Fluorophenyl)glycine hydrazide	C ₈ H ₁₀ FN ₃ O	183.19	
6	4-Fluoro-3-nitrobenzoic acid	$C_7 H_4 FNO_4$	185.11	F COOH
7	Methyl 2-fluoro-6-hydroxybenzoate	C ₈ H ₇ FO ₃	170.14	СООСН ₃ ОН
8	2,4-Dinitro-5-methylfluorobenzene	C ₇ H ₅ FN ₂ O ₄	200.12	$O_2 N \bigotimes_{CH_3}^{NO_2} F$
9	2-Nitro-3-trifluoromethylphenol	$C_7H_4F_3NO_3$	207.11	F₃ C №2 ОН
10	2-Chloro-6-iodofluorobenzene	C ₆ H ₃ CIFI	256.44	CI F
11	lsopropyl N(2,5-difluorophenyl) carbamate	$C_{10}H_{11}F_{2}NO_{2}$	215.20	F NHCOOCH CH ₃
12	lsopropyl N(3,4-difluorophenyl) carbamate	C ₁₀ H ₁₁ F ₂ NO ₂	215.20	F NHCOOCH CH ₃
		(continued)		

Number	Name	Empirical formula	Molecular Weight	Structure
13	Isopropyl N(4-fluorophenyl) carbamate	C ₁₀ H ₁₂ FNO ₂	197.21	F NHCOOCH CH3
14	2,6-Difluorobenzonitrile	$C_7 H_3 F_2 N$	139.10	
15	Ethyl N(3-trifluoromethylphenyl) carbamate	$C_{10}H_{10}F_{3}NO_{2}$	233.19	F ₃ C NHCOOCH ₂ CH ₃
16	lsopropyl N(3-trifluoromethylphenyl) carbamate	$C_{11}H_{12}F_{3}NO_{2}$	247.22	F ₃ C NHCOOCH CH ₃
17	2-Nitro-4-fluorophenoxyacetic acid	C ₈ H ₆ FNO ₅	215.14	FOOCH2COOH
18	2,4,5-Trifluorophenoxyacetic acid	C ₈ H ₅ F ₃ O ₃	206.12	F OCH ₂ COOH
19	2-Fluoro-4-nitrophenol	C ₆ H ₄ FNO ₃	157.10	о₂и∕О́РОН
20	Ethyl N(3-chloro-4-fluorophenyl) carbamate	$C_9H_9CIFNO_2$	217.63	FOI NHCOOCH ₂ CH ₃
21	Ethyl N(4-fluorophenyl)carbamate	C ₉ H ₁₀ FNO ₂	183.18	FONHCOOCH2CH3
22	2-Trifluoromethyl-3,4,-dichloro-6- fluoroaniline	C ₇ H ₃ Cl ₂ F ₄ N	248.01	
23	2-Fluoro-6-bromobenzoic acid	$C_7H_4BrFO_2$	219.01	Бг СООН

2-Fluoro-5-chloropyridine	1,2,3,4-Tetrafluorobenzene
2-Fluoro-5-bromopyridine	1,2,3,5-Tetrafluorobenzene
2-Fluoro-5-nitropyridine	1,2,4,5-Tetrafluorobenzene
2-Amino-6-fluoropyridine	2,4,6-Trifluoronitrobenzene
2,5-Dichloro-4,6-dinitro-1,3-difluorobenzene	2-Bromo-3,6-difluoro-4-chloroaniline
2,4,6-Trichloro-3,5-dinitrofluorobenzene	2-Fluoro-3-chloronitrobenzene
2,3,5,6-Tetrachloro-4-fluoronitrobenzene	2-Fluoro-4,6-dichlorophenol
2,3-Diiodo-1,4,5,6-tetrafluorobenzene	2,4-Dichloro-3,5-difluoroaniline
2,3-Difluoro-4,6-dinitrochlorobenzene	2-Fluoro-4,6-dinitrophenol
2,3-Dichloro-4,6-dinitrofluorobenzene	3-Fluoro-4,6-dinitrophenol
2,4-Dichloro-3,5-dinitrofluorobenzene	4-Fluoro-2,6-dinitrophenol
2,6-Dichloro-3,5-dinitrofluorobenzene	2,4-Difluoronitrobenzene
1,3,5-Trifluoro-2,4-dinitrobenzene	2,4,5-Trifluoro-6-nitroaniline
Pentafluorobenzene	2,4,5-Trifluorophenol
2-Chloro-3-nitro-5-bromofluorobenzene	2-Chloro-4-fluorophenol
3-Bromo-4,6-dinitrofluorobenzene	3-Chloro-4-fluorophenol
2,5-Dibromo-1,4-difluorobenzene	2,4-Dichloro-3-fluoroaniline
3-Chloro-4,6-dinitrofluorobenzene	2,5-Dichloro-4-fluoroaniline
2-Chloro-5-nitro-1,4-difluorobenzene	3,4-Dichloro-6-fluoroaniline
2,4-Dichloro-3-fluoronitrobenzene	3,5-Dichloro-4-fluoroaniline
2,4-Dichloro-5-fluoronitrobenzene	2-Fluoronicotinic acid
3,4-Dichloro-6-fluoronitrobenzene	6-Fluoronicotinic acid
2,4,6-Trichloro-3-fluorophenol	Methyl 6-Fluoronicotinate
3-lodo-4,6-dinitrofluorobenzene	6-Fluoropicolinic acid
2-Cyano-3,5-difluoropyridine	6-Fluoropicolinic acid amide
2,3,4-Trifluoronitrobenzene	6-Fluoropicolinic acid hydrazide
2,4,5-Trifluoronitrobenzene	Methyl 6-fluoropicolinate (continued)

