State Water Survey Division

SURFACE WATER SECTION

Illinois Institute of Natural Resources

SWS Contract Report 273

DESIRABLE LOW FLOW RELEASES FROM IMPOUNDING RESERVOIRS: FISH HABITATS AND RESERVOIR COSTS

Volume I

by

Krishan P. Singh, Ph.D., Principal Scientist
Ganapathi S. Ramamurthy, Graduate Research Assistant

Prepared for Illinois Environmental Protection Agency

Champaign, Illinois

September 1981

RELEASE STATE THEFE SURVEY LIFELY I FRY

DATE DUE

ISWS Singh, K. P.

m 273

CR DESIRABLE LOW FLOW

273 RELEASES FROM

v.1,Loan c.2 IMPOUNDING RESERVOIRS :

FISH HABITATS AND RESERVOIR COSTS.

DEMCO

15015 E 212 V.

DESIRABLE LOW FLOW RELEASES FROM IMPOUNDING RESERVOIRS: FISH HABITATS AND RESERVOIR COSTS

Volume I

Ъу

Krishan P. Singh, Ph.D., Principal Scientist Ganapathi S. Ramamurthy, Graduate Research Assistant

Prepared for Illinois Environmental Protection Agency

Champaign, Illinois

September 1981

Digitized by the Internet Archive in 2013

CONTENTS

	PAGI
Introduction Acknowledgments	1 4
Hydraulic geometry parameters Low flow release criteria Concept of hydraulic geometry Hydraulic geometry parameters Formation of riffles and pools Hydraulic geometry parameters for pool conditions	5 5 11 24 25 26
Evaporation and sedimentation Evaporation loss Sedimentation Available lake sedimentation data Regional relations	29 29 31 33 33
Fish suitability curves Suitability curves for nine target species Riffles and pools The IFG Incremental Methodology	40 40 52 55
Methodology and computer program Data inputs Fish suitability or preference Flow velocity and depth for low flow releases Supply-storage-drought duration-frequency Net lake evaporation Lake sedimentation Reference data Reservoir costs program Storage subroutine EVAP subroutine SDEVST subroutine COST subroutine RESULT subroutine Fish suitability program Riffle conditions Pool conditions	57 57 57 58 58 59 59 60 60 61 62 63 65 65
Analyses and results Sensitivity analysis: parameter b Low flow release costs Cost versus fish preferences	70 70 80 103
Conclusions and suggestions Suggestions for future research	152 155
References	158

INTRODUCTION

Modification of river flow resulting from the construction and operation of a dam or impounding structure has been identified as a significant factor causing water quality and aquatic habitat problems. State, local, and corporate water use planning often presumes that all water in a stream is potentially available for off-stream uses. This assumption clearly contradicts legislative mandates regarding the public interest in preserving water in the stream for instream flow uses, e.g., for water quality and aquatic organisms, fish and wildlife.

The U.S. Fish and Wildlife Service (FWS) has been trying to identify promising strategies for reserving instream flows (Dewsnup et al., 1977; Gould et al., 1977). Some of the strategies that may be considered are:

- 1) Imposing conditions and restrictions, designed to protect and preserve instream flow needs, on applications to appropriate (for example, the approval of a reservoir might be conditioned on the release of water during certain periods of the year to sustain the downstream fishery). The use of this strategy requires a state policy that affords some measure of protection to instream values.
- 2) Appropriating water for instream flow needs by authorizing a state agency to appropriate water to maintain minimum streamflows and protect the natural stream environment.
- 3) Planning programs for the statewide water plans to identify and indicate the amount of streamflows to be reserved for instream uses at various times of the year.

It should be noted that Public Law 92-500 makes provision for minimum

flows when projects are constructed or licensed by federal agencies. The administrator of the Environmental Protection Agency is authorized to specify minimum flows required for maintaining streamwater quality, and other federal agencies are authorized to determine the minimum flows required to support fish and wildlife.

Low flow criteria for fish and wildlife need to be developed for determining the suitability of various low flow regimens for fish and wildlife. In order to choose a minimum low flow release which keeps the fishery in good condition and, at the same time, does not unduly saddle the developer with extra cost, the decision maker needs to know the estimated increase in cost of a reservoir to provide minimum low flow over that with no such flow, for a range of low flows. The extra cost of impoundment may not be considered by the developer as a gift to the fishery and water quality interests; rather, it may be considered a fee that he pays for the use of water resources (presently enjoyed by the downstream interests) and for altering the streamflow regimen to meet his particular needs.

A study on water quality control through flow augmentation from upland reservoirs (EPA, 1971) was undertaken in a 60-mile section of the Sandusky River in North Central Ohio. The main findings of this study are:

1) chemicals such as calcium, magnesium, fluoride, and sodium had lower concentrations at high flows and vice versa, 2) concentrations of total phosphorus and soluble orthophosphorus were lower during low flow periods than high flow periods (probably due to agricultural surface runoff), 3) immediately downstream from sewage treatment plants, orthophosphorus concentrations did increase with decreasing river flow, 4) nitrate and potassium concentrations were variable and showed no correlation with river flow, and

5) oxygen concentrations varied widely above and below saturation at low flows. Some such studies are needed for Illinois streams to assess the effect of low flows on various water quality parameters.

In order to develop information on fish suitability or preference for different flow releases and the associated incremental costs, the investigations and analyses presented in this report are arranged under the following heads:

Hydraulic Geometry Parameters. Daily flow data at 123 gaging stations were analyzed to evaluate low flows at 8 levels. Relations between mean velocity and flow and between mean depth and flow were established for the low flow range at each of the 123 stations selected. A brief review of the information on riffles and pools provided a measure of estimating mean depth in pools when the mean depth at the riffle is known.

Evaporation and Sedimentation. Information on net lake evaporation (i.e., lake evaporation minus precipitation) for different drought durations and recurrence intervals was available from Illinois State Water Survey Bulletin 51A (Terstriep et al., in preparation, 1981). The sediment data on 98 lakes, surveyed over the years by State Water Survey personnel, were used in developing regional relations between percent capacity loss and reservoir capacity-inflow ratio.

Fish Suitability Curves. Data on fish suitability or preference versus flow velocity and flow depth for both juveniles and adults of the nine target fish (bluegill, bluntnose, carp, channel cat, largemouth bass, smallmouth bass, drum, white bass, and white crappie) was furnished by the Illinois Environmental Protection Agency. The domains of suitability in terms of

velocity and depth of flow were analyzed for each fish species.

Methodology and Computer Program. Computer programs were developed to generate information on fish suitability for each of the eight low flow releases at each of the 123 stations, and to compute the capital cost of reservoirs with storage adequate to meet four supply rates, eight low flow releases, and various design droughts. The extra capital cost equals cost with a low flow release minus the cost with no mandatory release at a given set of net supply, design drought, and low flow release parameters.

Analyses and Results. The fish suitability and capital cost data are developed for all the study stations. However, five river basins (each with three stations with increasing drainage area) are analyzed in detail to assess the suitable levels of low flow releases and the associated incremental capital costs.

Conclusions and Suggestions. The main findings are highlighted and suggestions are made to improve the methodology for evaluating fish preferences. The necessary field work, data collection, research, and technology are described briefly.

Acknowledgments

The study was jointly supported by the Illinois Environmental Protection

Agency and the Illinois State Water Survey of the Illinois Department of

Energy and Natural Resources (previously, Illinois Institute of Natural

Resources). William Rice of the Illinois Environmental Protection Agency

served in a liaison capacity during the course of this study. Masahiro

Nakashima, graduate research assistant, helped in finalization of the report.

Linda Riggin prepared the illustrations and Kathy Brown typed the final report.

HYDRAULIC GEOMETRY PARAMETERS

The following criteria were used in selecting the stations for determining the hydraulic geometry parameters at various low flow releases:

- 1) The daily flow record should be 16 years or more to provide satisfactory flow estimates for low flow release criteria.
- 2) The flow corresponding to 90 percent duration should be greater than zero.
- 3) The Wabash, Ohio, and Mississippi Rivers (i.e., the interstate rivers) are not to be included.

A total of 127 gaging stations met the above criteria. However, four stations were excluded (04091500 - Little Calumet River at Harvey, 05538000-Des Plaines River at Joliet, 05560000 - Illinois River at Peoria, and 05584000 - Illinois River at Beardstown) because the daily flow data available are for the years prior to 1939 and because the flows in later years have significantly changed from the previous flows because of changes in regulation procedures.

The final list of 123 selected gaging stations is given in table 1, which contains the USGS number, stream and gaging station, drainage area in square miles, mean flow in cfs obtained from the USGS publications on Water Resources Data in Illinois, and the 7-day 10-year low flow for the 1970 effluent level (Singh and Stall, 1973). The locations of these gaging stations are shown in figure 1.

Low Flow Release Criteria

The U.S. Geological Survey publishes observed daily flows at various gaging stations on streams in Illinois every year. These daily flow data, updated to September 1976, are available on DISK at the State Water Survey for quick

TABLE 1. STREAM GAGING STATIONS IN ILLINOIS

NO.	USGS NO.	STREAM AND GAGING STATION	D.A. IN SQ MI	Q(7,10) CFS	MEAN Q CFS
1 2 3 4 5 6 7 8 9	03336900 03337500 03338500 03339000 03343400 03345500 03346000 03379500 03380500	SALT FORK NEAR ST. JOSEPH BONEYARD CREEK AT URBANA WEST BRANCH SALT FORK AT URBANA VERMILION RIVER NEAR CATLIN VERMILION RIVER NEAR DANVILLE EMBARRAS RIVER NEAR CAMARGO EMBARRAS RIVER AT STE. MARIE NORTH FORK EMBARRAS RIVER NEAR OBLONG LITTLE WABASH RIVER BELOW CLAY CITY SKILLET FORK AT WAYNE CITY	134 4.46 68 958 1290 136 1516 319 1131 464	3.60 0.70 1.00 19.0 33.0 0.00 16.6 0.00 0.47 0.00	110 4.51 51.5 704 939 154 1216 252 881 392
11 12 13 14 15 16 17 18 19 20	03381500 03612000 05415500 05419000 05420000 05435500 05437000 05437500 05438250 05438500	LITTLE WABASH RIVER AT CARMI CACHE RIVER AT FORMAN E. F. GALENA RIVER AT COUNCIL HILL APPLE RIVER NEAR HANOVER PLUM RIVER BELOW CARROLL CK. NEAR SAVANNA PECATONICA RIVER AT FREEPORT PECATONICA RIVER AT SHIRLAND ROCK RIVER AT ROCKTON COON CREEK AT RILEY KISHWAUKEE RIVER AT BELVIDERE	3102 244 17.6 247 230 1326 2550 6363 85.1 538	5.70 0.00 2.30 20.1 10.7 181.0 393 795 2.60 34.3	2521 299 12.3 167 147 890 1513 3892 63.8 337
21 22 23 24 25 26 27 28 29 30	05439500 05440000 05440500 05441000 05443500 05444000 05445500 05446500 05447500	S. B. KISHAWAUKEE RIVER NEAR FAIRDALE KISHWAUKEE RIVER NEAR PERRYVILLE KILLBUCK CREEK NEAR MONROE CENTER LEAF RIVER AT LEAF RIVER ROCK RIVER AT COMO ELKHORN CREEK NEAR PENROSE ROCK CREEK NEAR MORRISON ROCK RIVER NEAR JOSLIN GREEN RIVER AT AMBOY GREEN RIVER NEAR GENESEO	387 1099 117 103 8755 146 158 9551 201 1003	9.90 62.3 3.10 8.40 1097 15.5 13.6 1306 4.90 49.2	253 690 59.7 55.7 5071 95.1 92.2 5870 93.0 595
31 32 33 34 35 36 37 38 39	05448000 05466000 05466500 05467000 05467500 05468500 05469000 05495500 05510500	MILL CREEK AT MILAN EDWARDS RIVER NEAR ORION EDWARDS RIVER NEAR NEW BOSTON POPE CREEK NEAR KEITHSBURG HENDERSON CREEK NEAR LITTLE YORK CEDAR CREEK AT LITTLE YORK HENDERSON CREEK NEAR OQUAWKA BEAR CREEK NEAR MARCELLINE HADLEY CREEK AT KINDERHOOK BAY CREEK AT PITTSFIELD	62.4 155 445 183 151 130 432 349 72.7 39.4	0.10 1.70 6.80 1.90 0.03 7.40 7.80 0.00 0.00	42.0 103 273 103 88.8 87.3 279 199 53.5 26.7

TABLE 1. CONTINUED

NO.	USGS NO.	STREAM AND GAGING STATION	D.A. IN SQ MI	Q(7,10) CFS	MEAN Q CFS
41 42 43 44 45 46 47 48 49 50	05513000 05520000 05520500 05525000 05525500 05526500 05526500 05527000 05527500 05529000	SUGAR CREEK AT MILFORD IROQUOIS RIVER NEAR CHEBANSE	2091 12.1 4810 5150	9.10 3.50 16.6 0.03 445 451	182 1928 536 351 1607 9.46 3540 4092
51 52 53 54 55 56 57 58 59 60	05531000 05531500 05532000 05532500 05533500 05533500 05535500 05536000 05536215	ADDISON CREEK AT BELLWOOD DES PLAINES RIVER AT RIVERSIDE FLAG CREEK NEAR WILLOW SPRINGS DES PLAINES RIVER AT LEMONT	114 17.9 630 16.5 684 13.0 11.5	14.9 1.80 18.4 2.50 24.8 1.30 1.40 7.60	104 13.9 448 16.2 434 11.9 12.1 88.3
61 62 63 64 65 66 67 68 69 70	05536235 05536255 05536265 05536270 05536275 05536290 05536340 05539000 05539900	NORTH CREEK NEAR LANSING	23.5 8.84 16.8 104 205 12.6 107	1.00 0.00 0.05 21.3 34.0 0.00 1.90 3.20	17.4 7.83 14.6 98.5 178 10.9 83.0 30.1
71 72 73 74 75 76 77 78 79 80	05542000 05543500 05549000 05550000 05550500 05551200 05551700 05552500 05554000 05554500	MAZON RIVER NEAR COAL CITY ILLINOIS RIVER AT MARSEILLES BOONE CREEK NEAR MCHENRY FOX RIVER AT ALGONQUIN POPLAR CREEK AT ELGIN FERSON CREEK NEAR ST. CHARLES BLACKBERRY CREEK NEAR YORKVILLE FOX RIVER AT DAYTON N. F. VERMILION RIVER NEAR CHARLOTTE VERMILION RIVER AT PONTIAC	455 8259 15.5 1403 35.2 51.7 70.2 2642 186 579	0.00 3240 3.70 51.0 0.96 0.23 2.50 198 0.00 0.20	320 10700 13.1 821 23.7 38.9 50.2 1657 124 378

TABLE 1. CONCLUDED

мо.	USGS NO.	STREAM AND GAGING STATION	D.A. IN SQ MI	Q(7,10) CFS	MEAN Q CFS
81 82 33 84 85 86 87 88 89	05555500 05556500 05558500 05560500 05562000 05563000 05563500 05567500 05568000 05568500	BUREAU CREEK AT PRINCETON CROW CREEK (WEST) NEAR HENRY FARM CREEK AT FARMDALE	297 767 1089	0.00 0.00 0.00 0.53 1.00 0.54 25.5	734 131 36.0 18.2 43.8 66.7 168 487 688 14632
91 92 93 94 95 96 97 98 99	05568800 05569500 05570000 05571000 05572000 05574500 05575500 05576000 05576500 05578500	INDIAN CREEK NEAR WYOMING SPOON RIVER AT LONDON MILLS SPOON RIVER AT SEVILLE SANGAMON RIVER AT MAHOMET SANGAMON RIVER AT MONTICELLO FLAT BRANCH NEAR TAYLORVILLE SOUTH FORK SANGAMON RIVER AT KINCAID SOUTH FORK SANGAMON RIVER NEAR ROCHESTER SANGAMON RIVER AT RIVERTON SALT CREEK NEAR ROWELL	362 550 276 562	0.00 0.79 0.84 37.2	45.5 693 1030 261 400 203 408 571 1695 237
101 102 103 104 105 106 107 108 109	05579500 05580000 05580500 05581500 05582000 05582500 05583000 05584500 - 05585000	SUGAR CREEK NEAR HARTSBURG SALT CREEK NEAR GREENVIEW CRANE CREEK NEAR EASTON SANGAMON RIVER NEAR OAKFORD LA MOINE RIVER AT COLMAR	214 227 306 333 1804 26.5 5093 655 1293 26028	0.89 206 0.78 9.00	16.3 3261 432
111 112 113 114 115 116 117 118 119 120	05587000 05589500 05592000 05592500 05593000 05594000 05595000 05596000 05597000	MACOUPIN CREEK NEAR KANE CANTEEN CREEK AT CASEYVILLE KASKASKIA RIVER AT BONDVILLE KASKASKIA RIVER AT SHELBYVILLE KASKASKIA RIVER AT VANDALIA KASKASKIA RIVER AT CARLYLE SHOAL CREEK NEAR BREESE KASKASKIA RIVER AT NEW ATHENS BIG MUDDY RIVER NEAR BENTON BIG MUDDY RIVER AT PLUMFIELD	868 22.6 12.4 1054 1940 2719 735 5181 502 794	2.00 0.06 0.05 10.0 25.7 50.0 0.20 93.0 30.6 31.0	532 17.1 10.1 788 1412 1944 515 3622 452 699
121 122 123	05599000 05599500 05600000	BEAUCOUP CREEK NEAR MATTHEWS BIG MUDDY RIVER AT MURPHYSBORO BIG CREEK NEAR WETAUG	292 2162 32•2	0.00 35.2 0.00	223 1788 36.4

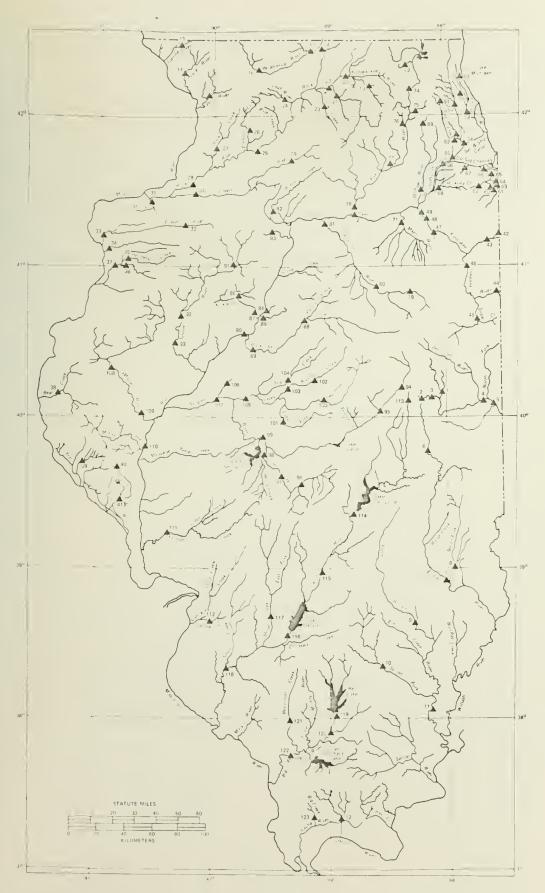


Figure 1. Locations of 123 study gaging stations

computer processing. The following eight low flow release levels were considered in evaluation of economic and other impacts for mandating a particular low flow release from an impounding reservoir.

