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ABSTRACT 

This is an empirical study of the market transparency on the U.S. equity market. The 

dissertation is composed of three essays.  Using two unique data sets on NASDAQ stocks, the 

first essay studies the influence and informational role of hidden orders in the U.S. equity 

markets. I find that as much as 20 percent of trading volume is executed against hidden orders in 

NASDAQ, and 16 percent of time the best bid and offer is represented by hidden orders. The 

observed bid-ask spread is 34 percent larger than the true spread because of invisible orders. 

Hidden orders are more likely to be used by informed traders. At intraday day level, hidden 

orders can generate 13 basis point return (33 percent annually), but the return of displayed orders 

is zero. On a two-day horizon, the portfolio of stocks with trades heavily executed against hidden 

buy orders outperforms the portfolio of stocks with trades heavily executed against hidden sell 

orders at an annualized 18-percent rate for small firms, but outperformance decreases with 

market capitalizations. Beyond two-day level, the hidden order return predictability disappears, 

indicating that the information in hidden orders is quickly incorporated into stock prices.  Since 

there exists no return reversal, the return predictability is not due to price pressure.  

The second essay investigates the role and usage of odd lot trades in equity markets.  Odd 

lots are increasingly used in algorithmic and high frequency trading, but are never reported to the 

consolidated tape or to data bases derived from it such as TAQ (Trades and Quotes).  The essay 

finds the median fraction of missing odd lot trades per stock is 24% but some stocks have more 

than 60 % missing trades. Odd lot trades contribute 35% of price discovery, consistent with 

informed traders splitting orders into odd-lots to avoid detection. The omission of odd-lot trades 

leads to significant inaccuracies in empirical measures such as order imbalance and sentiment 

measures. The exclusion of odd lots from the consolidated tape raises important regulatory issues. 
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The third essay shows that two exogenous technology shocks that increase the speed of 

trading from microseconds to nanoseconds do not lead to improvements on quoted spread, 

effective spread, trading volume or variance ratio. However, cancellation/execution ratio 

increases dramatically from 26:1 to 32:1, short term volatility increases and market depth 

decreases. This essay finds evidence consistent with quote stuffing hypothesis (Biais and 

Woolley, 2011), which involves submitting an extraordinarily large number of orders followed 

by immediate cancellation in order to generate order congestion. The stock data are handled by 

six independent channels in the NASDAQ based on alphabetic order of ticker symbols. The 

essay documents abnormally high levels of co-movement of message flows for stocks in the 

same channel using factor regression, a discontinuity test and diff-in-diff test.  Results suggest 

that an arms race in speed at the sub-millisecond level is a positional game in which a trader’s 

pay-off depends on her speed relative to other traders. This game leads to positional externality 

(Frank and Bernanke, 2012), in which private benefit leads to offsetting investments on speed, or 

effort to slow down other traders or the exchange, with no observed social benefit. 
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CHAPTER 1 

 

HIDDEN AGENDAS: A STUDY OF THE INFORMATIVENESS OF CONCEALED 

ORDERS 

 

I Introduction 

The major U.S. stock markets are now organized as limit order books. In this market, 

traders either supply liquidity by posting non-marketable limit orders that specify prices and total 

order sizes, or they demand liquidity by submitting market orders or marketable limit orders, 

which yield immediate executions. The option of hiding one’s order has also become an 

important feature of equity markets. Nowadays, virtually all exchanges permit traders to choose 

the extent to which their orders are displayed in the system, allowing all, some or none of their 

orders to be visible.  Like a regular limit order, a hidden limit order must specify the sign (buy or 

sell), size and the price level of the order. However, this information is not visible to other 

market participants. Thus, the information of the hidden orders cannot be found in the limit order 

book.  

A direct consequence of hidden orders is that the visible prices in the market are not real 

because of the large amount of hidden orders, and many trades are executed against hidden 

orders. Based on two proprietary datasets from NASDAQ, I find hidden orders are strikingly 

important. About 16.47 percent of the time, the best bid or offer price we observe is not true 

because the best price is established by hidden orders. Over 20 percent of executions are against 

hidden orders, which account for about 19 percent of daily volume. Despite the importance of 

hidden orders in the United States, the empirical research on hidden orders is sparse due to the 

availability of the data. This paper aims to fill this gap.         
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 The question of first order importance is whether hidden orders have information, or 

alternatively, whether informed traders are more likely to use hidden orders. On one hand, an 

informed trader may use hidden orders to conceal their information. This concern is supported by 

a recent Wall Street Journal article stating that sophisticated traders use hidden orders to exploit 

less sophisticated traders.
1
 In addition, brokerage firms for retail traders (Schwab, e-trade, 

Scottrade, etc) usually do not provide interfaces for customers to submit hidden orders, whereas 

some institutional trading algorithms, for example, one called “guerrilla,” involve submitting 

only hidden orders. All the evidence suggests that hidden orders are more likely to be used by 

informed traders. On the other hand, there exist arguments suggesting informed trader should not 

use hidden orders. The long tradition in market microstructure is that informed traders should use 

market orders but not limit orders, or they should demand instead of supplying liquidity.
2
 The 

intuition is that infrequently monitored limit orders are susceptible to being picked off by better 

informed subsequent investors (Copeland and Galai (1983), Rock (1990) and Glosten (1994)). 

Because hidden orders are also limit orders, they suffer from the same risk as regular limit orders; 

therefore, hidden orders should not have information. Using data in the earlier period outside the 

United States, Aitken et al. (2001), Bessembinder et al. (2008) and De Winne and D.Hondt (2007) 

find that hidden orders do not have information. 

 Based on a large cross-section of stocks from January 2010 to November 2011, I find that 

traders who use hidden orders can make intraday profits and the same pattern is not found for 

displayed orders, implying that hidden orders are more likely to be used by informed traders in 

the United States. The return predictability is most striking at the intraday level. Following the 

                                                           
1
 For Superfast Stock Traders, a Way to Jump Ahead in Line. Wall Street Journal, September 19, 2012 

2
 This prior has recently been challenged theoretically ((Kaniel and Liu, 2005) and  Goettler, Parlour and 

Rajan (2007), empirically ( Biais, Hillion and Spatt (1995) and Griffiths, Smith, Turnbull and White (2000) and 

experimentally (Bloomfield, O’Hara and Saar (2005)).  
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methodology in Linnainmaa (2010), I measure the intraday return as follows: for each executed 

buy hidden order, the return is defined as the logarithm of the closing price over the execution 

price; for each executed sell hidden order, the return is defined as the logarithm of the execution 

price over the closing price. I find that the return of hidden orders is as high as 13 basis point per 

day, or 33 percent annually. 

One alternative explanation for the return of hidden orders is that they provide liquidity. 

In other words, traders submitting hidden orders earn returns by providing liquidity to market 

orders. My result rules out this alternative explanation. Applying the same methodology to 

calculate the intraday return for displayed orders, I find the return is close to zero. The result is 

consistent with competing for providing liquidity in the current market structure. Market makers 

or specialists in the traditional sense no longer exist. Every trader nowadays can post limit orders 

to provide liquidity in the NASDAQ, though most liquidity is provided by 26 or more high 

frequency traders. Biais, Bisiere and Spatt (2003) test the hypothesis that liquidity supply is 

perfectly competitive, and they find the hypothesis that liquidity suppliers that do not earn rents 

cannot be rejected after decimalization. The competition in providing liquidity is very similar to 

the perfect competitive market described by Stigler (1995): there are many providers of the 

goods (liquidity), the goods (liquidity) they provide are identical; entrant into a market is free 

and there is no collusion in providing liquidity. As a result, profits in providing liquidity result in 

price cuts or new entrants. Traders competing on speed stand as evidence that traders can no 

longer undercut the price (Gai, Yao and Ye, 2012). Furthermore, exchanges now provide rebates 

for limit orders that provide liquidity, implying liquidity providers can make profits even when 

they slightly suffer losses before rebates. Indeed, I find that for medium and large cap stocks, the 

returns for displayed orders are negative before rebates. As a result, regular liquidity providing 
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orders do not have significant returns. The abnormal returns of hidden orders do not stem from 

regular liquidity providing. As a group, the submitters of hidden orders have better information 

than the submitters of displayed orders. 

I then study how long this information lasts. To address this question, I sort stocks into 

portfolios based on hidden order activities, and I examine whether the portfolio of stocks with 

trades heavily executed against hidden buy orders outperforms the portfolio of stocks with trades 

heavily executed against hidden sell orders. After adjusting for risk factors, I find this long-short 

strategy can generate abnormal returns for up to two days. The outperformance decreases with 

market capitalizations. The abnormal return is as high as 18 percent for small stocks and the 

return is only 2 percent for large stocks. At monthly level, the return predictability disappears, 

implying that the information contained in the hidden orders is short lived.  Taking together, the 

above evidence suggests that the information contained in hidden orders is quickly impounded 

into securities prices.  

My paper contributes to the literature by providing empirical evidence for the 

assumptions in theoretical models. An ideal model on hidden liquidity allows both informed 

traders and uninformed traders to submit market or limit orders and allows that when they submit 

limit orders, they can choose to display or hide orders. However, a model with above properties 

is hardly tractable.
3
 Therefore, theoretical works on hidden liquidity are usually highly structured 

with strong restrictions on who can submit hidden orders.
4
 For example, Moinas (2007) proposes 

a sequential signaling game where hidden orders are used by one insider to trade large volume 

but the model does not allow uninformed traders to hide orders. Boulatov and George (2012) 

                                                           
3
 In a model with informed and uninformed traders, the price should be uncertain. Limit orders usually have 

execution uncertainty. Ye (2012) discuss the difficulty to build a model to tract both price and execution uncertainty. 

In fact, models where informed traders can place limit orders are usually not tractable. When traders can hide limit 

orders, the problem becomes even more complex.   
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also assume that uninformed traders cannot submit hidden orders. On the other hand, based on 

early evidence from non-U.S. markets, hidden orders are used by uninformed traders (Harris 

(1996), Aitken et al. (2001), Bessembinder et al. (2008) and De Winne and D. Hondt (2007)). 

Buti and Rindi (2012) build a model that assumes hidden orders are used by uninformed traders. 

These papers generate different predictions that are important for policy making. My paper does 

not aim to test the predictions of these models. Instead, I test whether their assumptions hold for 

the current U.S. market. Due to the difficulty to model informed trading, Bloomfield, O’Hara 

and Saar (2012) adopt an experimental approach. They find that both informed and uninformed 

traders use hidden orders, but the informed traders submit hidden orders more than liquidity 

traders do. Gozluklu (2012) illustrates an attempt to link informed trading and hidden orders 

through distributing questionnaires to professional traders.   

The previous empirical literatures using non-U.S. data generally support that hidden 

orders are more likely to be used by uninformed traders (Aitken et al. (2001), Bessembinder, 

Panayides and Venkataraman (2009), De Winne and D’Hondt (2007), Frey and Sanda (2009)). 

The key elements to reconcile my results and the previous literatures are the changes in the 

market structure and the blurring between market and limit orders. Traditionally, hidden orders 

are passive orders that are subject to adverse selections when the market moves. Currently, the 

proliferation of high frequency and algorithm trading significantly changes the landscape of 

trading. Traders are able to manage hidden orders, add or cancel them in a matter of micro or 

nanoseconds, and send fleeting orders to the market (Hasbrouck and Saar (2009), and Gai, Yao 

and Ye (2012)). In this sense, hidden orders are less subject to the adverse selection problem than 

that they were before, and the invisibility feature of such orders can be incorporated into 

sophisticated trading strategies. The Wall Street Journal reports that high-frequency traders 
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sometimes use a special type of order known as “Hide Not Slide” to step in front of ordinary 

investors to buy and sell stocks. These maneuvers are executed in a fraction of second.
5
 Recent 

work by Foley, Malinova and Park (2012) also suggests that hidden orders in the current market 

are quite different from the hidden orders several years ago. For example, one of the main results 

in Bessembinder, Panayides and Venkataraman (2009) using samples in year 2003 is that hidden 

orders are associated with lower probability of execution, but Foley, Malinova and Park (2012) 

find that the fill rate of hidden orders is three times as large as displayed orders. The proliferation 

of algorithm and high frequency trading brings an important new role to hidden orders.  

The paper is organized as follows: section II illustrates the institutional details of hidden 

orders and describes the data. Section III examines the magnitude and pattern of hidden orders. 

Section IV explores the intraday return of hidden as well as displayed orders. Section V 

examines the information content of hidden orders at daily and monthly level. Section VI 

concludes the paper.  

 

II Institutional Details and Data   

This section illustrates the concept of hidden orders and provides examples of their 

execution sequences under different scenarios. This section also describes the dataset used to 

study hidden orders. 

A. Hidden orders and Execution Priority 

Hidden orders are limit orders invisible to other market participants. The NASDAQ 

market provides options for traders to hide all or part of their orders. For example, a non-

                                                           
5

This news was reported on September 19, 2012 in the Wall Street Journal: 
http://online.wsj.com/article/SB10000872396390443989204577599243693561670.html?mod=WSJ_hppMIDDLEN

exttoWhatsNewsSecond 

 

http://online.wsj.com/article/SB10000872396390443989204577599243693561670.html?mod=WSJ_hppMIDDLENexttoWhatsNewsSecond
http://online.wsj.com/article/SB10000872396390443989204577599243693561670.html?mod=WSJ_hppMIDDLENexttoWhatsNewsSecond
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displayed order allows a trader to hide the size of an entire order, whereas a reserved order 

allows a trader to display only a fraction of the order. Hidden orders can also be embedded in 

more complicated order types, such as Price-To-Comply Orders, Supplemental Orders, 

Minimum Quantity Orders and Discretionary Orders
6
. Those types of orders are commonly used 

by highly sophisticated traders. However, NASDAQ’s core matching engine accepts limit orders 

of only two types: displayed and hidden. Complex orders are pre-processed into these two order 

types before being sent to the core matching engine. For example, iceberg orders are broken into 

different types of orders based on their displayed and reserved sizes. Since the data I use is 

directly from the core matching engine, I can only observe trades executed from displayed and 

hidden orders but not the specific type of hidden orders used.  

 In regards to limit orders awaiting execution, NASDAQ’s core matching engine 

determines their execution sequences based on a priority rule.
7
  Orders at the best prices receive 

the highest priority.
8
 For orders at the same prices, displayed orders have execution priority over 

hidden orders; display status trumps time as the third priority factor. Currently, the market 

fragmentation allows a stock to be traded in more than 40 venues (O’Hara and Ye, 2011). The 

priority across exchanges is even more complex. Regulation NMS prohibits “Trade Through,” 

that is, an execution occurred not at the best possible price based on quoted prices at other 

exchanges. This regulation, known as the Order Protection Rule, establishes price priority among 

                                                           
6
 NASDAQ allows for additional order types other than displayed or hidden orders. A complete 

description of these orders is available at “Routing Strategy and Order Types Guide” published by 

NASDAQ: 

http://www.NASDAQtrader.com/content/ProductsServices/Trading/Workstation/rash_strategy.pdf   
7
 NASDAQ does not allow market orders; all orders must come with intended prices. Orders that 

are intended to be executed immediately are made possible by marketable limit orders, for which buy 

orders are submitted at prices at least as good as the best ask prices and sell orders are submitted at prices 

at least as good as the best bid prices in order to ensure executions.   
8
 The best prices here refer to the highest price for buy orders and the lowest ask price for sell 

orders. 

http://www.nasdaqtrader.com/content/ProductsServices/Trading/Workstation/rash_strategy.pdf
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displayed orders among different exchanges. However, the hidden orders are not protected by 

this rule because they are not visible. For example, suppose that there is a displayed buy order in 

the NYSE with the price $20.00 and there is a displayed buy order at price $20.01 in the 

NASDAQ. Next, a marketable sell order enters the NYSE. The order will be routed to the 

NASDAQ because the order in the NASDAQ is at a better price. However, the order in the 

NASDAQ will not be protected if it is a hidden order. As a result, the order loses price priority.  

As my analysis is concentrated in the NASDAQ, I focus on the execution priority in the 

same market. Figure 1 Panel A shows a limit order book snapshot that contains both displayed 

orders and hidden orders. Hidden order prices and depths are grey in color and displayed order 

prices and depths are black in color.  Market participants observe the best bid at $1.01 and the 

best ask at $1.06. Although the total depth of the best bid is 5500 shares, market participants can 

observe only the displayed 4000 shares. The same holds true for the depth of the best ask. In this 

example, best bid and ask prices are provided by hidden orders. The true best bid and true best 

ask prices, which take into account both displayed and hidden orders, are $1.03 for 850 shares 

and $1.04 for 900 shares, respectively.   

 Panel B, C and D provide three examples which illustrate the execution priority of hidden 

orders. The execution priority has three levels: price, displayed status and time. Panel B 

illustrates the scenario following an arrival of a 300-share sell market order. The 300-share sell 

market order will be matched to hidden orders placed at $1.03 because $1.03 is the highest bid 

price. Market participants do not see any depths at $1.03 but are able to observe trades that occur 

at $1.03 for 300 shares once they are reported. Panel C illustrates the scenario following an 

arrival of a 1500-share sell market order. The order will initially be matched to hidden orders 

placed at $1.03 and will wipe out the 850-share depth, and then get matched to hidden orders 
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placed at $1.02 and wipe out the 500-share depth. The remaining 150 shares will be matched to 

displayed orders placed at $1.01, because at the same price level, displayed orders have 

execution priority over hidden orders. Trades occurred at $1.03 with a total of 850 shares, at 

$1.04 with a total of 500 shares, and at $1.05 with a total of 150 shares being reported. Panel D 

illustrates the scenario following an arrival of a 6000-share sell market order. As in the previous 

example, the order will first wipe out all depths for hidden orders placed at $1.03 and $1.02. It 

will then be matched to displayed orders placed at $1.01 and will wipe out all displayed depths.  

The remaining 650 shares will be matched to buy hidden orders at $1.01. Market participants 

observe that trades occurred at $1.03 with a total of 850 shares, at $1.04 with a total of 500 

shares, at $1.05 with a total of 4650 shares. Among the 4650 shares, 650 shares are executed 

against hidden orders. 

B Data Description 

The analyses in this paper are based on messages I find in two unique datasets, NASDAQ 

TotalView-ITCH and NASDAQ Model View. NASDAQ TotalView-ITCH consists of a series of 

messages that describe orders added to, removed from and executed on the NASDAQ. The data 

is in the form of daily binary files with order instructions. The first step is to separate the order 

instructions into different message types. This paper focuses on message P, which contains 

executions of hidden orders. A complete list of message types can be found in the NASDAQ 

TotalView-ITCH data manual.
9
 The timestamps for all of the different types of messages have 

two parts: one concerns the number of seconds since midnight; the other concerns the number of 

nanoseconds (which is accurate to 10
-9

 second) since the most recent second message. 

                                                           
9
 The NADAQ TotalView-ITCH data manual can be found at 

http://www.nasdaqtrader.com/content/technicalsupport/specifications/dataproducts/nqtv-itch-v4_1.pdf 

http://www.nasdaqtrader.com/content/technicalsupport/specifications/dataproducts/nqtv-itch-v4_1.pdf
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Table 1 presents a sample of the NASDAQ TotalView-ITCH message P, which includes 

executions against hidden orders. The dataset contains the trade prices, volume and timestamps 

for trades that occurred. It also indicates the signs for executed limit orders. The signs here are 

measured from the passive side. In this example, all of the trades were executed against the same 

limit order, which was assigned the unique order reference number 61224737 when the order 

was added to the book.
10

 Sections III in this paper use two unique data sets, NASDAQ 

TotalView ITCH and NASDAQ Modelview.  They cover the same 2156 common stocks that 

were listed on the NASDAQ.  The sample period for NASDAQ TotalView ITCH is from 

January 4, 2010 to November 18, 2011, and sample period for NASDAQ ModelView is from 

February 28, 2012 to March 16, 2012. NASDAQ Modelview dataset contains one-second snap 

shots of the limit order book for displayed and hidden order depths at each price level.  

The CRSP dataset was used to retrieve the information on daily stock returns, market 

capitalizations and volume. Section III uses three factors: MKT, SMB, and HML for the asset 

pricing tests. These are obtained from the Fama/French website data library.  

 

III Summary Statistics 

This Section provides summary statistics demonstrating the importance of hidden orders.  

I show that 20 percent of executions in the NASDAQ are made against hidden orders and for 16 

percent of the time they represent the best prices.   

A Market share of Executions Against Hidden Orders  

Table 2 Panel A presents the cross sectional distributions for executed shares against 

hidden orders over the total trading volume. On average, over 19 percent of trading volume 

                                                           
10

 Effective December 6, 2010, NASDAQ OMX filled the order reference number field within the P 

message as zero. 
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comes from executions made against hidden orders. Small stocks have a significantly higher 

percentage of shares executed against hidden orders (28.71 percent) than large stocks (13.85 

percent), and this number monotonically decreases in tandem with size quintiles. Panel B shows 

that on average, nearly 18 percent of trades are executions against hidden orders. Panel B 

displays the same pattern as in Panel A, such that the small stocks have higher executions against 

hidden orders over total trades, and this number decreases with market size quintiles.   

The key variable in my study is the imbalance of executed hidden orders, which is 

defined as, for each stock in each day
11

 

                                                                                    

                                                                                    
 

Panel C provides cross-sectional distributions for the executed hidden order imbalances. 

The mean of the imbalance measures is negative, which suggests that there are more executions 

made against sell hidden orders than against hidden buy orders. Small stocks have a higher order 

imbalance (-1.31%) than large stocks (-0.08%), and the mean decreases with the size quintiles.   

Stock size may be correlated with illiquidity. In order to disentangle  the size effect from 

the illiquidity effect, Table 3 examines the cross-sectional distributions of hidden orders double 

sorted for size and illiquidity. The illiquidity measure follows Amihud (2002), for which the 

illiquidity is calculated as daily return over daily dollar volume. Stocks are sorted horizontally 

for size and vertically for illiquidity. Panel A shows that, after controlling for firm size, illiquid 

stocks have a higher percentage of shares that are executed against hidden orders than is the case 

for liquid stocks. The same pattern holds true for the percentage of executions against hidden 

orders in illiquidity quintiles as Panel B indicates.  

B Which factors determine executions against hidden orders? 

                                                           
11

 I also calculate the imbalance based on volume and dollar volume, and the results are similar.  

https://www.google.com/search?hl=en&sa=X&ei=oM5bUOmLJoHnyAGV14CoCQ&ved=0CBwQBSgA&q=disentangle&spell=1


 

12 

In this section, I examine the factors correlated with executions made against hidden 

orders. Because it is hard to establish the causality without clean identification, I present the 

result based on partial correlations instead of the regression analysis. Variable hidtrdpct is the 

number of executions made against hidden orders over total trades. logprc is the log value of the 

price level, range is the daily highest price minus the lowest price over the closing price, and 

illiquidity is the Amihud (2002) illiquidity measure multiplied by 10
6
. The results are in Table 4. 

High price stocks have a higher percentage of trades that come from executions against hidden 

orders. High price stocks are likely to have large displayed bid-ask spreads, which provide more 

discrete price levels such that hidden orders can be placed at. Small stocks and highly illiquid 

stocks have a larger percentage of executions against hidden orders, which is consistent with 

Table 3. The daily price range, which is used as a proxy for volatility, is positively correlated 

with the percentage of executions made against hidden orders. This finding is consistent with 

Hasbrouck and Saar (2001), which reflects that higher volatility is associated with a higher 

probability of limit order executions.  

C Where are hidden orders placed? 

Another important question is where hidden orders are placed. Though the main dataset, 

NASDAQ ITCH, is unable to address this question, NASDAQ ModelView, which provides a 

glimpse of the order book with hidden orders, is able to serve this purpose.  Columns (1) and (2) 

of Table 5 show the observable quoted spread and true quoted spread for each market quintile. 

True quoted spread is the difference between the true best ask and the true best bid. It is 

calculated as follows: 
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The table shows that the observable quoted spread is larger than the true quoted spread 

for each market size quintile. In the aggregate, the observable spread is 34 percent larger than the 

true market spread. Small stocks have larger observable quoted spreads as well as larger true 

quoted spreads than large stocks. 

Columns (3), (4) and (5) of Table 5 show the percentages of hidden time orders that are 

placed between, at and away from observable spreads for each market capitalization quintile.  

The observable spread is calculated as the difference between the best bid and best ask prices for 

displayed orders, which are also the prevailing bid and ask prices that market participants 

observe. In the aggregate, hidden orders are placed between the observable spread 16.47 percent 

of the time. Hidden orders have lower execution priorities than displayed orders at the same price 

level, so one way to gain execution priorities is to place hidden orders between the observable 

bid and ask prices. If hidden orders improve the prevailing visible bid or ask prices, they will be 

executed ahead of displayed orders. Column (3) also shows that small stocks have a higher 

percentage of time (35.72 percent) than large stocks (15.92 percent) for hidden orders to be 

placed between the observable bid and ask prices.  