2-Fluoro-6-nitrophenol	3-Fluoro-6-nitroaniline
4-Fluoro-2-nitrophenol	2,4-Difluoroacetanilide
2,5-Difluoro-4-nitroaniline	Ethyl N(2,4-difluorophenyl)carbamate
3,5-Difluoro-2-nitroaniline	N(2,4-Difluorophenyl)glycine hydrazide
2,4-Difluorophenol	lsopropyl N(2,4-difluorophenyl)carbamate
2,5-Difluorophenol	2,5-Difluoroaniline
2,5-Diacetoxy-1,4-difluorobenzene	Ethyl N(3,4-difluorophenyl)carbamate
2,3,4-Trifluoroaniline	N(3,4-Difluorophenyl)glycine hydrazide
2,4,5-Trifluoroaniline	3,5-Difluoroaniline
2,4,5-Trifluoroacetanilide	Ethyl N (3-fluorophenyl)glycinate
Ethyl N(2,4,5-trifluorophenyl)carbamate	N(4-Fluorophenyl)glycine hydrazide
Isopropyl N(2,4,5-trifluorophenyl)carbamate	N(3-Fluorophenyl)glycine hydrazide
2,4,6-Trifluoroaniline	2-Fluoro-3-methylpyridine
2,4,6-Trifluoroacetanilide	2-Fluoro-5-methylpyridine
Isopropyl N(2,4,6-trifluorophenyl)carbamate	2-Fluoro-6-methylpyridine
2-Fluoro-4-bromoaniline	2,6-Dichloro-3,5-difluorobenzotrifluoride
2-Bromo-4-fluoroaniline	2,5-Dichloro-3-nitrobenzotrifluoride
2-Bromo-4-fluoroacetanilide	3-Bromo-4-chlorobenzotrifluoride
2-Chloro-4-fluoroaniline	2,5-Dichloro-3-fluorobenzoic acid
N(2-Chloro-4-fluorophenyl)glycine hydrazide	2,6-Dichloro-3-fluorobenzoic acid
3-Chloro-2-fluoroacetanilide	2,6-Difluoro-3-nitrobenzoic acid
Ethyl N(2-fluoro-3-chlorophenyl)carbamate	3-Fluoro-6-iodobenzotrifluoride
Isopropyl N(2-fluoro-3-chlorophenyl)carbamate	2-Fluoro-5-nitrobenzotrifluoride
N(3-Chloro-4-fluorophenyl)glycine hydrazide	3-Fluoro-6-nitrobenzotrifluoride
2-Fluoro-4-nitroaniline	4-Fluoro-3-nitrobenzotrifluoride
2-Fluoro-4-nitroacetanilide	2-Fluoro-4-bromobenzoic acid
3-Fluoro-4-nitroaniline hydrochloride	2-Fluoro-4-chlorobenzoic acid (continued)