- 1) Median 31-day low flow during the period May-October, Q(31)P
- 2) Half median 31-day low flow during the period May-October, 0.5Q(31)P
- 3) Median 61-day low flow during the period May-October, Q(61)P
- 4) Half median 61-day low flow during the period May-October, 0.5Q(61)P
- 5) Flow at 90 percent duration using daily flows May-October, Q(90)P
- 6) Flow at 85 percent duration using daily flows May-October, Q(85)P
- 7) Flow at 90 percent duration using daily flows for the record, Q(90)
- 8) Flow at 85 percent duration using daily flows for the record, Q(85) The partial record, May through October, was used to determine whether Q(90) and Q(85) were higher or lower than Q(90)P and Q(85)P, respectively.

In developing the flow-duration information, two probability levels were determined for a flow Q: p_1 for flow \leq Q and p_2 for \geq Q. Then, the flow-duration, p, in percent for flow Q is:

$$p = [p_2 + (100 - p_1)]/2$$

Let there be 21 daily flows equal to Q cfs in the daily flow record at a gaging station. Assuming the normal law of errors, the developed flow-duration applies to 11th Q value, and allows 10 values to be slightly lower (but not lower than the next lower observed value) and 10 values to be slightly higher (but not higher than the next higher observed value). A few examples are given on the next page.

USGS No. 03 345500

USGS No. 03 346000

Pl	P ₂	р	Q,cfs	P ₁	^p 2	р	Q,cfs
0.10	99.94	99.92	3.00	1.13	100.00	99.43	0.00
0.30	99.89	99.80	4.00	2.33	98.36	98.02	0.20
0.50	99.54	99.52	9.00	3.16	97.26	97.05	0.40
1.12	99.05	98.96	13.00	5.14	95.21	95.03	1.00
2.10	98.23	98.07	17.00	10.14	90.15	90.01	2.40
3.05	97.33	97.14	20.00	15.23	85.09	84.93	4.40
5.20	95.13	94.97	26.00	20.17	80.01	79.92	6.60
10.36	90.04	89.84	40.00				
15.11	85.06	84.97	57.00				
20.15	80.14	79.99	82.00				

The flow at 85 and 90 percent duration were determined by straight-line interpolation.

The lowest average flows over 31-day and 61-day periods during May through October each year as well as the mid-date of the low flow occurrence were calculated for each year of record at a gaging station. These flows were ranked from low to high and the flow at the 50 percent probability or a 2-year recurrence interval was interpolated from the flows at the nearest lower and higher probability levels.

Computer programs were developed for calculating the 8 flow releases at each of the 123 gaging stations. The flow releases are listed in table 2 for levels 1, 2, 3, 4, 5, 6, 7, and 8. Low flow releases for levels 2 and 4 are 50 percent of those for levels 1 and 3.

Concept of Hydraulic Geometry

The concept of hydraulic geometry of a stream system was first stated by Leopold and Maddock (1953). It suggested relationships between width, W, flow depth, D, and flow velocity, V, at a particular cross section of the stream, and the discharge, Q. The relationships are expressed by:

$$W = a Q^{b}$$

$$D = c Q^{f}$$

$$V = k Q^{m}$$

TABLE 2. Q, V, and D for 8 low-flow release conditions

		Val	ues for Q	. V. & D	for cond	itions*		
ITEM	C1	C2	C3	C4	C5	C6	C7	С8
	02226000	0.31	m 1					
1.	03336900 10.20		Fork near			10.00	0.50	44.00
Q V	0.55	5.10 0.39	13.10	6.55	9.20	10.00	9.50	11.00
D D	0.52		0.62 0.54	0.44	0.52 0.51		0.53	0.57
2.	03337000		ard Creek			0.52	0.52	0.53
Q Q	1.97		2.61			1.38	1.20	1.32
V	0.41			0.30			0.29	0.31
D	0.48	0.27	0.50	0.30	0.45		0.45	0.46
3.	03337500	West	Branch Sal	1t Fork:	at Unbana	0.40	0.7)	0.40
Q	4.83	2.42	6.22	3.11	3.65	4.32	4.00	4.68
Ā	0.31			0.25	0.27			0.30
D	0.51		0.56	0.43	0.45			0.50
4.	03338500		lion Rive			0.17	0.11	0.00
Q	36.50		40.00			32.49	31.33	36.84
Ā	0.43	0.33	0.45	0.34	0.38	0.41	0.40	0.43
D	1.04	0.93	1.06		0.99		1.02	1.05
5.	03339000		lion Rive			1002	1102	1005
Q	61.50	30.80			42.36	54.22	50.48	65.52
V	0.28		0.33	0.19	0.21	0.26		0.30
D	1.66			1.51			1.60	1.68
6.	03343400		ras River			1002	1.00	. • • • •
Q	2.08		6.45			1.75	1.38	3.25
V	0.48	0.46	0.52	0.50	0.45	0.48	0.47	0.50
D	0.32		0.61	0.41		0.29	0.25	0.41
7.	03345500		ras River					
Q	54.30	27.20				49.42	39.57	56.90
V	0.92		0.97	0.89	0.88	0.91	0.88	0.92
D	0.84	0.62		0.75			0.73	0.86
8.	03346000		Fork Emba					
Q	4.01		9.47				2.40	4.37
Λ	0.37			0.38		0.35	0.33	0.37
D	0.46		0.64			0.42	0.38	0.47
9.	03379500	Littl	e Wabash	River be	low Clay	City		
Q	15.50	7.75		19.30	6.66	10.00	9.20	14.90
Λ	0.73	0.60	0.94	0.77	0.57	0.64	0.63	0.72
D	0.71	0.52	1.06	0.78	0.49	0.59	0.56	0.70
10.	03380500	Skill	et Fork a	t Wayne	City			
Q	1.84	0.92	7.78	3.89	0.74	1.21	1.27	2.17
Λ	0.37	0.27	0.70	0.51		0.31	0.31	0.40
D	0.33		0.51	0.41	0.26	0.30	0.30	0.35
11.	03381500		e Wabash					
Q		32.00	123.00	61.50	24.00	36.00	29.93	49.76
Λ		0.64	1.15		0.56	0.67	0.62	0.78
D	1.03	0.85	1.24	1.02	0.78	0.87	0.83	0.96

TABLE 2. CONTINUED

ITEM	C1		ues for (for cond	itions* C6	C7	C8
10	03612000	Cooka	Direct of	Formon				
12.			River at 9.90		0.68	1.25	1.48	2.80
Q V	2.42 0.41		0.71					
	0.41		0.76				_	
D						_	0.39	0.40
13.					Council H		2 10	2 62
Q	4.34			2.89		3.48	3.19	
Λ	0.61		0.67			0.56	0.54 0.59	
D	0.60		0.61			0.60	0.59	0.60
14.	05419000 39.70		River ne			22 16	30.21	22 05
Q			49.20		29.73 0.56			
V D								
					1.94 oll Ck. ne		1.96	2.07
15.								22.00
Q V	29.20 0.65				17.74			_
v D	0.90	0.82			0.44 0.84			
			-			0.00	0.85	0.87
16.	05435500		onica Ri		292.00	326.00	300.00	332.00
Q V	390.00							
v D	0.76 4.48				0.66			
ر 17.	05437000	_	4.70	_		4.12	3.97	4.15
	705.00		conica Ri		594.00	625.00	576.00	617.00
Q V					-			
D	0.89				0.84			0.85
18.	2.93		3.12			2.73	2.60	2.71
	05437500		River at			1005 00	1161 00	1200 00
Q	1454.00				1103.00		1164.00	
Λ	1.71		1.87				1.54	_
D 10	1.80			1.42		1.67	1.62	1.71
19. Q	05438250 8.85		Creek at 11.20			6.85	6.40	8.10
V	0.76		0.89			0.63		
D	0.60	•	_	0.54			0.55	
20.	05438500		_		elvidere	0.50	0.55	0.59
Q Q				46.00		64.36	59.65	68.57
V	0.99	0.80			0.92		0.93	
D			1.00	0.71			0.81	
21.	05439500						0.01	0.01
Q Q	20.10	10.10	. kishwau 28.60	kee River 14.30	near Fai 15.73		16.22	19.66
V	0.82			_	0.77		0.78	
D	0.64		0.73					
22.	05440000			0.57	Perryvill		0.59	0.64
Q Q	138.00	69.00	156.00	78.00	•		111 00	128.00
V					0.92		0.93	
D	1.11						1.06	1.10
U	(• 1)	0.90	1 - 14	0.90	1.05	1.00	1.00	1.10

TABLE 2. CONTINUED

ITEM	C1	Val C2	Lues for (Q, V, & D C4	for cond	itions* C6	C7	C8
23.	05440500	<i>TT 2</i> 7 7 1		37	2 4			
_				k Near Mon			- 00	6 06
Q V	7.65		9.21		5.77	6.86	5.80	6.96
	0.51			0.37			0.43	
D 24.	0.51 05441000		0.54			0.49	0.47	0.49
24. Q	18.40			Leaf Rive		15 51	111 52	15 00
V	1.57	1 10	1 68	21.70	14.05	10.01	14.53 1.54	
D	0.53	0.49	0.00	1.59 0.58	0 15		0.45	
25.	_		River at		0.45	0.41	0.45	0.40
ےے. Q	1765.00			962.00	1270 00	1557.00	1487.00	1670 00
V	1.64			1.16			1.49	
D	2.26			1.82			2.13	
26.	05444000			near Peni		2.10	2.13	C- + C- 1
Q Q	32.60	16.30		17.80		2H 80	22.75	25.82
v	0.92			0.74				
D	0.87			0.67			0.75	0.79
27.				ar Morris		0.70	0.15	0.17
Q	22.90			14.10		20.84	19.91	21.87
V	0.40			0.28				
D	1.03			0.94		1.01	1.00	
28.				ar Joslin				
Q				1251.00		1929.00	1813.00	2015.00
Λ	1.43		1.50			1.39		
D	0 110			1.69		2.26		
29.	05447000	Green	n River a	t Amboy				
Q	13.60	6.80	15.60	7.80	10.16	12.27	9.82	11.81
Λ	0.92	0.67	0.99	0.71	0.81	0.88	0.79	0.87
D	0.67	0.56	0.70	0.58	0.62	0.70	0.62	0.65
30.				ear Genes				
Q	106.00			64.00		100.00		
Λ				0.77				
D		0.88		0.90		0.93	0.92	0.93
31.				Milan				
Q	2.98	1.49	4.99	2.50	1.28	2.02	1.37	
Λ	0.51			0.49				
D	0.34		0.41	0.32	0.25	0.29	0.25	0.30
32.	05466000			near Ori				
Q	8.85	4.43	13.80	6.90	4.76	6.97	5.21	
Λ	0.61			0.56	0.51	0.57	0.52	0.58
D	0.53	0.43	0.60	0.49	0.44	0.49	0.45	0.50
33•	05466500			near New		211 20	19 60	21, 50
Q	28.00	14.00	43.20	21.60	18.22	24.29		
Λ		0.81		0.90		0.93	0.87	0.93
D	0.57	0.38	0.73	0.49	0.44	0.52	0.45	0.53

TABLE 2. CONTINUED

	Values for Q, V, & D for conditions*								
ITEM	C 1	C2	С3	C4	C5	C6	C7	C8	
211	25467222	7	0	** * * * * *	.				
34.	05467000		Creek nea			77 (** 4	5 00	7 20	
Q	8.77	4.39 0.44	15.60	7.80	5.49	7.51	5.90	7.80	
V	0.57		0.71	0.55	0.48	0.54	0.49	0.55	
D	0.45	0.32	0.59	0.42	0.36	0.41	0.37	0.42	
35.	05467500 3.43	1.72	erson tree 8.77		ittle York	2.52	2.10	3.35	
Q V	0.90	0.81	1.05	0.94	0.78		0.83		
D	0.39	0.33	_	0.41	0.70	0.36	0.34	0.90	
36.	05468500					0.30	0.34	0.39	
	12.60	6.30	· Creek at 17.60		9.16	10.00	0.00	10 90	
Q		_				10.92	9.09		
Λ	0.73	0.61	0.79	0.67	0.67	0.70	0.67	0.70	
D	0.98	0.82	1.06	0.89	0.90	0.94	0.90	0.94	
37.	05469000 19.60	9.80	rson Cree			18.54	16.00	20 91	
Q V	0.43	0.30	0.59	17.80 0.41	13.94	_	16.00		
	1.25	_			0.36	0.42	0.39	0.44	
D 38.	05495500	1.12	1.38 Creek nea	1.23	1.18	1.24	1.21	1.27	
	2.65	1.33		4.56	0.72	1.37	0.88	1.63	
Q V	0.50	0.42	0.69		•	0.43	0.38	0.45	
D	0.28	0.19	0.52		0.14	0.43	0.16	0.45	
39•	05510500		y Creek a	_		0.20	0.10	0.22	
Q Q	1.52	0.76	•	2.25		0.53	0.58	1.16	
V	0.64	0.70	0.82	0.70	_	0.50	0.50	0.60	
D	0.25	0.19	0.38	0.70	0.40	0.30	0.31	0.22	
40.	05512500	-	reek at P			0.10	0.17	0.22	
Q Q	0.53	0.27	1.91	0.96	0.15	0.23	0.20	0.30	
V	0.59	0.48	0.87	0.70	0.40		0.20	0.49	
D	0.19	0.40	0.28	0.70	0.40	0.40	0.44	0.49	
41.	05513000	_	reek at N		0.13	0.15	0.14	0.10	
Q	3.62	1.81	10.50		0.69	1.50	1.13	2.38	
V	0.92	0.80	1.15	1.00	0.66	0.77	0.73	0.85	
D	0.39	0.33	0.53	0.44	0.25	0.77	0.73	0.35	
42.	05520000		eton Ditc			0.51	0.29	0.55	
Q	30.60	15.30	36.40	18.20	24.27	28.68	27.08	32.40	
V	0.36	0.20	0.41	0.23	0.30	0.34	0.32	0.38	
D	1.58	1.46	1.61	1.49	1.54	1.57	1.56	1.59	
43.	05520500		kee River			1.01	1.50	1.09	
.50	655.00	328.00		372.00	569.00	622.00	626.00	704.00	
V	1.10	0.80	1.16	0.85	1.03	1.07	1.07	1.13	
D	1.50	1.11	1.58	1.17	1.41	1.46	1.47	1.54	
44.	05525000		ois River			1.40	1 • 17 [1.74	
Q	37.10	13.60	48.80	24.40	22.25	28.75	27.17	39.00	
V	0.53	0.44	0.58	0.48	0.46	0.50	0.49	0.54	
D	1.18	0.82	1.36	0.94	0.90	1.03	1.00	1.21	
			. • 50		3.70	. • • • •	, , , , ,	1 4 1	

TABLE 2. CONTINUED

	Values for Q. V, & D for conditions*							
ITEM	C1	C2		C4		С6	C7	С8
45.	05525500	Sugar	Creek at	Milford				
Q	14.20		22.80		8.53	11.34	10.05	14.39
V	0.94			0.88		0.88	0.84	
D	0.59		0.69			0.54	0.52	_
46.	05526000		ois River			0.5	0.72	0.00
Q	79.40		110.00			65.37	69.44	96.78
V	0.49	0.29		0.37			0.44	
D	0.60	0.53				0.58		
47.	05526500		Creek ne			0.00	0.09	0.02
Q	0.78		1.40			0.77	0.73	1.07
v	0.53		0.42	0.55		0.53		
D	0.29				0.22	0.29		
48.	05527000		kee River			0.29	0.20	0.04
Q	710.00		796.00			671.00	685.00	795.00
V	0.52		0.57			0.50		
D	3.00				2.93			3.05
49.	05527500		kee River			2.071	2.50	3.07
Q	824.00	112 nn	949.00	1175 OO	704 00	707 00	796.00	926.00
V	1.06		1.13	0.83	0 00	1.05	1.05	
D	1.16	0.96	1.21	1.00	1.11	1.15	1.15	1.20
50.	05529000		laines Ri				1010	1.20
Q Q	13.80			9.60	5.23	8.13	6.20	9.90
V	0.91		0.86	0.97	1.09			0.97
D	0.48	0.38	0.54	0.43	0.34	0.40	0.36	0.43
51.	05531000		Creek nea				0.50	0.75
Q	0.88	0.44		0.88	0.28	0.54	0.37	0.77
v	0.60	0.54	0.67		0.51			0.59
D	0.27	0.21	0.35	0.27	0.18	0.23		0.26
52.	05531500		Creek at			0,25	0 0 /20	0.420
Q Q	16.90		23.60			10.20	8.96	13.38
V	0.74	0.65	0.78	0.69	0.62	0.67		0.71
D	0.75			0.71		0.69		
	05532000		•	•		3.37	0.10	31,2
Q	3.49	1.75	5.13	2.57	1.09	1.64	1.58	2.21
A	0.46	0.31	0.57	0.39	0.24	0.30	0.30	0.36
D	0.51	0.40	0.59	0.46	0.33	0.39	0.38	0.43
54.	05532500		laines Ri			3.37	0,00	34.5
Q	47.40	23.70	74.80	37.40	18.62	28.19	22.56	31.96
V	0.77	0.55	0.97	0.69	0.49	0.60	0.54	0.64
D	0.83	0.64	0.98	0.76	0.58	0.68	0.63	0.71
55.	05533000		Creek nea					
Q	4.66	2.33	5.60	2.80	3.59	4.03	3.52	3.96
Ā	0.63	0.51	0.67	0.54	0.58	0.60	0.58	0.60
D	0.56	0.44	0.60	0.47	0.51	0.53	0.51	0.53
	_			•	_			