Column (4) shows that hidden orders are placed at the prevailing observable bid or ask 

prices 55.47 percent of time. Hidden orders are placed at the observable bid and ask prices at a 

lower percentage of time (31.13 percent) for small stocks than is the case for large stocks (56.86 

percent). Column (5) shows that hidden orders are placed away from the observable spread 28.06 

percent of time. Placing hidden orders at or away from observable bid or ask prices mitigates the 

cost of being picked-off by fast traders in the event of an asset value shock or the cost of being 

adversely selected by informed traders. Hidden orders will not be executed when the counterpart 
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submits a large size order equal to the displayed depth, and intend to wipe out the depth at 

certain price levels.  

D Intraday spread patterns 

It is well documented in the literature that the intraday minute-by-minute spread exhibits 

a reversed J-shaped pattern, and the liquidity is high in the morning and decreases as the day 

progresses. Figure 2 shows that the trend of the hidden order spread is the reverse. In other words, 

the spread is narrower in the morning and increases during the day. The gradual increase of the 

hidden order spread suggests the possibility of high levels of hidden liquidity existing in the 

morning, and the traders switch to displayed orders when the hidden orders do not get filled as 

the day moves on. The results may also reflect the case that the hidden orders placed in the 

morning get filled. When no new hidden orders come in, the spread widens. Without order level 

information for hidden orders, it is not possible for this paper to distinguish between the two 

scenarios. The figure also shows that the hidden order spread experiences a sudden drop five 

minutes before the market closes. The sudden narrowing of bid and ask prices may be the result 

of the fact that orders that are intended to be executed, but are not filled, wind up getting sent to 

the closing call auction, where the closing prices, depending on the supply and demand schedule, 

are uncertain. Traders improve their bid and ask prices in order to obtain better chances of 

executions.  

The figure shows that in the aggregate, the hidden order spread is larger than the 

displayed order spread. The result is consistent with Table 5 to the effect that the percentage of 

time that hidden orders are placed away from the observable spread is larger than the percentage 

of time that hidden orders are placed between the observable spread.  
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Given that the true ask is the minimum of the displayed ask and hidden ask prices, and 

the true bid is the maximum of displayed bid and hidden bid prices, the true spread is smaller 

than either the displayed order spread or the hidden order spread. The concentration of hidden 

liquidity in the morning is insufficiently strong to offset the low displayed liquidity. Therefore, 

the displayed liquidity and the true liquidity still exhibit the classical reversed J-shaped pattern.   

 

IV  Test for Information: Intraday Return 

The standard test for the information content of different order types is based on high 

frequency return predictability (Parlour and Seppi, 2009). The benchmark price I choose to 

calculate intraday return is the closing price of the day.
12

 The calculation follows Linnainmaa 

(2010). I first compute the intraday return for executed hidden orders and I find that on average, 

executed hidden orders have an on average of 13 basis points (33 percent annually) intraday 

return. I then calculate the intraday return for displayed orders and find that the return is close to 

zero. These findings demonstrate that 1) providing liquidity by using displayed orders is almost 

perfectly competitive, which further strengths the results by Biasis Bisiere and Spatt (2003); 2) 

hidden orders have larger return compared to the liquidity providing displayed orders, consistent 

with the information hypothesis.  

Intraday executed hidden order return is defined as follows, and intraday executed 

displayed order return is defined similarly. For each executed buy hidden order, the return is 

measured as the logarithm of the closing price divided by the execution price. For each executed 

                                                           
12

 Previous studies have adopted other benchmark prices such as the midpoint price five minutes after 

transaction. The difference between the trade price and midpoint five minutes letter is called realized spread, which 

is the temporary price impact. The difference between the midpoint at the time of trade and midpoint five minutes 

letter is called (permanent) price impact, which measures the information content of trade. A recent paper by Wahal 

(2012) challenges this methodology for any arbitrary fixed horizon after the trade in the era of algorithmic trading. 

According to his paper, studies that use fixed-horizon realized spreads, without accounting for the speed of trading 

and quote movement, are often unreliable.   
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sell hidden order, the return is the log of the sell price divided by the closing price. More 

specifically, let       
  be the return for the k

th
 execution of hidden orders on day t for stock i, 

which is computed as follows:  

                                    
   

    
          

        
 

                           

    
        

 

          

                            

                                  (1) 

where             is the closing bid and the ask price midpoint;          
  is the execution price 

for the k
th

 execution of hidden orders for stock i on day t. 

The return per trade is then aggregated for each stock and each day. Within each trading 

day, the return for each stock is share weighted across different trades. The return for each stock 

is the average daily return.    
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where       
  is the share weight for the k

th
 execution of hidden orders, and T is the number of 

total trading days.   

The return for displayed orders for stock i is similarly defined: 
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                                   (3) 

        
  is the execution price for the k

th
 execution of displayed orders for stock i on day t, and 

      
  is the share weight for the k

th
 execution of displayed orders.  

Table 6 reports the share weighted intraday returns for executed hidden and displayed 

orders, as well as their return differences. Results show that executed hidden orders have high 
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return. On average, the return from hidden orders is as large as 13 basis points, which is about 33 

percent annually. I further divide stocks into three groups: small, medium and large based on 

market cap of the stock. For small stocks the intraday return is as large as 29.2 basis points. The 

return decreases with the market size categories, and it is 7.6 basis points for medium stocks and 

2.1 basis points for large stocks. There are two possible causes for the return differences for 

different-sized firms. First, as has been documented in the literature, small stocks have higher 

returns than large stocks due to their size effects. Second, small stocks tend to have wider 

spreads than large stocks. Sophisticated traders can undercut displayed orders by using hidden 

orders more frequently when spread is wide. In the extreme case, the advantage of hidden orders 

diminishes when the spread is one penny. Hidden orders across all market size categories have 

significantly positive returns, and T-values are computed from stock-clustered residuals. 

On the contrary, the intraday return for displayed orders is close to zero. Surprisingly, the 

return is positive only for small stocks. The intraday returns for medium and large stocks are 

negative. Nevertheless, the profit computed here has not taken liquidity rebate into account, and 

the liquidity rebate for providing liquidity, which is typically around 0.295 cent per 100 shares in 

the NASDAQ, may possibly balance their costs.
13

 The exact magnitude depends on how much 

liquidity they provide. As a result, large liquidity providers can provide liquidity even when they 

slightly lose money before rebate. For example, a liquidity providing strategy called “scratch for 

the rebate” involves buying and selling one stock at the same price, or buying at a price even 

slightly higher than the selling price. Early results of Biais, Bisiere and Spatt (2003) find that the 

hypothesis that liquidity suppliers do not earn rents cannot be rejected after decimalization. My 

                                                           
13

 The complete adding and removing liquidity rates are found in 

http://www.nasdaqtrader.com/content/ProductsServices/PriceList/pricesheet.pdf 

http://www.nasdaqtrader.com/content/ProductsServices/PriceList/pricesheet.pdf
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evidence is consistent with intense competition in the current market: liquidity providers can 

provide liquidity to a point that they slightly lose money before rebate.     

The striking difference between the profit level of displayed and hidden orders suggest 

that hidden orders are significantly different from the regular liquidity providing provision. On 

average, hidden orders can generate 11.7 basis points return benchmarked to displayed orders.  

The return difference for small stocks is the largest, and the difference decreases with market 

size categories. As a group, the submitters of hidden orders have better information than the 

submitters of displayed orders.   

Trading firms commonly use closing price as a benchmark for measuring traders’ 

execution performances, and traders have strong incentive to beat the daily closing price. Results 

in Table 6 suggest that traders who use hidden orders are informed about the intraday level in the 

sense that they have superior order exposure and execution strategies. Their strategies allow 

them to execute orders with profitable prices that beat the closing price. One natural strategy for 

them is to open positions using hidden orders (buy or short sell), and close the position (sell or 

buy back) at the end of day. The strategy generates a 13 basis points intraday return on average, 

and ends with a zero daily inventory.
14

    

 

V How Quickly Does Information Incorporated Into the Price? 

Having established the presence of informed trading in hidden orders at intraday level, I 

turn my attention to longer horizons. I sort stocks into five portfolios based on the imbalance 

between buy and sell hidden trades from daily level to monthly level (20 trading days). These 

                                                           
14  Although hidden orders can generate positive intraday returns, the trading strategy is hardly 

implementable by general investors.  First, investors need access to direct data feeds, which provide instant updates 

for executions and message flows. Second, hidden orders do not have guaranteed executions; orders may not get 

filled and prices may drift away.  Third, it is hard to define the time intervals upon which trading decisions and 

initiatives should be based.  The benefits of hidden orders are mostly utilized by sophisticated traders with 

complicated algorithms. 
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tests serve two purposes. First, returns on longer horizon can be used to examine whether the 

intraday return are due to price pressure instead of information. Results show no return reversals 

for the executed hidden orders, indicating that returns by using hidden orders do not arise from 

price pressure. One the other hand, I find that the return predictability from hidden trades is 

short-lived. The return predictability only lasts for two days, mostly for small stocks. I do not 

find the return predictability for large stocks at daily level. This indicates that the information 

contained in the hidden trades is quickly incorporated into the stock price. 

 I conduct the test based on portfolio approach. This approach has two advantages: first, it 

is translated into an implementable trading strategy; second, aggregation into portfolios reduces 

the impact of outliers and relaxes the assumption of heteroskedasticity within portfolios 

compared to a regression approach. More specifically, I measure the aggregate imbalance of 

trades executed against hidden orders during the previous five trading days. I define        for 

stock i on day t as 

                             
                                                                   

                  
   
   

                 (4) 

where 

                                                                   

                                                     

   

   

                                                      

In order to confirm that hidden order activities do not contain the same information set as 

market sizes, I conduct double sorts such that stocks are first sorted into three market 

capitalization categories. Then, within each category, stocks are sorted for the second time into 

quintiles based on       . The result is a set of stocks that differ in hidden order activities but are 

https://www.google.com/search?hl=en&sa=X&ei=myvNT9TrLcvxggeNxJWtAg&ved=0CAcQvwUoAQ&q=heteroskedasticity&spell=1
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of similar size. Stocks with the smallest        are sorted into quintile 1, and stocks with the 

largest        are sorted into quintile 5 within the same market capitalization category. In other 

words, quintile 1 contains stocks with trades executed most heavily against hidden sell orders 

and quintile 5 contains stocks with trades executed most heavily against hidden buy orders. In 

order to reduce the effect of outliers, a stock was selected into a portfolio on the portfolio 

formation date only if it had at least 10 executions against hidden orders during at least one of 

the previous five trading days.
15

 After stocks are sorted into 3x10 portfolios, I hold a value-

weighted portfolio for 2 trading days. This process was repeated each day, so there are 

overlapping 2-day holding period returns. Each trading day’s portfolio return is the simple 

average of 2 different daily portfolio returns, and one portfolio is rebalanced each day. I then roll 

forward one day and repeat the portfolio formation and return calculation process.  

In order to ensure that portfolio returns are not driven by differences in risk and 

characteristics, I calculate abnormal returns using Fama and French’s (1993) three-factor, 

Carhart (1997) momentum factor, and Pastor and Stambaugh (2003) liquidity factor model. The 

estimated abnormal returns are the constant alphas in the following regressions: 

                                                                                             (5) 

                                                                                (6) 

                                                                       (7) 

where     is the excess return over the risk-free rate of a portfolio over time t, and     ,      , 

     , and      are the excess return on the market portfolio and the excess return on the 

long/short portfolios that captured size, book-to-market, momentum.      is the Pastor and 

Stambaugh (2003) liquidity factor.   

                                                           
15

 Highly illiquid stocks are likely to be filtered out using this selection criterion.  
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Table 7 Panel A presents abnormal returns for each of the double-sorted portfolios with 

the two-day holding horizon. The results are strongest for the small-sized firm category. For the 

three-factor model, stocks with trades heavily executed against hidden buy orders (quintile 5) 

outperform stocks for which traders heavily executed against hidden sell orders (quintiles 1) by 

an annualized 17.7 percent rate (t-statistics 3.05). The outperformance of small stocks under the 

four-factor model and the five-factor model is at an annualized 17.4 percent and 17.8 percent 

respectively. Abnormal returns decrease with market sizes. In regards to medium market size 

portfolios, stocks in quintile 5 outperform stocks in quintile 1 by 7.2 percent annually (t-statistics 

1.83) under the three-factor model. Abnormal returns for medium stocks under the four-factor 

and the five-model are of similar magnitude as the three-factor model. In regards to large market 

size portfolios, the return difference between quintile 5 and quintile 1 is insignificant across all 

model types. 

Although portfolios sorted on hidden order activities can generate excess returns, 

transaction costs are of considerable magnitude, given that half of the portfolios are rebalanced 

each day. The transaction cost is roughly estimated to be 12 percent annually, following the 

methodology in Boehmer, Jones and Zhang (2009). Without careful monitoring of the 

transaction costs, a large proportion of the abnormal returns will be wiped out. Trading strategies 

that are constructed based on observing hidden order executions without careful monitoring of 

transaction costs are less likely to generate profitable trading outcomes.  

Table 7 Panel B repeats the analyses in Panel A, but instead uses the imbalance of trades 

executed against displayed orders during the previous five trading days as the portfolio sorting 

criterion. Portfolios are held for two trading days. Different from Panel A, the return 

predictability disappears across all market size categories. 
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I then examine whether hidden orders contain information on the monthly level by 

extending the portfolio holding period to 20 trading days. As is the case in previous analyses, I 

first sort stocks into three market capitalization categories and then into five        quintiles. 

This process is repeated each day, so there are overlapping 20-day holding period returns. Each 

trading day’s portfolio return is the simple average of 20 different daily portfolio returns, and the 

1/20 portfolio is rebalanced each day. I then roll forward one day and repeat the portfolio 

formation and the return calculation process. The results are presented in Table 8 Panel A. 

Abnormal returns are insignificant across all market size categories and under all model types.  

The results suggest that hidden orders do not contain information on the fundamental level.   

Panel B in Table 8 presents the abnormal returns for portfolios constructed with 20-day 

holding period using displayed order activities. Results show that there exists no return 

predictabilities. Taken together, this section suggests that submitters of hidden orders have 

information that is rapidly impounded into securities prices. Display orders do not have 

information either at the short term or on the monthly level.  

 

V Conclusion  

This paper documents that a significant proportion of U.S. liquidity is hidden. Over 16 

percent of the time, the best bid and offer are established by hidden orders which are invisible to 

the general public, and one out of five shares are executed against hidden orders. This 

demonstrates the importance of hidden orders in the current U.S. market.  

Hidden orders are informationally important. Executed hidden orders can generate an 

average of a 13 basis points intraday return. The return cannot be justified by liquidity providing, 

because the return of displayed orders is close to zero. Since market orders are on the other side 
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of limit orders, we can infer that market orders lose to hidden orders, while they generally break 

even when executed against displayed orders. The return forecastability suggests that submitters 

of hidden orders, as a group, are more informed than submitters of market and displayed limit 

orders.   

The results by double sorting stocks into portfolios based on their market sizes and 

hidden order activities at both daily and monthly levels reveal two additional facts. First, hidden 

order submitters have short-lived information. The return predictability lasts for one to two days, 

and abnormal return completely disappears at the monthly level. Second, the return of hidden 

orders does not reverse, which is consistent with information explanation and inconsistent with 

the price pressure explanation. 

Because hidden orders are important and informative, it will be interesting to see the 

impact of hidden orders on traditional liquidity measures based on the displayed market and 

whether the differences in the liquidity measures affect results in the previous literature. For 

example, previous studies may sort stocks into different portfolios based on the bid-ask spread of 

the displayed market. The existence of hidden orders may affect portfolio sorting. It will be 

interesting to see whether the effect is large enough to change conclusions in the current 

literature. This paper examines the informativeness of hidden orders using return predictabilities. 

The weakness of this approach, according to a recent critique of Parlour and Seppi (2009), is that 

it is unclear what (hidden) limit orders are informative about. Fully exploring this question may 

need identities of different traders, but a parsimonious approach is to investigate hidden orders 

around events prone to private information (e.g. earnings announcements) and examines the 

patterns of hidden orders around these events. This paper shows that hidden liquidity has 
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information, and the next step is to show the type of information they have. I defer it to future 

work.   
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CHAPTER 2 

 

WHAT’S NOT THERE: ODD-LOTS AND MARKET DATA 

 

Odd-lots are trades for less than 100 shares of stock. In the market, such trades were 

traditionally viewed as irrelevant: odd lot trades and volumes were small, and they were thought 

to originate from retail traders and so would have little information content with respect to future 

price movements. On the NYSE, odd lots even had their own trading system. The convention 

followed by all market centers was (and still is) that only round-lot trades of 100 shares and 

mixed-lot trades of greater than 100 shares are reported to the consolidated tape. 
16

 

Times have changed. The median trade size on the NASDAQ is 100 shares, and  a large 

fraction of trades are odd-lots. Algorithmic trading routinely slices and dices orders into smaller 

pieces, creating a new clientele of odd-lot traders. Allocation protocols for crossing networks can 

result in odd-lot fills, as can clearing rules associated with particular order types (such as market-

at-close orders).
17

  The emergence of high-priced stocks such as Google or Apple, where trading 

a round-lot requires an investment of $60,000 or more, results in odd-lots constituting a 

significant fraction of trade for a subset of important stocks in the market. And the fact that odd 

lots are not reported to the tape provides incentives for informed traders to transact via odd-lots 

rather than use more visible trade sizes. 

                                                           
16

 The consolidated tape was established as part of the national market system in 1975.   Currently, there 

are approximately 2.5 million subscribers and it reaches more than 200 million households.  The price updates in 

financial news TV programs, for example, use consolidated tape data.  
17

 The increased incidence of index trading also leads to increases in odd lot trades due to rebalancing, as 

does more extensive use of hedging techniques for option trades. 
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Yet, none of this is apparent to either market watchers or researchers because neither the 

consolidated tape, nor the TAQ data derived from it, include odd-lot trades.
18

  That odd lot trades 

are now an important fraction of the market is undeniable:  in our sample, we find the average 

number of odd lot trades per stock is now 24% but for some stocks odd lots are as high as 60% 

of total transactions.  Perhaps more disquieting is that these trades are not innocuous:  we 

demonstrate that odd lot trades have higher information content than round lot or mixed lot 

trades.  Moreover, we find that odd lots as a percentage of trades are growing over time.  As we 

discuss, these findings have important implications for the current regulatory debates regarding 

market transparency and high frequency trading, as well as for the design and interpretation of 

academic studies relying on market data.   

Our analysis focuses on a special data set of 120 stocks provided to us by NASDAQ. 

This data set, which was originally intended to facilitate studies of high frequency trading, 

includes trades, inside quotes, and the order book on NASDAQ for the period 2008-2009. Trades 

are also identified by trader identity (specifically, whether the buyer or seller are high frequency 

traders), by trade type (buy or sell), and by which side of the trade was the maker or taker of 

liquidity. The 120 stocks in the sample were selected to provide a stratified sample of securities 

representing different market capitalizations and listing venues.
19

 We supplement this data set 

with more recent data on trade executions from 2010-2011 to show how odd lot trading has 

continued to grow for the stocks in our sample. 

Our analysis focuses on three questions. First, how important is odd lot trading across 

stocks and what determines its incidence? To address this issue, we analyze the trading patterns 

                                                           
18

 Even regulators face a blind spot with respect to odd lots in much of the data they collect. For example, 

the SEC requires each market center to provide on a monthly basis the execution rates of limit orders on those 

markets (referred to as SEC Rule 605 market quality statistics), but these statistics do not include odd-lot trades. 
19

 The sample was constructed by Terrence Hendershott and Ryan Riordan, and details on the data can be 

found in Brogaard, Hendershott and Riordan (2013).   
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of odd-lots, the scale of odd-lot trading across stocks, the types of stocks more frequently traded 

in odd-lots, and the identity of odd-lot traders. Second, what are the informational properties of 

odd-lot trades? Here we calculate Weighted Price Contribution measures of odd-lot trades and 

VAR analyses to investigate how the information content differs across trade sizes and across 

trader types. Third, how does the exclusion of odd lot trades affect researchers? We address this 

issue by showing how these missing odd lot trades influence a variety of measures used by 

finance researchers.    

Why does it matter that 52.9% of trades in Google are not visible to the market? Or that 

25% of trades in small stocks (and almost 20% of trades in large stocks) are missing from TAQ 

data?  Or that 85% of price discovery on NASDAQ is now coming from trades of 100 shares or 

less?  Or that odd lots are most frequently used by high frequency traders?  We believe there are 

some very important reasons to care about these odd lot trades. 

First, odd lots provide an important lens through which to view the new world of high 

frequency trading.  While odd lots are still used by retail traders, they are more likely to arise 

from high frequency or algorithmic traders.  Our results are consistent with algorithms now 

slicing and dicing larger orders into odd lot-sized pieces.  The fact that 35%-39% of price 

discovery is coming from odd lots is consistent with this being done to “hide” such trades from 

the market.  Our results here contribute to a growing literature on the impact of high frequency 

and algorithmic trading on markets (see, Hendershott, Jones and Menkveld (2011); Chaboud, 

Hjalmarsson, Vega and Chiquoine (2009); Hasbrouck and Saar (2011); Easley, Lopez de Prado, 

and O’Hara (2012); Baron, Brogaard, and Kirilenko (2012)). 

Second, the U. S. Securities and Exchange Commission (SEC), and regulators throughout 

the globe, are increasingly concerned about market transparency.  Much of this concern has 
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focused on pre-trade transparency in the context of hidden orders or dark pools (see Bloomfield, 

O’Hara, and Saar (2012); Ye (2011); Buti and Werner (2011).  But post-trade transparency is 

equally important, and seeing all trades gives traders important information about the current 

state of the market.
20

  Omitting odd-lots from the consolidated tape, but not from the proprietary 

data feeds sold by exchanges, means that U.S. markets are becoming increasingly opaque (at 

least to most of us).   

Third, and perhaps most pertinent for finance researchers, the exclusion of odd-lot trades 

can affect a variety of market data-based measures, as well as the interpretation of previous 

research results.  Order imbalance measures, for example, are greatly affected by missing trades, 

with incorrect classification rates in our sample of 11%.
21

  The missing trade problem is also 

particularly acute for behavioral finance studies imputing retail trading behavior and sentiment 

(see, for example, Barber, Odean and Zhu (2009);  Lamont and Frazzini (2007); Hvidkjaer 

(2008)).
22

 We show that, depending upon the time period, up to 15% of all stocks in our sample 

have zero imputed retail trades because of this missing data problem. Our findings raise red flags 

in using particular data measures in future research and in interpreting some existing results in 

the literature. 

This missing data issue should concern all researchers using TAQ data. We also believe it 

raises important regulatory issues for the SEC.  While policies surrounding odd lots may have 

been sensible in the past, fragmentation, high frequency trading, and the widespread use of 

                                                           
20

 It is important to stress that trades involving hidden orders and trades in dark pools are reported to the 

consolidated tape, so that post-trade transparency issues do not arise in these context (unless these trades are odd lots 

in which case they are also not reported).   
21

 The microstructure literature uses order imbalances to impute the existence of asymmetric information 

and to calibrate liquidity effects; asset pricing research has used order imbalances to investigate stock returns, 

momentum, volatility, and market efficiency; and behavioral finance has used order imbalances to test for 

disposition effects in trading. 
22

 Behavioral finance studies often rely on dollar trade size cut-offs to determine retail participation and 

sentiment (see Lee and Radhakrishna (2000)).  For higher price stocks, this approach will bias participation rates 

downward. 
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algorithms have changed markets in fundamental ways. Our results reveal that odd-lot trades 

have changed as well, and they now play a new, and far from irrelevant, role in the market.  It is 

time for regulatory policies with respect to odd lots to reflect these new realities. 

The paper is organized as follows. Section I provides a short history of odd lot trading. 

Section II describes the data; provides summary statistics; gives results on the composition and 

cross-sectional properties of odd-lot trading; investigates how odd lots are used in high 

frequency trading; and controls for other factors affecting the growth of odd lots.  Section III 

explores the information content of odd-lot trades and computes price discovery measures for 

trades of different sizes. Section IV provides a variety of robustness checks, including time 

aggregation of trades, a VAR analysis of information content, and evidence from more recent 

data on price discovery. Section V evaluates qualitatively the potential bias for research studies 

arising from missing trades. Section VI concludes the paper and discusses its policy implications.  

An Internet Appendix provides additional evidence of research biases arising from odd lot 

truncation.   

 

I. A Short History of Odd Lot Trading 

Odd-lots have undoubtedly existed since the beginning of trading, but their role in 

modern markets has generally been of limited importance.
23

 Starting in 1976, the NYSE formally 

allowed trading by specialists in odd-lots but required that odd-lots be handled via a separate 

odd-lot trading system. The rationale for this separate system was to afford customers “an 

inexpensive and efficient order execution system compatible with the traditional odd-lot 

                                                           
23

 Odd lots were important from late 1950s to early 1970s. For a review of the history of odd lots from 1958 

to 1976, see the lecture by Paul Miranti and Phil Bradford  “Finance Technology and Organization: Automating 

Odd-Lot trading at the NYSE, 1958-1976” in American Finance Association (AFA) history of finance thought series.  
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investing practices of small, retail customers.”
24

 The odd-lot system featured different reporting 

rules in that odd-lot trades were segregated from round lot volume and were not reported to the 

consolidated tape. The odd-lot trading system also featured different order handling rules, and it 

essentially required the specialist to price the odd-lot at the price of the next executed round-lot. 