2-Methyl-3-chloro-4,6-dinitrofluorobenzene	2-Fluoro-4-hydroxybenzaldehyde
2-Fluoro-3-chlorobenzoic acid	2-Fluorobenzoic acid
2-Fluoro-6-chlorobenzoic acid	Methyl 2-fluorobenzoate
2-Chlorobenzotrifluoride	3-Fluorobenzoic acid
3-Chlorobenzotrifluoride	4-Fluorobenzoic acid
4-Chlorobenzotrifluoride	3-Fluoro-4-hydroxybenzoic acid
2-Chloro-3-trifluoromethyl-5-fluoroacetanilide	3-Fluoro-4-acetoxybenzoic acid
2-Fluoro-4-nitrobenzoic acid	3-Fluoro-6-acetoxybenzoic acid
2,4-Difluorobenzoic acid	3,5-Difluoro-2-nitroanisole
Methyl 2,6-difluorobenzoate	2,4-Difluoro-5-nitroanisole
Ethyl 2,6-difluorobenzoate	3-Trifluoromethyl-4-nitroaniline
3,4-Difluorobenzoic acid	2,4,6-Trifluorobenzyl alcohol
3-lodobenzotrifluoride	3-Trifluoromethylphenol
4-Nitro-3-trifluoromethylphenol	3-Trifluoromethylphenol (4-nitrobenzoate)
5-Trifluoromethylbenzotriazole	2-Fluoro-5-trifluoromethylaniline
2-Nitro-4-fluoro-6-trifluoromethylaniline	Ethyl N(2-fluoro-5-trifluoromethylphenyl)carbamate
2-Nitro-5-fluoro-3-trifluoromethylaniline	Isopropyl N(2-fluoro-5-trifluoromethylphenyl)carbamate
2,5-Difluoro-3-trifluoromethylaniline	Ethyl N(3-trifluoromethyl-4-fluorophenyl)glycinate
Ethyl N(2,5-difluoro-3-trifluoromethylphenyl)carbamate	Isopropyl N(4-fluoro-3-trifluoromethylphenyl)carbamate
2,5-Difluoro-3-trifluoromethylaniline hydrochloride	2-Fluoro-4-iodoanisole
lsopropyl N(2,5-difluoro-3-trifluoromethylphenyl) carbamate	4-Fluoro-2-iodoanisole
	2-Fluoro-4-aminobenzoic acid
2-Bromo-5-trifluoromethylaniline Ethyl N(2-bromo-5-trifluoromethylphenyl)glycinate	3-Fluoro-4-carboxyacetanilide
	2-Fluoro-4-nitroanisole
2-Trifluoromethyl-4-chloroaniline 3-Trifluoromethyl-5-chloroaniline	4-Fluoro-2-nitroanisole
3-Methyl-4,6-dinitrofluorobenzene	N(3-Trifluoromethylphenyl)glycine hydrazide
	inued)

- 2,4-Difluoro-3-methylaniline
- 3,5-Difluoro-2-methoxyacetanilide
- N(3-Fluoro-2-methylphenyl)glycine hydrazide
- 3-Fluoro-4-methylacetanilide
- Ethyl N(3-fluoro-4-methylphenyl)glycinate
- N(3-Fluoro-4-methylphenyl)glycine hydrazide
- Isopropyl N(2-methyl-4-fluorophenyl)carbamate
- 4-Fluoro-2-methylaniline
- 3-Fluoro-4-methoxyaniline
- 3-Fluoro-6-methoxyaniline
- Isopropyl N(3-fluoro-6-methoxyphenyl)carbamate
- 3-Cyano-4-chlorobenzotrifluoride
- 3,5-Bis-trifluoromethylchlorobenzene
- 3-Cyano-4-fluorobenzotrifluoride
- 2-Bromo-3,5-dichloro-4-fluorophenoxyacetic acid
- Ethyl N(3,5-bis(trifluoromethyl)phenyl)carbamate
- Isopropyl N(3,5-bis(trifluoromethyl)phenyl)carbamate
- 2-Fluoro-6-methoxybenzoic acid
- 3-Fluoro-2-methoxybenzoic acid
- 3-Fluoro-4-methoxybenzoic acid
- 3-Fluoro-6-methoxybenzoic acid
- 4-Fluoro-2-methoxybenzoic acid
- 4-Fluoromandelic acid
- 2,4,6-Tris(trichloromethyl)-1,3,5-trifluorobenzene
- 5(4-Fluorophenyl)-1,2-dithiole-3-one
- 4-Methoxy-3-fluorobenzylcyanide
- 3-Methylthio-5(4-fluorophenyl)-1,2-dithiolium iodide

- N,N-Bis-6(fluoropyridyl) urea
- 1(4-Fluorophenyl)-2,3-dimethyl-5-pyrazolone
- 2,2'-Dihydroxy-5,5'-difluorobiphenyl
- 3,3'-Difluoro-4,4'-dihydroxybiphenyl

ILLINOIS INSTITUTE OF NATURAL RESOURCES

STATE OF ILLINOIS, ILLINOIS STATE GEOLOGICAL SURVEY DIVISION

Printed by authority of the State of Illinois (2,000/1979)