TABLE 2. CONTINUED

		Val	ues for Q	, V, & D	for condi	.tions*		
ITEM	C1	C2		C4	C5	C6	C7	C8
	05522500	D = = D	latara Di					
56.	05533500		laines Ri			12 27	111 05	10 00
Q	16.20	8.10	26.60	13.30	8.82		14.05	19.83
Λ	0.22	0.17	0.27 0.62	0.20	0.17 0.43	0.20	0.21	0.24
D	0.53		o.oz e River a	0.49		0.49	0.50	0.56
57.	05535000 2.58					1.97	1.66	2.01
Q	0.67		0.71	0.55	1.65 0.57	0.61	0.58	
D	0.43		0.71 0.46		0.37		0.37	0.39
58.	05535500					Northbroo		0.39
	2.38	1.19			1.02		1.01	1.43
Q V	0.64		3.15 0.71	0.56		0.54	0.48	
D	0.40			0.33		0.34	0.40	
59 .	05536000		Branch Cl				0.21	0.31
Q Q	13.20			10.70		9.23	7.95	10.27
V	0.58						0.49	0.54
D	0.71	0.40	0.68 0.91	0.54	0.47	0.52 0.59	0.49	0.54
60.	05536215	U.50	Creek at	0.04	0.52	0.59	0.55	0.02
	17.70	8 8E	treek at	Greumood	12 80	15.13	14.17	15.43
Q V	1.03	0.05	19.80	9.90	0.99	1.00	0.99	1.01
	0.68		1.05 0.73	0.49		0.62	0.60	0.63
D 61.						0.02	0.00	0.03
	1.10	0.55	Creek near			0.99	0.90	1.19
Q V	0.60		1.89 0.80	0.56	0.72		0.54	
D	0.30		0.35	0.29	0.40	0.37	0.29	
62.	05536255		rfield Cr			0.30	0.29	0.51
Q	1.09		1.52	0.76	0.51	0.76	0.61	0.87
V	0.82		0.89	0.75	0.67		0.70	
D D	0.02	0.09	0.09	0.22		0.22	0.21	0.22
63.	05536265		ng Ditch			0.22	0.21	0.22
Q	1.47					0.78	0.43	0.72
V	0.16		1.74				0.43	
v D	0.18		0.18 0.87	0.11	0.68			0.10
64.	05536270		•	0.75		·	0.65	0.72
			Creek ne				0.51	0.02
Q V	1.74	0.87	2.25	1.13	0.59	0.90	0.54	0.92
D	0.27 0.37	0.23 0.24	0.29 0.43	0.24 0.28	0.21 0.19	0.23 0.24	0.20	0.23
65.	05536275		Creek at			0.24	0.18	0.25
Q Q	24.80	12.40	31.30	15.70	18.45	21.11	19.18	22.41
V	0.84	0.59	0.95	0.67	0.72	0.78	0.74	0.80
D	0.97	0.82	1.03	0.87	0.72	0.93	0.91	0.95
66.	05536290		e Calumet				0.91	0.95
Q	36.90	18.50	49.90	25.00	30.38	33.74	32.18	36.34
V	0.56	0.47	0.61	0.51	0.53	0.55	0.54	0.56
D	1.46	1.09	1.65	1.24	1.34	1.40	1.38	1.45
D	1.40	1.09	1.05	1.24	1.34	1.40	1.30	1 • 40

- TABLE 2. CONTINUED

ITEM	C1	Val C2	ues for (Q, V, & D	for cond:	itions* C6	C7	c8
67	05536340	W: 41 -	5 la di a un - O un	1 0-	la Danasak			
67. Q	0.49	0.25	0.90	eek at Oa 0.45	k Forest 0.20	0.33	0.30	0.49
V	0.49		0.35	0.45		0.22	0.21	
D	0.36		0 1.0	0.35		0.32	0.31	
68.	05539000		_	at Jolie		2,00	0.01	0.00
Q.	7.19		9.40			6.81	6.52	7.87
V	0.33		0.38			0.32	0.32	
D	0.46			0.40		_	0.45	
69.	05539900				ear West Cl			
Q	7.09		9.48			3.80	3.00	4.68
Λ	0.71				0.55		0.57	
D	0.83				0.51		0.55	
70.	05540500	Du Pa	ge River	at Shore	ewood			
Q	49.40	24.70	61.40	30.70	40.10	44.70	39.40	44.89
Λ	0.84	0.62	0.93	0.68	0.77		0.76	0.81
D	0.67	0.48	0.74	0.53	0.60	0.63	0.60	0.64
71.	05542000			ear Coal				
Q	2.14				0.74		1.00	1.88
Λ	0.36	0.28	0.48	0.38	0.25	0.32	0.28	0.34
D	0.33			0.34		0.30	0.27	0.32
72.		Illin						
Q		2322.00					4342.00	
Λ	2.99			2.17		3.01		
D	_			1.67		2.33	2.23	2.31
73.		Boone						
Q	5.80	_		3.24			5.33	
Λ	1.03			0.73	_	1.00		
D	0.49	0.40		0.41		0.48	0.48	0.50
74.		Fox R				1115 00	1611 00	201 00
Q	169.00			107.00			164.00	
D A	0.99	0.97		0.84		0.94		
					•	0.94	0.90	1.05
	1.64	Popla	r creek	at Eigin	0.80	1 11	0.05	1.25
Q V					0.42			
		0.30					0.32	
		Ferso					0.75	0.01
Q Q	4.94			3.18		2.72	2.82	4.07
Ā	0.71				0.56			
D		0.39		0.42		0.40		
		Black						
Q		4.55					8.80	10.24
		0.57						
		0.56						

TABLE 2. CONTINUED

ITEM	C1		ues for Q C3		for condi		C7	С8
78.	05552500	Fox R	iver at D	ayton				
Q	350.00	175.00	415.00	208.00	269.00	314.00	327.00	389.00
V	1.28	0.96	1.37	1.03	1.15	1.22	1.24	1.34
D	1.63	1.34	1.71	1.41	1.51	1.58	1.60	1.70
79.	05554000	N. F.	Vermilio	n River	near Charl	otte		
Q	1.09	0.55	2.16	1.08	0.49	0.83	0.73	1.31
Λ	0.23	0.22	0.24	0.23	0.22	0.22	0.22	0.23
D	0.21	0.15	0.29	0.21	0.14	0.18	0.17	0.23
80.	05554500	Vermi	lion Rive	r at Pon	tiac			
Q	6.26	3.13	9.97	4.99	4.31	6.70	5.77	8.22
V	0.23	0.15	0.30	0.20	0.19	0.24	0.22	0.27
D	0.54	0.48	0.59	0.52	0.51	0.55	0.54	0.57
81.	05555500	Vermi	lion Rive	r at Low	ell			
Q	17.90	8.95	26.20	13.10	13.92	17.93	15.37	20.90
V	0.41	0.32	0.47	0.37	0.38	0.41	0.39	0.44
D	0.70	0.58	0.77	0.64	0.65	0.70	0.67	0.73
82.	05556500	Burea	u Creek a	t Prince	ton			
Q	3.03		6.13	3.07		3.36	2.62	_
Λ	0.45			0.46		0.48	0.42	_
D	0.41	_		0.41		0.42	0.40	0.43
83.	05558500		Creek (We		-			
Q	1.05		1.79		-			
Λ	0.61			0.60		0.57		
D	0.28			0.27		0.24	0.21	0.25
84.	05560500		Creek at					
Q	1.01		1.50			0.61	0.51	
V	0.54			0.48	-	0.44	0.40	
D	0.25		0.28	0.22	0.18	0.21	0.20	0.23
85.	05562000		Creek at					
Q	2.60		3.92	-		2.10	1.55	_
Λ	0.91		1.03			0.85	0.78	
D	0.19		0.20				0.17	0.18
86.		Kicka	poo Creek	near Ki	ckapoo			
Q	3.76				2.46			
Λ	0.86				0.78			
D				0.31		0.28	0.27	0.31
87.		Kicka						
Q		_		10.60			7.53	
V	0.62		0.85				0.56	
D				0.54			0.49	0.53
	05567500							
Q		6.50		10.80			11.12	
Λ					0.58			
D	0.53	0.46	0.59	0.51	0.50	0.53	0.52	0.55

TABLE 2. CONTINUED

		Val	ues for Q	. V. & D	for cond	itions*		
ITEM	C 1	C2	С3	C4	C5	С6	C7	С8
89.	05568000		naw River					
Q	56.50		70.60	35.30	44.71			52.77
Λ	1.49	2.06	1.35	1.86	1.66		1.68	1.54
D	0.69	0.39	0.84	0.47			0.56	0.66
90.		Illin						
Q			5951.00					5472.00
Λ	0.93		1.00					0.96
D	9.51		9.98	7.77		9.52	9.32	9.68
91.	05568800		n Creek na					
Q	4.99		6.98	3.49	2.14	3.10	2.29	3.42
Λ	0.73		0.79	0.67				0.66
D	0.41	0.35		0.38	0.34	0.37	0.34	0.37
92.	05569500		River at					
Q	47.80		81.90			41.96		
Λ	0.47			0.44			0.43	0.47
D	1.44	1.03	1.88	1.34		1.35	1.26	1.45
93.	05570000		River at			4.0		
Q	85.40	42.70			50.15	68.33		78.00
Λ	0.99		0.86	1.02			1.09	1.01
D	1.29	0.81	1.90	1.21	0.91	1.11	0.99	1.21
94.	05571000		mon River			4 00		- 1.
Q	8.78	4.39		5.65		6.88	5.90	9.04
Λ	0.75	0.56	0.83	0.62				0.76
D	0.40	0.37	0.41	0.38	0.37	0.39	0.38	0.40
95.	05572000	_	mon River					
Q	15.00	7.50		11.00				16.53
Λ	0.56	0.53	0.58	0.55	0.55	0.56	0.55	0.57
D	0.65	0.49	0.75	0.57		0.61	0.58	0.67
96.	05574500		Branch ne					
Q	3.52	1.76	8.17	4.08				3.90
V	0.44	0.33	0.61	0.47	0.27			0.46
D	0.57		0.69	0.59	_		0.51	0.58
97.	05575500		Fork San					
Q	11.30	5.65	19.60	9.80	4.13	7.50	5.30	9.00
Λ	0.66	0.50	0.82	0.62	0.45		0.49	0.60
D	0.51	0.49	0.53	0.51				0.51
98.	05576000		Fork San	-				.0
Q	16.20	8.10	37.80	18.90	8.00	14.41	10.27	18.20
V	0.65	0.50	0.88	0.68	0.50		0.54	0.67
D	0.78	0.64	1.00	0.82	0.64	0.76	0.69	0.81
99.	05576500		mon River			(= (:	h	(
Q	66.90	33.50	111.00	55.50	48.64	62.61		65.30
Λ	0.85	0.62	1.09	0.78	0.73			0.84
D	1.32	1.10	1.50	1.25	1.21	1.29	1.20	1.31