The ability to get a “better” price in the odd-lot system created incentives for abuse, and over the 

years the NYSE instituted disciplinary actions against a number of member firms.
25

 For the most 

part, however, odd-lot trading became increasingly less important, and Figure 3 shows that by 

1990 it accounted for less than 1% of NYSE volume (for discussion of the decline of odd-lot 

trading, see Wu (1972)). 

Because institutions rarely, if ever, traded odd-lots, researchers often used odd-lots as a 

proxy for individual trades (see, for example, Lakonishok and Maberly (1990), Ritter (1988), 

Rozeff (1985) and Dyl and Maberly (1992)). This individual investor linkage was also the basis 

for “odd-lot theory”, a popular technical analysis strategy based on the belief that one could 

outperform the stock market by identifying the least-informed investors and making investments 

opposite to them. As Malkiel (1981) notes, “the odd-lotter is precisely that person …, and 

[according to this theory] success is assured by buying when the odd-lotter sells and selling when 

the odd-lotter buys.” While apparently popular in the 1960’s and 1970’s, this theory found little 

empirical support and so fell out of common use.   

More recently, changes in markets have led to changes in odd-lot trading as well. In July 

2010, the NYSE decommissioned its separate odd-lot trading system, requiring henceforth that 

odd-lot orders and trades be handled by the same trading system as all other orders and trades.
26

 

                                                           
24

 See NYSE (2007) “Odd Lot Order Requirements”, Information Memo 07-60. 
25

 See “NYSE Moves to Prevent Abuses in Odd-Lot Trades,” Wall Street Journal, Nov. 14, 2007. 
26

 See Securities and Exchange Commission Release No. 34-62302; File No. SR-NYSE-2010-43  (June 16, 

2010) for details on the new order handling and reporting rules for odd-lot trades. 



 

31 

Some distinctive features to odd-lot trading remain, however, particularly with respect to 

reporting rules. In particular, odd-lots trades are not reported to the consolidated tape, meaning 

that an odd-lot trade remains invisible to the broader market.
27

  Odd-lot limit orders are also 

treated differently in the quote montage. An odd-lot order that would better the existing quote is 

not included in the quote montage, although an odd-lot that adds depth at an existing displayed 

quote can be included in the reported depth.
28

 

II. Data and Analysis 

A Data 

The data in this paper are from a variety of sources. Information on price, volume, daily 

volatility and market cap are from CRSP. The main datasets we use for transactions data are 

TAQ, the NASDAQ high frequency dataset (denoted NASDAQ HF), and NASDAQ ITCH data. 

The NASDAQ HF data contain trades, inside quotes of the NASDAQ market, and the order 

book for a sample of 120 U.S. stocks.    These stocks were selected to provide a stratified sample 

of securities representing differing market capitalization levels and listing venues.
29

 Table 9 

provides sample statistics on the firms in our study. The trade file for NASDAQ HF data 

contains each trade done on the Nasdaq exchange, excluding trades done in the opening, closing, 

and intraday crosses, for the sample period 2008-2009.  To provide evidence on the growth and 

incidence of odd lot trading over time, we use data on trade executions (including odd lots) for 

                                                           
27

 As an example, suppose a trader wished to sell 143 shares.  If this order were executed in a single trade, 

then the order to sell 143 shares would be printed to the tape.  An order to sell 143 shares that was executed in two 

trades (say a 100 share trade and a 43 share trade) would appear on the tape as a single trade of 100 shares (the 43 

share trade would not appear).  If the 143 share order were split into 143 orders for 1 share each, then none of the 

trades would appear on the tape. 
28

   The history of odd lot trading on Nasdaq differs from that of the NYSE in that until 1997 Nasdaq was a 

quotation system and not an actual trading platform.  Quotes could only be made for 100 shares or above, so by 

definition odd-lots were not quoted on Nasdaq. After 1997, market makers could post quotes on Nasdaq but again 

there was a minimum quote size of a round lot. Since 2003, market makers and other firms can post orders to 

Nasdaq  but only round lots were reported to the securities information processor (SIP). 
29

 Brogaard, Hendershott and Riordan (2013) shows these stocks are representative of the universe of listed 

stocks trading in U.S. markets.    
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our sample stocks from NASDAQ Historical ITCH database for the period January 2, 2010 – 

November 18, 2011.
30

    

The NASDAQ HF data have a number of unique features, three of which are particularly 

important for our study.  First, the HF data include all trades (including odd-lot trades) occurring 

on the NASDAQ exchange during regular trading hours in 2008 and 2009. This allows us to 

determine the incidence of odd lot trading in this period.  Second, the data include buy/sell 

indicators, allowing us to compute trade and imbalance measures without resorting to standard 

trade classification algorithms.
31

  Third, the HF data provide information on whether the traders 

involved in each trade are high frequency traders or non-high frequency traders.  In particular, 

trades in the dataset are categorized into four types: HH stands for high frequency traders take 

liquidity from high frequency traders; HN: high frequency trader takes liquidity from non-high 

frequency traders; NH: non-high frequency trader takes liquidity from high frequency trader; and 

NN: non-high frequency traders take liquidity from non-high frequency traders.  These 

designations allow us to investigate the role and use of odd lots in high frequency trading 

strategies. The NASDAQ ITCH data do not include information on HF status or signed trades, 

and so are not used for analyses needing such inputs.
32

 

The NASDAQ data have some limitations. The data include only trades executing on the 

NASDAQ and not those executing elsewhere in the market. In the past, this would have raised 
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 Two stocks from the original 120 stock sample were no longer trading in the later sample period.  For 

simplicity, we refer to the ITCH data as covering 2010-2011, but note that our data actually ends in mid-November 

and not at year end. The NASDAQ HF data also carries information for NASDAQ best quote and offer for 1) the 

first full week of the first month of each quarter during 2008 and 2009; 2) Sept 15 – 19, 2008 and Feb 22 – 26, 2010. 

We use this quote information to compute the Hasbrouck’s (1991 a and b) permanent price impact measure as a 

robustness check. 
31

 The buy/sell indicator refers to the liquidity seeking side of the trade.  
32

 NASDAQ TotalView-ITCH is a series of messages that describes orders added to, removed from, and 

executed on the NASDAQ. This dataset provides much less information than the NASDAQ high-frequency dataset. 

For example, it does not provide trader type, nor does the dataset directly carry information on the best bid and ask. 

This restricts the type of test we can conduct using the dataset. Fortunately, ITCH data does include all the trades, 

which allows us to calculate the market share of odd lots as well as the weighted price contribution.  
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concerns regarding selection bias across market centers, but O’Hara and Ye (2011) show that 

competition between market centers has effectively removed this bias in the current fragmented 

market structure. In particular, markets now trade stocks irrespective of listing locale, and 

NASDAQ executes a large fraction of trade in both its listed stocks and stocks listed on the 

NYSE.   

Trades do occur off exchange, however, due to practices such as preferencing and 

internalization.
33

 Such trades are reported to Trade Reporting Facilities (TRFs), which in turn 

report those trades to the consolidated tape, but again odd lot trades are not reported.  Because 

many retail trades are subject to preferencing arrangements, it is likely that odd lots are more 

common on TRFs, although data to determine this are not available.  SEC (2010) reported that 

odd lot share volume for the market as a whole was 4% of total share volume, a number that 

closely tracks what we find in the NASDAQ HF data.  It seems reasonable to assume, therefore, 

that odd-lot behavior in NASDAQ is typical of that in the larger market, but to the extent that 

TRF odd lot trading is larger our results on the incidence of odd lot trading will be understated.
34

  

B. Odd-lot trades and volume: How much is missing?  

Figure 4 demonstrates the time series pattern of odd lot trades and volume for the period 

2008-2011.  Panel A of Figure 4 shows that in January 2008 about 14% of total trades were odd 

lot trades and so are missing from the consolidated tape and TAQ data, and this number 

increases to about 25% by the November 2011. Panel B shows that odd lot share volume is about 

2.25% of total share volume in January 2008, and it rises to about 6 % at the end of 2011. While 

the number and volume of odd lot trades are highly variable, both series show a clear increasing 
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 Trading also takes place in crossing networks, but trades there are batched so odd lots are uncommon.  

Crossing networks also report trades to TRFs. 
34

 The NASDAQ TRF is the largest of the active trade reporting facilities, and correspondence with Jeffrey 

Smith of NASDAQ indicated that TRF odd lot trading there was similar to that found in the HF data base. 
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trend over time.  Other variables, such as stock price levels and liquidity, may also influence the 

incidence of odd lots, and we investigate these factors later in this section. 

Table 10 gives the level of odd lot trades and volumes for the 15 largest stocks in our 

sample (Panel A), and for the 15 stocks with the largest increase in odd lot trades over the 2008-

2011 period (Panel B).   Figure 5 present further detail on the cross–sectional variation of odd lot 

trading. 

A number of large, well-known firms have substantial numbers of odd lot trades, and 

these appear to be growing over time. Google, for example, had almost 31% odd lot trades in 

2008 and this had grown to 52.9% by 2011. Amazon’s odd lot trades went from approximately 

22% to 46% of trades, while Apple’s increased from 17% to 38% over this interval.  Some firms, 

for example GE and Cisco, had little change in odd lots over this period.  For the largest stocks, 

odd lot transactions grew from 12.65% to 20.5% over this period; for the stocks with the greatest 

odd lot growth, odd lots went from 21.5 % of trades to 43.00% of trades. 

Institutions are generally thought to trade larger stocks, so odd-lots may be more 

prevalent in the smaller stocks favored by retail traders. We divided the 120 stocks into 40 large, 

40 medium and 40 small market capitalization groups, and we calculated odd lot percentages by 

aggregating the NASDAQ HF sample and the ITCH sample. Panel A of Table 11 shows that this 

conjecture is correct:  odd-lots in the large firm sample are 19.6% of trades, and this increases to 

22.2% of trades for the medium firm sample, and to 25% for small firms. The difference between 

the small and large samples is strongly statistically significant, but we cannot reject the 

hypothesis that odd-lots trading in the small and medium samples is the same.  

Historically, retail traders used odd-lots to purchase small quantities of high-priced stocks, 

so we would also expect to find a relationship between missing trades and price levels. We 



 

35 

divided the 120 stocks into 40 low, 40 medium and 40 high stock price groups. Panel B of Table 

11 shows that high-priced stocks are more likely to have odd lot trades, with 26.9% transaction 

in odd lots.  The percentage of odd lot trades in low-priced and medium-priced stocks varies over 

time, but even in low priced stocks we find odd-lots of more than 19% in our sample.   This 

result suggests that the motivations for odd-lot trades may be more complex than in times past. 

C.  Who is trading odd lots and how? 

Understanding current odd lot usage requires recognizing the new role played in markets 

by high frequency trading. HF traders follow a variety of trading strategies, but virtually all of 

these strategies involve the use of algorithms to slice, dice, and send massive numbers of orders 

to trading venues. As noted earlier, the NASDAQ HF dataset differentiates traders into high 

frequency and non-high frequency categories, and it also distinguishes who was the maker or 

taker of liquidity in each trade.  This data allows us to investigate more carefully the question of 

who is trading odd lots and how. 

Figure 6 - Panel A provides the ratio of odd lot trades relative to the total number of 

trades for each trader type (HH stands for high frequency traders take liquidity from high 

frequency traders; HN: high frequency trader takes liquidity from non-high frequency traders; 

NH: non-high frequency trader takes liquidity from high frequency trader; and NN: non-high 

frequency traders take liquidity from non-high frequency traders).  The figure shows that odd 

lots are more likely to occur when trades are initiated by high frequency traders. About 20-25% 

of trades of HH and HN type trades are odd-lots. On the other side, odd-lots are least likely when 

non-high frequency traders take liquidity from high frequency traders. Less than 15% of NH type 

trades are odd-lots. Panel B demonstrates a similar pattern for volume and the rankings.  Order 

splitting entails additional trading commissions, and so we would expect odd lots to be more 
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common for HF traders who generally face much lower trading costs than retail traders.  The 

results here are consistent with that hypothesis. 

The histograms of odd-lot trades in Figure 7 show a clear pattern of clustering on 

particular trade sizes. Two facts are particularly salient. First, trades in a multiple of 10 are more 

likely than other trades, with 50 shares being the most frequent trade size. Second, trades at 1 

share are the second most frequent trade size in 2008-2009 sample and third largest in 2010-2011 

sample. That trade clusters at particular price increments has long been observed in equity 

markets (see for example Harris (1991); Christie and Schultz (1994)). Our finding that odd-lot 

quantities cluster raises a variety of questions as to how odd lots are being used in markets and 

by whom.
35

  

We can get more insight into these strategies by determining who is trading various odd 

lot sizes, which is given in Figure 8.  Focusing on trades initiated by high frequency traders, the 

data show two interesting patterns.  First, the market share of HN and HH traders decreases in 

odd lot size, implying that high frequency traders are more likely to initiate very small odd lot 

trades.  Indeed, almost 60% of 1-share odd lot trades are initiated by HF traders.  Second, the 

market share of high frequency traders dips down for round lot numbers such as 10, 25, 50, while 

correspondingly it jumps up for non-high frequency usage.   This pattern reflects the new reality 

in markets that “silicon traders” (i.e. machines) are not predisposed to favor one number over 

another, unlike human traders who prefer to trade in round numbers.  This greater tendency of 

humans to use round numbers also means that silicon traders can exploit the predictable 

tendencies of their live counterparties (see Easley et al (2012b) for more discussion). 
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 For related work on trade clustering in equities see Alexander and Peterson (2007) and in foreign 

exchange see Moulton (2005). 
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Odd lots can also be generated by mechanical reasons due to order mismatching.
 
For 

example, suppose the first order of the day is a 50-share buy and that subsequently sell and buy 

orders of 100 shares appear alternatively.  Then, the 50 share buy may result in a trade of 50 

shares, the sell order has 50 shares remaining, which may then execute against half of the next 

buy order, and so on.  To investigate the importance of this effect, we calculated the incidence of 

sequences of odd lot trades in the data. Figure 9 presents the histogram of these sequences, where 

each sequence is defined as a group of odd lots without a round lot trade between them
36

. More 

than 60% of odd lot sequences have only 1 odd lot, while another 20% have 2 odd lots. More 

than 99% of odd lot sequences have less than 9 odd lots.  The data suggest that the “odd lot 

cascade” is not strong enough to explain the large number of odd lots in the data. 

Finally, odd lots can originate for less benign reasons. A round-lot trade can be split into 

smaller trade sizes to escape reporting requirements. Splitting the order into a 99-share trade and 

a 1-share trade is consistent with this practice, as of course, is splitting orders into other trade 

sizes. Interestingly, we find that most odd-lot trades below 50 shares fall into the 1-5 share bin, 

and most odd lot trades above 50 shares fall into the 95-99 share bin.  

Table 12 gives an example for Apple (AAPL) trades on June 20, 2008. At 13:59:01:107, 

111 odd-lot trades occurred in the same millisecond with the same direction and price, all of 

which are HN type trades (high frequency traders taking liquidity from non-high frequency 

traders). The total volume for all these trades is only 2995 shares. Three milliseconds later, we 

see another 102 odd-lot trades of the HN type with the same direction and price, which result in 

volume of 2576 shares. Such patterns are consistent with sophisticated traders (high frequency 

traders, in this particular case) who are able to slice and dice their orders and hide from the 
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 Figure 7 displays the histogram up to 99 percentile of the observations, since the graph has a very long 

right hand tail. 
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consolidated tape. This also suggests that odd-lot trades may have information content, an issue 

we address in more detail in the next section.  

D Odd-lot Regression Results 

As an additional diagnostic to understand the incidence of odd-lot trades, we ran 

between-effect, random and within-effect (fixed-effect) regressions on a panel containing 

information on the percentage of odd lotstrades and odd lots volume, and daily price, volume and 

volatility. The between-effect regression allows us to explore cross-sectional variation in odd lots 

trades and volume. We regress the cross-sectional mean level of odd-lot trades and volume on 

the price level and the proportional effective spread, which we use as a proxy for liquidity. Daily 

price range is included to control for volatility. We also include the Probability of Informed 

Trade (PIN) to consider whether stocks with more information-based trading are more likely to 

have greater odd-lot trading.
37

 Finally, we include the dummy variable NYSE to control for 

listing venue effects.  We use both time and stock subscripts, but because we run between-effect 

regressions the coefficient is actually defined over the mean of each variable for each stock.  Our 

estimating equation is given by: 

                                                       
                                                                

             
 (8) 

 

                                                  
                       

                                         
             

        (9) 

The results are given in Table 13. As expected, high-price stocks have more odd lot 

trades and odd lot volumes. Neither daily price ranges relative to price nor stock listing venue 

have explanatory power for cross-sectional variation of odd lot trades and odd lot volume. The 

level of liquidity, however, does affect odd-lot trading. We find that the number of odd lot trades 
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 PIN can be estimated based on all trades and or based on the trades of 100 shares or more in NASDAQ. 

We estimated both measures, and we report the PIN measure based on trades greater than 100 shares (results here 

are very similar with either calculation).  Nevertheless, missing trades also pose a challenge for estimating PIN 

measures with TAQ data.  
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and volume increases in the proportional spread, suggesting that stocks with lower liquidity have 

greater odd-lot trading. We also find that stocks with higher PINs have higher levels of odd lot 

trades. This latter result is consistent with informed traders breaking trades into odd-lots so as to 

better hide their information. The regression R
2
 is 64.6%, meaning that about 2/3 of cross-

sectional variation of odd lot volume is explained by these variables.  

We also ran equations (3) - (4) using the random effects model. The regression takes the 

following form: 

                                                                
                       (10) 

 

                                                              
                             (11) 

 

 The results are very similar, except we now find that higher volatility as measured by 

daily price range results in lower odd lot trades and volume. Engle, Ferstenberg and Russell 

(2007) model the decision to split orders as the trade-off between execution cost and the 

volatility of execution cost. Breaking trades into small pieces may lead to a lower transaction 

cost, however, splitting trades across time leads to execution risk because it is hard to predict 

future price changes. This risk is certainly higher when volatility is high, so our results here are 

consistent with their result.  

Finally, we ran the following two regressions using a fixed effect model. Since PIN and 

listing venue do not vary across time and are captured by the dummy coefficients, they are not 

included in the following regressions. 

                                                                (12) 

 

                                                                    (13) 
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The findings reported in Columns (5) and (6) are similar: higher price, lower liquidity 

and low volatility lead to more odd lot trades and volume. 

III. Do Odd-Lot Trades Move Prices? 

The results of the previous section show that odd-lot trades are now part of a variety of 

trading strategies used by high frequency and algorithmic traders.  Such trades may well have 

information content for future price movements.
38

 To investigate the informativeness of odd-lot 

trades, we follow the literature using weighted price contribution (WPC), which measures how 

much of a stock’s cumulative price change or return change is attributable to trades in particular 

trade-size categories (see, e.g., Barclay and Warner (1993), Chakravarty (2001) Choe and 

Hansch (2005) and Alexander and Peterson(2007)).   In this section, we provide results using the 

HF data set.  We provide robustness checks using the ITCH data as well as an alternative price 

informativeness measure proposed in Hasbrouck (1991) in the next section. 

A Weighted Price Contribution  

Suppose there are N trades for a stock s on day t, and each trade falls in one of the J size 

categories. Price contribution of the trade belonging to category j for stock s on day t is defined 

as: 

   
    

       
    

   

   
    

   
                                                      (14) 

δn,j is an indicator variable which takes the value of 1 if the n-th trade belongs to size category j, 

and zero otherwise.   
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 There is a large literature in microstructure looking at the informativeness of stock trades, with the 

general focus being that trades from informed traders permanently move prices, while trades from uninformed 

traders have more transient price effects (see Hasbrouck (1986)). 
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Barclay and Warner (1993) define   
   

 as the difference between the price of trade n and 

n-1.
39

 The weighted cross-sectional average price contribution following Barclay and Warner 

(1993) is calculated as follows. The weight for stock s on day t for the WPC measure is the ratio 

of its absolute cumulative price change to the sum of all stocks’ absolute cumulative price 

changes on day t.
40

 We weigh each stock’s price contribution to mitigate the problem of 

heteroskedasticity, which may be severe for firms with small cumulative changes. Suppose there 

are N trades for a stock s on day t, the weight for stock s on day t is defined as 

     
    

    
    

     
    

     
   

                                                            (15) 

The WPC of trades in size category j on day t is defined as 

    
           

     
                                                        (16) 

Suppose there are T days in total, the WPC of trades in size category j is defined as 

          
  

                                                          (17) 

Table 14 presents results on price discovery by trade size.
41

 Several results are striking.  

First, approximately 80 - 85% of price discovery is accounted for by trades of 100 shares or less. 

Barclay and Warner found that it was medium–sized trades that were most informative, but that 

is clearly no longer the case.  It is the smaller trades that are moving the markets.  Second, the 

less-than-100-share trade category is responsible for 35% of weighted price contribution in the 

2008-2009 period.  Since odd lots over this period were in aggregate only 16% of trades and 3.3% 

                                                           
39 Choe and Hansch (2005) define   

   
 as the log return between the price of trade n and n-1. We calculated 

the weighted price contribution based on Choe and Hansch (2005) and the result is similar.  
40

 One difference between our WPC measure and the WPC measures by Barclay and Warner (1993), and 

Choe and Hansch (2005) is that we first find the daily WPC for each size category and then take the arithmetic 

averages across all days.  The difference in approaches arises because our data lacks daily opening and closing 

trades while they have continuous datasets.  Our WPC measure resembles Barclay and Hendershott (2003) in that 

they measure WPC from close-to-open while we measure WPC from open-to-close.  
41

 Market opens are often viewed as times of high information content so we ran our analysis both 

including and excluding the first 15 minutes of trading.  The results are virtually identical. 
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of volumes, the information content of odd lots far exceeds their incidence, consistent with odd 

lot trades being used by informed traders.   

C Sources of Cumulative Price Changes: Formal Tests 

The stealth trading hypothesis by Barclay and Warner (1993) states that informed traders 

are concentrated in particular size categories and that price movements are due mainly to 

informed trader’s private information. Two alternative hypotheses, the public information 

hypothesis and the trading volume hypothesis, also address the relation between price 

contribution and percentage of transactions or total trading volume in each trade-size category. 

The public information hypothesis claims the release of public information causes most stock 

price change. The testable implication of this theory is that the price contribution in a trade size 

category is proportional to the percentage of trades in that category. The stealth trading 

hypothesis implies the price contributions would not be proportional.  

Following Barclay and Warner (1993), we run weighted-least-squares regressions of the 

price contribution on two trade-size category dummies and the percentage of transactions in that 

category.   The regression equation is as follows: 

   
              

              
                       

      
   

            (18) 

   
   

is the price contribution for stock s on day t of trade size category j. Trades are classified 

into two categories: less than 100 shares, and equal or greater than 100 shares.      
   

 and      
   

 

denote the two indicator variables that take the value one if    
   

 falls into their trade categories, 

and zero otherwise;       and       represent coefficients for the two indicator variables.   is 

the coefficient for the percentage of transactions for stock s on day t of trade size category j. The 

regression weight is the ratio of the absolute cumulative price change of stock s on day t to the 
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sum of all stocks’ absolute cumulative price changes on day t. Regression (1) in Table 15 reports 

the result. 

If the public information hypothesis holds, the coefficient on percentage of transactions 

or percentage of trading volume in that category should equal one and the coefficient of the 

dummy variable should equal 0. The t-statistics for     of 1.98 means that the public 

information hypothesis can be rejected at 0.047 level of significance. The results also show that 

the coefficient of less-than-100 trade size is positive and significantly different from zero, while 

the indicator coefficient of equal-or-greater-to-100 trade size is insignificant. This indicates that 

odd lot trades contribute disproportionally to the price discovery process. The hypothesis that the 

coefficients for the two indicator variables are equal can be rejected at the 0.001 level of 

significance. These transactions-based results are consistent with the stealth trading hypothesis.  

An alternative trading volume hypothesis states that large trades move stock prices more 

than small trades. The price contribution in a trade size category is proportional to the percentage 

of trading volume in that category. Regression (2) in Table 15 reports weighted-least-squares 

regression of the price contribution on two trade-size category dummies and the percentage of 

trading volume in that category. The regression equation is as follows: 

   
              

              
                  

      
   

   (19) 

where    
   

,      ,       
   

,        follow the definitions in the previous regression.    is the 

coefficient for percentage of trading volume for stock s on day t of trade size category j. 