TABLE 2. CONTINUED

100. 05573500		Values for Q, V, & D for conditions*								
Q	ITEM	C1						C7	C8	
Q										
Q		27722								
V							44 = 6	44.00	45 44	
D				-						
101. 05579500										
Q 9.82							0.49	0.49	0.53	
V							0		0	
D			-		_					
102. 05580000		_				-				
Q 7.37 3.69 12.40 6.20 3.04 5.26 3.94 6.40 V 0.74 0.63 0.82 0.71 0.61 0.68 0.69 0.59 0.48 0.69 0.56 0.45 0.53 0.49 0.57 103. 05580500 Kickapoo Creek near Lincoln Q 10.20 5.10 18.00 9.00 7.19 9.80 7.37 9.96 V 0.70 0.56 0.83 0.67 0.53 0.69 0.63 0.69 0.56 104. 05581500 Sugar Creek near Hartsburg Q 17.70 8.85 27.20 13.60 13.55 16.32 14.67 18.65 V 0.77 0.58 0.92 0.69 0.69 0.74 0.71 0.79 0.55 0.48 0.52 0.52 0.53 0.53 0.55 105. 0558000 Salt Creek near Greenview Q 148.00 74.00 176.00 88.00 116.00 137.00 115.00 137.00 V 1.38 1.01 1.50 1.09 1.24 1.33 1.23 1.33 D 1.05 0.85 1.11 0.89 0.97 1.02 0.97 1.				•			0.45	0.42	0.45	
V 0.74 0.63 0.82 0.71 0.61 0.68 0.64 0.71 D 0.59 0.48 0.69 0.56 0.45 0.53 0.49 0.57 103. 05580500 Kickapoo Creek near Lincoln 0.06 0.18 0.90 7.19 9.80 7.37 9.96 V 0.70 0.56 0.83 0.67 0.63 0.69 0.63 0.69 D 0.56 0.46 0.67 0.54 0.51 0.56 0.51 0.56 104. 05581500 Sugar Creek near Hartsburg 0.70 0.58 27.20 13.60 13.55 16.32 14.67 18.65 V 0.77 0.58 0.92 0.69 0.69 0.74 0.71 0.79 105. 05582000 Salt Creek near Greenview 0 118.00 137.00 115.00 137.00 V 1.38 1.01 1.50 1.09 1.24 1.33 1.23	102.									
D 0.59	Q					_				
103. 05580500	A	0.74					0.68	0.64	0.71	
Q	D	0.59	0.48	0.69	0.56	0.45	0.53	0.49	0.57	
V 0.70 0.56 0.83 0.67 0.63 0.69 0.63 0.69 D 0.56 0.46 0.67 0.54 0.51 0.56 0.51 0.56 104. 05581500 Sugar Creek near Hartsburg 0.77 0.58 0.92 0.69 0.69 0.74 0.71 0.79 D 0.54 0.48 0.58 0.52 0.52 0.53 0.53 0.55 105. 05582000 Salt Creek near Greenview 0.74 0.71 0.79 0.54 0.48 0.58 0.52 0.52 0.53 0.53 0.55 105. 05582500 Salt Creek near Greenview 0.16.00 137.00 115.00 137.00 115.00 137.00 137.00 137.00 124 1.33 1.23 1.33 1.23 1.33 1.23 1.33 1.23 1.33 1.23 1.33 1.23 1.33 1.23 1.33 1.23 1.33 1.23 1.03 1.06	103.	05580500	Kick	apoo Creek	near Li	ncoln				
D 0.56 0.46 0.67 0.54 0.51 0.56 0.51 0.56 104. 05581500 Sugar Creek near Hartsburg Q 17.70 8.85 27.20 13.60 13.55 16.32 14.67 18.65 V 0.77 0.58 0.92 0.69 0.69 0.74 0.71 0.79 D 0.54 0.48 0.58 0.52 0.52 0.53 0.53 0.55 105. 05582000 Salt Creek near Greenview Q 148.00 74.00 176.00 88.00 116.00 137.00 115.00 137.00 V 1.38 1.01 1.50 1.09 1.24 1.33 1.23 1.33 D 1.05 0.85 1.11 0.89 0.97 1.02 0.97 1.02 106. 05582500 Crane Creek near Easton Q 4.29 2.15 5.38 2.69 2.44 3.27 3.81 4.88 V 0.37 0.30 0.40 0.32 0.31 0.34 0.36 0.38 D 0.70 0.60 0.73 0.63 0.62 0.66 0.68 0.72 107. 05583000 Sangamon River near Oakford Q 389.00 195.00 570.00 285.00 305.00 376.00 291.00 351.00 V 1.32 1.09 1.47 1.21 1.23 1.31 1.22 1.28 D 1.17 0.88 1.37 1.03 1.06 1.15 1.04 1.12 108. 05584500 La Moine River at Colmar Q 19.30 9.65 42.60 21.30 8.67 13.56 10.17 15.59 V 0.81 0.71 0.96 0.83 0.69 0.76 0.71 0.78 D 0.80 0.63 1.06 0.83 0.69 0.76 0.71 0.78 D 0.80 0.63 1.06 0.83 0.69 0.76 0.71 0.78 D 0.80 0.63 1.06 0.83 0.69 0.76 0.71 0.78 D 0.80 0.63 1.06 0.83 0.61 0.71 0.64 0.75 109. 05585000 La Moine River at Ripley Q 52.20 26.10 104.00 52.00 25.95 36.30 28.10 38.52 V 1.40 1.42 1.38 1.40 1.42 1.41 1.42 1.41 D 1.28 0.95 1.73 1.28 0.95 1.09 0.98 1.12 110. 05585500 Illinois River at Meredosia Q 6367.00 3184.00 7384.00 3692.00 5980.00 6593.00 6176.00 6938.00 V 1.04 0.76 1.11 0.81 1.01	Q	10.20	5.10	18.00	9.00	7.19	9.80	7.37	9.96	
104. 05581500 Sugar Creek near Hartsburg Q	Λ	0.70	0.56	0.83	0.67	0.63	0.69	0.63	0.69	
104. 05581500 Sugar Creek near Hartsburg Q	D	0.56	0.46	0.67	0.54	0.51	0.56	0.51	0.56	
Q 17.70 8.85 27.20 13.60 13.55 16.32 14.67 18.65 V 0.77 0.58 0.92 0.69 0.69 0.74 0.71 0.79 D 0.54 0.48 0.58 0.52 0.52 0.52 0.53 0.53 0.55 105. 05582000 Salt Creek near Greenview Q 148.00 74.00 176.00 88.00 116.00 137.00 115.00 137.00 V 1.38 1.01 1.50 1.09 1.24 1.33 1.23 1.33 D 1.05 0.85 1.11 0.89 0.97 1.02 0.97 1.02 106. 05582500 Crane Creek near Easton Q 4.29 2.15 5.38 2.69 2.44 3.27 3.81 4.88 V 0.37 0.30 0.40 0.32 0.31 0.34 0.36 0.38 D 0.70 0.60 0.73 0.63 0.62 0.66 0.68 0.72 107. 05583000 Sangamon River near Oakford Q 389.00 195.00 570.00 285.00 305.00 376.00 291.00 351.00 V 1.32 1.09 1.47 1.21 1.23 1.31 1.22 1.28 D 1.17 0.88 1.37 1.03 1.06 1.15 1.04 1.12 108. 05584500 La Moine River at Colmar Q 19.30 9.65 42.60 21.30 8.67 13.56 10.17 15.59 V 0.81 0.71 0.96 0.83 0.61 0.71 0.64 0.75 109. 05585000 La Moine River at Ripley Q 52.20 26.10 104.00 52.00 25.95 36.30 28.10 38.52 V 1.40 1.42 1.38 1.40 1.42 1.41 1.42 1.41 D 1.28 0.95 1.73 1.28 0.95 1.73 1.28 0.95 1.09 0.98 1.12 110. 05585500 Illinois River at Meredosia Q 6367.00 3184.00 7384.00 3692.00 5980.00 6593.00 6176.00 6938.00 V 1.04 0.76 1.11 0.81 1.01 1.05 1.02 1.08	104.								_	
V 0.77 0.58 0.92 0.69 0.69 0.74 0.71 0.79 D 0.54 0.48 0.58 0.52 0.52 0.53 0.53 0.55 105. 05582000 Salt Creek near Greenview Q 148.00 74.00 176.00 88.00 116.00 137.00 115.00 137.00 V 1.38 1.01 1.50 1.09 1.24 1.33 1.23 1.33 D 1.05 0.85 1.11 0.89 0.97 1.02 0.97 1.02 106. 05582500 Crane Creek near Easton Q 4.29 2.15 5.38 2.69 2.44 3.27 3.81 4.88 V 0.37 0.30 0.40 0.32 0.31 0.34 0.36 0.38 D 0.70 0.60 0.73 0.63 0.62 0.66 0.68 0.72 107. 05583000 Sangamon River near Oakford Q 389.00 195.00 570.00 285.00 305.00 376.00 291.00 351.00 V 1.32 1.09 1.47 1.21 1.23 1.31 1.22 1.28 D 1.17 0.88 1.37 1.03 1.06 1.15 1.04 1.12 108. 05584500 La Moine River at Colmar Q 19.30 9.65 42.60 21.30 8.67 13.56 10.17 15.59 V 0.81 0.71 0.96 0.83 0.69 0.76 0.71 0.78 D 0.80 0.63 1.06 0.83 0.69 0.76 0.71 0.78 D 0.80 0.75 0.78 D 0.80 0.79 0.78 D 0.80 0.79 0.79 0.79 0.79 0.79 0.79 0.79 0.7							16.32	14.67	18.65	
D 0.54 0.48 0.58 0.52 0.52 0.53 0.53 0.55 105. 05582000 Salt Creek near Greenview Q 148.00 74.00 176.00 88.00 116.00 137.00 115.00 137.00 V 1.38 1.01 1.50 1.09 1.24 1.33 1.23 1.33 D 1.05 0.85 1.11 0.89 0.97 1.02 0.97 1.02 106. 05582500 Crane Creek near Easton Q 4.29 2.15 5.38 2.69 2.44 3.27 3.81 4.88 V 0.37 0.30 0.40 0.32 0.31 0.34 0.36 0.38 D 0.70 0.60 0.73 0.63 0.62 0.66 0.68 0.72 107. 05583000 Sangamon River near Oakford Q 389.00 195.00 570.00 285.00 305.00 376.00 291.00 351.00 V 1.32 1.09 1.47 1.21 1.23 1.31 1.22 1.28 D 1.17 0.88 1.37 1.03 1.06 1.15 1.04 1.12 108. 05584500 La Moine River at Colmar Q 19.30 9.65 42.60 21.30 8.67 13.56 10.17 15.59 V 0.81 0.71 0.96 0.83 0.69 0.76 0.71 0.78 D 0.80 0.63 1.06 0.83 0.61 0.71 0.64 0.75 109. 05585000 La Moine River at Ripley Q 52.20 26.10 104.00 52.00 25.95 36.30 28.10 38.52 V 1.40 1.42 1.38 1.40 1.42 1.41 1.42 1.41 D 1.28 0.95 1.73 1.28 0.95 1.09 0.98 1.12 110. 05585500 Illinois River at Meredosia Q 6367.00 3184.00 7384.00 3692.00 5980.00 6593.00 6176.00 6938.00 V 1.04 0.76 1.11 0.81 1.01 1.05 1.02 1.08					_	-	_			
105. 05582000 Salt Creek near Greenview Q	D									
Q 148.00 74.00 176.00 88.00 116.00 137.00 115.00 137.00 V 1.38 1.01 1.50 1.09 1.24 1.33 1.23 1.33 D 1.05 0.85 1.11 0.89 0.97 1.02 0.97 1.02 106. 05582500 Crane Creek near Easton Q 4.29 2.15 5.38 2.69 2.44 3.27 3.81 4.88 V 0.37 0.30 0.40 0.32 0.31 0.34 0.36 0.38 D 0.70 0.60 0.73 0.63 0.62 0.66 0.68 0.72 107. 05583000 Sangamon River near Oakford Q 389.00 195.00 570.00 285.00 305.00 376.00 291.00 351.00 V 1.32 1.09 1.47 1.21 1.23 1.31 1.22 1.28 D 1.17 0.88 1.37 1.03 1.06 1.15 1.04 1.12 108. 05584500 La Moine River at Colmar Q 19.30 9.65 42.60 21.30 8.67 13.56 10.17 15.59 V 0.81 0.71 0.96 0.83 0.69 0.76 0.71 0.78 D 0.80 0.63 1.06 0.83 0.61 0.71 0.64 0.75 109. 05585000 La Moine River at Ripley Q 52.20 26.10 104.00 52.00 25.95 36.30 28.10 38.52 V 1.40 1.42 1.38 1.40 1.42 1.41 1.42 1.41 D 1.28 0.95 1.73 1.28 0.95 1.09 0.98 1.12 110. 05585500 Illinois River at Meredosia Q 6367.00 3184.00 7384.00 3692.00 5980.00 6593.00 6176.00 6938.00 V 1.04 0.76 1.11 0.81 1.01 1.05 1.02				_	_		0,00	0.73	0.55	
V 1.38 1.01 1.50 1.09 1.24 1.33 1.23 1.33 D 1.05 0.85 1.11 0.89 0.97 1.02 0.97 1.02 106. 05582500 Crane Creek near Easton Q 4.29 2.15 5.38 2.69 2.44 3.27 3.81 4.88 V 0.37 0.30 0.40 0.32 0.31 0.34 0.36 0.38 D 0.70 0.60 0.73 0.63 0.62 0.66 0.68 0.72 107. 05583000 Sangamon River near Oakford Q 389.00 195.00 570.00 285.00 305.00 376.00 291.00 351.00 V 1.32 1.09 1.47 1.21 1.23 1.31 1.22 1.28 D 1.17 0.88 1.37 1.03 1.06 1.15 1.04 1.12 108. 05584500 La Moine River at Colmar Q 19.30 9.65 42.60 21.30 8.67 13.56 10.17 15.59 V 0.81 0.71 0.96 0.83 0.69 0.76 0.71 0.78 D 0.80 0.63 1.06 0.83 0.69 0.76 0.71 0.78 D 0.80 0.63 1.06 0.83 0.69 0.76 0.71 0.78 D 0.80 0.63 1.06 0.83 0.61 0.71 0.64 0.75 109. 05585000 La Moine River at Ripley Q 52.20 26.10 104.00 52.00 25.95 36.30 28.10 38.52 V 1.40 1.42 1.38 1.40 1.42 1.41 1.42 1.41 D 1.28 0.95 1.73 1.28 0.95 1.09 0.98 1.12 110. 05585500 Illinois River at Meredosia Q 6367.00 3184.00 7384.00 3692.00 5980.00 6593.00 6176.00 6938.00 V 1.04 0.76 1.11 0.81 1.01 1.05 1.02 1.08							137.00	115 00	137 00	
D 1.05 0.85 1.11 0.89 0.97 1.02 0.97 1.02 106. 05582500 Crane Creek near Easton Q 4.29 2.15 5.38 2.69 2.44 3.27 3.81 4.88 Y 0.37 0.30 0.40 0.32 0.31 0.34 0.36 0.38 D 0.70 0.60 0.73 0.63 0.62 0.66 0.68 0.72 107. 05583000 Sangamon River near Oakford Q 389.00 195.00 570.00 285.00 305.00 376.00 291.00 351.00 Y 1.32 1.09 1.47 1.21 1.23 1.31 1.22 1.28 D 1.17 0.88 1.37 1.03 1.06 1.15 1.04 1.12 108. 05584500 La Moine River at Colmar Q 19.30 9.65 42.60 21.30 8.67 13.56 10.17 15.59 Y 0.81 0.71 0.96 0.83 0.69 0.76 0.71 0.78 D 0.80 0.63 1.06 0.83 0.61 0.71 0.64 0.75 109. 05585000 La Moine River at Ripley Q 52.20 26.10 104.00 52.00 25.95 36.30 28.10 38.52 Y 1.40 1.42 1.38 1.40 1.42 1.41 1.42 1.41 D 1.28 0.95 1.73 1.28 0.95 1.09 0.98 1.12 110. 05585500 Illinois River at Meredosia Q 6367.00 3184.00 7384.00 3692.00 5980.00 6593.00 6176.00 6938.00 Y 1.04 0.76 1.11 0.81 1.01 1.05 1.02 1.08										
106. 05582500		_								
Q 4.29 2.15 5.38 2.69 2.44 3.27 3.81 4.88 Y 0.37 0.30 0.40 0.32 0.31 0.34 0.36 0.38 D 0.70 0.60 0.73 0.63 0.62 0.66 0.68 0.72 107. 05583000 Sangamon River near Oakford Q 389.00 195.00 570.00 285.00 305.00 376.00 291.00 351.00 Y 1.32 1.09 1.47 1.21 1.23 1.31 1.22 1.28 D 1.17 0.88 1.37 1.03 1.06 1.15 1.04 1.12 108. 05584500 La Moine River at Colmar Q 19.30 9.65 42.60 21.30 8.67 13.56 10.17 15.59 Y 0.81 0.71 0.96 0.83 0.69 0.76 0.71 0.78 D 0.80 0.63 1.06 0.83 0.61 0.71 0.64 0.75 109. 05585000 La Moine River at Ripley Q 52.20 26.10 104.00 52.00 25.95 36.30 28.10 38.52 Y 1.40 1.42 1.38 1.40 1.42 1.41 1.42 1.41 D 1.28 0.95 1.73 1.28 0.95 1.09 0.98 1.12 110. 05585500 Illinois River at Meredosia Q 6367.00 3184.00 7384.00 3692.00 5980.00 6593.00 6176.00 6938.00 Y 1.04 0.76 1.11 0.81 1.01 1.05 1.02 1.08							1.02	0.91	1.02	
V 0.37 0.30 0.40 0.32 0.31 0.34 0.36 0.38 D 0.70 0.60 0.73 0.63 0.62 0.66 0.68 0.72 107. 05583000 Sangamon River near Oakford 0.38 0.376.00 291.00 351.00 V 1.32 1.09 1.47 1.21 1.23 1.31 1.22 1.28 D 1.17 0.88 1.37 1.03 1.06 1.15 1.04 1.12 108. 05584500 La Moine River at Colmar 0.81 0.71 0.96 0.83 0.69 0.76 0.71 0.78 V 0.81 0.71 0.96 0.83 0.69 0.76 0.71 0.78 D 0.80 0.63 1.06 0.83 0.61 0.71 0.64 0.75 109. 05585000 La Moine River at Ripley Q 52.20 26.10 104.00 52.00 25.95 36.30 28.10 38.52 V 1.40 1.42 1.38 <							2 27	2 81	J1 88	
D 0.70 0.60 0.73 0.63 0.62 0.66 0.68 0.72 107. 05583000 Sangamon River near Oakford Q 389.00 195.00 570.00 285.00 305.00 376.00 291.00 351.00 V 1.32 1.09 1.47 1.21 1.23 1.31 1.22 1.28 D 1.17 0.88 1.37 1.03 1.06 1.15 1.04 1.12 108. 05584500 La Moine River at Colmar Q 19.30 9.65 42.60 21.30 8.67 13.56 10.17 15.59 V 0.81 0.71 0.96 0.83 0.69 0.76 0.71 0.78 D 0.80 0.63 1.06 0.83 0.61 0.71 0.64 0.75 109. 05585000 La Moine River at Ripley Q 52.20 26.10 104.00 52.00 25.95 36.30 28.10 38.52 V 1.40 1.42 1.38 1.40 1.42 1.41 1.42 1.41 D 1.28 0.95 1.73 1.28 0.95 1.09 0.98 1.12 110. 05585500 Illinois River at Meredosia Q 6367.00 3184.00 7384.00 3692.00 5980.00 6593.00 6176.00 6938.00 V 1.04 0.76 1.11 0.81 1.01 1.05 1.02 1.08		_					-	_		
107. 05583000 Sangamon River near Oakford Q 389.00 195.00 570.00 285.00 305.00 376.00 291.00 351.00 V 1.32 1.09 1.47 1.21 1.23 1.31 1.22 1.28 D 1.17 0.88 1.37 1.03 1.06 1.15 1.04 1.12 108. 05584500 La Moine River at Colmar Q 19.30 9.65 42.60 21.30 8.67 13.56 10.17 15.59 V 0.81 0.71 0.96 0.83 0.69 0.76 0.71 0.78 D 0.80 0.63 1.06 0.83 0.61 0.71 0.64 0.75 109. 05585000 La Moine River at Ripley Q 52.20 26.10 104.00 52.00 25.95 36.30 28.10 38.52 V 1.40 1.42 1.38 1.40 1.42 1.41 1.42 1.41 D 1.28 0.95 1.73 1.28 0.95 1.09 0.98 1.12 110. 05585500 Illinois River at Meredosia Q 6367.00 3184.00 7384.00 3692.00 5980.00 6593.00 6176.00 6938.00 V 1.04 0.76 1.11 0.81 1.01 1.05 1.02							_	_		
Q 389.00 195.00 570.00 285.00 305.00 376.00 291.00 351.00 V 1.32 1.09 1.47 1.21 1.23 1.31 1.22 1.28 D 1.17 0.88 1.37 1.03 1.06 1.15 1.04 1.12 108. 05584500 La Moine River at Colmar Q 19.30 9.65 42.60 21.30 8.67 13.56 10.17 15.59 V 0.81 0.71 0.96 0.83 0.69 0.76 0.71 0.78 D 0.80 0.63 1.06 0.83 0.61 0.71 0.64 0.75 109. 05585000 La Moine River at Ripley Q 52.20 26.10 104.00 52.00 25.95 36.30 28.10 38.52 V 1.40 1.42 1.38 1.40 1.42 1.41 1.42 1.41 D 1.28 0.95 1.73 1.28 0.95 1.09 0.98 1.12 110. 05585500 Illinois River at Meredosia Q 6367.00 3184.00 7384.00 3692.00 5980.00 6593.00 6176.00 6938.00 V 1.04 0.76 1.11 0.81 1.01 1.05 1.02 1.08							0.00	0.00	0.72	
V 1.32 1.09 1.47 1.21 1.23 1.31 1.22 1.28 D 1.17 0.88 1.37 1.03 1.06 1.15 1.04 1.12 108. 05584500 La Moine River at Colmar Q 19.30 9.65 42.60 21.30 8.67 13.56 10.17 15.59 V 0.81 0.71 0.96 0.83 0.69 0.76 0.71 0.78 D 0.80 0.63 1.06 0.83 0.61 0.71 0.64 0.75 109. 05585000 La Moine River at Ripley Q 52.20 26.10 104.00 52.00 25.95 36.30 28.10 38.52 V 1.40 1.42 1.38 1.40 1.42 1.41 1.42 1.41 D 1.28 0.95 1.73 1.28 0.95 1.09 0.98 1.12 110. 05585500 Illinois River at Meredosia Q 6367.00 3184.00 7384.00 3692.00 5980.00 6593.00 6176.00 6938.00 V 1.04 0.76 1.11 0.81 1.01 1.05 1.02 1.08							276 00	201 20	251 00	
D 1.17 0.88 1.37 1.03 1.06 1.15 1.04 1.12 108. 05584500 La Moine River at Colmar Q 19.30 9.65 42.60 21.30 8.67 13.56 10.17 15.59 V 0.81 0.71 0.96 0.83 0.69 0.76 0.71 0.78 D 0.80 0.63 1.06 0.83 0.61 0.71 0.64 0.75 109. 05585000 La Moine River at Ripley Q 52.20 26.10 104.00 52.00 25.95 36.30 28.10 38.52 V 1.40 1.42 1.38 1.40 1.42 1.41 1.42 1.41 D 1.28 0.95 1.73 1.28 0.95 1.09 0.98 1.12 110. 05585500 Illinois River at Meredosia Q 6367.00 3184.00 7384.00 3692.00 5980.00 6593.00 6176.00 6938.00 V 1.04 0.76 1.11 0.81 1.01 1.05 1.02									_	
108. 05584500 La Moine River at Colmar Q 19.30 9.65 42.60 21.30 8.67 13.56 10.17 15.59 V 0.81 0.71 0.96 0.83 0.69 0.76 0.71 0.78 D 0.80 0.63 1.06 0.83 0.61 0.71 0.64 0.75 109. 05585000 La Moine River at Ripley Q 52.20 26.10 104.00 52.00 25.95 36.30 28.10 38.52 V 1.40 1.42 1.38 1.40 1.42 1.41 1.42 1.41 D 1.28 0.95 1.73 1.28 0.95 1.09 0.98 1.12 110. 05585500 Illinois River at Meredosia Q 6367.00 3184.00 7384.00 3692.00 5980.00 6593.00 6176.00 6938.00 V 1.04 0.76 1.11 0.81 1.01 1.05 1.02		_		•						
Q 19.30 9.65 42.60 21.30 8.67 13.56 10.17 15.59 V 0.81 0.71 0.96 0.83 0.69 0.76 0.71 0.78 D 0.80 0.63 1.06 0.83 0.61 0.71 0.64 0.75 109. 05585000 La Moine River at Ripley Q 52.20 26.10 104.00 52.00 25.95 36.30 28.10 38.52 V 1.40 1.42 1.38 1.40 1.42 1.41 1.42 1.41 D 1.28 0.95 1.73 1.28 0.95 1.09 0.98 1.12 110. 05585500 Illinois River at Meredosia Q 6367.00 3184.00 7384.00 3692.00 5980.00 6593.00 6176.00 6938.00 V 1.04 0.76 1.11 0.81 1.01 1.05 1.02								1.04	1.12	
V 0.81 0.71 0.96 0.83 0.69 0.76 0.71 0.78 D 0.80 0.63 1.06 0.83 0.61 0.71 0.64 0.75 109. 05585000 La Moine River at Ripley Q 52.20 26.10 104.00 52.00 25.95 36.30 28.10 38.52 V 1.40 1.42 1.38 1.40 1.42 1.41 1.42 1.41 D 1.28 0.95 1.73 1.28 0.95 1.09 0.98 1.12 110. 05585500 Illinois River at Meredosia Q 6367.00 3184.00 7384.00 3692.00 5980.00 6593.00 6176.00 6938.00 V 1.04 0.76 1.11 0.81 1.01 1.05 1.02 1.08										
D 0.80 0.63 1.06 0.83 0.61 0.71 0.64 0.75 109. 05585000 La Moine River at Ripley Q 52.20 26.10 104.00 52.00 25.95 36.30 28.10 38.52 V 1.40 1.42 1.38 1.40 1.42 1.41 1.42 1.41 D 1.28 0.95 1.73 1.28 0.95 1.09 0.98 1.12 110. 05585500 Illinois River at Meredosia Q 6367.00 3184.00 7384.00 3692.00 5980.00 6593.00 6176.00 6938.00 V 1.04 0.76 1.11 0.81 1.01 1.05 1.02 1.08										
109. 05585000 La Moine River at Ripley Q 52.20 26.10 104.00 52.00 25.95 36.30 28.10 38.52 V 1.40 1.42 1.38 1.40 1.42 1.41 1.42 1.41 D 1.28 0.95 1.73 1.28 0.95 1.09 0.98 1.12 110. 05585500 Illinois River at Meredosia Q 6367.00 3184.00 7384.00 3692.00 5980.00 6593.00 6176.00 6938.00 V 1.04 0.76 1.11 0.81 1.01 1.05 1.02 1.08										
Q 52.20 26.10 104.00 52.00 25.95 36.30 28.10 38.52 V 1.40 1.42 1.38 1.40 1.42 1.41 1.42 1.41 D 1.28 0.95 1.73 1.28 0.95 1.09 0.98 1.12 110. 05585500 Illinois River at Meredosia Q 6367.00 3184.00 7384.00 3692.00 5980.00 6593.00 6176.00 6938.00 V 1.04 0.76 1.11 0.81 1.01 1.05 1.02 1.08							0.71	0.64	0.75	
V 1.40 1.42 1.38 1.40 1.42 1.41 1.42 1.41 D 1.28 0.95 1.73 1.28 0.95 1.09 0.98 1.12 110. 05585500 Illinois River at Meredosia Q 6367.00 3184.00 7384.00 3692.00 5980.00 6593.00 6176.00 6938.00 V 1.04 0.76 1.11 0.81 1.01 1.05 1.02 1.08	109.									
D 1.28 0.95 1.73 1.28 0.95 1.09 0.98 1.12 110. 05585500 Illinois River at Meredosia Q 6367.00 3184.00 7384.00 3692.00 5980.00 6593.00 6176.00 6938.00 V 1.04 0.76 1.11 0.81 1.01 1.05 1.02 1.08	Q									
110. 05585500 Illinois River at Meredosia Q 6367.00 3184.00 7384.00 3692.00 5980.00 6593.00 6176.00 6938.00 V 1.04 0.76 1.11 0.81 1.01 1.05 1.02 1.08	Λ	1.40	1.42	1.38	1.40	1.42	1.41	1.42	1.41	
Q 6367.00 3184.00 7384.00 3692.00 5980.00 6593.00 6176.00 6938.00 V 1.04 0.76 1.11 0.81 1.01 1.05 1.02 1.08	D	1.28	0.95	1.73	1.28	0.95	1.09	0.98	1.12	
Q 6367.00 3184.00 7384.00 3692.00 5980.00 6593.00 6176.00 6938.00 V 1.04 0.76 1.11 0.81 1.01 1.05 1.02 1.08	110.									
V 1.04 0.76 1.11 0.81 1.01 1.05 1.02 1.08							6593.00	6176.00	6938.00	
	Λ									
	D								8.35	

- TABLE 2. CONTINUED

Values for Q, V, & D for conditions*								
ITEM	C1	C2		C4		C6	C7	С8
	05505000	.,						
111.	05587000		pin Creek			0 01	7 O.	10.00
Q	15.70	7.85		19.20	6.93	9.84	7.24	10.28
Λ	0.85			0.90			0.69	0.76
D	0.45	_	-	0.48	0.37	0.40	0.37	0.41
112.	05589500		en Creek			0 10	2 52	0.60
Q	0.87	0.44	1.67	0.84		0.49	0.50	0.69
Λ	0.65			0.65		0.62	0.62	
D	0.22		_	0.22		0.17	0.17	0.20
113.	05590000		skia Rive			0.00	0.01	0.05
Q	0.32			0.24	-	0.28	0.24	0.37
Λ	0.40		0.45			0.39	0.37	
D	0.15			0.13	0.11	0.14	0.13	0.16
114.			skia Rive		•	44 00	2.26	alı ee
Q	13.40	6.70	-	13.00		11.88	9.06	14.77
Λ	0.86	_		0.85		0.84		0.88
D	0.44	_	_	0.44	_	0.42	0.36	0.47
115.	05592500		skia Rive			<i>56</i> 50	lia 40	((0))
Q	62.80	31.40		55.00			47.13	66.24
Λ			0.72		_		0.55	
D	1.68	1.19		1.57		1.59	1.46	1.72
116.	05593000		skia Rive		-	76 70	E0 00	70.00
Q	82.30				56.74			
Λ	0.73		0.90					
D	1.07			1.17		1.03	0.87	1.05
117.			Creek ne			12 20	11 70	16 17
Q	16.80		_	19.50				
Λ	0.58		0.75			0.55		
D	0.80			0.86		0.72	0.68	0.79
118.	05595000		askia Rive			122 00	1110 00	202 00
Q	180.00	90.00				138.00		202.00
Λ		0.31		0.41		0.43		
D	3.11			3.03		3.17	2.86	3.26
	05596000		nuady Rive	r near be	enton 175	2.71	2 68	4.22
Q	4.62		16.30 0.90			0.55		
Λ	0.64			0.75		0.33		
D 120	0.40					0.33	0.52	0.39
			Muddy Riv			4.29	4.61	7.09
Q Q			21.23 2.31					
	1.71 0.24		0.38			0.21		
D 121.			0.30 coup Creek			0.21	0.21	0.23
Q	4.10		9.28			1.87	1 50	3.18
V			0.41					
v D			0.41					
D	0.07	0.53	0.01	0.10	0.41	0.52	0.79	0.02

TABLE 2. CONCLUDED

Values for Q, V, & D for conditions*									
ITEM	C1	C2	C3	C4	C5	C6	C7	C8	
122.	05599500	Rio M	uddy Rive	r at Murr	hyshoro				
				_		110 00	110 011		
Q	48.10	24.10	116.00	58.00	31.08	42.38	40.84	59.52	
A	1.03	0.74	1.59	1.13	0.83	0.97	0.95	1.15	
D	0.78	0.66	0.97	0.82	0.71	0.76	0.75	0.83	
123.	05600000	Big C	reek near	Wetaug					
Q	1.02	0.51	3.23	1.62	0.52	0.81	0.80	1.14	
V	0.22	0.16	0.37	0.27	0.16	0.20	0.20	0.23	
D	0.50	0.39	0.78	0.60	0.39	0.46	0.46	0.53	
	0.00	0.55	0.10	0.00	0.39	0.40	0.40	0.55	

- *Cl = Median 31-day low flow during the period May-October.
- C2 = Half median 31-day low flow during the period May-October.
- C3 = Median 61-day low flow during the period May-October.
- C4 = Half median 61-day low flow during the period May-October.
- C5 = Flow at 90 percent duration using daily flows May-October.
- C6 = Flow at 85 percent duration using daily flows May-October.
- C7 = Flow at 90 percent duration using daily flows for the record.
- C8 = Flow at 85 percent duration using daily flows for the record.

Leopold and Maddock showed that these relationships are valid for different cross sections along the stream, even when the values of a, b, c, f, k, and m change. The relationships were found to be greatly similar and consistent, even for stream systems in different physiographic settings.

Stall and Fok (1968) confirmed the general relationships for Illinois streams. They used the data from 166 gaging stations to develop parameters needed to define the hydraulic geometry of the streams, and presented the results as separate sets of equations for 18 major river basins. The general form of the relationship is:

$$ln (parameter) = a - bF + c lnA_d$$

in which parameter refers to Q, A (area of flow section), V(=Q/A), W (width of the stream at the surface), and D(=A/W); a, b, and c are coefficients; F and A_d denote flow duration and drainage area in square miles, respectively; and In represents the natural logarithm. The set of values of a, b, and c for a parameter were developed by considering values of the parameter at 9 values of F (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9) at each of the gaging stations in a major river basin.

Hydraulic Geometry Parameters

The intent was to use the already developed hydraulic geometry equations for calculating hydraulic geometry parameters for Q(90) and Q(85) and for the other 6 flow releases from corresponding F values from flow-duration curves. A preliminary investigation for the gaging stations in the Sangamon River basin revealed that the developed relationships yielded parameter values which were significantly different from those indicated by the actual data.

The hydraulic geometry relationships were significantly improved by dividing the Sangamon basin into 3 sub-basins on the basis of flow duration

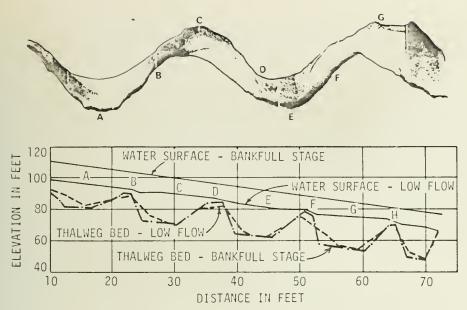
(Singh, 1971) and by making a few changes in the structure of the equations. These improved relationships not only indicated better fit over the range of F values, but also yielded considerably lower estimates of standard error.

It was decided to calculate the parameters Λ , V, W, and D at each gaging station for the discharges corresponding to the 8 low flow release criteria with the following procedure:

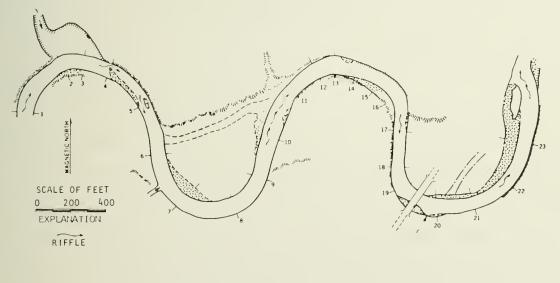
- Plot A, V, W, and D versus Q on logarithmic paper for the range of
 Q, encompassing all the low flow release values being used as criteria.
- 3) Check that V and A, and D and W relations are compatible in the sense that V \times A = Q and D \times W = A.
- 4) Calculate a set of values of A, V, W, and D for each of the 8 low flow release criteria.

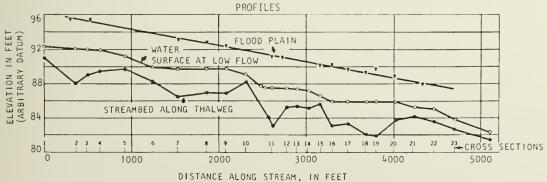
Relevant information was obtained from the U.S. Geological Survey office in Champaign, Illinois, to develop A, V, W, and D versus Q curves for 26 gaging stations to update the information available at the other 97 gaging stations (Singh, 1981). Values of the 3 parameters (Q, V, and D) for each flow release at the 123 stations are given in table 2.

Formation of Riffles and Pools


The lateral deviation of a natural stream from a straight course results in a smooth sinuous or meandering course. A vertical deviation generally results in a concave longitudinal stream bed profile with undulating deeps and shallows, which are usually called pools and riffles, respectively (Yang, 1971). Yang demonstrated the formation of riffles and pools in natural streams

as a means of channel self-adjustment that satisfies the law of least time rate of energy expenditure. The fundamental difference between riffles and pools is the difference in energy gradients. In a complete cycle of a pool-riffle sequence, the riffle is defined as the portion that has an energy gradient steeper than the average energy gradient of the complete cycle, whereas the pool is the portion that has an energy gradient milder than the cycle average. The riffles act as submerged dams to slow down the release of water from the pools behind them.


A nonmeandering channel has an undulating bed with deeps and shallows that alternate along its length, spread more or less regularly at a repeating distance equal to 5 to 7 widths (Leopold et al.,1964). The same holds for the meandering channels. The plan and profile of a meandering laboratory channel (Friedkin, 1945) and of a meandering reach of the Popo Agie River near Hudson, Wyoming (Leopold and Wolman, 1957) are shown in figure 2. The crossings are located at the points of inflection (B, D, and F) along the meandering course in figure 2A, and these are the locations for riffles. The pools are located at the bends (A, C, E, and G). Because of the tributaries, obstructions, and various geologic constraints, the location of riffles and pools may not be very precise and the spacing may vary within a reasonable limit.


Hydraulic Geometry Parameters for Pool Conditions

The U.S. Geological Survey usually makes the low flow measurements at the riffles. Thus, the parameters V and D (i.e., velocity and depth) apply to the riffle conditions at the low flows. As the water stage moves from low to high, the water slope difference between pools and riffles disappears. At high flow, the water surface slope is uniform throughout the whole reach.

A. Plan and profile of a meandering laboratory channel (from Friedkin, 1945)

B. Plan and profile of a meandering reach of the Popo Agie River near Hudson, Wyoming (after Leopold and Wolman, 1957)

Figure 2. Meandering laboratory channel and Popo Agie River

The relative depth of a pool below the riffle bed depends on a number of factors such as the stream order (or the drainage area as its surrogate), the river flow, the bed material, and the flow variations. Three stream profiles for the Little Wabash River 5 miles north of Effingham (drainage area 166 sq mi), for the Clay City gaging station (drainage area 1131 sq mi), and for the area near Hodgson Bridge 4 mi south of Golden Gate (drainage area 1875 sq mi) are given by Herricks et al. (1980). For the first reach and a flow of 8.12 cfs, the average pool depth below the riffle bed is about 2 feet; for the second reach and a flow of 527 cfs, the average pool depth below the riffle is about 2.5 feet; and for the third reach, it is about 2.8 feet. Thus, the average depth of the pool bed below the riffle bed may be approximated by b \times log A in which b is a coefficient and A is drainage area in sq mi. The coefficient b varies between 0.8 and 0.9 for the above three reaches. To allow for bed level variations along a cross section, a value of 0.75 is adopted for the coefficient in this study. This value seems to be a fair representation of the riffle and pool depths and sequences that could be obtained from the past publications.

The average velocity in the pool, v_p , is obtained from the values of depth and velocity at the riffle, d_r and v_r , with the equation of continuity:

$$d_p = d_r + 0.75 \log A$$

$$v_p = (d_r \times v_r) / d_p$$

in which $d_{\mathbf{p}}$ is the average water depth in the pool.

EVAPORATION AND SEDIMENTATION

The amount of net reservoir storage available for meeting the project purposes can be obtained from the gross reservoir storage after making suitable allowances for net evaporation loss from the reservoir during a design drought and for the storage loss because of the sediment entrapped in the reservoir. Because the occurrence of a design drought cannot be predicted in advance (e.g., a 25-year drought may occur in any year 1 through 25, a 25-year drought may not occur at all in the 25-year period, or a more severe drought may occur in this period), the gross storage provided at the beginning usually equals the sum of storage lost to net evaporation during the design drought, storage lost to sedimentation over the design period, and storage needed to meet project purposes.

Evaporation Loss

Net yield from a reservoir is obtained by subtracting evaporation loss from the gross reservoir storage during the design period of critical drawdown. The net reservoir storage to provide the net yield (taken as 2, 5, 10, or 20 percent of mean flow in this study) depends on the associated risk of getting a lesser yield. In this study, the risk implied is that the net yield may be less than the desired yield once in more than 25 or 40 years.

The daily rainfall records are available for 68 years, 1911-1978, for 9 raingage stations: Chicago, Rockford, Moline, Peoria, Springfield, and Carbondale in Illinois; St. Louis in Missouri; and Evansville and Indianapolis in Indiana. Urbana, Illinois has 49 years of record but this has extended to 68 years (Terstriep et al.,in preparation, 1981). For computing net lake evaporation, two continuous data sets are needed: one for

precipitation and the other for lake evaporation. Data for lake evaporation are not directly available, but evaporation pan data at several locations available for about seven months of each year, excluding the winter period, can be used to develop suitable lake evaporation estimates with the methodology described by Roberts and Stall (1967). This has been done in Bulletin 51A (Terstriep et al., in preparation, 1981) in terms of monthly lake evaporations at the 10 raingage stations. The net evaporation each month was obtained by subtracting the monthly precipitation from the monthly evaporation. Thus, net evaporation will be negative in a month in which rainfall exceeds the lake evaporation. Statistical analyses were performed to develop the net evaporation estimates for critical durations of 1 to 60 months and recurrence intervals of 2 to 100 years. The tabulated information in Bulletin 51A was used in this study for considering the compensatory storage for net evaporation losses.

Bulletin 51A provides the information on reservoir yield and associated reservoir storage and critical drawdown duration in months for the design recurrence interval. The storage in inches of runoff can be easily converted to storage in acre-feet (ac-ft). The water surface area in acres, $A_{\rm w}$, for the storage in ac-ft, S, is obtained from the following equation (Dawes and Wathne, 1968):

$$A_{W} = 0.23 \text{ s}^{0.87}$$

The evaporation loss in ac-ft, EVL, is obtained from

$$EVL = 0.65 A_{r_d} (NEL/12)$$

in which NEL is the net evaporation loss in inches from the lake during the critical drawdown period, and effective surface area for evaporation loss is 65 percent of that at the normal pool because of reduction in water surface area as the water level lowers during the critical period.

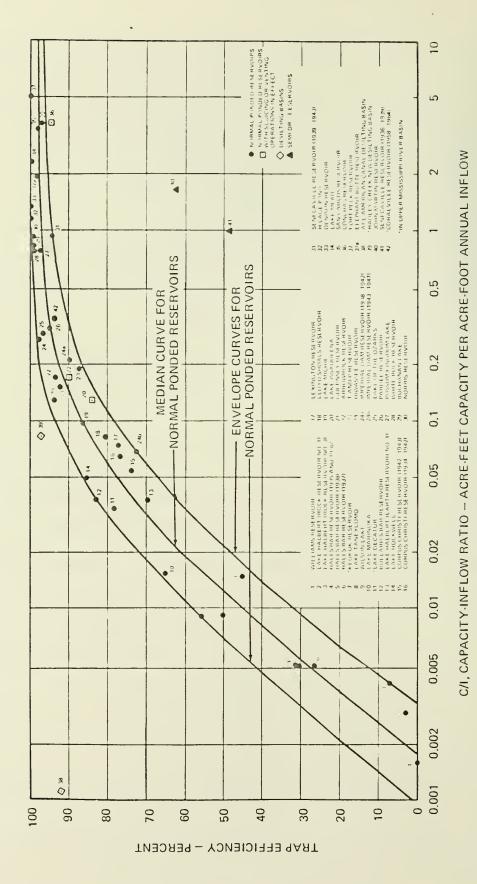
Sedimentation

Annual reservoir capacity loss because of sedimentation can be read from a graph (Stall, 1964) when drainage area and reservoir capacity are known. A single equation was fitted to this graph by Singh et al.(1972): $\text{Capacity loss} = 0.0191 \text{ A}^{-0.1473} \left(\log_{10} A\right)^{0.64}$

in which capacity loss is in inches per year and A is the drainage area in square miles. The above equation is independent of the reservoir capacity-inflow ratio which is believed to be a significant parameter for evaluating trap efficiency of the reservoirs (Brune, 1953).