Table 15 indicates that the hypothesis for coefficient of the percentage of trading volume 

in that category should equal to one can be rejected at the 0.001 level of significance. The 

hypothesis that the coefficients for the two indicator variables are equal can be rejected at the 
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0.0001 level of significance. The volume-based results suggest that odd lot trades are embedded 

with more private information, again consistent with the stealth trading hypothesis. 

 

IV. Robustness Checks 

In this section, we provide a number of robustness checks of our results on the incidence 

and informational content of odd lot trades. First, we aggregate trades occurring in the same 

millisecond with the same active side, the same directions (buy or sell) and the type (HH, HN, 

NH and NN) to one large trade. This aggregation addresses the concern that odd lot trades may 

come from a single active order interacting with multiple passive orders on the book.  Second, 

we examine an alternative measure of price impact following Hasbrouck (1991 a and b).  This 

analysis is designed to address concerns that the weighted price contribution methodology is not 

appropriate for current high frequency markets.  Finally, we investigate the price informativeness 

of trades in the ITCH data, allowing us to examine how this measure is changing over time.   

These analyses show that our main results that odd lots are now a substantial fraction of market 

activity and that odd trades are informative of future price movements are robust. 

A. Aggregate Trades in the Same Millisecond  

If a large active order interacts with multiple passive orders on the book, then the 

resulting trade prints may overstate the actual incidence of odd lots in the market.  To address 

this concern, we combine reported trades within the same millisecond and with the same active 

side, same direction (buy or sell) and type (HH, HN, NH and NN) to one large trade.  Note that 

this aggregation, while allaying concerns regarding over-estimation of odd lot trades, is also 

likely to underestimate both the incidence and price impact of odd lots. To see why, recall the 

example in Table 12 where 111 odd lot trades executed at 13:59:01:107 on June 20, 2008, 
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followed by another 102 odd lots executed at 13:59:01:110. After aggregation, these trades will 

be treated as two large trades instead of a number of small trades.  If algorithms slice the original 

parent order into odd lot child orders to reduce price impacts of trading, then aggregation will 

obliterate this effect.  Moreover, if traders slice orders into odd lots at the sub-milliscond level to 

escape trade reporting requirements, then aggregation will similarly underestimate the true price 

impact of the odd lots. Gai, Yao and Ye (2012) finds that high frequency traders could cancel 

their orders at 2-6 microseconds in January, 2010, so it seems sensible that they could slice 

trades in less than 1 millisecond in our sample period.  

As expected, aggregation leads to a dramatic decrease in odd lot trades and volumes. 

Table 16 shows that while odd lots fall to 5.94% of trades and 0.14% of volume, they still 

contribute 20.36% in weighted price contribution. It may seem odd that so few trades can have 

such a large price contribution, but it arises because the weighted price contribution is a signed 

measure in which individual trades can have a positive and negative weighted price contribution. 

The reference is the open to close return. Therefore, trades moving the price in the same 

direction as the daily return contribute positively to weighted price contribution, whereas trades 

moving the price in the opposite direction of the daily price movement contribute negatively to 

the weighted price contribution. As a result, price impact for a trade size category can be 0 if buy 

and sell trades are equal in number and they move the price by the same magnitude. The outsized 

effects of odd lot trades arise because these trades are more likely to be on the correct side of the 

price movement. 

B The Hasbrouck Price Impact Measure 

The original stealth trading hypothesis in Barclay and Warner (1993) only uses weighted 

price contribution to measure the informativeness of the trade.  Here we support our results using 
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an alternative measure of price impact: Hasbrouck’s (1991a; 1991b) permanent price measure. 

Using this approach, we can measure whether executed odd lots or round and mixed lots have a 

more permanent impact on prices.  To this end, we estimate the return and executed orders 

dynamics in a structural vector autoregressive (VAR) framework..  We follow the method of 

Barclay, Hendershott and McCormick (2003) and Chaboud, Chiquoine, Hjalmarsson and Vega 

(2009) and estimate the impulse response function. 

Specially, we estimate the following system of equations. Here    is the midpoint return 

during the 1-minute interval,    
    is the sum of the signed odd lot volume (buy initiated volume 

minus sell initiated volume) during the 1-minute interval, and    
      

 is the sum of the signed 

round and mixed lots volume during the 1-minute interval. We follow Hasbrouck (1996) to 

calculate the price impact for half an hour, that is, we estimate the VAR system with 30 lags. 
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In this specification, the contemporaneous odd lot trading variable,   
   , appears in the 

quote and round and mixed lot trade equations. Thus, we assume that odd lot volume causes 

contemporaneous quote changes and volume of round and mixed lots. We then reverse the 

assumption by removing the contemporaneous odd lot volume and add the contemporaneous 

round or mix lot volume. These two specifications provide upper and lower bounds for the price 

impact of odd lots. 
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We estimate the three equations for each stock and each day, and then determine the 

arithmetic average of the impulse coefficients which are given in basis points. Statistical 

inference is conducted using each stock date as an observation. We calculate the impulse 

response function to a 100 share shock to odd lot volume  and round and mixed lot volume. We 

calculate the cumulative long-run response of minute-by-minute returns, which is the cumulative 

impact of the shock after 30 minutes.  Panel A of Table 17 shows that the lower bound of an odd 

lot shock is 3.56 basis points, which is about three times higher than the upper bound of round 

lots (1.13 basis points).
 
The difference between these two price impacts is 2.44 basis points, with 

a t-statistics of 7.00. The upper bound for an odd lot shock (5.19 basis points) is about five times 

as large as the lower bound of Mixed and Round Lots (1.05 basis points). The difference is 4.15 

basis points, with a t-statistics of 11.24. These data provide confirming evidence that odd lots are 

more informative than mixed and round lots.   

As a robustness check, we also compute the result for a one-trade shock using Hasbrouck 

method.  Therefore, we estimate the equation (20) again, except that   
    is the sum of the 

signed odd lot trades (buy initiated trades minus sell initiated trades) during the 1-minute interval, 

and    
      

 is the sum of the signed round and mixed lots trades during the 1-minute interval. 

Compared to the results using volume, the price impact per trade is smaller for odd lots and 

larger for round and mixed lots, but Panel B of Table 17 shows that the price impact of odd lots 

is still higher than that of the round and mixed lots. The lower bound of one trade odd lot shock 

is 2.16 basis points, which is higher than the upper bound of one trade round or mixed shock 

(2.02 basis points). The upper bound for an odd lot shock (3.19 basis points) is higher than the 

lower bound of mixed and round Lots (1.74 basis points). The difference is 1.45 basis points, 

with a t-statistics of 3.01. 
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C Price Informativeness Over Time 

As a final robustness check, we estimated weighted price contribution measures for the 

2010-2011 period covered in the Nasdaq ITCH data.  The estimation process is as described in 

the previous section, and the results are given in Table 18.  As in our earlier period, we find that 

odd lots are clearly informative, but now we also find this informativeness is increasing over 

time.  Odd lots alone contribute 39% to price discovery in the 2010-2011 period. The data also 

show that almost 86% of price discovery is accounted for by trades of 100 shares or less. 

Coincident to this finding is that trades greater than 500 shares now contribute only about 2% of 

price discovery.  Thus, price discovery is shifting to smaller trade sizes, with odd-lot trades 

playing a very important role in this process.  

 

V. Why Does It Matter? The Impact of Missing Trades on Empirical Research 

For researchers, the fact that a large, and growing, fraction of trades are missing from the 

data bases generally used for academic studies is cause for concern. In this section, we discuss 

how these missing trades can affect the design and interpretation of research. First, we show that 

several widely used empirical measures have significant bias because of odd lot truncation, 

implying that researchers should be cautious in using these measures in the future.  Second, we 

show that odd-lot truncation can also affect the interpretation of results in the previous literature.  

One important application of TAQ data is to calculate order imbalances. The literature 

uses buy and sell imbalance as a proxy for information asymmetry, price pressure and sentiment 

of investors. The measure has been used to explain stock returns (Chordia, Roll and 

Subrahmanyam (2002), Chordia, and Subrahmanyam (2004)), momentum (Hvidkjaer, 2006), 

herding (Jame and Tong (2010) and Christoffersen and Tang (2009)), disposition effect, 
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(Chordia, Goyal, and Jegadeesh, 2011), and volatility (Chan and Fong, 2000). Busse and Green 

(2002) use order imbalance to test market efficiency, and Barber, Odean and Zhu (2009) use 

order imbalance to study whether retail trades move price.   

 Order imbalance can be measured in three ways. Busse and Green (2002) and Chan and 

Fong (2000) use the number of buyer-initiated trades minus the number of seller-initiated trades. 

Hvidkjaer (2006) and Sias (1997) use the volume of trades to define order imbalance. Chordia, 

Roll and Subrahmanyam (2002) and Chordia and Subrahmanyam (2004) use the dollar volume 

in addition to the first two definitions.  

Missing trades not only affect order imbalance measures quantitatively, but also affect 

these measures qualitatively. Because of missing trades, we may falsely identify a buy imbalance 

as a sell imbalance, and conversely. If order imbalance is then used as an independent variable in 

regression analysis, the sign of the coefficient may be reversed.  

Table 19 demonstrates the degree of misclassification of order imbalance based on the 

number of trades (OIBNUM), the number of shares (OIBSH) and the dollar volume (OIBDOL). 

We consider a trading day for each stock as one observation. The HF data identifies buys 

and sells, so we can calculate the true order imbalance of all trades as true buy imbalance, true 

balance and true sell imbalance. TAQ data only records trades of 100 shares or more, so using 

those trades we define observed buy imbalance, observed balance and observed sell imbalance.  

The TAQ data do not indicate buys and sells, but for our purposes here we will use the true 

buy/sell information from the HF data.  In general, however, users of TAQ data will need to use 

a signing algorithm such as Lee-Ready which will lead to greater errors in calculating 

imbalances. 
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Order imbalance based on number of trades suffers the most from missing odd-lot trades. 

Altogether, we observe about 11% misspecification due to missing odd-lot trades. This error 

arises from 5.42% of imbalances classified as buys when they are actually sell imbalances or no 

imbalance. We also find 5.52% of imbalances classified as sells when they are buy imbalances or 

no imbalance. Finally, there are also days classified as no imbalance when they are actually buy 

or sell imbalance days (approximately .23%).  Chordia, Roll, and Subrahmanyam (2002) 

recommended using the number of trade imbalance measure for empirical work, but this is 

clearly not advisable: the OBINUM measure is seriously biased by missing trades. 

Table 19 shows that using volume-based order imbalance or dollar-volume based order 

imbalance greatly reduces the misclassification problem. This improvement occurs because, 

while the number of missing trades can be large, the amount of missing volume is often small. 

Altogether, only 3.33% of order imbalances are misclassified when volume measures are used.  

We suggest that researchers use such volume or dollar–volume based measures for order 

imbalance measurement.  

Missing odd-lots have much a larger impact for order imbalances of small trades, which 

is often used as a proxy for sentiment of individual traders.  TAQ data do not reveal a trader’s 

identity, so Lee and Radhakrishna (2000) proposed a $5000 cut-off value to identify individual 

(or retail) trades. This method is used extensively in the literature to study individual trader’s 

behavior (see, e.g. Shanthikumar (2004); Barber, Odean and Zhu (2009); Frazzini and Lamont 

(2006); Jame and Tong (2010); and Christoffersen and Tang (2009)).  

The absence of odd lot trades means that the $5,000 dollar cut-off generates a second, 

potentially more severe bias in the data.  Because TAQ data do not have trades less than 100 

shares, a stock with price above $50 dollars will have zero imputed retail trading. These stocks 
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are then either defined as having no individual trade imbalance, or are truncated unintentionally 

from the sample when order imbalance is defined as the ratio of buy orders to the sum of buy and 

sell orders. (Barber, Odean and Zhu, 2009)   As a result, any paper that uses the $5,000 dollars is 

actually based on stocks with price below $50. 

This bias can be substantial.  We calculated the incidence of zero imputed retail trades for 

stock using TAQ data and the 5000 dollar trade cutoff for the period 1983-2011.  Figure 10 

shows that, depending upon the time period, up to 15% of stocks have zero imputed retail trades.  

Those stocks, however, tend to be both larger and more actively traded, so that looking at the 

percentage of zero individual trading weighted by market capitalization results in almost 70% of 

the value-weighted index having zero imputed retail trades.   

Table 20 presents evidence on the magnitude of these two types of biases for our sample 

stocks. Based on order numbers, 9.61% of imbalances are mis-classified, with 4.77% of buy 

imbalances classified as sell imbalances and 4.58% of sell imbalances classified as buy 

imbalances;  0.11% of stock day are classified as buy imbalance although there is a balance of 

trades; and 0.15% of stock day are misclassified as sell imbalance though there is a true balance.  

Again, the problem is less severe for volume and dollar volume-based imbalance measures 

where in total about 4% of orders are misclassified.  

The problem is much more severe when we observe zero individual trades. Across all the 

three measures, we observe 17% balanced trades that are actually buy or sell imbalances. If order 

imbalances from individual traders are used to explain other variables such as stock return, this 

can cause either one of two problems. If order imbalance is treated as missing because there are 

no observed trades, it leads to a 17% truncation of the regression sample. If order imbalance is 
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treated as zero because zero buy and zero sell implies zero order imbalance, it results in 17% of 

the sample with zero values in individual trading.  

Summing the two types of errors together, about 27% of imbalance is misclassified in 

terms of transaction and 21% in terms of volume or dollar volume. These errors are significant, 

because randomly assigning buy as sell order imbalances has a 50% chance of being correct.   

These results strongly suggest that researchers avoid using investor sentiment proxies based on 

order imbalances or trade size cut-offs in future work.  

One interesting fact about this truncation is that it is independent of the actual magnitude 

of odd lots – we do not even use the level of odd lot activity in the replication! The truncation is 

actually based on price level. But it is because there are no odd lot trades in TAQ/ISSM that 

using cut-offs for retail trades leads to the removal of high price stocks that constitute a 

significant part of the value-weighted portfolio. The truncation then generates significant return 

patterns by truncating high price stocks.  

These results demonstrate why it is important for all researchers to be aware of the fact 

that TAQ/ISSM data do not have trades for less than 100 shares.  This omission will bias any 

study using arbitrary trade size cut-offs to proxy particular trader groups.  We also suggest 

caution in interpreting existing results due to the sample selection biases that may have been 

present.  In the on-line appendix of this paper, we show that odd lot truncation can reconcile the 

differences in results between two papers on retail trading (Barber, Odean and Zhu (2009) and 

Hvikjaer (2008)). Given the increasing incidence of odd lot trades, these truncation problems 

may become an even greater problem going forward.  

VI. Conclusion 

In this research we investigated the changing role and incidence of odd-lot trades in 

equity markets.   We demonstrated that odd lot trades are a large, and growing fraction of trades, 
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reflecting the new dynamics of high frequency markets.  While traditionally used by retail 

traders, odd lot trades are now much more likely to come from high frequency traders, and their 

incidence is increased by practices such as pinging and order shredding.  Moreover, we showed 

that these odd lot trades are highly informative, contributing 39% to price discovery.  With round 

lot trades contributing 50% of price discovery, the vast majority of price discovery is now taking 

place in very small trades.   

Due to traditional trade reporting rules, however, none of these odd lot trades are visible 

to the market due to their exclusion from the consolidated tape. Because TAQ data are derived 

from the tape, these missing trades are also a large and pervasive problem in TAQ data. That 

trade sizes are truncated below 100 shares means there is a censored sample problem for all 

stocks. For some stocks, this problem is acute, with 50% or more of trades missing from the data. 

Equally important, measures such as order imbalance or imputed trader identity or sentiment 

measures can be severely biased, and analyses of issues related to return or market efficiency are 

also subject to error.  As we have shown, these biases can result in spurious inferences being 

drawn from the data. 

Our analysis shows that odd-lot trades are now far from unusual, and market practices 

such as algorithmic trading and high frequency trading are only increasing their incidence. For 

researchers using TAQ and other market data, these trends highlight the need to choose empirical 

measures carefully. Trade-based measures of order imbalance, for example, are more affected by 

this bias than are volume-based measures, suggesting a preferred approach for such research. 

Standard imputations regarding retail trades, or trader sentiment, however, appear to be flawed. 

A firm-varying cut-off based on firm price, such as used in Hvidkjaer [2008], may mitigate the 

problem by ensuring that small trades exist for all stocks.   In addition, the development of new, 
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more complete data bases such as the consolidated audit trail may be needed for continued 

research in this area. 

We believe our results also have important policy and regulatory implications. The recent  

SEC Concept Release  (2010) raised a number of questions regarding odd lot trades.  In 

particular, the SEC queried: 

 “Why is the volume of odd lots so high? Should the Commission be concerned 

about this level of activity not appearing in the consolidated trade data? Has there been 

an increase in the volume of odd lots recently? If so, why?  Do market participants have 

incentives to strategically trade in odd lots to circumvent the trade disclosure or other 

regulatory requirements? Would these trades be important for price discovery if they 

were included in the consolidated trade data? Should these transactions be required to 

be reported in the consolidated trade data? Why?”  

Our paper provides answers to these important questions and is, to our knowledge, the 

first paper to do so.  As we have demonstrated, market data are biased because of the reporting 

rules. When odd-lots were a trivial fraction of market activity, this omission was of little 

consequence. But new market practices mean that these missing trades are both numerous and 

informationally important.  Particularly unsettling is that while these trades are invisible to the 

2.5 million subscribers to the consolidated tape, they are not invisible to all market participants.  

NASDAQ ITCH data contains odd-lots, and other market venues also sell proprietary data that 

allow purchasers to see all market activity (see Easley, O’Hara and Yang (2010) for an analysis 

of the detrimental effects of differential access to market information).
42

  The market thus looks 

very different to those relying on the consolidated tape than it does to those buying proprietary 
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 These data feeds are not inexpensive.  Nasdaq Itch data, for example, costs from $500 per port/per month 

for the basic data to $2500 per port/per month for the multicast ITCH/FPGA feed. 
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data feeds.  Even the SEC faces challenges knowing the true state of the market because the SEC 

also does not include odd-lots in other market reporting requirements.  Rule 605, for example, 

requires market centers to report market quality statistics on a monthly basis, but these reports 

are based on trades of various size categories starting at 100 shares and above.     

Our results suggest that odd-lot trades now play a new, and far from irrelevant, role in the 

market. The SEC should recognize this new role and change the reporting rules regarding odd-lot 

trades for the consolidated tape and other regulatory data. 
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CHAPTER 3 

 

THE EXTERNALITIES OF HIGH FREQUENCY TRADING 

 

I Introduction 

“High frequency trading presents a lot of interesting puzzles. The Booth faculty lunchroom has 

hosted some interesting discussions: ‘what possible social use is it to have price discovery in a 

microsecond instead of a millisecond?’ ‘I don't know, but there's a theorem that says if it's 

profitable it's socially beneficial.’ ‘Not if there are externalities’ ‘Ok, where's the externality?’ 

At which point we all agree we don't know what the heck is going on.”  

                                                                                                                -John Cochrane                                                                                                                                                                                 

The professional trading field is witnessing an arms race in the speed of trading. 

Recently, The Wall Street Journal stated that trading entered the nanosecond age when Fixnetix, 

a London-based trading technology company, announced “it has the world’s fastest trading 

application, a microchip that prepares a trade in 740 billionths of a second, or nanoseconds.” 

Since “investment banks and proprietary trading firms spend millions to shave ever smaller 

slivers of time off their activities, ...the race for the lowest ‘latency’ [continues], some market 

participants are even talking about picoseconds — trillionths of a second.”43 

The empirical literature on the speed of trading before the sub-millisecond era finds the 

social value of increases in speed. For example, Hendershott, Jones and Menkveld (2011) find 

that the automated quote dissemination in the NYSE reduces the spread and enhances the 
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Wall Street’s Need for Trading Speed: The Nanosecond Age. The Wall Street Journal, June 14, 2011.  
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informativeness of quotes in 2003. In contrast to the previous work, this paper shows that such a 

benefit has ceased when the speed improvement proceeds to the micro or nano second level. Two 

exogenous technology shocks that increase the speed of trading from microseconds to 

nanoseconds do not lead to improvements on market quality measures. Quoted spread, effective 

spread, trading volume and variance ratio stay at the about the same level after the shocks. 

However, an increase in trading speed lead to a dramatic increase in the cancellation/execution 

ratio from 26:1 to 32:1 and an increase in short term volatility as well as a decrease of market 

depth.  

Our result elicits an intuitive economic interpretation. The level of bid-ask spread is 

related to the liquidity providing function of high frequency trading. Current U.S. stock markets 

observe price, display and time priority.
44

 The fierce competition in speed implies the failed 

competition in price. The fact that an increase in speed does not change the bid-ask spread 

supports this hypothesis. In other words, high frequency traders cannot undercut each other by 

price, but the faster trader can eventually provide liquidity because of his earlier arrival than 

other traders. In the standard definition of Walrasian equilibrium and the proof of Fundamental 

Theorem of Welfare Economics, price is infinitely divisible but time is not; all agents are 

assumed to arrive the market at the same time. The reality in the financial market, however, is 

exactly the opposite, where time becomes divisible at the nanosecond level but price is restricted 

by tick size. Therefore, suppose that zero profit (or equilibrium) bid-ask spread is 1.5 cents. 

Then, the liquidity provider will lose money if he chooses a bid-ask spread of 1 cent, but there 

exists abnormal profit if he sets the bid-ask spread to be 2 cents. The 0.5 cent rent per share 

provides incentive for competing in speed. 
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 Orders that offer a better price have the highest execution priority. For orders with the same price, 

displayed orders have priority over non-displayed orders. For orders with the same displayed status, orders arriving 

first have the highest priority. 
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More importantly, speed competition imposes negative externalities to traders who are 

not in the speed game. An increase in speed decreases the quoted depth and increases short term 

volatility of price. In addition, order cancellation increases despite of steady trading volume, 

which implies that the size of the data increases. We believe that the increase in speed leads to 

more discrete time periods for a fixed calendar time, which increases the number of possible 

moves for a trading game among high frequency traders. The game among high-frequency 

traders becomes more complex, but the aggregated opportunity for actual trading with non-high 

frequency traders is unlikely to increase. As a result, we witness an increase in cancellation and 

short-term volatility. Depth also decreases, probably because it becomes more risky to expose a 

large size order when increases in speed increase pick-off risk. We show that order cancellations 

now consume 97% of computer system resources, which the entire market has to bear.
45

 The 

high levels of cancellations force stock exchanges and traders to continually upgrade trading 

systems and bandwidth to accommodate higher message flows. In addition, most stock 

exchanges only charge fees for executions but not cancellations. This worsens the externality 

problem because traders who actually execute orders are subsidizing those traders with excessive 

cancellations. 

As the speed provides private value to a trader, it is equally valuable to slow down her 

competitors. Biais and Woolley (2011) discuss a trading strategy called “[quote] stuffing,” a type 

of externality-generating behavior, which involves submitting a profuse number of orders to the 

market to generate congestions on purpose. Though regulators classify quote stuffing as a type of 

market manipulation,46 the behavior itself is hard to identify. For example, Egginton, Van Ness, 
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 According to Wharton Research Data Services, the Trade and Quote Data (TAQ) is more than 10 

terabytes per year, the same size as the  digitized versions of all prints in the Library of Congress. 
46

 In the Dodd-Frank Act, Section 747 specifically prohibits “bidding or offering with the intent to cancel 

the bid and offer before execution.” On December 14, 2011, the NYSE and NYSE ARCA proposed rule 5210, 
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and Van Ness (2011) find that intense quoting activity is correlated with short-term, but it lacks 

convincing evidence of their causal relationship. It is even less clear to identify whether the 

intense episodic spikes of quoting activity are generated through manipulative “quote stuffing” 

or they are natural responses to a market with higher short-term volatility.  

This paper provides evidence consistent with quote stuffing hypothesis based on channel 

assignments of NASDAQ-listed stocks. Trading data for NASDAQ listed stocks are splitted into 

six identical but independent channels based on the first character of the issue symbol.
 47

 The 

channel assignment is close to random with respect to firm fundamentals, thus providing us with 

a clean identification scheme for one possible type of quote stuffing, which is to slow down the 

consolidated feed.
 
Most traders in the market use a consolidated data feed. High frequency 

traders may subscribe faster direct feed. According to Durbin (2010), however, even the most 

aggressive high-frequency trader still listens to consolidated feeds.48 Because of the channel 

assignment, excessive message flow of a stock stifles the trading of stocks in the same channel, 

but it does not have the same effect on stocks in a different channel. Suppose a trader intends to 

slow down the information dissemination for stock A, he can achieve the goal by submitting 

messages for stock A as well as for any stock with a ticker symbol beginning with A or B. 

However, message flow for stock Z will not have the same effect. As a result, abnormal co-

movement of message flow for stocks in the same channel is consistent with quote stuffing.  