In the Upper Mississippi River Comprehensive Basin Study (UMRCBS, 1970), the stream sediment yield, $Y_{\rm g}$, in tons/sq mi/year is given by

$$Y_s = k A^{\alpha}$$


in which α is -0.12, A is the drainage area in square miles, and k is a coefficient which varies from one land resource area, LRA, to the other. The state of Illinois was divided into 10 LRAs by the U.S. Department of Agriculture (Austin, 1965). For each LRA, the coefficient k was found from the regression analysis with the log-transformed equation

$$\log Y_s = \log k + \alpha \log A$$

and the available data. The annual sediment yield, for a given drainage area A is obtained by multiplying A and Y_s . To convert this yield into ac-ft per year, the sediment trapped in the reservoir is calculated:

Sediment in tons/year = A \times Y $_{\rm S}$ \times trap efficiency in which the trap efficiency equals percent trap efficiency in figure 3, divided by 100.

It is necessary to measure the specific weight of deposited sediments to obtain

Trap efficiency versus capacity-inflow ratio (after Brune, 1953) Figure 3.

the volume of materials deposited in a reservoir. Equations for computing specific weights of reservoir sediments are given in the UMRCBS. For the Illinois condition, the specific weight varies from about 40 to 60 lbs/cu ft.

Available Lake Sedimentation Data

The State Water Survey has been conducting lake sedimentation surveys for more than 40 years. The data on 98 lakes surveyed over the years (see listing in table 3) were analyzed to develop information on the following factors:

Location of lake

Drainage area, sq mi

Average discharge, inches/yr

Average lake capacity, ac-ft and inches

Capacity-inflow ratio, CP/I

Annual sediment rate, ac-ft/yr

Percent capacity reduction

The average lake capacity equals the mean of the capacities for the first and second surveys, and the annual sediment rate equals the loss in reservoir capacity between the two surveys divided by the time interval in years. The capacity-inflow ratio, CP/I, is average lake capacity in inches divided by the average discharge entering the lake in inches/year.

Regional Relations

An effort was made to correlate the percent capacity reduction, PCR, with basin factors (such as drainage area and main channel length and slope) and CP/I. The available data were broken into regional sets to improve the correlations. These analyses showed that the inclusion of basin factors did not

TABLE 3. Illinois Lakes with Sediment Data-

	Name of Reservoir	Location
1.	Nelson, Lake No. 4	Millorehung
2.	Lake No. 3	Millersburg Matherville
3.	Ewan, Pond No. 12	Kewanee
4.	Lake Calhoun	Galva
5.		
	Armstrong, Pond No. 13	Toulon
6.	Rio, C.B. & Q Reservoir No. 11	Rio
7.	Lake Bracken	Galesburg
8.	Lake Storey	Galesburg
9.	Lake Bloomington	Bloomington
10.	Avon, Reservoir No. 19	Avon
11.	Canton, Lake No. 36	Canton
12.	Van Winkle, Lake No. 18	Canton
13.	Spring, Lake No. 23	Macomb
14.	Carthage, Reservoir No. 26	Carthage
15.	Argyle, Lake No. 25	Colchester
16.	Vermont, Lake No. 24 (new)	Vermont
17.	Astoria, Reservoir No. 21	Astoria
18.	Saukenauk, Lake No. 35	Lima
19.	Lake Vermilion	Danville
20.	C.B. & Q., Reservoir No. 28	Camp Point
21.	Clayton, Reservoir No. 29	Clayton
22.		
23.	Mt. Sterling, Reservoir No. 33	Mt. Sterling
24.	Virginia Reservoir	Virginia
25.	Power Farms, Pond No. 43	Cantrall
26.	G. M. & O. Lake, Pond No. 15	Tallula
	Holton Farms, Pond No. 38-1	Sherman
27.	Holton Farms, Pond No. 38-2	Sherman
28.	Hose & Davis Farms, Pond No. 45	Pleasant Plains
29.	Aschauer, Pond No. 33	Riverton
30.	Lake Decatur	Decatur
31.	Knapp, Pond No. 29	Springfield
32.	Lake Springfield	Springfield
33.	Jacksonville, Pond No. 24	Jacksonville
34.	Elliot State Bank, Pond No. 25	Jacksonville
35.	Morgan, Pond No. 46	Jacksonville
36.	Mauvaise Terre Lake, Pond No. 21	Jacksonville
37.	Schmidt, Pond No. 44	Chatham
38.	Lake Oakland	0akland
39.	Big Blue Creek Reservoir	Pittsfield
40.	Pittsfield, Reservoir No. 34	Pittsfield
41.	Franklin, Pond No. 16	Franklin
42.	Langdon, Pond No. 42	Franklin
43.	Waverly, Pond No. 17	Waverly
44.	Roodhouse, Pond No. 4	Roodhouse
45.	Hillview, Pond No. 9	Hillview
70.	TITTE VIEW, TOTAL NO. 7	tilling.

TABLE 3. Illinois Lakes with Sediment Data (continued)

	•	
	Name of Reservoir	Location
46.	Whitehall, Pond No. 5	Whitehall
47.	Vineyard, Pond No. 10A	Whitehall
48.		Charleston
49.		Charleston
50.	Craig and Davidson Lake	Martinsville
51.	Stevenson's Lake	Martinsville
52.	Greenfield, Pond No. 8	Greenfield
53.	Woodbine, Pond No. 6	Greenfield
54.	Arctic Lake	Carlinville
55.	Vevay Park Lake	Greenup
56.	Lake Carlinville	Carlinville
57.	Walton Park Lake	Litchfield
58.		Gillespie
59.	·	Gillespie
60.	New Mount Olive Reservoir	White City
61.	Wilsonville, Mine Pond No. 4	Wilsonville
62.	Lake Staunton	Staunton
63.	Panama Lake	Panama
64.	Etcheson's Lake	Vandalia
65.	Patterson Lake	Edgewood
66. 67.	Farina Lake	Farina
68.	Schaefer Lake	Edwardsville
69.	Kinmundy, I.C.R.R. Reservoir New Olney Reservoir	Kinmundy Olney
70.	Brown Park Lake	Flora
,	DIOWII TATK BAKE	1101a
71.	Salem City Reservoir	Salem
72.	Racoon Lake	Centralia
73.	Steiner Lake	Fairfield
74.	Ashley City Reservoir	Ashley
75.	Nashville Reservoir	Nashville
76.	Bluford, I.C.R.R. Reservoir	Bluford
77. 78.	Farrell Lake	Mt. Vernon
79.	Lake Miller	Mt. Vernon
80.	Mt. Vernon, Reservoir No. 2 Lake Coulterville	Mt. Vernon Coulterville
00.	Lake Courterville	Courterville
81.	Lake Duquoin	Sunfield
82.	Norris City Reservoir	Norris City
83.	Christopher City Reservoir	Christopher
84.	Thompsonville, I.C.R.R. Reservoir	Thompsonville
85.	West Frankfort Reservoir (New)	West Frankfort
86.	Johnson City Reservoir	Johnson City
87.	Herrin, Reservoir No. 1	Herrin
88.	Baker's Lake	Marion

Marion

Marion

89. Flucks Lake

Knights of Pythias Lake

90.

TABLE 3. Illinois Lakes with Sediment Data (concluded)

Name of Reservoir

Location

91.	Marion Reservoir	Marion
92.	Eldorado Reservoir	Eldorado
93.	Dering Coal Co. Reservoir	Eldorado
94.	Carbondale Reservoir	Carbondale
95.	Crab Orchard Lake	Carbondale
96.	Little Grassy Lake	Carbondale
97.	Alto Pass Reservoir	Alto Pass
98.	Anna State Hospital Lake	Anna

significantly improve the regional correlations. The regionalization of the lakes was improved by plotting the PCR versus CP/I on log-log graphs by considering various regional configurations. The final regions are shown in figure 4. They do not cover the whole state because in some large areas there were either no lakes or no sediment surveys. The following relations were obtained from the plots:

Region	<u>a</u>	<u>β</u>	Range, CP/I
1	0.520	-0.293	0.02 - 0.8
2	0.520	-0.563	0.04 - 0.7
3	0.930	-0.563	0.28 - 0.6
4	0.212	-0.485	0.03 - 0.7
5	0.205	-0.705	0.04 - 1.0
6	0.261	-0.932	0.03 - 0.8
7	0.380	-0.809	0.11 - 0.9
8	0.203	-0.593	0.05 - 0.8
9	0.584	-0.012	0.16 - 0.6

The percent capacity reduction PCR is obtained from

$$PCR = a \left(\frac{CP}{T}\right)^{\beta}$$

in which CP is the average capacity over the period considered. The coefficient a is a function of factors such as sediment characteristics, lake operation, annual precipitation and storm distributions, and overland slopes and general land use. Regionalization assumes minor variations from the mean for these factors over the region under consideration. The extrapolations beyond the range of $\binom{\text{CP}}{I}$ values from the data may be justifiable if the extrapolations are for $\binom{\text{CP}}{I}$ values not too far away from the data values. There were some data points (about 10) which may be considered outliers as far as the above relations are concerned. The reasons for such outliers may be the type of outlet works and method of lake operation, watershed management practices, atypical land use, etc.

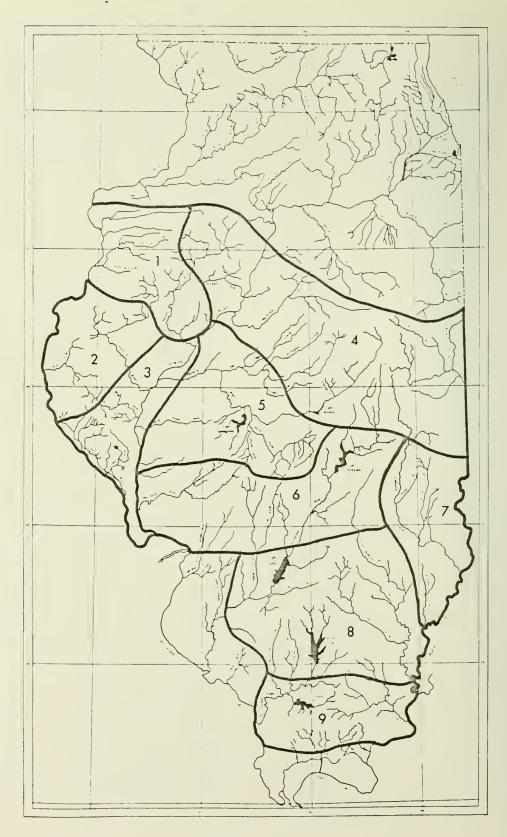


Figure 4. Regionalization of reservoir capacity loss due to sedimentation

A comparison of the methods in Bulletin 51 (Stall, 1964), those in the UMRCBS report (1970) and those developed in this study, in terms of matching the percent capacity reductions of the 98 lakes surveyed, showed that the methods in both the UMRCBS study and this study are significantly superior to those in Bulletin 51, and that the simple regional equations developed in this study yield somewhat better estimates than the UMRCBS methods which involve judgment about the trap efficiency and the specific weight of reservoir sediments.

FISH SUITABILITY CURVES

Instream flow needs arise from various uses such as recreation, fisheries and aquatic habitats, and navigation. The U.S. Fish and Wildlife Service's Cooperative Instream Flow Service Group has been very active in developing methodologies for estimating streamflows suitable for maintenance of fisheries. Research being conducted by them and by others has helped in a continuing improvement in the understanding of the problem and in its solution.

The suitability of a stream reach in maintaining fish habitats depends on a number of factors such as flow velocity, depth and width of stream, water quality, temperature, and stream bottom materials. In this study, only two important parameters are considered, both of which can be changed through management of flows: flow velocity, V, and flow depth, D.

Suitability Curves for Nine Target Species

The Illinois Environmental Protection Agency provided fish suitability or preference tables for the following juvenile and adult fish: bluegill, blunt-nose, carp, channel catfish, largemouth bass, smallmouth bass, drum, white bass, and white crappie. These 9 fish are the target species for studies relating to Illinois streams. The fish suitability or preference as a function of flow velocity and depth for each of the 9 fish, juvenile and adult, are given in table 4. Analyses can include the habitat preferences of each life stage such as spawn, fry, juvenile, and adult. However, only the preferences for the juvenile and adult fish are analyzed in this study to estimate the effect of various low flow releases from impounding reservoirs on the fish population.

The fish suitability or preference curves are drawn in figure 5 for the 9 target fish, juvenile and adult, with respect to flow velocity, V, and flow

TABLE 4 Fish Preferences for Various Velocities and Depths of Flow

1. BLUEGILL

	JUVI	ENILE			Al	DULT	
VEL	PREF	DEPTH	PREF	VEL	PREF	DEPTH	PREF
0.00 .04 .06 .08 .10 .15 .20 .23 .25 .29 .33 .48 .43	1.00 1.00 .98 .95 .86 .56 .32 .26 .20 .13 .09 .05 .02 0.00 0.00	0.00 .50 .65 .78 .98 1.12 1.22 1.30 1.38 1.42 1.50 1.60 1.64 1.70 3.45 3.53 3.80 4.12 4.44 4.85 5.20 5.40 5.70 6.00 6.20 6.40 6.60 6.90 100.00	0.00 0.00 .04 .10 .24 .36 .48 .58 .74 .83 .90 .96 .99 1.00 1.00 .99 .91 .80 .66 .32 .24 .16 .04 .02 .00 .00 .00 .00 .00 .00 .00	0.00 .22 .26 .32 .43 .51 .58 .63 .70 .77 .84 .92 1.32 1.47 1.52 100.00	1.00 1.00 .94 .84 .58 .44 .28 .21 .16 .13 .11 .03 .01 0.00 0.00	0.00 .80 1.05 1.26 1.52 1.80 2.10 2.30 2.54 2.75 3.00 3.23 3.40 3.50 4.50 4.60 4.82 5.20 5.40 5.70 6.13 6.70 7.08 7.35 7.60 7.80 8.00	0.00 0.00 0.01 0.03 .07 .13 .21 .30 .43 .60 .80 .91 .98 1.00 1.00 .99 .95 .85 .78 .68 .50 .30 .19 .12 .07 .03 .09 .00 .00 .00 .00 .00 .00 .00

TABLE 4. Continued .

2. BLUNTNOSE

	JUV	ENILE			Al	DULT	
VEL	PREF	DEPTH	PREF	VEL	PREF	DEPTH	PREF
0.00 .11 .25 .31 .44 .50 .63 1.00	1.00 1.00 .89 .78 .20 .11 .04 0.00	0.00 .30 .42 .46 .61 .70 .78 .83 .84 .86 1.00 1.50	0.00 0.00 .31 .50 1.00 1.00 .90 .75 .40 .30 .18 0.00	0.00 .12 .19 .21 .25 .31 .50 .75 1.16 1.34	1.00 .93 .80 .60 .39 .30 .19 .10 .03	0.00 .19 .38 .41 .50 .83 1.00 1.04 1.06 1.16 1.38 1.75 2.30 2.80	0.00 0.00 .48 .30 1.00 1.00 .88 .80 .50 .31 .15 .05 .01 0.00

3. CARP

	JUVI	ENILE			Al	DULT	
VEL	PREF	DEPTH	PREF	VEL	PREF	DEPTH	PREF
0.00 .25 .35 .45 .52 .55 .56 .65 .80 1.00 2.60 2.90 3.40 4.00 4.40 4.85 100.00	1.00 1.00 .98 .94 .88 .80 .41 .35 .30 .26 .25 .24 .22 .17 .08 .04 0.00 0.00	0.00 1.90 2.10 2.40 2.60 2.80 3.00 3.10 3.30 3.60 6.00 6.20 6.40 6.50 6.60 6.80 7.00 7.60 8.60 9.60 10.40 11.10 100.00	0.00 0.00 .02 .06 .12 .22 .84 .92 .97 1.00 1.00 .98 .92 .88 .36 .28 .24 .18 .10 .05 .01 0.00	0.00 .25 .35 .45 .50 .55 .62 .75 .95 1.90 2.30 2.60 2.83 3.55 4.20 4.70 4.90 100.00	1.00 1.00 .97 .92 .86 .46 .42 .38 .36 .32 .29 .26 .14 .06 .01 0.00 0.00	0.00 1.40 1.80 2.00 2.25 2.50 2.75 2.90 3.00 3.20 3.30 3.40 3.60 5.90 6.10 6.20 6.35 6.65 7.10 7.30 7.85 8.60 9.00 9.60 10.20 10.80 100.00	0.00 0.00 0.00 .03 .06 .10 .16 .24 .34 .48 .90 .98 1.00 1.00 .98 .96 .90 .70 .40 .32 .22 .12 .08 .04 .01 0.00 0.

TABLE 4. Continued

4. CHANNEL CATFISH

	JUV	ENILE			A	DULT	
VEL	PREF	DEPTH	PREF	VEL	PREF	DEPTH	PREF
0.00 .75 .93 1.08 1.37 1.71 2.05 2.10 2.17 3.10 3.12 3.15 3.25 3.30 3.40 3.55 4.05 4.05 4.05 4.60	.07 .10 .14 .20 .36 .60 .92 .96 1.00 1.00 .99 .98 .74 .56 .45 .38 .30 .24 .12	0.00 1.00 2.40 3.40 3.60 3.80 4.00 4.20 4.36 4.60 4.85 5.00 5.40 6.20 6.80 9.60 12.00 100.00	0.00 0.00 .46 .66 .72 .80 .94 .98 1.00 .99 .96 .90 .66 .41 .30 .10	0.00 .25 .30 .35 .75 2.15 2.30 2.40 2.52 2.65 3.35 3.70 4.10 4.28 100.00	1.00 1.00 .98 .96 .84 .50 .44 .38 .32 .28 .20 .14 .06 0.00	0.00 1.80 1.90 2.20 2.80 3.20 3.40 3.60 4.00 4.60 4.68 4.80 100.00	0.00 0.00 .04 .10 .16 .20 .24 .30 .70 .82 .96 .98 1.00

5. LARGEMOUTH BASS

	JUV	ENILE			A	DULT	
VEL	PREF	DEPTH	PREF	VEL	PREF	DEPTH	PREF
0.00 .15 .25 .35 .55 .75 .90 1.05 1.32 1.60 1.77 2.00	1.00 .99 .96 .90 .70 .44 .30 .22 .11 .04 .01	0.00 .20 .57 .80 .95 1.02 1.15 1.28 1.38 1.48	0.00 0.00 .12 .26 .38 .48 .80 .92 .98 1.00	0.00 .20 .25 .37 .50 .68 .90 1.10 1.28 1.45 1.90 2.25 2.55	1.00 1.00 .98 .91 .83 .68 .42 .32 .24 .20 .14	0.00 1.00 1.60 2.36 3.41 3.90 4.70 5.43 5.70 5.95 6.20 7.00 9.00	0.00 0.00 .04 .12 .30 .40 .60 .82 .90 .96 .99
				100.00	0.00	20.00 100.00	0.00

TABLE 4. Continued .