                                                                                                                                                                                           
which prohibits “quotation for any security without having reasonable cause to believe that such quotation is a bona 

fide quotation, is not fictitious and is not published or circulated or caused to be published or circulated for any 

fraudulent, deceptive or manipulative purpose.” 
47

 According to the UTP plan Quotation Data Feed Interface Specification, Version 13.0e, dated Febuary 22, 

2013. Each channel has a bandwidth allocation of 29,166,666 bits per second.  Channel 1 handles ticker symbols 

from A to B; Channel 2 handles ticker symbols from C to D; Channel 3 handles ticker symbols from E to I; Channel 

4 handles ticker symbols from J to N; Channel 5 handles ticker symbols from O to R; and Channel 6 handles ticker 

symbols from S to Z. 
48

 For one, no market data feed is perfect; the direct feed can sometimes lose packages. Multiple sources of 

data help to verify that an unusual market data tick is genuine by comparing it to a second source. Also, in some 

cases it is possible to receive a price change from a consolidated feed sooner than a direct feed.    
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We test the quote stuffing behavior based three methodologies: first we show the 

existence of abnormal message flow co-movement for stocks handled by the same channel 

through factor regressions. The idea is analogous to the literature of international finance that 

examines the existence of country-specific factors after controlling for the global market co-

movement [Lessard (1974, 1976), Roll (1992), Heston and Rouwenhorst (1994), Griffin and 

Karolyi (1998), Cavaglia, Brightman, and Aked (2000), and Bekaert, Hodrick, and Zhang 

(2009)]. In our application, the six channels in total resemble a “global market,” whereas each 

channel represents a “country”. The factor regression reveals a diagonal effect: after controlling 

for the message flow of the “global” market, the message flow of a stock has an abnormal 

positive correlation with the total message flow of other stocks in its own channel. Our second 

identification method, a discontinuity test, also demonstrates the positive abnormal correlations 

of message flows of stocks handled by the same channel. We find that the first and the last stock 

in a channel, the order of which is based on an alphabetic sequence, have a 4.74% abnormal 

correlation of message flow with its own channel but zero abnormal correlations with the 

adjacent channels.49 Our third identification method, a diff-in-diff regression, further strengthens 

the results. Stocks that change ticker symbols are separated into two groups. The control group 

changes their ticker names but not the channel assignments. The treatment group changes ticker 

symbols as well as the channel assignments.  We find that the correlation between the treatment 

group’s message flow and their old channels’ message flow, has decreased 3% after the symbol 

change.  The correlation between the control group’s message flow and their corresponding 

channels’ message flow has remained the same after the symbol change. 
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 For the first stock in the channel, the adjacent channel is the channel immediately before. For the last 

stock in a channel, the adjacent channel is the channel immediately after.  
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Quote stuffing provides evidence that competition in speed is a positional game, in which 

a trader’s pay-off depends on his speed relative to other traders. The traders who generate 

stuffing may also delay themselves, but they still have the economic incentive for stuffing as 

long as it slows other traders to a greater extent. Recent work by Frank (2003, 2005, 2008) and 

Bernanke and Frank (2010) argue that positional games lead to positional externality, because 

any step that improves one side's relative position necessarily worsens the other's ranking. In our 

case, quote stuffing creates benefit to the initiator, but there is no social benefit associated such 

activity.  

Surprisingly, even without the negative effects such as increased cancellation, increased 

volatility and quote stuffing, competition in speed but not price, by itself, matches the definition 

of externality (Laffont, 2008).
50

 By increasing its own speed, a high frequency trader directly 

harms the production set of liquidity of his competitors. The private benefit of speed advantage 

for one high frequency trader is higher than the social benefit, because part of profit earned by 

the faster trader is “stolen” from slower high frequency traders. Aghion and Howitt (1992) term 

this externality “business stealing effect.” A more general discussion of the consequence of this 

externality can be found in the canonical textbook by Tirole (1988).
51

 Most important of all, 

competition in speed does not work through the price system. In fact, it is the failure of price 

competition that leads to speed competition. Competition working through price system does not 

lead to externality, because the loss to producers is precisely offset by the gain to consumers 

(Laffont, 2008). Competition in speed, however, does not have such effect unless the consumer 
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 Externalities are indirect effects of consumption or production activity; that is, effects on agents other 

than the originator of such activity which do not work through the price system. In a private competitive economy, 

equilibria will not be in general Pareto optimal since they will reflect only private (direct) effects and not social 

(direct plus indirect) effects of economic activity. (New Palgrave Dictionary of Economics, second edition) 
51

 Answer for exercise 10.5 in page 416 of the book demonstrates mathematically the magnitude of the 

externality and also offers the economic intuition. 
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of liquidity cares directly about the difference between micro and nanoseconds.  This paper 

contributes to the literature on the impact of algorithmic and high-frequency trading. We contrast 

our results with the current literature that uses second or millisecond level data, which finds that 

high-frequency trading improves liquidity and price efficiency (Chaboud, Chiquoine, 

Hjalmarsson, and Vega, 2009; Hendershott and Riordan, 2009, 2011; Brogaard, 2011 a and b; 

Hasbrouck and Saar, 2011; and Hendershott, Jones, and Menkveld, 2011). The theoretical work 

on the speed of trading by Biais, Foucault, and Moinas (2011), Jovanovic and Menkveld (2010), 

and Pagnotta and Philippon (2012) is based on the following trade-off: on one side, high-

frequency traders may detect new trading opportunities, which increases social welfare; on the 

other side, high-frequency trading may cause an adverse selection problem and generate negative 

externalities to traditional traders and investors. While an increase in speed from seconds to 

milliseconds may result in more trading opportunities, our results cast doubt on the social value 

of increasing speed from micro to nano or pico seconds. The literature cannot assess the value of 

nanosecond trading due to two constraints: identification and computation.
52

 We address the 

identification issue based on two exogenous technology shocks and NASDAQ channel 

assignments. These two identification strategies are implemented by two supercomputers from 

the National Science Foundation’s Extreme Science and Engineering Discovery Environment 

(XSEDE) program. To our knowledge, our empirical investigation is one of largest computing 

efforts ever conducted in academic finance.   

More broadly, our paper is related to the literature of overinvestment in research and 

development, information acquisition, professional services, and financial expertise. Hirshleifer 

(1971) models two types of information: foreknowledge of states of the world that will be 
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 A joint report by the Securities and Exchange Commission (SEC) and the U.S. Commodity Futures 

Trading Commission (CFTC) of the Flash Crash illustrates the difficulty of constructing two hours of data.  
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revealed by nature itself (e.g., earning announcements), and the discovery of hidden properties of 

nature that can only be laid bare by action. We conjecture that the information existing at the 

microsecond or nanosecond level is more of the former. The distributive aspect of speed 

provides a motivation for investing in speed that is quite apart from — and may even exist in the 

absence of — any social usefulness of speed. As a result, an externality emerges. The general 

notion that agents may overinvest to compete in a zero-sum game links back to Ashenfelter and 

Bloom (1993). A more recent work by Glode, Green, and Lowery (2011) examines the arms race 

for financial expertise.  

This paper is organized as follows. Section 2 describes the data. Section 3 provides the 

summary statistics and preliminary results. Section 4 examines quote stuffing based on the 

channel assignment of the NASDAQ. In Section 5, we use event studies to compare the market 

quality before and after the system enhancements of speed. Section 6 concludes the paper and 

discusses possible policy implications.   

  

II  Data 

A NASDAQ TotalView-ITCH Data  

The main dataset for this paper is the NASDAQ TotalView-ITCH, which is a series of 

messages that describe orders added to, removed from, and executed on the NASDAQ. The data 

come as a daily binary file and the first step is to separate order instructions into different types. 

To conserve space, we focus on seven types of messages: A, F, U, E, C, X, and D. A complete 

list of message types can be found in the NASDAQ TotalView-ITCH data manual. The 

messages come with a timestamp measured in nanoseconds (10
-9

 seconds).  
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Table 21 presents a sample of each type of message from the daily file of May 24, 2010. 

The daily file contains the order instructions for all the NASDAQ-listed stocks. To save space, 

some order instructions, such as order deletion, do not indicate the stock symbol but only the 

reference number of the order to be deleted. It is essential to fill in the redundant details to group 

the order instructions based on ticker symbol, which is the foundation for the construction of the 

limit order book for each stock.  

 Messages A and F include the new orders accepted by the NASDAQ system and added to 

the displayable book. NASDAQ assigns each message a unique reference number. Messages A 

and F include the timestamp, buy or sell reference number, price, amount of shares, and the stock 

symbol. The only difference between messages A and F is that F indicates the market participant 

identification associated with the entered order. The first message in Table 21 is an A message 

with a reference number 335531633 to sell 300 shares of EWA at $19.50 per share. Time is 

measured as the number of seconds past midnight. Therefore, this order is input at second 

53435.759668667, or 14:50:35:759668667. The F message shows a 100-share buy order for 

NOK at a price of $9.38 per share with UBSS as the market participant. A U message means that 

the previous order is deleted and replaced with a new order. The update can be on the share price 

or quantity of shares. In our example, order 335531633 has a change in price from $19.50 to 

$19.45, generating a new order with reference number 336529765. To conserve space, message 

U does not indicate the ticker symbol and the buy/sell reference number. Only after the trader 

finds the reference number for the first time the updated message was deleted can she link the 

updated message back to message A or message F to locate its ticker symbol and buy/sell 

reference number. In our example, we can link order 336529765 to the original order 335531633 

and know that it is a sell order for EWA. We find that a message can be deleted and replaced 
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69,204 times using a U message. In short, new orders can originate from three message files: 

messages A, F, and U.  

A message X provides quantity information when an order is partially cancelled. Orders 

with multiple partial cancellations share the same reference number. Message X only contains a 

timestamp, order number, and the quantity of shares cancelled. We need to link the X message to 

the original A or F message in order to find the stock in our sample and update its limit order 

book. In our example, the X instruction deletes 100 shares from order 336529765. The U 

message with reference number 336529765 implies that the size of the order is reduced to 200 

shares at a price of $19.45 per share. However, we need to link the U message to the A message 

to know that new order is to sell EWA.  

 An E message is generated when an order in the book is executed in whole or in part. 

Multiple executions originated from the same order share the same reference number. An E 

message also only has the order reference number and the quantity of shares executed. Therefore, 

we need to trace the order to the original A or F message to find the stock and the buy/sell 

information. In our example, the order reference number first points to a U message 

(336529765), which then tracks to an A message. Now we know that a sell order for EWA is 

executed; however, the price information is from the U message, where the price has been 

updated from $19.50 to $19.45 per share. After matching, the system will generate a matching 

number of 7344037. If the order is executed at a price that is different from the original order, a 

C message is generated and the new price is demonstrated in the price field.  

A message D provides information when an order is deleted. All remaining shares are 

removed from the order book once message D is sent. In our example, all the remaining shares of 

order 336529765 are deleted. The order uses to have 300 shares, and an X message deletes 100 
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shares from the book, while an E message leads to an execution for a sale of 76 shares. 

Therefore, a D message deletes 124 shares from the book. The price level is $19.45 per share, 

which is known from the U message, and the stock and the buy/sell indicator can be found at the 

A message.  

B Sample Stocks and Periods  

We construct two samples of stocks for our study. The test for quote stuffing uses the 

message flow of all 2,377 common stocks listed on the NASDAQ. The construction of message-

by-message limit order books requires a large amount of computing power and storage space. 

Therefore, we start from the same 120 stocks selected by Hendershott and Riordan (2011a, b) for 

their NASDAQ high-frequency dataset. These stocks provide a stratified sample of securities 

representing differing market capitalization levels and listing venues. The sample of stocks has 

been used by a number of recent studies, such as those by Brogaard (2011 a, and b), Hendershott 

and Riordan (2011a, b), and O’Hara, Yao, and Ye (2011). Since our sample period extends to 

2011 and Hendershott and Riordan picked the stocks in early 2010, 118 of the 120 stocks remain 

in the sample.  

With the help of the NASDAQ and an anonymous firm, we identify two structural breaks 

in latency. We use these two structural breaks as an identification strategy to examine the impact 

of speed on market quality. Interestingly, both of these structural changes happened on 

weekends, which is usually when both the exchanges and traders test new technology. The first 

structural break happened between Friday, April 9, 2010 and Monday, April 12, 2010. A more 

dramatic change happened between Friday, May 21, 2010 and Monday, May 24, 2010. These 

technology shocks are exogenous because they are not correlated with the level of liquidity or 

price discovery in the market. The private benefit to become the fastest exchange and the fastest 
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trader is so large that it is beneficial to implement and use the innovation once it is mature.  

Figure 11 shows the impact of these two technology shocks on latency. Panel A demonstrates the 

result on the minimum timestamp difference between two consecutive messages across the day. 

These two messages do not need to come from the same trader. For example, it can be the time 

difference between one trader’s execution and another trader’s cancellation. The figure shows 

that there is a decrease from about 950 nanoseconds to 800 nanoseconds between April 9, 2010 

and April 12, 2010 and a dramatic decrease from 800 nanoseconds to 200 nanoseconds between 

May 21, 2010 and May 24, 2010. Panel B of Figure 11 demonstrates, for each day, the quickest 

execution and cancellation. As the ITCH data track the life of each individual order, we know the 

cancellation and execution are from the same trader. Panel B shows that the level of the fastest 

cancellation and execution does not change much for the April structural break, although the 

volatility of the fastest cancellation and execution drastically decreases. The structural break in 

May, however, has a dramatic impact on latency. The fastest cancellation and execution time 

difference decreases from about 1.2 microseconds to 500-600 nanoseconds and stays below one 

microsecond for all but seven days after the break. Therefore, NASDAQ enters the realm of 

nanosecond trading after May 24, 2010.  

C Construction of the Variables  

Our test on quote stuffing is based on the time-series pattern of aggregated message flow. 

The aggregated message flow is defined as the sum of the 7 types of NASDAQ messages. Other 

types of messages are mostly stock symbol directory information and administrative information, 

such as trading halt and trading resumption. We use the stock directory information to link the 

NASDAQ messages to each stock and the administrative information when we construct the 

limit order book, but we do not count the stock symbol and administrative information in the 
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total message flow. The result is similar even if they are added because there are less than 10 

observations per stock per day.  

The cancellation ratio can be defined in two ways. The first measure of cancellation is 

based on the number of entered orders. We define the cancellation ratio as 1 minus the number of 

trades divided by the number of entered orders, that is: 

                                                       Cancellation_ratio =   
   

     
                                         (21) 

The second measure is based on cancelled orders. We define the cancellation and execution ratio 

as:  

                         Cancellation_execution = 
     

   
                           (22)       

The U type message is in both definitions because a U message involves a deletion plus an 

addition. These two measures are not exactly the same because of such issues as partial 

cancellation or multiple executions from the same order, but certainly they are very highly 

correlated. 

  We define the order life as the difference between order entry through A, F or U 

messages and order deletion through D, X or U messages. We also compute the life for orders 

that are executed, but we focus on orders that are cancelled or updated unless otherwise 

indicated. The results are very similar if executed orders are included because the number of 

executed orders is much less than the number of cancelled or updated orders.  

 We also use A, F, U, E, C, X, and D messages to construct the limit order book with 

nanosecond resolution. The traditional way to construct limit order books is based on Kavajecz 

(1999). The idea is to construct a snapshot of limit order books on a fixed time interval such as 5 

http://bus.wisc.edu/faculty/Kenneth-Kavajecz
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minutes or 30 minutes. We examine the impact of fleeting orders, thus a lot of information is lost 

if the analysis is based on snapshots. Therefore, we construct a message-by-message limit order 

book where the book is updated whenever there is a new message. That is, any order addition, 

execution or cancellation leads to a new order book. For example, Microsoft has about 1.08 

million messages on an average trading day, and we generate and store all the resulting 1.08 

million order books. This provides the most accurate view of the limit order book at any point in 

time.  

The message-by-message order book enables us to compute a number of metrics for 

market quality.  We calculate four measures of liquidity. Two are spread measures: the time-

weighted quoted spread and the size-weighted effective spread. The other two are depth 

measures: the depth at the best bid and ask and the depth within 10 cents of the best bid and ask. 

Since we construct a full limit order book, the quoted spread is measured as the difference 

between the best bid and ask at any time. Each quoted spread is weighted based on the life of the 

quoted spread to obtain the daily time-weighted quoted spread for each stock per day. The 

effective spread for a buy is defined as twice the difference between the trade price and the 

midpoint of the best bid and ask price. The effective spread for a sell is defined as twice the 

difference between the midpoint of the best bid and ask  and the trade price. Size-weighted 

effective spread is defined as the size-weighted effective spread of all the trades for each stock 

and each day. The two depth measures, the depth at the best bid and ask and the depth within 10 

cents of the best bid and ask, are weighted using the time for each stock per day. 53  

We also calculate two measures of price efficiency. We take the one-minute snapshot for 

the limit order book and calculate the minute-by-minute return based on the midpoint of the limit 

                                                           
53

 The 10 cent cutoff is used by Hasbrouck and Saar (2011).  
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order book. We then measure volatility as the standard deviation of the one-minute return. We 

also conduct a variance ratio for price efficiency at the one-minute level. Following Lo and 

MacKinlay (1988), the variance ratio is defined as the variance of a two-minute return divided by 

two one-minute returns. In an efficient market, prices should approximate a random walk with no 

positive or negative correlation. Therefore, a ratio closer to 1 implies higher price efficiency.    

 

III  Preliminary Results 

Table 22 presents the order cancellation ratio. NACCO Industries (Ticker NC) has the 

highest cancellation ratio, with 99.57% of submitted orders cancelled. Some of the most liquid 

stocks have very high cancellation ratios. For example, 96.09% orders of Apple (AAPL) are 

cancelled and 95.92% of Google (GOOG) orders are cancelled. The high cancellation ratio 

means that, on average, there is only one trade for every 30 orders, while the ratio is 232 to 1 for 

ERIE. The median level of cancellation is 96.5%, which implies an execution ratio of 28 to 1.  

Figure 12 provides a histogram of quote life for cancelled orders with a life less than one second, 

with each bin in the graph representing five milliseconds. The sample includes 118 stocks for 

which we construct the limit order books. 30% of the observations fall into the bin with the 

shortest quote life. This result has the following implication. Regulators across the Atlantic are 

proposing minimum quote life policy to slow down the trading process. In Europe, the Review of 

the Markets in Financial Instruments (MiFID) solicits comments on “How should the minimum 

period be prescribed?”
54

 In the United States, “The likely minimum duration for a quote under 

such a proposal could be 50 milliseconds, which has been suggested by several sources.”
55
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European Commission Public Consultation: Review of the Markets in Financial Instruments Directive 

(MiFID), February, 2011, page 7.  
55

 Minimum Quote Life Faces Hurdles. Traders Magazine, November 15, 2010.  
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Currently, the minimum quote life for most actively traded foreign exchange currency pair is 250 

milliseconds.
56

 Our paper does not directly address the minimum quote life policy, but we define 

order with a quote life less than 50 milliseconds as fleeting orders. Figure 12 demonstrates that a 

minimum quote life of 50 or 250 milliseconds would not generate a significant difference in 

market outcome because there are few observations in-between.  

Table 23 demonstrates the position of fleeting orders. Hasbrouck and Saar (2009) find 

that most fleeting orders are placed inside best bid and offer (BBO) in 2004, which is consistent 

with the strategy of detecting hidden liquidity. In our sample, however, only 11.25% of fleeting 

orders are placed inside BBO, while 52.23% are placed at the BBO and 36.53% are placed 

outside the BBO,57 which suggests that fleeting orders are placed for different purposes in 2010 

than in 2004. 

  

IV  Test for Quote Stuffing 

Biais and Woolley (2011) define quote stuffing as submitting an unwieldy number of 

orders to the market to generate congestion. Quote stuffing is certainly an externality-generating 

activity, like noise or pollution in the financial market. We believe that quote stuffing is perfectly 

incentive compatible in positional arms races. In the microsecond or nanosecond trading 

environment, it is not the absolute speed, but the relative speed to competitors and stock 

exchanges that matters. As speed leads to profit, it would also be equally profitable to slow down 

your competitors, the exchanges, or both. The economic incentives for enhancing speed and 

delaying others should be the same, if it is relative speed that is important. According to 
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 Thomson Reuters Spot Matching: Changes to Minimum Quote Life and Transaction to Match Ratio, 

October 17, 2012.  
57

 Fleeting orders are defined as orders with a life less than two seconds in Hasbrouck and Saar (2009). In our 

sample, they are defined as orders with a life less than 50 milliseconds.     
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Brogaard (2011c), the speed differences caused by quote stuffing are only microseconds or 

milliseconds, but that is enough time for a trader to gain an advantage. The traders who generate 

stuffing may also delay themselves, but they still have the economic incentive for stuffing as 

long as it slows other traders more. This is generally the case because the generators of stuffing 

do not need to analyze the data they generate and they know exactly when stuffing will occur. 

The other possibility raised by Brogaard (2011c) is that a malevolent trader may attempt to slow 

down an entire exchange. If the trader can extend the time delay between how fast an exchange 

can update quotes, post trades, and report data, then the trader will have more time to capitalize 

on cross-exchange price differences. This kind of stuffing is more harmful than the previous one 

because it might effectively cause the breakdown of inter-market linkages, leading to sharp price 

movements (Madhavan, 2011).  

We find evidence consistent with quote stuffing based on the following identification 

strategy. The outflow messages on NASDAQ-listed stocks are distributed and processed across 

six different channels in “unlisted trading privileges” (UTP).58 The six channels have the same 

breakout for the UTP Quotation Data Feed (UQDF) and the UTP Trade Data Feed (UTDF). In 

total there are 2,377 stocks reported to UTP in our sample period. The channel assignment 

provides an ideal identification for quote stuffing. Note that quote stuffing the UTP feed is not 

the only way to accomplish quote stuffing. As explained by footnotes 8 and 9, quote stuffing 

may also happen at the exchange gateway or the matching engine, and attacking the UTP feed 

may not even be the most efficient way of quote stuffing. We focus on quote stuffing the 

distribution of the UTP data because the channel assignment provides us with the identification 

strategy.  

                                                           
58

 Although the NASDAQ also trades stocks listed in other exchanges, the outflow messages of other 

exchanges is handled by different systems. Quote data from other exchanges are handled by the Consolidated Quote 

System (CQS), and the trade data of other exchanges is handled by the Consolidated Tape System (CTS).  
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Suppose, for example, a trader has information for Stock A. One way he can delay the 

data distribution, and thereby the trading of Stock A, is to send messages only to Stock A. 

However, this strategy involves thousands of messages per second for one particular stock, 

which increases the likihood of detection by exchanges and regulators. One way to avoid 

detection is to send messages to multiple tickers. A stock has an asymmetric relationship 

between stocks in the same channel and stocks in a different channel. For example, sending 

messages to ticker B will delay the trading for ticker A, but sending messages to ticker Z will 

minutely impact stock A. It is because A is in the same channel as stock B but not stock Z. 

Therefore, we test quote stuffing based on abnormal correlations of message flows for tickers in 

the same channel.  

A Factor Regression 

We obtain the channel assignments for NASDAQ-listed stocks from the NASDAQ. In 

our sample period, there are six channels for NASDAQ-listed stocks. Channel 1 handles ticker 

symbols from A to B; Channel 2 handles ticker symbols from C to D; Channel 3 handles ticker 

symbols from E to I; Channel 4 handles ticker symbols from J to N; Channel 5 handles ticker 

symbols from O to R; Channel 6 handles ticker symbols from S to Z. The testing strategy follows 

the literature on international stock market co-movement by Lessard (1974, 1976), Roll (1992), 

Heston and Rouwenhorst (1994), Griffin and Karolyi (1998), Cavaglia, Brightman, and Aked 

(2000), and Bekaert, Hodrick, and Zhang (2009). The idea is that we consider each channel as a 

“country” and all six channels as the “global market.” The literature on country factor examines 

whether there is a country specific factor after controlling for the global market co-movement. 

Using the same method, we find evidence of a “channel” factor, that is, message flows for stocks 
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in the same channel co-move with each other. This co-movement is consistent with “quote 

stuffing.”   

We divide each trading day into one-minute intervals and count the number of messages 

in each interval for all 2,377 stocks in the 55 trading days between March 19, 2010 and June 7, 

2010. For each stock i, the channel message flow is the sum of all messages for stocks in 

Channel j minus the message flow of stock i, if stock i is in Channel j. We make this adjustment 

to avoid mechanical upward bias to find that a stock has higher correlations with message flows 

in its own channel. The market message flow is the sum of the messages for all stocks.59  For 

each stock i, we run the following two stage regressions following Bekaert, Hodrick, and Zhang 

(2009)60:  

We first regress the total number of messages of Channel j on the market message flow: 

                                                                                                 (23) 

We save the residual of this regression as a new variable,                   . In the second step, 

we run the following six regressions for each stock i:  

                                                                                 (24) 

where       stands for the number of messages for stock i at time t.       measures the channel-

level effect after controlling for the market-wide effect. We are particularly interested in      

when stock i belongs to Channel j. However, we also run the regression for stock i on other 

channels as a falsification test. Due to the large number of stocks, we do not present the 
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 We also compute the market message flow as the sum of message flows for all stocks except stock i. The 

result is similar.  
60

 As is discussed in Bekaert, Hodrick, and Zhang (2009), the first stage of orthogonalization does not 

change the results but only simplifies the interpretation of the coefficients. We can simply run the second stage 

regression and get the same result.     
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coefficients for individual regressions, but the results are available upon request. Table 24 

provides the summary statistics of all these regressions. A cell in the k
th 

column and the j
th 

row in 

the table presents the average of the      coefficient if stock i in Channel k is regressed on the 

residual message flow of Channel j. For example, the coefficient in the first row and the second 

column, -0.00115, means that the average regression coefficients of Channel 1 stocks on the 

residual message flow in Channel 2 is -0.00115. The t-statistics are based on the null hypothesis 

that these coefficients are zero. Table 24 shows a strong diagonal effect: all the diagonal 

elements in the matrix are significantly positive. This means that a stock’s message flow has 

strong positive correlation with the message flow for the channel even after controlling for the 

market message flow. We also find that this type of co-movement does not exist between stocks 

in different channels: the coefficients are negative for message flow in different channels, and 

most of them are statistically significant.   