6. SMALLMOUTH BASS

	JUV	ENILE			Al	OULT	
VEL	PREF	DEPTH	PREF	VEL	PREF	DEPTH	PREF
0.00 .28 .35 .45 .55 .60 .75 1.02 1.17 1.40 1.70 2.00	1.00 1.00 .96 .87 .74 .64 .49 .28 .20 .12 .06 0.00	0.00 .13 .50 .70 1.00 1.13 1.20 1.30 100.00	0.00 0.00 .14 .26 .51 .74 .95 1.00	0.00 .35 .65 .90 1.45 1.60 1.80 1.90 2.10 2.20 2.28 2.30 2.40 2.55 2.75 2.90 3.15 3.25 100.00	.73 .76 .84 .93 1.00 1.00 .97 .95 .90 .81 .76 .62 .46 .30 .16 .08 .04 0.00	0.00 1.00 1.50 2.00 2.72 3.25 3.48 3.70 3.90 4.05 100.00	0.00 0.00 .07 .20 .46 .70 .82 .92 .98 1.00

7. DRUM

	JUV	ENILE			A	DULT	
VEL	PREF	DEPTH	PREF	VEL	PREF	DEPTH	PREF
0.00 .25 .52 .75 .95 1.30 1.90 2.36 2.67 2.75	1.00 1.00 .96 .90 .84 .72 .46 .29 .20	0.00 1.82 2.13 2.60 2.82 3.10 3.38 3.57 9.00 100.00	0.00 0.00 .21 .60 .74 .87 .96 1.00 1.00	0.00 .45 .58 .67 1.00 1.35 1.75 2.33 2.64 2.76 3.35 3.67	1.00 1.00 .99 .95 .90 .80 .65 .41 .30 .26	0.00 2.73 2.80 2.95 3.06 3.20 3.33 3.45 3.54 9.00	0.00 0.00 .12 .60 .76 .86 .94 .98 1.00 1.00
4.20 4.50 100.00	.04 0.00 0.00			3.88 100.00	0.00		

TABLE 4. Concluded

8. WHITE BASS

	JUV	ENILE			A	DULT	
VEL	PREF	DEPTH	PREF	VEL	PREF	DEPTH	PREF
0.00 2.00 2.07 2.35 2.65 2.95 3.50 3.85 4.00 100.00	1.00 1.00 .98 .88 .74 .56 .24 .06 0.00	0.00 1.40 1.90 2.40 2.70 3.20 3.60 3.90 4.10 7.90 8.30 9.30 10.00 10.80 12.60 13.60 14.00 100.00	0.00 0.00 .24 .56 .70 .85 .94 .98 1.00 1.00 .97 .86 .75 .61 .24 .06 0.00	0.00 2.00 2.25 2.47 2.70 3.05 3.45 3.70 3.85 4.00	1.00 1.00 .93 .84 .73 .52 .26 .12 .06 0.00	0.00 2.95 3.60 4.20 4.60 5.00 5.50 5.80 6.00 18.00	0.00 0.00 .28 .58 .72 .84 .98 1.00 1.00

9. WHITE CRAPPIE

	JUV	ENILE			ADULT						
VEL	PREF	DEPTH	PREF	VEL	PREF	DEPTH	PREF				
0.00 .25 .50 .80 1.05 1.45 1.82 2.00 2.30 2.68 2.94 3.50 3.90 100.00	1.00 1.00 .94 .84 .74 .54 .38 .32 .24 .16 .12 .06 0.00	0.00 .72 1.00 1.10 1.30 1.50 1.60 1.70 3.72 3.95 4.30 4.70 5.20 6.00 7.10 7.60	0.00 0.00 0.00 .54 .68 .84 .94 .98 1.00 1.00 .96 .86 .72 .54 .35 .12 0.00 0.00	0.00 .25 .33 .45 .55 .65 .75 .85 .99 1.13 1.62 2.55 3.05	1.00 1.00 .96 .84 .70 .45 .34 .26 .20 .16 .10 .04 0.00	0.00 2.00 2.40 2.60 2.75 3.00 3.20 3.53 3.75 100.00	0.00 0.00 .10 .20 .32 .64 .78 .94 1.00				

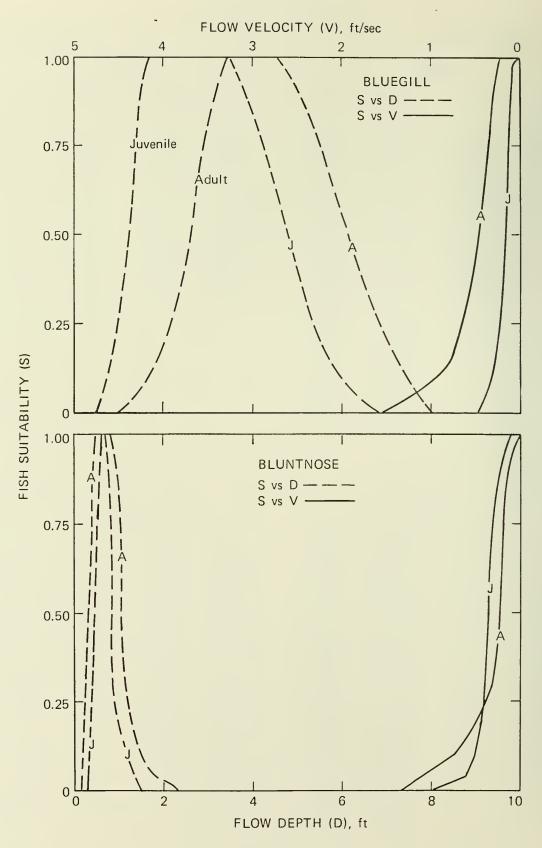


Figure 5. Fish suitability or preference curves

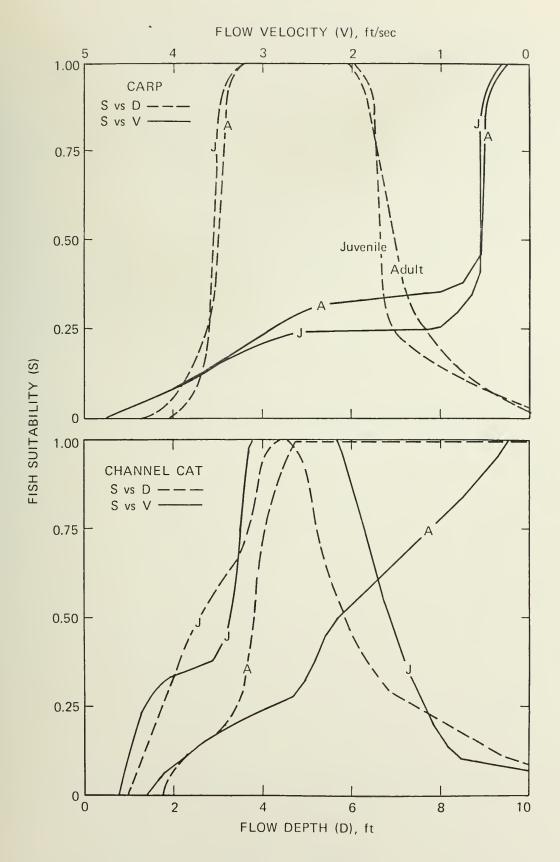


Figure 5. Continued

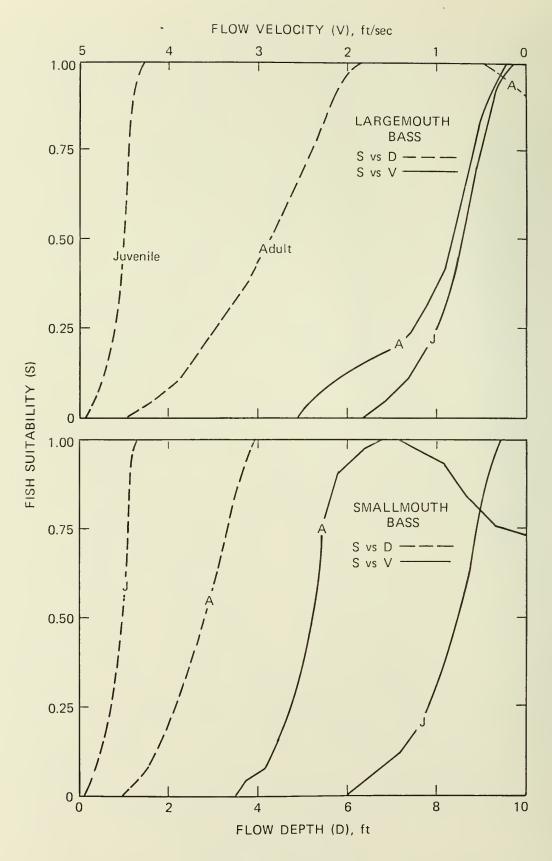


Figure 5. Continued

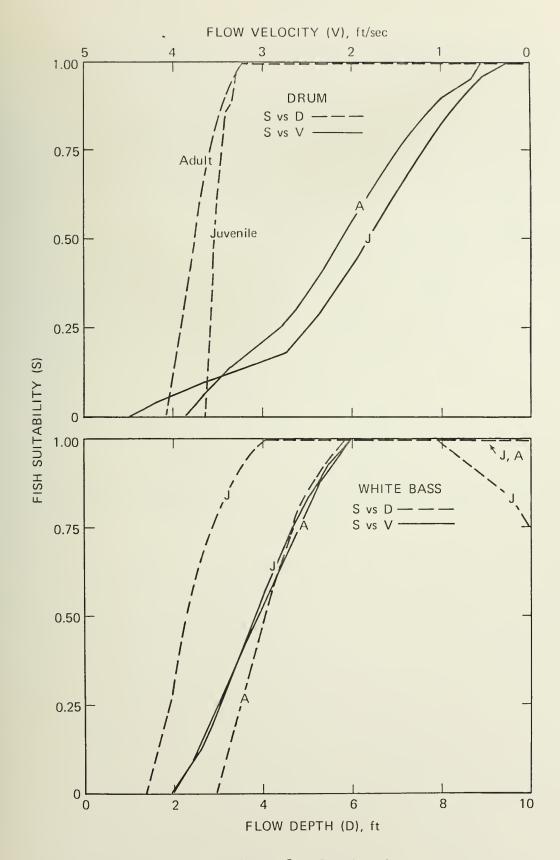


Figure 5. Continued

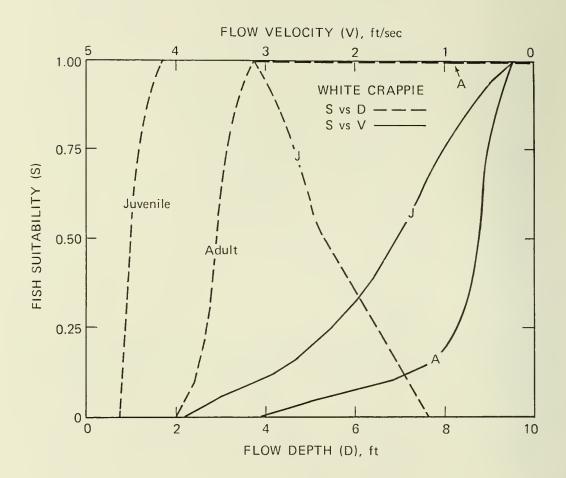


Figure 5. Concluded

depth, D. Some observations of interest for suitability > 0.5 are:

- 1) Bluegill. The juvenile fish prefers a dpeth of 1.2-4.8 ft and a velocity ≤ 0.16 ft/sec, whereas the adult prefers a depth of 2.6-6.1 ft and a velocity ≤ 0.48 ft/sec. The overall preference is for very low to low velocities and low to medium depths---a condition in pools at low to medium flows.
- 2) Bluntnose. The juvenile fish prefers a depth of 0.5 0.8 ft and a velocity ≤ 0.37 ft/sec, whereas the adult perfers a depth of 0.4 1.1 ft and a velocity ≤ 0.23 ft/sec. The overall preference is for very low to low velocities and very low to low depths---a condition at riffles and shallow parts of the pools at very low to low flows.
- 3) Carp. The juvenile fish prefers a depth of 2.9 6.6 ft and a velocity ≤ 0.56 ft/sec, whereas the adult likes a depth of 3.0 7.0 ft and a velocity ≤ 0.51 ft/sec. The overall preference is for very low to low velocities and medium to high depths---a condition in deep pools at low and medium flows.
- 4) Channel Cat. The juvenile fish prefers a depth of 2.5 5.9 ft and a velocity of 1.57 3.35 ft/sec, whereas the adult fish likes a depth of 3.8 and higher and a velocity < 2.15 ft/sec. The overall preference is for 3 6 ft depth and 1.5 2.2 ft/sec velocity---a condition of medium flow in the pools and somewhat higher flows at the riffles.
- 5) Largemouth Bass. The juvenile fish prefers a depth \geq 1.0 ft and a velocity \leq 0.70 ft/sec, whereas the adult fish prefers a depth \geq 4.3 ft and a velocity \leq 0.83 ft/sec. The overall preference is for medium to high depths and low velocities——a condition of medium flows in the pools.
- 6) Smallmouth Bass. The juvenile fish prefers a depth \geq 1.0 ft and a velocity \leq 0.74 ft/sec, whereas the adult fish likes a depth \geq 2.8 ft and a

velocity ≤ 2.62 ft/sec. The overall preference is for low to high velocities and depths and this fish may be found at different ranges of flow.

- 7) <u>Drum</u>. The juvenile fish prefers a depth ≥ 2.5 ft and a velocity ≤ 1.81 ft/sec, whereas the adult prefers a depth ≥ 2.9 ft and a velocity ≤ 2.12 ft/sec. The overall preference is for depths ≥ 2.5 ft and a velocity ≤ 1.8 ft/sec---a condition which may be found at riffles and pools at medium and higher flows.
- 8) White Bass. The juvenile fish prefers a depth of 2.3 11.3 ft and a velocity ≤ 3.05 ft/sec, whereas the adult likes a depth ≥ 4.0 ft and a velocity ≤ 3.08 ft/sec. The overall preference is for depth ≥ 3 ft and velocity ≤ 3 ft/sec---a condition which may be found in the pools at low to high flows and at the riffles at medium to high flows.
- 9) White Crappie. The juvenile fish prefers a depth of 1.0 5.4 ft and a velocity ≤ 1.54 ft/sec, whereas the adult prefers a depth ≥ 2.9 ft and a velocity ≤ 0.63 ft/sec. The overall preference is for low to medium velocities and low to high depths---such conditions can occur in pools and at riffles for low to high flows.

The domain for 0.5 - 1.0 suitability is mapped in terms of velocity and depth for the juvenile fish in figure 6 and for the adult fish in figure 7 for all the target species. It is evident from figure 6 that all the juvenile fish except for bluntnose and channel catfish have some common V-D space. Similarly, figure 7 shows that with the exception of bluntnose fish, the adult fish have some common V-D space.

Riffles and Pools

Let the riffles have an average length $\mathbf{1}_r$ along the stream and an average width \mathbf{w}_r for a certain flow in a stream reach. The corresponding average pool

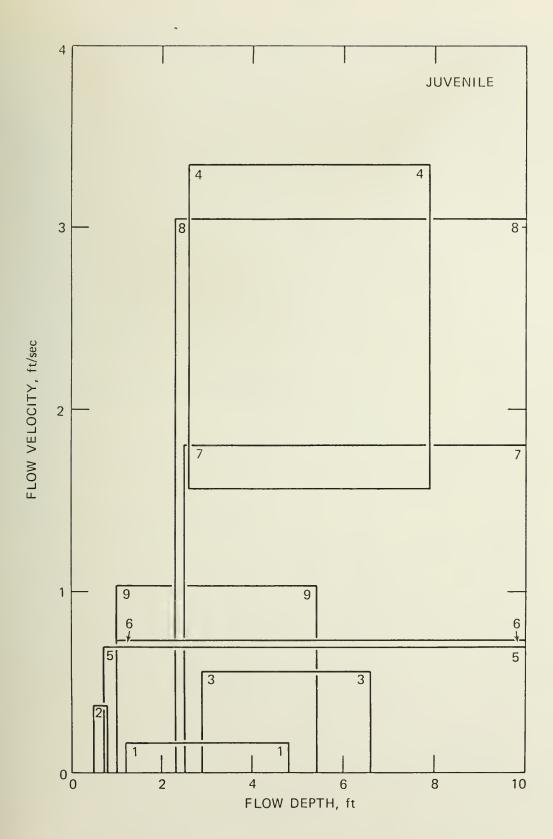


Figure 6. Velocity-depth domain for juvenile fish preference 0.5 - 1.0

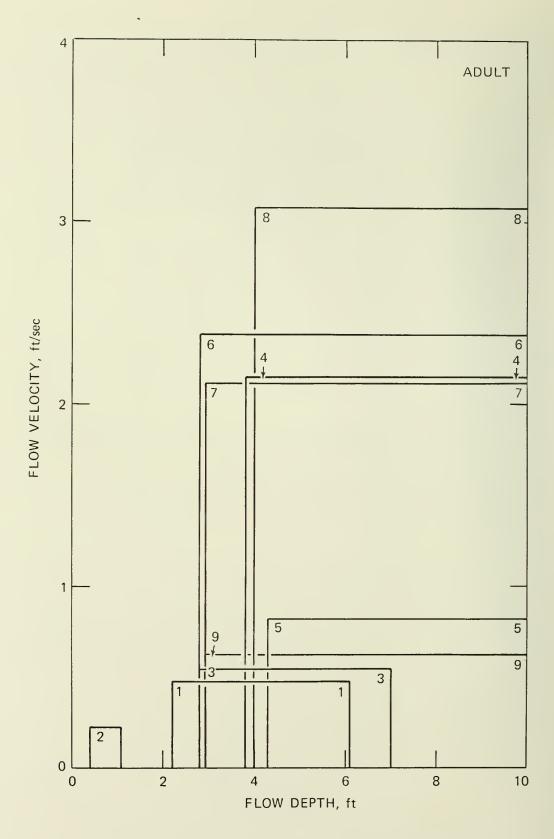


Figure 7. Velocity-depth domain for adult fish preference $0.5\,-\,1.0$

lengh and width are denoted by l_p and w_p , respectively. The average depths for the riffle and pool are d_r and d_p . The local values of d_r and d_p vary from the average values for the riffle and pool, and the percent variation of the local values from the average value is usually less for the riffles than the pools. The hydraulic geometry relations yield the average values of depth and velocity. The local values in the riffles and pools may be higher or lower than the average values. It is common knowledge that the velocity and depth at the banks are much lower than the average values for a straight river reach. However, these values may be higher along one bank along the bend. The varying velocities and depths in riffles and pools provide a range of subareas or cells of water more suitable to one fish than the other, depending on their relative preferences. This variety helps in maintaining different life stages of various fishes and provides a semblance of continuum for their development, even with more frequent flow variations.