B Discontinuity Test 

We also supplement our regression using a discontinuity test. For each of the two 

adjacent channels, alphabetically, we pick the last stock in the previous channel and the first 

stock in the next channel with at least one message in each minute. In other words, for Channels 

2-5, we use both the first and the last stock in the channel; for Channel 1, we use the last stock, 

and for Channel 6, we use the first stock.61 Panel A of Table 25 presents the ten stocks we 

examine. We then compare the correlation of the message flow for each stock with its own 

channel and the channel immediately after (before) if the stock is the last (first) one in the 

channel. For each stock, we first run the following regression:  

                                                           
61

 The first stock in Channel 1 and the last stock in Channel 6 do not have immediate alphabetic neighbors 

under our specification.  



 

76 

                                                                                                                         (25) 

where       is the number of messages for stock i at time t, and                 is the number 

of messages for the entire market at time t. We save the residual of the regression, which is the 

message flow after controlling for the market. We then construct two correlation variables for 

each stock per day: In_correlation measures the correlation between the selected stock’s order 

flow residual with the order flow residual for stocks in the same channel, and Out_correlation 

measures the correlation between the selected stock’s order flow residual with the order flow 

residual for stocks in the adjacent channel. For example, BUCY is the last stock in Channel 1. 

In_correlation is the correlation with Channel 1, while Out_correlation is the correlation with 

Channel 2. CA is the first stock in Channel 2. In_correlation is the correlation with Channel 2, 

while Out_correlation is the correlation with Channel 1. Panel B of Table 25 presents the results 

based on 550 observations (10 stocks for 55 days). We find that Out_correlation is only 0.47% 

and is not statistically significant; In_correlation is about 4.64%, which is 10 times as large as 

Out_correlation and is statistically significant. The difference between In_correlation and 

Out_correlation is 4.17%, with t-statistics equal to 5.11. The results based on discontinuity also 

suggest abnormal correlation of message flows for stocks in the same channel. 

C Diff-in-diff Regression 

Our final test for abnormal co-movement for message flow is based on diff-in-diff 

regression. We find 55 NASDAQ stocks that switch ticker symbol from January, 2010 to 

November 18, 2011, and we separate these stocks into two groups. The control group changes 

ticker symbols but remains in the same channel; the treatment group changes ticker symbol as 

well as the channel. The control group has 13 stocks and the treatment group has 42 stocks.  
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We use the correlation of the stock with the channel before switching ticker as the dependent 

variable. For the control group, the channel assignment before and after the ticker change is the 

same.  If a stock switch ticker from A to Z, the channel assignment will move from 1 to 6, but we 

always use the correlation with channel 1 as dependent variable. The purpose of the test is to 

examine whether the treatment group has a decrease of correlation in message flow with the 

original channel after the change of ticker symbol.   For each stock, we use the 30 days before 

the ticker change as before period and 30 days after the ticker change as after period.   

Table 26 shows that the treatment group has a 4% decrease in correlation with the original 

channel after the ticker change and result is significant at 1 percent level. However, the control 

group does not have a statistically significant reduction in correlations in message flow with the 

original channel. The difference between the treatment and control group reveals the channel 

effect: stocks have a 3% decrease in correlations with message flow after they leave a channel.      

 

V  Natural Experiment 

To evaluate the effects of the technology shocks on liquidity, price efficiency and trading 

volume, we follow the approach of Boehmer, Saar, and Yu (2005) and Hendershott, Jones, and 

Menkveld (2011), who run regressions on the event dummy and control variables. We compare 

the market liquidity and price efficiency before and after these two technology shocks. These 

two structural breaks, particularly the one happened in May 21, 2010, dramatically increases the 

trading speed. It also increases the cancellation ratio. For the event days before and after these 

structural changes, the mean cancellation/execution ratio increases from 25.82 to 32.04, while 

the cancellation/execution ratio increases from 20.30 to 33.56 between March 2010 and June 

2010.  
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A Effects of the Technology Shocks on Liquidity   

Following the approach of Boehmer, Saar, and Yu (2005) and Hendershott, Jones, and 

Menkveld (2011), we regress the liquidity measure     on the event dummy and a number of 

controls. Our liquidity measure includes (time weighted) quoted spread, (size weighted) effective 

spread, and (time weighted) depth that at the best bid and ask and (time weighted) depths within 

10 cents of the best bid and ask.      

                                                                                                 (26) 

           is the log of the daily volume for  stock i at day t.          controls for volatility for 

stock i at day t, which is equal to day high minus day low in the CRSP data.       is the price 

level of the stock and    is the stock fixed effect. We want to examine whether α, the coefficient 

for the event dummy, is significant after we control for volume, volatility, and price level.\ 

Table 27 shows that these technology shocks do not have a statistically and economically 

significant impact on spread. The quoted spread decreases by -0.0394 cent and the effective 

spread increases by 0.00115 cent, but both results are not statistically significant. The depths at 

the best bid and ask also do not change, but we find a 2015-share decrease of market depth 

within 10 cents of the best bid and ask. Overall, we find that these two technology shocks neither 

increases nor decreases spread but slightly decrease the depth.  

The fact that speed does not decrease spread has two natural explanations. First, the 

exchange follows price time priority. The competition to provide liquidity is first at price level. 

Time priority has a secondary role only after the price. The fact that there are intensive 

competitions in speed implies that there very little room for competition for price at the best bid 
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and asks. As a result,  spread can barely decrease when speed increases. Second, one argument 

that speed may increase liquidity is that traders with high speed can maintain tighter bid-ask 

spread because they can quickly update the stale quotes before other traders can adversely select 

them. This argument, however, confirms that only relative speed matters: the trader with the 

highest speed may be able to post the tightest quotes. If the speed of all the traders increases 

twice, the equilibrium level of spread may not change at all. If the fastest trader is surpassed by 

the second fastest trader, the latter may have the ability to quote the tightest spread but the level 

of spread may be the same as the original. To summarize, intensive competition in speed implies 

that there may be little room for further improvement in the best bid and offer. Traders with the 

highest speed may be able to maintain the best bid and ask spread, but the level of bid and ask 

are unlikely to change. We also find that market depth slightly decrease, probably because it is 

more risky to expose a large position when speed is higher.  

B Effects of Technology Shocks on Market Efficiency and Volume   

For market efficiency, we follow Boehmer, Saar, and Yu (2005) and compare the mean 

of the volatility and variance ratio before and after the shocks without control variables. We also 

add the trading volume into this regression to see whether there is an increase in trading volume 

after these two technology shocks. 

                                                                                                                                       (27) 

Therefore, we run the fixed effect regression with the dummy variable equal to 1 after the 

shocks.     is the price efficiency measure such as one minute volatility and two minute to one 

minute variance ratio and market volume. The variable of interest is λ, which measures the 

impact of these two exogenous technology improvements.   
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Table 28 shows that the variance ratio at 1 minute level does not have a statistically 

significant change before and after the technology shocks. The change of trading volume is also 

not statistically significant. However, volatility slightly increases after the technology shocks.   

C Summary 

We find that two exogenous technology shocks do not affecting volume, spread and 

variance ratio. However, it dramatically increases cancellation/execution ratio and increases 

short term volatility and decreases market depth. We believe that an increase in trading speed 

increases the number of periods for the trading game played between high-frequency traders. 

Therefore, we see more order cancellations, probably because a more complex game leads to 

higher cancellations. For example, the quote stuffing strategy may need increasingly more orders 

to generate congestion. However, an increase in speed does not improve liquidity or price 

efficiency. 

 As a result, speed may create several externalities. Quote stuffing is certainly one type of 

externality-generating events. Even without quote stuffing, we argue that investment in speed 

with sub-millisecond accuracy may provide a private benefit to traders without consummate 

social benefit; therefore, there may be an overinvestment in speed. Finally, the exchanges 

continually makes costly system enhancements to accommodate higher message flow, but these 

enhancements facilitate further order cancellations, not increases in trading volume. Since the 

current exchange fee structure only charges executed trades and not order cancellations, 

legitimate traders and investors subsidize high-frequency traders who purposefully cancel orders, 

reflecting a wealth transfer from low frequency traders to high-frequency traders. 

 

VI  Conclusion 
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Identification and computing power impose a strict constraint for us to understand the 

consequence of speed competition below microsecond level. With two identification strategies 

and supporting supercomputing power, we provide the first glimpse into the world of 

nanosecond trading.  

We find that stocks randomly grouped into the same channel have an abnormal 

correlation in message flow, which is consistent with the quote stuffing hypothesis. If the 

message flows of stocks are driven by market-wide information, they should affect stocks in all 

channels. If these message flows are driven by stock-specific information, they should be 

independent across different stocks. The abnormal correlation for stocks in the same channel 

implies that there is a “channel-level shock,” which is consistent with the quote stuffing 

hypothesis. Since the message flow of a stock delays the trading of stocks in the same channel, 

but not stocks in other channels, the message flows in the same channel are more likely to co-

move.  

We also find that two specific technology shocks, which exogenously increase the speed 

of trading from the microsecond level to the nanosecond level, lead to dramatic increases in 

message flow. However, the increases in message flow are due largely to increases in order 

cancellations without any real increases to actual trading volume. Spread does not decrease 

following increase in speed and the variance ratio does not improve. However, we find evidence 

that market depth decreases and short term volatility increases, probably as a consequence of 

more cancellations. Therefore, a fight for speed increases high-frequency order cancellation but 

not real high-frequency order execution. Because the function of the stock market is to provide 

liquidity and to facilitate trading and share of risk, our results doubt the social value of 

decreasing latency to nanoseconds or any further decreases. We believe that investing in trading 
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speed above some threshold should be a zero-sum game, but players may continually invest to 

play. Therefore, the aggregate payoff is negative even among high-frequency traders. For low-

frequency traders, the externality is even more obvious. An increase in speed increases order 

cancellations, which generates more noise to the message flow. Low-frequency traders then 

subsidize the high-frequency traders because only executed trades are charged a fee. We also 

find a decrease of market depth and an increase of short term volatility after the technology 

shocks. These finding is consistent with the observations from the market on the accumulative 

effects of a series of enhancement in speed. U.S. Securities and Exchanges Commission (2010) 

reveals that the average trade size has decrease from 724 shares in 2005 to 268 shares as a 

consequence of the decrease in market depth. The increase in short term volatility can be 

demonstrated by the recent plan of “Limit Up-Limit Down” to dampen volatility.  

Since competition on speed is a positional arms race among high frequency traders that 

creates externalities to non-high frequency traders, it is important to discuss possible solutions to 

this inefficiency. One solution to this problem is to decrease tick size, which will force 

competition to focus more on price. Interestingly, from an economics point of view, this would 

be deregulation instead of regulation, because the current one cent tick size for stocks with a 

price above one dollar is imposed by regulation. The other solution is to decrease the importance 

of time priority below the millisecond level, where orders that arrive at the same millisecond 

share priority.  

In the positional arms race of speed, investment tends to be mutually offsetting: suppose 

one high frequency trader invests to increase the speed from micro to nanosecond, other high 

frequency traders have a strong incentive to follow. When all traders have nanosecond 

technology, the pay-off would not be different from the case where all traders are in 
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microseconds. Collectively, the high frequency traders may be better off by not investing in 

speed, but the individual rationale of each trader provides a strong incentive to deviate. The 

private solution to this problem is called positional arms control agreement (Bernanke and Frank, 

2012), in which market participants agree not to engage in mutually offsetting investments or 

activities. One challenge to this solution is the difficulty for a trader to verify the actions of his 

competitors. As a result, the consolidated audit trail to be created by the SEC is the first step for 

this type of solution. A Pigovian tax can also help to correct this externality.  The tax can be 

imposed on any investments in speed (Biais, Foucault, Moinas, 2011). Cabral (2000) discusses 

the tax on entry when there is a business stealth effect. The other alternative is to tax rapid order 

cancellation, which is accomplished through a cancellation fee. Also, when a trader’s investment 

in speed can be neutralized by the same investment by his competitors in a positional game, a 

restriction on this type of investment may benefit all traders in the market as long as the 

restriction does not change the relative ranking of speed.
62

 For example, on March 29, 2012, a 

300 million dollar project was announced to build a transatlantic cable to reduce the current 

transmission time from 64.8 milliseconds to 59.6 milliseconds. According to the project’s 

financier, “that extra five milliseconds could be worth millions every time they hit the button.”
63

 

However, the cable may simply lead to a wealth transfer from non-subscribers to subscribers. 

Individual rationale makes certain high frequency traders in the transatlantic market subscribe to 

the cable, but when all high frequency traders subscribe to the cable, the private benefit 

disappears. Traders may be better off if none of them invests in the cable. Unfortunately, this 

cannot be sustained as equilibrium due to the private incentive to deviate. As a result, a 

                                                           
62

 In this sense, our paper does not provide a direct answer to minimum quote life policy, because minimum 

quote life increases the speed of execution relative to cancellation.  
63

 Stock Trading Is About to Get 5.2 Milliseconds Faster. Businessweek, March 29, 2012 
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restriction on trading speed can only be imposed by an outside authority, which can benefit all 

traders. 
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CHAPTER 4 

 

TABLES AND FIGURES 

 

Table 1: Sample Data 

This table presents a sample of the NASDAQ TotalView-ITCH message P, which includes all executions 

against hidden orders. It is possible to receive multiple trade messages for the same order if that order is 

executed in several parts. In this table, all transactions were executed against the same hidden order, 

which was assigned a unique order reference number 61224737 when the order was added to the book. In 

regards to the Time variable, the digits that appear before the decimal point reflect the number of seconds 

past midnight; digits that appear after the decimal point reflect the number of nanoseconds since the most 

recent second timestamp. Buy/Sell indicates the direction of the limit order when it is added to the book.  

 

 

Order 

Reference 

Number 

Time (Nanoseconds) Buy/Sell Shares Stock Price 

61224737 36888.426197129 S 1 DELL 14.57 

61224737 36888.426524809 S 725 DELL 14.57 

61224737 36888.426632973 S 400 DELL 14.57 

61224737 36888.426697769 S 400 DELL 14.57 

61224737 36888.426701583 S 100 DELL 14.57 

61224737 36888.427005536 S 274 DELL 14.57 
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Table 2: Summary Statistics of Executed Hidden Orders 

The sample of the stocks in this table consists of all of the common stocks listed on the NASDAQ from 

January 4, 2010 to November 18, 2011, with records in NASDAQ TotalView-ITCH. There are 2156 

stocks in the sample. In Panel A, I compute the time-series means of executed shares against hidden 

orders over the total trading volume for each stock. I then sort the stocks into five market capitalization 

quintiles and present the cross-sectional summary statistics for five size quintiles. In Panel B, I compute 

the time-series means of number executions against hidden order over total trades for each stock during 

the sample period and present the cross-sectional summary statistics for five size quintiles. In Panel C, I 

compute the time-series means of executed hidden order imbalance for each stock and present the cross-

sectional summary statistics for five size quintiles. The imbalance measure is calculated as the number of 

executions against hidden buy orders minus the number of executions against hidden sell orders on day t 

over the total trades on day t.   

 

Panel A: Executed Shares Against Hidden orders / Total Trading Volume (%) 

Size Mean Std. Dev Min 25% Median 75% Max 

Q1 (small) 28.71% 10.95% 6.39% 20.17% 26.87% 37.32% 64.39% 

Q2 20.89% 8.99% 5.72% 15.36% 18.57% 23.99% 79.06% 

Q3 18.12% 6.14% 6.33% 14.29% 17.29% 20.61% 50.49% 

Q4 16.31% 4.84% 5.16% 12.90% 15.99% 19.00% 42.12% 

Q5 (large) 13.85% 6.25% 4.78% 8.69% 13.03% 17.22% 39.41% 

All 19.58% 9.29% 4.78% 13.63% 17.48% 22.52% 79.06% 

Panel B: Number of Executions Against Hidden orders / Total Trades (%) 

Size Mean Std. Dev Min 25.00% Median 75.00% Max 

Q1 (small) 28.98% 13.24% 6.39% 18.36% 26.30% 38.96% 63.80% 

Q2 18.19% 10.44% 5.53% 11.72% 15.03% 20.49% 77.11% 

Q3 15.84% 8.11% 5.17% 11.14% 13.73% 17.73% 61.20% 

Q4 13.81% 5.36% 5.31% 10.29% 13.27% 16.54% 49.85% 

Q5 (large) 11.72% 6.48% 2.63% 6.45% 10.38% 15.05% 41.64% 

All 17.71% 10.97% 2.63% 10.69% 14.60% 20.46% 77.11% 

Panel C: Executed Hidden Order Imbalance (%) 

Size Mean Std. Dev Min 25.00% Median 75.00% Max 

Q1 (small) -1.31% 3.13% -14.83% -2.81% -0.98% 0.33% 9.55% 

Q2 -0.43% 3.02% -7.11% -1.26% -0.37% 0.25% 46.01% 

Q3 -0.35% 1.58% -12.92% -0.70% -0.08% 0.36% 3.83% 

Q4 -0.06% 0.84% -5.38% -0.32% 0.02% 0.34% 2.17% 

Q5 (large) -0.08% 0.64% -4.26% -0.25% -0.01% 0.17% 4.80% 

All -0.45% 2.17% -14.83% -0.81% -0.10% 0.26% 46.01% 
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Table 3: Executed Hidden Orders over Size and Illiquidity 

The sample of the stocks in this table consists of all of the common stocks listed on the NASDAQ from 

January 4, 2010 to November 18, 2011, with the records in NASDAQ TotalView-ITCH. There are 2156 

stocks in the sample. In Panel A, I compute the time-series means of executed shares against hidden 

orders over total trading volume for each stock. I sort the stocks into five market capitalization quintiles 

and among each market capitalization quintile, I sort the stock into five Amihud (2002) illiquidity 

quintiles. I then present the cross-sectional averages for five size quintiles over five Amihud (2002) 

illiquidity quintiles. In Panel B, I compute the time-series means of number executions against hidden 

orders over total trades for each stock over the sample period and present the cross-sectional average for 

five size quintiles over five Amihud (2002) illiquidity quintiles. 

 

Panel A: Executed Shares Against Hidden orders/Total Trading Volume by Size and Illiquidity 

 

Q1(small) Q2 Q3 Q4 Q5(Large) 

Q1(Low) 19.09% 17.23% 16.70% 15.71% 11.96% 

Q2 23.10% 18.23% 16.78% 16.93% 12.65% 

Q3 27.91% 20.23% 17.13% 15.87% 13.50% 

Q4 35.83% 20.87% 18.02% 16.25% 14.53% 

Q5(High) 37.72% 27.93% 22.03% 16.78% 16.64% 

Panel B: Number of Executions Hidden Orders / Total Trades by Size and Illiquidity 

 

Q1(small) Q2 Q3 Q4 Q5(Large) 

Q1(Low) 16.63% 13.23% 13.50% 12.82% 9.70% 

Q2 22.08% 15.25% 13.87% 14.18% 10.88% 

Q3 26.88% 17.19% 14.46% 13.35% 11.19% 

Q4 37.37% 18.77% 15.51% 14.16% 12.10% 

Q5(High) 42.07% 26.58% 21.93% 14.57% 14.76% 
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Table 4: Factors Correlated with Executions Against Hidden Orders 

 This table provides factors that correlate with executions against hidden orders. The sample of the stocks 

in this table consists of all of the common stocks listed in the NASDAQ from January 4, 2010 to 

November 18, 2011, with records in NASDAQ TotalView-ITCH. hidtrdpct is the number of executions 

against hidden orders over total trades and hidvolpct is the executed shares against hidden orders. logprc 

is the log value of the price level; range is the daily highest price minus the lowest price over the closing 

price, illiquidity is the Amihud (2002) illiquidity measure multiplied by 10
6
. *** indicates significance at 

the 1% level and p-values appear in parentheses. 

 

hidtrdpct 1 
    

      
logprc 0.034*** 1 

   

 
(<.0001) 

    
logmktcap -0.291*** 0.676*** 

   

 
(<.0001) (<.0001) 

   
range 0.137*** -0.342*** 0.045*** 1 

 

 
(<.0001) (<.0001) (<.0001) 

  
illiquildity 0.009*** -0.017*** -0.019*** 0.018*** 1 

 
(<.0001) (<.0001) (<.0001) (<.0001) 
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Table 5: Positions’ Hidden Orders Are Placed for Market Size Quintiles 
 Column (1) calculates the displayed quoted spread, which is the difference between the best bid and ask 

for displayed orders, and column (2) shows the true quoted spread, which is the difference between the 

true bid and true ask.   Column (3) shows the percentage of time that hidden orders place between the 

displayed spread; column (4) shows the percentage of time that hidden orders place at the displayed bid 

for buy orders and the displayed ask for sell orders; column (5) show the percentage of time that hidden 

orders are placed away from the observable spread.   

 

                                                      

                                                      

                                                                              

  (1) (2) (3) (4) (5) 

Size 
Observable 

quoted spread 

True quoted 

spread 
Between  At  Away 

Q1 (small) 0.0375 0.0274 35.72% 31.13% 33.15% 

Q2 0.0144 0.0110 23.78% 40.89% 35.33% 

Q3 0.0067 0.0052 20.03% 44.51% 35.46% 

Q4 0.0029 0.0023 19.24% 47.11% 33.65% 

Q5 (large) 0.0012 0.0009 15.92% 56.86% 27.22% 

All 0.0126 0.0094 16.47% 55.47% 28.06% 
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Table 6: Intraday Returns for Executed Hidden and Displayed Orders in Percentage 

This table reports intraday returns in percentage for executed hidden and displayed orders. The sample of 

the stocks in this table consists of all common stocks listed on the NASDAQ from January 4, 2010 to 

November 18, 2011, with records in NASDAQ TotalView-ITCH.  Each intraday executed buy order 

return is computed as the log-return measured from the transaction price to the closing price of the day, 

and the signs are reversed for each sell order return. For each stock on each day, I compute the share 

weighted average returns for all executions based on their order types, then I average hidden and 

displayed order returns across all days for each stock. *** indicates significance at the 1% level and t-

statistics appear in parentheses. 

 

MktCap Hidden Displayed Difference 

Small 0.292*** 0.069*** 0.223*** 

N = 719 (25.05) (8.31) (24.10) 

Medium 0.076*** -0.017*** 0.094*** 

N = 719 (18.29) (-5.00) (20.82) 

Large 0.021*** -0.011*** 0.032*** 

N = 718 (11.71) (-6.56) (15.47) 

All  0.130*** 0.012 0.117*** 

N = 2156 (26.65) (1.38) (25.18) 
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Table 7: Portfolio Based on Size and Executed Trade Imbalances with Two-Day Holding Period 

The sample of the stocks in this table consists of all of the common stocks listed on the NASDAQ from 

January 4, 2010 to November 18, 2011, with records in NASDAQ TotalView-ITCH. In Panel A, firms 

are sorted into quintile based on executed hidden order imbalances during the previous five trading days. 

In Panel B, firms are sorted into quintile based on executed displayed order imbalances during the 

previous five trading days. Value-weighted portfolios are held for two trading days. This process is 

repeated each trading day, so that trading day’s portfolio return is an average of two different portfolios 

with one portfolio rebalanced each day. Fama and French (1993) three-factor alphas, Carhart (1997) 

momentum factor alphas, and Pastor and Stamabaugh (2003) liquidity factor alphas multiplied by 250 are 

reported to reflect an appropriate yearly return. ***, **, and * indicates significance at the 1%, 5%, and 

10% level and t-statistics appear in parentheses. 

          
Panel A: Abnormal Returns for Portfolios with 2 Holding Days (Sorted by Hidden Order Activities) 

  Three-Factor Four-Factor Five-Factor 

 
P1 P5 P5-P1 P1 P5 P5-P1 P1 P5 P5-P1 

Small -0.033 0.144 0.177*** -0.035 0.140 0.174*** -0.068 0.110 0.178*** 

   
(3.05) 

  
(3.01) 

  
(2.86) 

Medium -0.037 0.035 0.072* -0.030 0.045 0.074* -0.034 0.041 0.075* 

   
(1.83) 

  
(1.90) 

  
(1.76) 

Large -0.015 0.007 0.021 -0.021 0.005 0.025 -0.036 -0.005 0.029 

      (0.41)     (0.48)     (0.53) 

          
Panel B: Abnormal Returns for Portfolios with 2 Holding Days (Sorted by Displayed Order 

Activities) 

  Three-Factor Four-Factor Five-Factor 

 
P1 P5 P5-P1 P1 P5 P5-P1 P1 P5 P5-P1 

Small 0.005 0.135 0.128* 0.009 0.127 0.117 -0.013 0.080 0.092 

   
(1.79) 

  
(1.68) 

  
(1.23) 

Medium 0.003 0.042 0.038 0.013 0.049 0.035 0.016 0.040 0.023 

   
(0.88) 

  
(0.81) 

  
(0.49) 

Large -0.036 0.026 0.063 -0.036 0.024 0.061 -0.037 0.007 0.044 

      (1.32)     (1.27)     (0.86) 
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Table 8: Portfolio Based on Size and Executed Trade Order Imbalances with Twenty-Day Holding 

Period  
The sample of the stocks in this table consists of all of the common stocks listed on the NASDAQ from 

January 4, 2010 to November 18, 2011, with records in NASDAQ TotalView-ITCH. In Panel A, firms 

are sorted into quintile based on executed hidden order imbalances during the previous five trading days. 

In Panel B, firms are sorted into quintile based on executed displayed order imbalances during the 

previous five trading days. Value-weighted portfolios are held for twenty trading days. This process is 

repeated each trading day, so that trading day’s portfolio return is an average of twenty different 

portfolios with 1/20 of the portfolio rebalanced each day. Fama and French (1993) three-factor alphas, 

Carhart (1997) momentum factor alphas, and Pastor and Stamabaugh (2003) liquidity factor alphas 

multiplied by 250 are reported to reflect an appropriate yearly return. ***, **, and * indicates significance 

at the 1%, 5%, and 10% level and t-statistics appear in parentheses. 

 

Panel A: Abnormal Returns for Portfolios with 20 Holding Days (Sorted by Hidden Order Activities) 

  Three-Factor Four-Factor Five-Factor 

 
P1 P5 P5-P1 P1 P5 P5-P1 P1 P5 P5-P1 

Small 0.023 0.036 0.012 0.021 0.034 0.012 -0.011 0.007 0.017 

   
(0.33) 

  
(-0.49)  

  
(0.45) 

Medium -0.004 -0.014 -0.011 0.004 -0.005 -0.01 0.006 -0.016 -0.023 

   
(-0.49) 

  
(-0.45) 

  
(-0.92) 

Large 0.017 -0.004 -0.014 0.01 -0.006 -0.01 -0.011 -0.016 -0.003 

      (-0.53)      (-0.37)      (-0.12) 

          Panel B:Abnormal Returns for Portfolios with 20 Holding Days (Sorted by Displayed Order 

Activities) 

  Three-Factor Four-Factor Five-Factor 

 
P1 P5 P5-P1 P1 P5 P5-P1 P1 P5 P5-P1 

Small 0.023 0.045 0.022 0.024 0.034 0.01 -0.014 -0.003 0.011 

   
(0.61) 

  
(0.52) 

  
(0.16) 

Medium -0.014 0.009 0.023 -0.018 0.016 0.034 -0.007 0.016 0.023 

   
(1.46) 

  
(1.07) 

  
(1.09) 

Large -0.012 0.02 0.032 -0.004 0.033 0.037 -0.015 0.009 0.024 

      (1.52)     (1.26)     (0.51) 
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Table 9: Summary Statistics of the 120 Firms in the HF Sample 

Table 9 provides summary statistics for the 120 firms in the NASDAQ High Frequency data set. Large 

firms contain the 40 firms with the largest market cap. Small firms contain the 40 firms with the smallest 

market cap. Medium firms are the remaining 40. Spread is the average trade weighted effective half 

spread, which is the absolute difference between the trade price and the quote midpoint; PIN is the 

probability of informed trading for each stock; Range is defined as the daily high price minus daily low 

price divided by the daily close price; Volume is the daily volume; Price is the closing price of the trading 

day from CRSP; MarketCap is the market capitalization of the stock on each the trading day. Volume and 

Marketcap are in the unit of one million. Rankings are based on market caps of December 31, 2007. 

 

Variable Mean StdDev Max Min Type 

MarketCap 46760.98 51461.22 383602.92 3349.12 large 

Spread 0.04 0.07 0.87 0.01 large 

Range 0.04 0.03 0.68 0.00 large 

Volume 16.61 24.34 752.91 0.17 large 

Price 56.72 76.76 685.33 5.22 large 

PIN 0.07 0.02 0.12 0.02 large 

MarketCap 1554.53 667.15 4110.46 98.90 medium 

Spread 0.04 0.03 0.55 0.01 medium 

Range 0.05 0.04 0.87 0.00 medium 

Volume 1.00 1.28 23.51 0.02 medium 

Price 28.39 18.34 114.17 0.90 medium 

Pin 0.15 0.04 0.25 0.02 medium 

MarketCap 422.75 248.14 1797.76 19.13 small 

Spread 0.10 0.24 4.40 0.01 small 

Range 0.06 0.05 1.59 0.00 small 

Volume 0.28 0.36 15.37 0.00 small 

Price 19.44 19.84 169.00 0.24 small 

Pin 0.18 0.05 0.33 0.02 small 
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Table I0: Sample stocks and odd lot trades and volumes 

This table demonstrates the odd lots as a percent of all trades and trading volume for the 15 largest stock 

as well as for the 15 stocks with the highest growth in odd lots in our 120 stock sample.  The result for 

2008-2009 is based on NASDAQ HF data and the result for 2010-2011 is based on the NASDAQ ITCH 

data from January 2, 2010-November 18, 2011.    

 

Panel A: Large Market Cap Stock Odd Lots Percentage 

  2008   2009   2010   2011   

stock Trades Volume Trades Volume Trades Volume Trades Volume 

GE 8.80% 1.58% 7.73% 0.93% 8.31% 0.84% 8.85% 1.01% 

PG 10.93% 3.62% 17.59% 5.88% 15.43% 5.21% 17.23% 5.71% 

AAPL 17.12% 5.65% 23.88% 8.61% 26.34% 9.50% 38.47% 13.92% 

CSCO 9.96% 1.26% 8.95% 1.28% 7.60% 0.86% 8.00% 0.66% 

GOOG 30.92% 11.78% 38.94% 16.99% 44.63% 19.68% 52.95% 22.96% 

PFE 8.57% 1.11% 9.51% 1.36% 8.31% 0.91% 8.22% 0.97% 

INTC 8.95% 1.05% 9.19% 1.16% 7.93% 0.85% 9.56% 0.93% 

HPQ 10.90% 3.39% 14.21% 4.16% 11.33% 3.26% 15.01% 4.32% 

DIS 9.04% 2.53% 15.40% 4.14% 12.50% 3.73% 16.66% 5.82% 

AXP 12.65% 3.94% 17.34% 4.80% 15.03% 5.61% 21.84% 8.18% 

MMM 16.19% 5.75% 24.58% 8.96% 28.76% 11.29% 29.71% 12.34% 

DELL 10.25% 1.79% 10.06% 1.43% 9.62% 1.25% 10.28% 1.39% 

AMGN 14.52% 4.13% 19.90% 6.35% 19.85% 6.49% 26.38% 9.39% 

HON 10.87% 3.64% 17.52% 5.76% 17.50% 6.49% 24.31% 10.43% 

EBAY 10.07% 2.27% 11.28% 2.21% 10.09% 2.17% 20.78% 6.51% 

Average  12.65% 3.57% 16.40% 4.93% 16.21% 5.21% 20.55% 6.97% 
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Table 10: (Continued) 

 

Panel B: Stocks with Most Odd-lot Trade Growth 

  2008   2009   2010   2011   

stock Trades Volume Trades Volume Trades Volume Trades Volume 

ISRG 34.39% 13.97% 34.96% 13.82% 49.06% 22.46% 65.67% 30.88% 

AMZN 16.23% 5.02% 28.67% 8.77% 26.44% 9.70% 46.03% 17.97% 

CTSH 11.72% 3.70% 18.50% 5.44% 25.83% 9.00% 37.60% 14.51% 

SJW 17.63% 4.76% 42.19% 12.44% 50.46% 17.96% 39.89% 17.29% 

GOOG 30.92% 11.78% 38.94% 16.99% 44.63% 19.68% 52.95% 22.96% 

CRVL 30.20% 10.69% 61.34% 24.47% 63.76% 26.09% 51.81% 22.16% 

AAPL 17.12% 5.65% 23.88% 8.61% 26.34% 9.50% 38.47% 13.92% 

LANC 21.45% 9.18% 28.16% 11.17% 37.63% 15.42% 41.54% 18.83% 

CELG 16.96% 5.75% 21.52% 7.15% 27.48% 9.94% 36.58% 13.51% 

GAS 16.59% 5.07% 38.91% 12.63% 34.16% 14.13% 35.59% 16.39% 

BIIB 18.71% 6.64% 26.39% 9.15% 23.09% 7.79% 36.94% 15.11% 

NC 32.97% 13.19% 49.93% 15.84% 58.05% 29.43% 51.01% 22.56% 

AGN 18.63% 5.73% 26.77% 8.58% 31.72% 11.91% 36.61% 15.19% 

AZZ 17.52% 6.34% 33.74% 12.01% 37.85% 14.53% 34.65% 14.01% 

PPD 22.76% 7.51% 37.92% 13.05% 39.50% 15.16% 39.73% 16.26% 

Average  21.59% 7.67% 34.12% 12.01% 38.40% 15.51% 43.00% 18.10% 
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Table 11: Odd-lot trades by market cap and price  

This table presents the odd-lot trades based on market cap and price groups. Panel A divide the 120 stocks 

into large, medium and small market cap group, each of which contains 40 stocks. Panel B divide the 120 

stocks into high, medium and low price group, each of which has 40 stocks. We aggregate the NASDAQ 

HF data from 2008-2009 and ITCH data from January 2, 2010- November 18, 2011 in this calculation. 

The table also tests the hypothesis that the average level of odd-lots is equal across different group. The t-

statistics of the test are presented in the parentheses. t statistics in parentheses. ***, ** and * means the 

significance at 1%, 5% and 10% level. 

 

Panel A : By Market Capitalization 

 
Large Medium Small 

Small - 

Medium 

Medium - 

Large 

Small - 

Large 

 

Ratio of Missing 

Trades 

0.196 0.222 0.250 0.029 0.026 0.055*** 

    
(1.39) (1.42) (2.62) 

 

Ratio of Missing 

Volume 

0.062 0.076 0.087 0.011 0.014* 0.025*** 

    
(1.36) (1.75) (2.76) 

       
Panel B: By Price 

 
High Medium Low 

Low - 

Medium 

Medium - 

High 

Low - 

High 

 

Ratio of Missing 

Trades 

0.269 0.203 0.196 -0.007 -0.067*** 
-

0.074*** 

    
(-0.40) (-3.06) (-3.91) 

 

Ratio of Missing 

Volume 

0.097 0.065 0.064 -0.001 -0.032*** 
-

0.033*** 

    
(-0.16) (-3.48) (-4.22) 
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Table 12: Example of odd-lot pattern  

This table demonstrates an example of a sequence of odd-lots trading that happened in February, 6, 2008. 

The patterns are generated by high frequency traders taking liquidity from non-high frequency traders. 

There are 111 odd lot sells at 13:59:01:107, which have a total of 2995 shares. Another 102 odd lot sells 

happened 3 milliseconds later, which have a total of 2576 shares. The first letter in the type variable 

symbolizes the liquidity taker and the second one is the liquidity maker. Letter H designates High 

frequency traders and N designates non high frequency traders. 

 

Sequence Symbol Hour Minute Second Millisecond Shares BuySell Price Type 

1 AAPL 13 59 1 107 20 S 125 HN 

2 AAPL 13 59 1 107 10 S 125 HN 

3 AAPL 13 59 1 107 50 S 125 HN 

4 AAPL 13 59 1 107 25 S 125 HN 

5 AAPL 13 59 1 107 12 S 125 HN 

6 AAPL 13 59 1 107 35 S 125 HN 

7 AAPL 13 59 1 107 10 S 125 HN 

8 AAPL 13 59 1 107 12 S 125 HN 

9 AAPL 13 59 1 107 24 S 125 HN 

10 AAPL 13 59 1 107 6 S 125 HN 

11 AAPL 13 59 1 107 4 S 125 HN 

12 AAPL 13 59 1 107 75 S 125 HN 

13 AAPL 13 59 1 107 1 S 125 HN 

14 AAPL 13 59 1 107 15 S 125 HN 

15 AAPL 13 59 1 107 50 S 125 HN 

……… 

108 AAPL 13 59 1 107 50 S 125 HN 

109 AAPL 13 59 1 107 50 S 125 HN 

110 AAPL 13 59 1 107 30 S 125 HN 

111 AAPL 13 59 1 107 3 S 125 HN 

112 AAPL 13 59 1 110 47 S 125 HN 

113 AAPL 13 59 1 110 80 S 125 HN 

114 AAPL 13 59 1 110 80 S 125 HN 

115 AAPL 13 59 1 110 8 S 125 HN 

116 AAPL 13 59 1 110 8 S 125 HN 

117 AAPL 13 59 1 110 60 S 125 HN 

118 AAPL 13 59 1 110 8 S 125 HN 

119 AAPL 13 59 1 110 32 S 125 HN 

120 AAPL 13 59 1 110 30 S 125 HN 

…… 

210 AAPL 13 59 1 110 5 S 125 HN 

211 AAPL 13 59 1 110 25 S 125 HN 

212 AAPL 13 59 1 110 50 S 125 HN 

213 AAPL 13 59 1 110 12 S 125 HN 
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Table 13: Variation of Odd lot Trades and Volume 

This table explains the variation of missing trades and volume. We run the between, random and fixed 

effect regression on the panel of miss trades and volume for each stocks on each day. OLTrade% and 

OLVol% are percentage of missing trades and volume; logprc is the price level; spread is the bid-ask 

spread; pinge100 is the probability of informed trading for each stock for trades greater than 100 shares; 

range is daily price range; NYSE equals to 1 if the stock is listed in NYSE and 0 if it list in NASDAQ. 

The sample period is 504 trading days from 2008 to 2009. 

 

  (1) (2) (3) (4) (5) (6) 

VARIABLES OLTrade% OLVol% OLTrade% OLVol% OLTrade% OLVol% 

  
      

logprc 0.068*** 0.035*** 0.008*** 0.007*** 0.012*** 0.009*** 

 

(7.26) (8.48) (5.20) (9.34) (6.90) (11.24) 

Pinge100 0.555*** 0.267*** 0.543*** 0.283*** 
  

 

(5.75) (6.29) (4.87) (5.40) 
  

spread 12.918*** 7.79*** 0.221*** 0.074*** 0.062*** 0.027*** 

 

(3.21) (4.41) (3.39) (2.42) (10.59) (9.91) 

range 0.039 -0.017 -0.248*** -0.123*** -0.287*** -0.140*** 

 

(0.07) (-0.07) (-18.24) (-19.29) (-18.81) (-19.56) 

NYSE -0.002 -0.004 -0.008 -0.007 
  

 

(-0.16) (-0.67) (-0.52) (-0.95) 
  

constant -0.098** -0.082*** 0.136*** 0.028*** 0.220*** 0.061*** 

 

(-2.00) (-3.79) (7.00) (3.06) (19.67) (11.66) 

 
      

Effect Between Between Random Random Fixed Fixed 

Observations 60,412 60,412 60,412 60,412 60,412 60,412 

R-squared 0.482 0.561 0.008 0.011 0.583 0.563 

Number of 

tickers 
120 120 120 120 120 120 
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Table 14: Price Discovery, Share on Number of Trades and Volume for each Size Category 

This table demonstrates the weighted price contribution for each order size category using individual 

trades. WPC return change is the weighted price contribution using returns; WP price change is the 

weighted price contribution using price changes.  Share of trades (volume) gives the percentage of trades 

(volume) in each size category. The data is from the Nasdaq HF data base and is for the 2008- 2009 

sample period.  

    

Trade size category WPC Shares of Trades Shares of Volume 

<100 0.354 0.158 0.034 

100 0.497 0.54 0.281 

200 0.041 0.117 0.121 

300 0.01 0.041 0.065 

400 0.016 0.025 0.053 

500 0.006 0.024 0.062 

100-500 0.615 0.791 0.633 

501-900 0.012 0.027 0.099 

901-1900 0.011 0.017 0.109 

1901-4900 0.008 0.005 0.078 

4901-9999 0.000 0.001 0.028 

501-9999 0.031 0.051 0.313 

>=10000 0.000 0.000 0.019 
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Table 15:  Test for price discovery 

This table reports the weighted least square regressions of price contribution on dummy of less-than-100-

share category, dummy of equal-or-greater-than-100-share category, and percentage of transactions or 

percentage of trading volume in that category. The dependent variable, price contribution for stock s on 

day t of category j, is the sum of stock s price changes belonging to category j on day t divided by the 

total cumulative stock s price changes on day t. The regression is weighted by the ratio of stock s absolute 

cumulative price change to the sum of all stocks’ absolute cumulative price changes on day t. The null 

hypothesis is the coefficients of dummies in each category equal to zero and the coefficient of percentage 

of transactions or percentage of trading volume in that category equal to one. T-statistics are given in 

parentheses.  

 

  regression 

 

(1) (2) 

Trade Size 

  < 100 shares 0.120*** 0.175*** 

 
( 7.31) ( 12.39) 

>= 100 Shares -0.023 -0.997*** 

 

(-0.60) (-11.15) 

Percent of Transactions 0.903** 

 

 

(1.98) 

 Percent of Volume 

 

1.821*** 

  

(8.34) 

Adj R2 0.043 0.043 

Tests on Dummy Variables 

 

p-value p-value 

Dummy<100 shares = Dummy of >= 100 

Shares <.0001 <.0001 

      t-statistics in parentheses *** p<0.01, ** p<0.05, *p<0.1 
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Table 16: Weighted Price Contribution by Aggregating Trades within the Same Millisecond  

This paper calculates the weighted price contribution of odd lots by aggregating trades within the same 

millisecond with the same trade direction (buy or sell) and same type (HH, HN, NH, and NN) as a single 

trade. The sample period is from 2008 to2009.   

 

Trades within one millisecond are aggregated as one trade 

Trade Size Category WPC Share of Trades Share of Volume 

<100 20.36% 5.94% 0.14% 

100 35.26% 24.53% 1.48% 

200 8.63% 12.36% 1.49% 

300 6.46% 7.00% 1.27% 

400 3.63% 5.12% 1.24% 

500 2.22% 4.11% 1.24% 

100-500 66.79% 58.71% 7.57% 

501-900 6.75% 9.82% 4.23% 

901-1900 3.16% 9.70% 7.66% 

1901-4900 2.04% 7.56% 14.03% 

4901-9999 0.46% 4.07% 16.91% 

501-9999 12.42% 31.15% 42.82% 

>=10000 0.44% 4.20% 49.47% 
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Table 17: Permanent Price Impact by Odd lots and Mixed and Round Lots 

This table shows the impulse response function for returns  for odd lot trades and round and mixed lot 

trades. Panel A presents the result based on 100 share shock, and Panel B presents the result for 1 trade 

shock. We calculate the cumulative long-run response of minute-by-minute returns, which is the 

cumulative impact of the shock after 30 minutes. Odd lots upper bound and mixed and round lots lower 

bound assume that odd lots cause contemporaneous mixed and round lots and vice versa.  The 

coefficients (in basis points) are the average price impact across each stock for each day and t-statistics 

for the differences are also presented. 

 

*** p<0.01, ** p<0.05, *p<0.1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Hasbrouck (1991a and b) VAR 

Panel A: 100 share shock  

 

Odd Lots 
Mixed and 

Round Lots 
Difference 

T-statistics for the 

difference 

Odd lots lower, Mixed and round lots upper 

    

 

3.57 1.13 2.44*** 7.00 

 
    

Odd lots Upper, Mixed and round lots lower 
   

 

5.20 1.05 4.15*** 11.24 

Panel B: 1 trade shock  
    

 

Odd Lots 
Mixed and 

Round Lots 
Difference 

 

T-statistics for the 

difference 

Odd lots lower, Mixed and round lots upper 

    

 

2.16 2.02 0.14 0.30 

 
    

Odd lots Upper, Mixed and round lots lower 
   

 

3.19 1.74 1.45*** 3.01 
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Table 18: Weighted Price Contribution in ITCH Data 

This table demonstrates the weighted price contribution for each order size category using individual 

trades. WP price change is the weighted price contribution using price changes.  Share of trades (volume) 

gives the percentage of trades (volume) in each size category. The data is from the Nasdaq ITCH data 

base for the 2010- 2011 sample period.  

 
Trade Size Category WPC Share of Trades Share of Volume 

<100 39.02% 19.96% 4.29% 

100 47.45% 53.27% 27.59% 

200 4.76% 9.25% 9.59% 

300 1.49% 3.61% 5.61% 

400 0.79% 2.28% 4.73% 

500 0.70% 1.79% 4.63% 

100-500 58.77% 74.46% 57.03% 

501-900 1.04% 2.63% 9.20% 

901-1900 0.71% 2.09% 13.30% 

1901-4900 0.24% 0.72% 10.31% 

4901-9999 0.04% 0.11% 3.60% 

501-9999 2.20% 5.92% 38.49% 

>=10000 0.01% 0.03% 2.27% 
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Table 19: Correctly Signed Order Imbalance  

This table demonstrates the percentage of correctly signed buy and sell imbalance and the PIN estimated 

through all trades and trades greater or equal to 100 shares. The table provides a conservative estimation 

because it is based on the assumption that Lee and Ready (1991) makes no mistakes in assigning buy and 

sell trades. True Buy Imbalance, True Balance and True Sell Imbalance are the true daily order 

imbalances. Observed Buy Imbalance, Observed Balance, and Observed Sell Imbalance are daily 

imbalances we would observe through the TAQ data, if all the buy and sells are correctly signed. 

OIBNUM is the defined as the number of buy trades minus the number of sell trades. OIBSH is defined 

as the number of buy volume minus sell volume. OIBDOL is defined as the buy dollar volume minus sell 

dollar volume.  

 

OIBNUM Total incorrectly assigned imbalance: 11.37% 

  Observed Buy Observed Balance Observed Sell Sum 

True Buy Imbalance 43.60% 0.23% 5.34% 49.16% 

True Balance 0.13% 0.02% 0.18% 0.33% 

True Sell Imbalance 5.29% 0.00% 45.02% 50.31% 

Sum  49.02% 0.25% 50.54% 100% 

   OIBSH Total incorrectly assigned imbalance: 3.33% 

  Observed Buy Observed Balance Observed Sell Sum 

True Buy Imbalance 47.84% 0.04% 1.62% 49.50% 

True Balance 0.00% 0.00% 0.00% 0.00% 

True Sell Imbalance 1.64% 0.02% 48.84% 50.50% 

Sum  49.49% 0.06% 50.46% 100% 

   OIBDOL Total incorrectly assigned imbalance: 3.27% 

  Observed Buy Observed Balance Observed Sell Sum 

True Buy Imbalance 47.95% 0.00% 1.64% 49.59% 

True Balance 0.00% 0.00% 0.00% 0.00% 

True Sell Imbalance 1.62% 0.00% 48.79% 50.41% 

Sum  49.57% 0.00% 50.43% 100% 
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Table 20: The Percentage of Correctly Signed Order Imbalance for Individual Trades  

This table demonstrates the percentage of correctly signed buy and sell imbalance based on Lee and 

Radhakrishna’s 5,000 dollars cut-off for individual trades. True Buy Imbalance, True Balance and True 

Sell Imbalance are the true daily order imbalances. Observed Buy Imbalance, Observed Balance, and 

Observed Sell Imbalance are daily imbalances we would observe through the TAQ data, if all the buy and 

sells are correctly signed. OIBNUM is the defined as the number of buy trades minus the number of sell 

trades. OIBSH is defined as the number of buy volume minus sell volume. OIBDOL is defined as the buy 

dollar volume minus sell dollar volume. The sample period is from 2008-2009, where each observation is 

the imbalance of each 120 stocks on each day. 

 

OIBNUM Total incorrectly assigned imbalance: 26.82% 

  Observed Buy Observed Balance Observed Sell Sum 

True Buy Imbalance 35.71% 8.11% 4.77% 48.59% 

True Balance 0.11% 0.12% 0.15% 0.38% 

True Sell Imbalance 4.58% 9.11% 37.34% 51.03% 

Sum  40.39% 17.35% 42.26% 100% 

     
OIBSH Total incorrectly assigned imbalance: 20.72% 

  Observed Buy Observed Balance Observed Sell Sum 

True Buy Imbalance 38.45% 7.96% 1.82% 48.23% 

True Balance 0.00% 0.01% 0.00% 0.01% 

True Sell Imbalance 1.86% 9.07% 40.83% 51.76% 

Sum  40.31% 17.04% 42.65% 100% 

     
OIBDOL Total incorrectly assigned imbalance: 20.70% 

  Observed Buy Observed Balance Observed Sell Sum 

True Buy Imbalance 38.55% 7.93% 1.86% 48.34% 

True Balance 0.00% 0.00% 0.00% 0.00% 

True Sell Imbalance 1.89% 9.02% 40.76% 51.66% 

Sum  40.44% 16.95% 42.62% 100% 
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Table 21: The Seven Types of Messages Used to Construct the Limit Order Book 

This table provides the format of the seven types of messages used to construct the limit order book. The 

sample is from May 24, 2010.  

 

Message Timestamp Order 

Reference 

Number 

Buy/

Sell 
Shares Stock Price 

Original 

Order 

Reference 

Number 
Type (nanoseconds) 

A 53435.759668667 335531633 S 300 EWA 19.5 
 

F 40607.031257842 168914198 B 100 NOK 9.38 
 

U 53520.367102587 336529765 
 

300 
 

19.45 335531633 

E 53676.740300677 336529765 
 

76 
   

C 57603.003717685 625843333 
 

100 
 

32.25 
 

X 53676.638521222 336529765 
 

100 
   

D 53676.740851701 336529765 
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Table 22: Percentage of Fleeting orders and the level of Cancellation 

This table presents the percentage of orders cancelled (Cancel Ratio).  

 

Stock 
Cancel 

Ratio 
Stock 

Cancel 

Ratio 
Stock 

Cancel 

Ratio 
Stock 

Cancel 

Ratio 

NC 99.57 PTP 97.43 MAKO 96.42 PBH 94.83 

ERIE 99.56 AGN 97.42 CNQR 96.35 HPQ 94.8 

CRVL 99.49 ROC 97.4 NUS 96.34 ADBE 94.75 

ROG 99.42 DCOM 97.39 KMB 96.32 CPWR 94.73 

AZZ 99.29 ROCK 97.37 LPNT 96.3 RIGL 94.71 

PPD 99.22 GAS 97.36 MMM 96.25 FULT 94.66 

SJW 99.04 CBT 97.31 MXWL 96.14 CMCSA 94.59 

EBF 98.91 MANT 97.29 AAPL 96.1 FMER 94.46 

CKH 98.75 JKHY 97.22 AMED 96.05 GE 94.35 

BW 98.69 MELI 97.21 FRED 95.95 GLW 94.18 

MFB 98.61 APOG 97.17 GOOG 95.92 BIIB 94.15 

IPAR 98.49 CB 97.1 CTSH 95.8 IMGN 94.07 

MRTN 98.43 FCN 97.1 ABD 95.79 AINV 94.02 

LECO 98.37 NSR 97.09 CBZ 95.79 INTC 93.92 

SFG 98.32 ISRG 97.04 ESRX 95.75 CSCO 93.91 

LANC 98.3 ANGO 96.95 CBEY 95.59 PFE 93.86 

CPSI 98.3 RVI 96.87 AXP 95.57 BRCM 93.77 

AYI 98.24 KTII 96.82 BAS 95.55 BZ 93.74 

DK 98.08 CCO 96.75 COST 95.54 GENZ 93.7 

FFIC 98.02 MOD 96.74 FL 95.31 DELL 93.68 

CTRN 97.8 BRE 96.72 ARCC 95.17 CELG 93.68 

FPO 97.75 AMZN 96.68 EWBC 95.11 ISIL 93.57 

KNOL 97.73 CRI 96.65 SWN 95.1 AMAT 93.22 

SF 97.71 CETV 96.62 GPS 95.1 EBAY 93.1 

CSL 97.67 HON 96.61 CDR 95.09 CSE 93 

CR 97.61 LSTR 96.61 DOW 95.01 AMGN 92.95 

PNY 97.6 NXTM 96.56 PG 94.99 MDCO 92.92 

COO 97.58 MIG 96.47 KR 94.95 GILD 92.05 

BXS 97.47 BHI 96.44 AA 94.92 
  

PNC 97.43 MOS 96.44 DIS 94.87 
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Table 23: Position of Fleeting Orders 

This table presents the position of order placement for orders with a life of 50 milliseconds or less.  

 

Position of Fleeting Orders  Percentage 

Inside the bid and ask  11.25 

At the best bid and ask  52.23 

Less than 10 cents away from the best bid and ask  29.57 

10 cents away from bid and ask but not stub quotes  6.93 

Stub quotes (buy with a price less than 75% of the bid and sell with a price greater than 

125% of ask  
0.03 
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Table 24: Channel Factor Regression 

This table presents the summary of the results on channel factor regression. For each stock in Channel i, 

we run six regressions:  

                                                            , 
where i denotes the stock label,  represents one of the six channel indices of the NASDAQ.  stands for the 

number of the message flow for each stock at time t.  is the message flow for all NASDAQ-listed stocks 

at time t,  is the residual for regressing message flow of Channel j on the market message flow. We run 

six regressions for each of the 2,377 stocks. A cell in k
th
 column and the j

th
 row in the table presents the 

average of the regression coefficient for those stocks belonging to Channel k on residuals of Channel j. 

Therefore, the diagonal elements present the stock’s co-movement with the same channel, while the off-

diagonal elements present the stock’s co-movement with a different channel. The t-statistics for the 

hypothesis are in the parentheses. ***, **, * represent the statistical significance at the 1%, 5%, and 10% 

levels, respectively.  

 

 

Dependent 
Channel 1 

Message 

Flow 

Channel 2 

Message 

Flow 

Channel 3 

Message 

Flow 

Channel 4 

Message 

Flow 

Channel 5 

Message 

Flow 

Channel 6 

Message 

Flow 

Variable 

Independent 

  Variable 

Channel 1Residual 
0.00304** -0.00115** -0.00079* -0.00087* -0.00082*** -0.00105* 

(2.267) (-2.132) (-1.696) (-1.848) (-3.049) (-1.753) 

Channel 2 Residual 
-0.00049*** 0.00300*** -0.00017 -0.00034*** -0.00032*** -0.00028 

(-6.219) (4.340) (-1.532) (-2.425) (-2.768) (-1.480) 

Channel 3 Residual 
-0.00039*** -0.00020* 0.00209*** -0.00043*** -0.00052*** -0.00045** 

(-4.810) (-1.708) (5.553) (-2.687) (-3.005) (-1.962) 

Channel 4 Residual 
-.00049*** -0.00045** -0.00049** 0.00266*** -0.00054*** -0.00031 

(-3.979) (-2.092) (-2.256) (3.869) (-2.348) -1.297 

Channel 5 Residual 
-0.00074** -0.00068 -0.00094* -0.00085*** 0.00310* -0.00072 

(-2.273) (-1.492) (-1.868) (-3.869) (1.738) (-1.158) 

Channel 6 Residual 
-.00042*** -0.00026** -0.00036*** -0.00022*** -0.00032*** 0.00186*** 

(-8.172) (-2.191) (-3.448) (-2.790) (-4.794) (6.227) 
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Table 25: Discontinuity Test  

This table presents the results from the discontinuity test. Panel A lists stocks used for the discontinuity 

test: based on the alphabetical order, they are the first and last stock in each channel with a minimum of 

one message per minute. In_correlation measures the correlation between the selected stock’s order flow 

residual with the order flow residual for stocks in the same channel, and Out_correlation measures the 

correlation between the selected stock’s order flow residual with the order flow residual for stocks in the 

immediately adjacent channel. Panel B presents the results based on 550 observations (10 stocks for 55 

days). 

 

Panel A 

  In_correlation 

BUCY (Last in Channel 1) Correlation between BUCY and Channel 1 stocks 

CA (First in Channel 2) Correlation between CA and Channel 2 stocks 

DWA (Last in Channel 2) Correlation between DWA and Channel 2 stocks 

EBAY (First in Channel 3) Correlation between EBAY and Channel 3 stocks 

ITRI (Last in Channel 3) Correlation between ITRI and Channel 3 stocks 

JBHT (First in Channel 4) Correlation between JBHT and Channel 4 stocks 

NWSA (Last in Channel 4) Correlation between NWSA and Channel 4 stocks 

ONNN (First in Channel 5) Correlation between ONNN and Channel 5 stocks 

RVBD (Last in Channel 5) Correlation between RVBD and Channel 5 stocks 

SAPE (First in Channel 6)  Correlation between SAPE and Channel 6 stocks 

  Out_correlation 

BUCY (Last in Channel 1) Correlation between BUCY and Channel 2 stocks 

CA (First in Channel 2) Correlation between CA and Channel 1 stocks 

DWA (Last in Channel 2) Correlation between DWA and Channel 3 stocks 

EBAY (First in Channel 3) Correlation between EBAY and Channel 2 stocks 

ITRI (Last in Channel 3) Correlation between ITRI and Channel 4 stocks 

JBHT (First in Channel 4) Correlation between JBHT and Channel 3 stocks 

NWSA (Last in Channel 4) Correlation between NWSA and Channel 5 stocks 

ONNN (First in Channel 5) Correlation between ONNN and Channel 4 stocks 

RVBD (Last in Channel 5) Correlation between RVBD and Channel 6 stocks 

SAPE (First in Channel 6)  Correlation between SAPE and Channel 5 stocks 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Panel B: Differences After Control for Market Message Flow 

In_correlation Out_correlation In_correlation-Out_ 

correlation 

t-statistics 

0.0464 0.00474 0.0417*** 5.11 
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Table 26: Diff-in-diff Test   

This table presents the diff-in-diff regression for 55 stocks that switch ticker symbol from January, 2010 

to November 18, 2011. The control group changes ticker symbol but remain in the same channel; the 

treatment group changes ticker symbol as well as the channel.  The before period has 30 days before the 

ticker change and the after period has 30 days after the ticker change. The dependent variable is the 

message flow correlation with the original channel.   

 

Diff-in-Diff Table 

 

Treatment Group Control Group Diff 

Before 0.485*** 0.507*** -0.0222** 

 

(0.00519) (0.00916) (0.0106) 

After 0.444*** 0.495*** -0.0513*** 

 

(0.00523) (0.00921) (0.0106) 

Diff -0.0414*** -0.0123 -0.0291* 

  (0.151) (0.013) (0.015) 
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Table 27: Effect of Technology Shocks for Liquidity  

The table presents the event study of the technology shocks for the four liquidity measures. For each stock 

per day, qt_spread is the time-weighted quoted spread, sz_wt_eff_spread is the trade size-weighted 

effective spread, depth is the depth at the best bid and ask, depth10 is the cumulative depth for orders 10 

cents below the best bid and 10 cents above the best ask, after is a dummy variable, logvol is the log of 

the daily volume, price is the daily price level of the stock, and range equals to highest trading price 

minus the lowest trading price on each day for each stock. Standard errors are in parentheses, and ***, ** 

and * represent significance at the 1%, 5%, and 10% levels, respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  (1) (2) (3) (4) 

Variables qt_spread sz_wt_eff_spread depth depth10 

      

after -0.000394 0.0000115 -68.31 -2,015*** 

 (0.00124) (0.000301) (93.46) (736.50) 

logvol -0.00418*** -0.000713** -114.60 -5,317*** 

 (0.00147) (0.000358) (111.30) (877.20) 

prc 0.000907*** 0.000234*** 25.42** 118.3 

 (0.000141) (0.0000343) (10.66) (83.98) 

range 0.0167*** 0.00441*** 126.90** -1,057** 

 (0.000793) (0.000193) (59.91) (472.10) 

Constant 0.0596*** 0.0127** 5,001*** 118,697*** 

 (0.0211) (0.00512) (1,590) (12,527) 

     

Observations 5,858 5,858 5,858 5,858 

R-squared 0.077 0.092 0.003 0.012 

Number of ticker 118 118 118 118 
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Table 28: Effect of Technology Shocks on Price Efficiency and Volume  

The table presents the event study of the technology shocks on price efficiency and volume. For each 

stock per day, volatility is the one-minute volatility, variance is the one-minute variance ratio, and volume 

is the daily volume.  

 

  (1) (2) (3) 

Variables sigma_all all_ratio volume 

     

after 0.0000249 * -0.00289 131,609 

 (0.0000128) (0.00332) (142,487) 

Constant 0.00114*** 0.951*** 5.971e + 06*** 

 (9.04e-06) (0.00234) (100,625) 

    

Observations 5,858 5,856 5,860 

R-squared 0.001 0.000 0.000 

Number of ticker 118 118 118 

Standard errors are in parentheses. 

*** p < 0.01, ** p < 0.05, * p < 0.1 
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Figure 1: Example of Hidden orders and their executions  

This diagram provides an example of hidden orders which are invisible to market participants. Hidden 

order prices and depths appear in grey and displayed order prices and depths appear in black. Market 

participants observe that the best bid is $1.01 and the best ask is $1.06. Although the total depths for the 

best displayed bid are 5500 shares, market participants can only observe the displayed 4000 shares. The 

same holds for the total depths at the best displayed ask. In this example, the best bid and ask prices are 

provided by hidden orders. The true best bid is $1.03 for 850 shares, and the true best ask is $1.04 for 900 

shares. 

 

Panel A: Diagram of a limit order book 

 

 
 

 

 

Panel B: A 300-share sell market order comes to the market  
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Figure 1: (Continued) 

Panel C: A 1500-share sell market order comes to the market 

 

 
 

Panel D: A 6000-share sell market order comes to the market 
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Figure 2: Intraday Spread in Percentage 

The solid line displays the intraday spread for hidden orders, the dashed line shows the intraday spread for 

displayed orders, and the dotted lines exhibit the true spread, for which the true ask is the minimum of all 

of the hidden and displayed sell order prices, and the true bid is the maximum of all of the hidden and 

displayed buy order prices.  
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Figure 3:  Historical volume of odd-lots 

This graph shows the historical market shares of NYSE odd-lots from 1950-2004 in terms of volume. The 

data are from the NYSE fact book.   

 

  



 

118 

Figure 4: Time Series Variation of Odd Lot Trades  

This figure illustrates total level of odd lot trades and volume from January 2008 to November 2011. 

Panel A demonstrates the number of odd lot trades as a percentage of total transactions. Panel B 

demonstrates the odd lot trade volume as a percentage of total trades.  
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Figure 5: Cross-Sectional Variation of Odd-lot Trades  

This figure illustrates the level of missing trades across the 120 stocks. Panel A demonstrates the 

percentage the number of odd lot trades in 2008-2009 NASDAQ HF sample and Panel B demonstrates 

the percentage of odd lot volume in 2008-2009 NASDAQ HF sample. Panel C demonstrates the 

percentage the number of odd lot trades in 2010-2011 NASDAQ ITCH sample and Panel D demonstrates 

the percentage of odd lot volume in 2010-2011 NASDAQ ITCH sample.  
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Figure 6: Odd-Lot Trades by Trader Type 

This figure displays the time series odd-lots percentage breaking down to four different trade types. The 

first letter symbolizes the liquidity taker and the second one is the liquidity maker. Letter H stands for 

higher liquidity traders and N stands for non liquidity traders. For example, an HN trade means that a high 

frequency trader takes liquidity from a non-high frequency trader. 
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Figure 7: Histogram of Odd-lot Trades  
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Figure 8:  Odd-lot Trades by Trader Type 

This figure displays the usage of specific odd-lot sizes by the four different trade types. The first letter 

symbolizes the liquidity taker and the second one is the liquidity maker. Letter H stands for higher 

liquidity traders and N stands for non liquidity traders. For example, an HN trade means that a high 

frequency trader takes liquidity from a non-high frequency trader. The sample period is from 2008-2009. 
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Figure 9: Length of consecutive Odd Lot Sequences 

This is the histogram on the number of consecutive odd-lots in each odd-lot sequence, which is defined as 

a sequence of odd lots without round or mixed lots between them.   
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Figure 10:  Stocks Shows Zero Individual Trading as A Result of 5000-dollar Cut-off Value 

This figure demonstrates the percentage of stocks showing 0 individual trades by applying Lee and 

Radhakrishna’s 5,000 dollars dollar cut-off to the TAQ data. Because TAQ does not report trades less 

than 100 shares, we observe 0 trading for individual trades for stocks with a price higher than $50. The 

graph is computed through CRSP. Panel A is the percentage of stocks with zero individual trades. Panel B 

weights each stock by their dollar volume and Panel C provides value weighted average.   
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APPENDIX A 

 

THE IMPACT OF ODD LOT TRUNCATION ON PREVIOUS LITERATURE 

 

One natural question is whether odd lot truncation affects the conclusion of any previous 

studies.  Addressing this question is challenging because our sample containing odd lot trades is 

recent, while most published work is based on older data with longer time horizons. Fortunately, 

under some specifications, we can evaluate the impact of odd lot truncation even without 

knowing the exact magnitude of odd lot trading. In this section, we illustrate this point by 

showing how odd lot truncation can reconcile differences between two papers on retail trading 

and the cross-section of stock return (Barber, Odean and Zhu (2009) and Hvidkjaer (2008)).
64

 

Barber, Odean and Zhu (2009) and Hvidkjaer (2008) are two closely related papers 

examining the relationship between buy/sell pressure for retail traders and future stock returns. 

They employ the same dataset: TAQ data and Institute for the Study of Security Markets 

(ISSM).
65

  They both use small trades in TAQ/ISSM data as a proxy for individual sentiments, 

and they construct portfolios based on the relative frequency of small buyer- and seller-initiated 

transactions. However, despite the similarity of methods, these two papers find different results 

on whether stocks with small-trade selling pressure outperform stocks with small-trade buying 

pressure in short time horizons.  

While technical differences can account for part of this discrepancy, these authors 

acknowledge that their results are different at one-month horizons
66

.  Hvidkjaer (2008) finds that 

                                                           
64

 We are grateful to Soeren Hvidjkaer for providing us with his computer code. 
65

 As a predecessor of the TAQ data, ISSM data also does not carry the information on odd lots. 
66

 See Barber, Hvidkjaer, Odean and Zhu(2006) for discussion of how their results differ and possible 

explanations. 
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monthly returns of stocks with buying pressure over the past one month are significantly lower 

than those with past selling pressures, but Barber, Odean and Zhu do not. The puzzle is why does 

Hvidkjaer (2008) produce a faster reversal than Barber, Odean and Zhu (2009)?  

We believe the differences in their results are driven by odd lot truncation. To understand 

why, consider how each paper forms its sample.  Barber, Odean and Zhu (2009) apply a $5,000 

cut-off for individual trades.  An unintended consequence of this cut-off value is that they 

eliminate any stock with a price above $50 from their sample. For example, the stock price of 

Atlantic Richfield Company (ticker symbol: ARC) is around $115 in 1991. Because there are no 

odd lots reported to ISSM, the minimum dollar value of the trades for ARC is around $11,500.  

This is greater than the $5,000 cut-off value, so, Barber, Odean and Zhu (2009) observe zero 

individual trades for ARC and the stock is eliminated from their sample.
67

  

Hvidkjaer (2008), alternatively, ensures that small trades exist in all stocks by the 

following two adjustments.  First, firms have different cut-off values based on size. Each month s, 

firms are sorted into quintiles based on firm size. Within each size quintile j, the 99
th

 stock price 

percentile (P99js) is found, and P99j   is compute as the average of P99js   across all months in the 

sample.  Small-trade cut-off points are then set as 100* P99j rounded to the nearest $100. The 

cut-off value is then based on firm-size quintiles, which ensures that 99 percent of stocks will 

have small trades in the TAQ dataset.  To ensure that the other 1 percent has small trades,  

Hvidkjaer (2008) sets the share cut-off points as the ratio of the dollar cut-off point to the share 

price rounded up to the nearest round-lot. For example, Capital Cities/ABC (ticker symbol: 

CCB), has a stock price of $450. Therefore, even a $16, 400 dollar cut-off will generate a share 

cut-off less than 100 shares. However, Hvidkjaer (2008) rounds the ratio of the dollar cut-off to 

the share price up to the nearest round lot, which means that Hvidkjaer (2008) treats 100 shares 

                                                           
67

 Barber, Odean and Zhu (2009) also eliminate any stock with less than 10 individual trades  
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in CCB as individual trades, while Barber, Odean and Zhu (2009) eliminate the stock from their 

sample.   

In summary, Barber, Odean and Zhu (2009) eliminate high price stocks in their sample 

using fixed dollar cut-offs, whereas Hvidkjaer (2008) keeps all the stocks in the sample. These 

sampling differences lead to fundamental differences in the value-weighted returns because 

stocks above $50 constitute a significant proportion of the market cap. In particular, applying the 

$5,000 dollar cut-off to the sample used in Hvidkjaer (2008), we find that up to 65 percent of 

market cap is coming from stocks with prices above $50, despite their representing only 6 

percent of stocks.
68

 Consequently, Barber, Odean and Zhu (2009)’s $5,000 cut-off cannot detect 

return reversal for any stock with a price above $50, but Hvidkjaer’s cut-off can document this 

reversal. The stocks with price above $50 tend to be large stocks, and Hvidkjaer (2008) also 

shows that larger stocks have quicker reversal whereas the reversal for small stocks can last as 

long as three years. As a result, Barber, Odean and Zhu (2009) eliminate some stocks with 

quicker reversal out of their sample. We conjecture that it is this difference that produces 

Hvidkjaer’s (2008) quicker reversal.   

To test this conjecture, we obtained all the codes and data from Hvidkjaer (2008), and 

then modified his code in two ways. First, we changed the cut-off value to $5,000. Second, 

instead of rounding the share cut-off up to the closest round lot, we simply kept the original share 

cut-off. With these new cut-offs, we find that stocks favored by individual traders do not 

underperform stocks with high selling pressure (i.e. the return of quintile 1 and 5 are not 

                                                           
68

 Market cap equals price*shares outstanding. As a result, high price stocks have a natural trend to have 

higher impact on market cap and, in unreported results; we also find that stocks with higher prices tend to have a 

larger number of shares outstanding.    
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statistically significant and neither is their difference).
69

 The result is demonstrated in Table A.1. 

Thus, we can reproduce Barber, Odean and Zhu’s (2009) results in Hvidkjaer’s analysis.  The 

dichotomy in their results is thus due to odd lot truncation and its effects on sample selection.  

One interesting fact about this truncation is that it is independent of the actual magnitude 

of odd lots – we do not even use the level of odd lot activity in the replication! The truncation is 

actually based on price level. But it is because there are no odd lot trades in TAQ/ISSM that 

using cut-offs for retail trades leads to the removal of high price stocks that constitute a 

significant part of the value-weighted portfolio. The truncation then generates significant return 

patterns by truncating high price stocks.   

These results demonstrate why it is important for all researchers to be aware of the fact 

that TAQ/ISSM data do not have trades for less than 100 shares.  This omission will bias any 

study using arbitrary trade size cut-offs to proxy particular trader groups.  We also suggest 

caution in interpreting existing results due to the sample selection biases that may have been 

present.  Given the increasing incidence of odd lot trades, these truncation problems may become 

an even greater problem going forward.   

 

 

 

 

 

 

 

 

 

 

 

 

                                                           
69

 The magnitude is slightly different from the Barber, Odean and Zhu’s result (Barber, Odean, Hvidkjaer 

and Zhu, 2006), probably because of other slight differences in their methodology. For example, they use a slightly 

different measure of order imbalance and slightly different variation of Lee and Ready (1991) mechanism to sign the 

trades in NASDAQ. 
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Table A.1: Abnormal Returns by Applying $5,000 cut-off to Hvidkjaer (2008)  

This table presents monthly percent abnormal return for value-weighted portfolios. Portfolios are formed 

each month, January 1983 to December 2000 based on monthly measures of small trade imbalance. 

Portfolio 1 has the highest sell imbalance, and portfolio 5 has the highest buy imbalance.  The table 

presents intercepts from a time series regression of portfolio excess return (raw return less risk free) on 

four factors: market, size, value and momentum. The result for Hvidkjaer (2008)  firm varying cut-off and 

Barber, Odean and Zhu (2009) $5,000 cut-off are adapted from the joint note by Barber, Hvidkjaer, 

Odean and Zhu (2006). The last column adopts the $5,000 cut-off to Hvidkjaer (2008) sample.        

 

 

 

   

  Monthly Four-Factor Alphas (%) 

Order Imbalance 

Quintile 

Hvidkjaer (2008)       

firm varying cut-off  

Barber, Odean and 

Zhu (2009) $5,000 

cut-off 

Hvidkjaer (2008)      

with $5,000 cut-off 

1 (Sold) 0.429 0.049 0.036 

 
(2.58) (0.42) (0.32) 

2 0.27 0.176 0.174 

 
(2.4) (1.88) (1.33) 

3 -0.025 0.022 0.215 

 
(-0.36) (0.24) (1.76) 

4 0.13 0.087 0.129 

 
(1.9) (1.01) (1.06) 

5 (Bought) -0.021 0.040 -0.050 

 
(-0.17) (0.37) (-0.32) 

B-S (5-1) -0.45 -0.009 0.086 

  (-1.98) (-0.05) (0.49) 

 

 

 