The IFG Incremental Methodology

The Cooperative Instream Flow Service Group of the U.S. Fish and Wildlife Service has developed a methodology (Bovee and Milhous, 1978), termed the IFG Incremental Methodology, to describe the effects of incremental changes in streamflow on the instream fishery potential. The methodology allows calculations of weighted usable area, WUA, as an index of habitat suitability. The WUA in a river reach divided into n cells is defined as

WUA =
$$\Sigma$$
 S(d_i) × S (v_i) × × A_i

in which S(d), S(v), ..., are suitability indexes for depth, velocity, ...;

A is the surface area of the cell which is relatively homogeneous in respect

to d, v, ...; and subscript i refers to the cell i. This procedure approximates

the total water surface area in a simulated reach to an equivalent area of preferred habitat for the fish under consideration.

The concept of multiplying the suitability indexes or preferences is rather open to question. The preference curves for velocity and depth are derived, considering both velocity and depth as independent variables. However, the hydraulic geometry relations indicate a definite relationship between velocity and depth in terms of drainage area and percent flow duration. Consider the case for a low-flow release that gives S(d) = 0.4 and S(v) = 0.4 for a particular fish. The multiplication concept will yield a combined suitability or preference of 0.16. Two other criteria can be considered: the minimum (MIN) of the two preferences, and the geometric mean (GM) of the two preferences. Then: MPL preference = $0.4 \times 0.4 = 0.16$

MIN preference = min
$$[0.4, 0.4] = 0.4$$

GM preference = $\sqrt{0.4 \times 0.4} = 0.4$

When the two preferences are equal, both MIN and GM criteria represent the habitat suitability condition but the MPL (multiplication) preference grossly underestimates it. For a case with unequal preferences, say 0.3 and 0.7, the three criteria yield the following:

MPL preference =
$$0.3 \times 0.7 = 0.21$$

MIN preference = min $[0.3, 0.7] = 0.3$
GM preference = $\sqrt{0.3 \times 0.7} = 0.46$

The GM preference implies that the combined reference will be less than the mean preference but more than the MIN preference because of the positive effect of the higher preference. GM preference or the MIN preference should give a habitat suitability index closer to the actual than the MPL. The GM or the mean of GM and MIN preferences may be the desirable habitat suitability index for use in WUA computations.

METHODOLOGY AND COMPUTER PROGRAM

The fish suitability or preference is evaluated with MIN and GM criteria for both juveniles and adults of 9 target fish, for both riffle and pool conditions, and for each of the 8 low flow release criteria below each of the 123 stream gaging stations. The reservoir costs for developing a net supply equal to 2, 5, 10, and 20 percent of mean streamflow and a design drought recurrence interval of 25 or 40 years are computed with 10 low flow release criteria: no mandatory low flow release, a low flow release equal to 0, 10 to be met once in 10 years, and 8 low flow releases, Cl through C8, to be met at 5-, 10-, 20-, 25- or 40-year recurrence intervals. The reservoir cost depends on the storage capacity. Evaluation of storage for meeting the design supply and the low flow release involves consideration of lake evaporation and sedimentation. A brief description of the data inputs and salient features of the computer program, developed to yield needed information, follows together with an explanation of methodology where necessary.

Data Inputs

The main data inputs are fish suitability or preference, flow velocity and depth for the 8 low flow releases, supply-storage-drought duration-frequency (or recurrence interval) information, net lake evaporation data, and lake sedimentation data.

Fish Suitability or Preference

The data on fish preferences (both juvenile and adult) for the 9 target fish as contained in table 4 are stored in the computer for use in the program.

Flow Velocity and Depth for Low Flow Releases

The data on 8 low flow releases, in cfs, and associated flow velocity

and depth (in ft/sec and ft, respectively) as given in table 2 for each of the 123 stations are stored in the computer.

Supply-Storage-Drought Duration-Frequency

The net reservoir storage, in inches, and the associated drought duration for critical reservoir drawdown, in months, for 11 supply rates equal to 2, 5, 10, 15, 20, 25, 30, 35, 40, 45, and 50 percent of mean flow and 5 recurrence intervals (5, 10, 20, 25, and 40 years) are stored in the computer for 112 gaging stations. Necessary data on these stations were available from Bulletins 51 (Stall, 1964) and 51A (Terstriep et al., in preparation, 1981). A typical example of such data is shown below:

KICKAPOO CREEK NEAR LINCOLN

1	0.00	.03	.14	.29	.47	.68	.91	1.16	1.40	1.65	1.93
1	1	2	4	5	6	6	7	7	7	7	8
2	0.00	.05	.20	.39	.62	.87	1.12	1.40	1.69	2.00	2.32
2	1	4	5	6	7	7	8	8	8	9	9
3	.01	.08	.25	.48	.73	1.01	1.31	1.62	1.94	2.28	2.84
3	2	4	6	7	7	8	9	9	9	10	18
4	.01	.08	.27	.51	.77	1.05	1.36	1.68	2.01	2.53	3.16
4	2	4	6	7	8	8	9	9	10	18	18
5	.01	.10	.30	.55	.83	1.14	1.45	1.80	2.43	3.06	3.77
5	2	5	7	7	8	9	9	18	18	18	20

Numbers 1, 2, 3, 4, and 5 refer to 5-, 10-, 20-, 25-, and 40-year recurrence intervals. The eleven columns correspond to supply rates of 2, 5, 10, 15, 20, 25, 30, 35, 40, 45, and 50 percent of mean flow. The first line for each number denotes the net storage in inches to meet a particular demand, and the second line denotes the associated drought duration in months.

Net Lake Evaporation

Net lake evaporation data for 10 locations -- Chicago, Rockford, Moline, Peoria, Springfield, Urbana, and Carbondale in Illinois; St. Louis in Missouri; and Evansville and Indianapolis in Indiana -- were stored in the computer. The

data were developed for Bulletin 51A (Terstriep et al., 1981) for 36 critical drought durations -- 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, and 60 months -- for each of the 5 drought recurrence intervals of 5, 10, 20, 25, and 40 years.

Lake Sedimentation

The values of a and β in the relation

$$PCR = a(^{CP}/_{T})^{\beta}$$

in which PCR is the percent capacity reduction and $^{\mathrm{CP}}/_{\mathrm{I}}$ is the capacity-inflow ratio, were stored in the computer for the 9 regions.

Reference Data

The serial number (1 to 123), USGS gaging station number, applicable net lake evaporation station number (1 through 10), applicable sediment region (1 through 9), mean monthly flow in inches from Bulletins 51 (Stall, 1964) and 51A (Terstriep et al., in preparation, 1981), and drainage area in square miles at each of the 123 gaging stations were stored in a tabular format in the computer.

For sedimentation purposes, the part of northern Illinois not included in any sediment region (because no lake sediment data are available in that area) is considered to have the same characteristics as region 4; the area west of region 8 is given the same characteristics as region 8; and that below region 9 is taken to have characteristics similar to region 9.

Reservoir Costs Program

A computer program was developed to determine the gross storage (i.e., net storage for meeting water demand and storage needed to meet lake evaporation

and sedimentation requirements) for four supply rates of 2, 5, 10 and 20 percent of mean flow, two design recurrence intervals of 25 and 40 years for supply, five recurrence intervals of 5, 10, 20, 25 or 40 years for low flow releases, and eight low flow releases, together with zero and $Q_{7,10}$ flow releases, at each of the 112 gaging stations. The gross storage was converted to the reservoir cost with a suitable cost equation. The program has five main subroutines which are described briefly.

Storage Subroutine

First, the net storage for the four supply rates of 2, 5, 10, and 20 percent of mean flow and the associated drought durations in months is obtained from the supply-storage-drought duration-frequency table (abbreviated as SSDF) for the design recurrence intervals of 25 and 40 years and without any mandatory low flow release. Then, the four supply rates are converted to 9×4 matrix, by addition to each of them the low flow releases C1 through C8 and $Q_{7,10}$. The net reservoir storage and the associated drought duration for each of the supply-plus-release rates (total of 36 or 9×4) and for recurrence intervals of 5, 10, 20, and 25 years with a supply design drought of 25 years, and for recurrence intervals of 5, 10, 20, and 40 years with supply design drought of 40 years, are obtained by interpolation from the SSDF table. Thus, at each station there are 148 values each of storage and drought duration for each supply design drought of 25 and 40 years; information is stored in two 2×148 arrays for storage in inches, ST(2, 148), and drought duration in months, DD (2, 148).

EVAP Subroutine

For a gaging station, the applicable net lake evaporation station is obtained from the reference table. The net lake evaporation, in inches, for the 2×148 array for the drought duration in months is obtained from the net evaporation table directly or by interpolation. This table is

stored in a matrix form $36 \times 5 \times 10$ in which 36 denotes durations from 1 to 60 months; 5 refers to recurrence intervals of 5, 10, 20, 25 and 40 years; and 10 pertains to the net lake evaporation station. The information on evaporation in inches is stored in EV(2, 148).

SDEVST Subroutine

This (sediment-evaporation-storage) subroutine is used for computing the gross storage. For a design drought of 25 years, 37 net storages (corresponding to net supply rate with no mandatory low flow release; and 9 supply rates equal to the net supply rate plus low flow release C1, C2, ..., C8, or $Q_{7,10}$ and recurrence intervals of 5, 10, 20, and 25 years) for each of the basic 2, 5, 10 and 20 percent of mean flow rate, are converted to gross storages. Similarly, gross storages are calculated for the design drought of 40 years. This yields the gross storage array STG (2, 148). The gross storage is calculated from the net storage as explained below.

Let S $_{0}$ be the initial net storage. Initialize DELEV and DELSD equal to zero. Capacity-inflow ratio, CIR, equals $_{1}^{S}$ where I is the mean inflow, in inches, to the reservoir. The annual capacity loss, ACL, equals

$$ACL = a(CIR)^{\beta} \times 0.01 \times S_{o}$$

Capacity loss, in inches, from sediment over T years is

$$CLSD = ACL \times T$$

Then,

$$S_1 = S_0 + CLSD - DELSD$$

and in ac ft, S₁ is

$$S_1$$
 (ac ft) = $\frac{640 \text{ A S}}{12}$ 1

in which A is the drainage area in square miles. The corresponding water surface area, WSA, in acres (Dawes and Wathne, 1968) is

WSA = 0.23
$$[S_1(ac\ ft)]^{0.87}$$

and the capacity loss from evaporation, CLEV, in inches is given by

CLEV = EV
$$\times$$
 0.65 \times WSA/(A \times 640)

Therefore, gross capacity S_2 equals

$$S_2 = S_1 + CLEV - DELEV$$

The ratio of difference in ${\rm S_2}$ and ${\rm S_o}$ to ${\rm S_o}$, or DIF, is obtained from

DIF =
$$(S_2 - S_0)/S_0$$

If this DIF $< 0.01 \, \mathrm{S}_{\mathrm{o}}$, the gross capacity equals S_{2} . If not, initialize

$$DELSD = CLSD$$

DELEV = CLEV

$$S_0 = S_2$$

and start with computing ACL again. If the final $S_{_{\rm O}}$ is less than the $S_{_{\rm O}}$ with design drought recurrence interval of 25 or 40 years and with no mandatory low flow release, the final $S_{_{\rm O}}$ (which is less sometimes for low flow releases at smaller recurrence intervals) is taken as equal to the $S_{_{\rm O}}$ with design drought and zero low flow release.

The subroutine yields values of gross storage on the assumption that the reservoir can supply the net demand at the end of design drought, T, years even when the critical drought occurs in the Tth year. If the net storage for a supply of 2, 5, 10 or 20 percent of mean flow does not need any storage, no reservoir is needed and no calculations are done for that supply rate with or without low flow releases.

COST Subroutine

The capital reservoir cost in July 1980 dollars is computed (Singh and Adams, 1980) from

Capital cost =
$$26400 \text{ (storage)}^{0.54} + 1.5 \text{ (LC) WSA}$$

in which storage is in ac-ft, WSA is water surface area in acres at normal pool level, and LC is the land cost in dollars per acre.

RESULT Subroutine

The subroutine prints the results in two series of tables: table 5 series for 25-year design drought and table 6 series for 40-year design drought. Tables 5.009 and 6.009 for the Little Wabash River below Clay City are included here as examples. The complete set of these tables for all the gaging stations analyzed is in Volume II of this report (Singh and Ramamurthy, 1981).

As shown in table 5.009, table 5 gives storage in ac-ft and the capital cost of reservoir and land in thousands of dollars for a net water supply of 2, 5, 10 and 20 percent of mean flow at a gaging station, with different levels of low flow releases:

<u>Level</u>	T, yrs	
0	25	The storage, S _o , is designed for a 25-year drought
		when no flow release is mandated.
Q _{7,10}	10	The storage, S, is designed for a 10-year drought with
,		$Q_{7,10}$ as the minimum low flow release from the reservoir:
		if $S < S_0$, make $S = S_0$.
1*	5	The storage, S, is designed for a 5-year drought with Cl
		as the minimum low flow release from the reservoir; if
		$S < S_0$, make $S = S_0$.
	• • •	
	• • •	
	25	The storage, S, is designed for a 25-year drought with Cl
		as the minimum low flow release from the reservoir.

NOTE: Extra cost for providing a certain low flow release equals the cost with release minus the cost with no release or level zero.

^{*} Level 1 through 8 denote low flow release Cl through C8.

TABLE 5.009 RESERVOIR STORAGE AND COST FOR A 25-YEAR RECURRENCE DROUGHT USGS # 3379500 Little Wabash River below Clay City

		STORAGE IN ACRE-FEET FOR % MEAN FLOW USE OF					RESERVOIR COST IN 1000 \$ FOR % MEAN FLOW USE OF			
LEVEL	T,YR	2	5	10	20		2	5	10	20
0	25	9379	19146	40272	91753		5164	8169	13347	23380
Q7,10	10	9379	19146	40272	91753		5164	8169	13347	23380
1	5 10 20 25	10028 12441 14472 15346	19146 21741 25911 26940	40272 40272 47169 49294	91753 91753 95530 100347		5388 6183 6814 7077	8169 8875 9959 10217	13347 13347 14843 15291	23380 23380 24042 24876
2	5 10 20 25	9379 9964 11559 12414	19146 19146 22135 23088	40272 40272 43015 44805	91753 91753 92253 95268		5164 5366 5899 6175	8169 8169 8980 9231	13347 13347 13951 14338	23380 23380 23468 23996
3	5 10 20 25	16414 20558 24419 25419	24454 30500 36538 37902	40272 49131 59334 62417	91753 91945 109348 116723		7392 8556 9578 9834	9587 11091 12507 12817	13347 15257 17338 17946	23380 23413 26407 27637
7‡	5 10 20 25	10887 13639 15875 16743	19146 23193 27741 28803	40272 40761 49194 51482	91753 91753 97819 102878		5678 6559 7234 7487	8169 9259 10417 10679	13347 13456 15270 15746	23380 23380 24440 25310
5	5 10 20 25	9379 9605 11138 11992	19146 19146 21599 22539	40272 40272 42428 44170	91753 91753 91753 94577		5164 5242 5761 6039	8169 8169 8837 9087	13347 13347 13822 14201	23380 23380 23380 23875
6	5 10 20 25	9379 10698 12401 13278	19146 19621 23238 24214	40272 40272 44224 46112	91753 91753 92212 96727		5164 5615 6170 6447	8169 8300 9271 9525	13347 13347 14213 14618	23380 23380 23460 24250
7	5 10 20 25	9379 10438 12095 12972	19146 19310 22847 23814	40272 40272 43795 45648	91753 91753 93129 96199		5164 5527 6072 6351	8169 8214 9168 9421	13347 13347 14120 14519	23380 23380 23622 24158
8	5 10 20 25	9891 12250 14249 15123	19146 21511 25621 26644	40272 40272 46848 48948	91753 91753 95168 99952		5341 6122 6746 7010	8169 8814 9885 10143	13347 13347 14775 15219	23380 23380 23979 24808

- C1 = Median 31-day low flow during the period May October.
- C2 = Half median 31-day low flow during the period May October.
- C3 = Median 61-day low flow during the period May October.
- C4 = Half median 61-day low flow during the period May October.
- C5 = Flow at 90 percent duration using daily flows May October.
- C6 = Flow at 85 percent duration using daily flows May October.
- C7 = Flow at 90 percent duration using daily flows for the record.
- C8 = Flow at 85 percent duration using daily flows for the record.

The flows corresponding to C1 through C8 at all the 123 gaging stations are given in table 2.

Table 6 gives the same information as in table 5 but with a design drought recurrence interval of 40 years.

Fish Suitability Program

A computer program was developed to determine the values of fish suitability for the juveniles and adults of the 9 target fish, for both riffle and pool conditions, with MIN and GM criteria at each of the 123 gaging stations and 8 low flow releases, C1 through C8. As explained previously, MIN refers to the smaller of the two fish suitability indexes for depth and velocity, and GM refers to the geometric mean of the two indexes, for a given flow condition.

Riffle Conditions

At a gaging station, the flow velocity, V, and depth, D, are read from the computer storage for each of the 8 low flow releases. The fish suitability or preference for each V and D is interpolated from the suitability data stored in the computer, for the juvenile and adult species of each of

TABLE 6.009 RESERVOIR STORAGE AND COST FOR A 40-YEAR RECURRENCE DROUGHT USGS # 3379500 Little Wabash River below Clay City

		STORAGE IN ACRE-FEET FOR % MEAN FLOW USE OF					RESERVOIR COST IN 1000 \$ FOR % MEAN FLOW USE OF			
LEVEL	T,YR	2	5	10	20		2	5	10	20
0	40	15169	28297	53572	121103		7024	10555	16175	28358
Q7,10	10	15169	28297	53572	121103		7024	10555	16176	28358
1	5 10 20 40	15609 18319 20623 23174	28297 28388 32789 37486	53572 55042	121103 121103 121103 140379		7 155 7937 8574 9254	10555 10577 11637 12722	16176 16176 16476 18125	28358 28358 28358 31452
2	5 10 20 40	15169 15586 17443 19290	28297 28297 28891 32864	53572 53572	121103 121103 121103 130782		7024 7148 7689 8209	10555 10555 10700 11655	16176 16176 16176 17117	28358 28358 28358 29926
3	5 10 20 40	22510 27115 31181 35664	31066 37664 44329 50768	57086 67863	121103 121103 121381 165133		9079 10261 11255 12306	11227 12763 14236 15599	16176 16889 19000 20945	28358 28358 28403 35271
24	5 10 20 40	16551 19625 22074 25039	28297 29947 34756 39713	53572 57183	121103 121103 121103 145058		7431 8301 8964 9737	10555 10958 12097 13223	16176 16176 16908 18608	28358 28358 28358 32187
5	5 10 20 40	15169 15234 16984 18718	28297 28297 28315 32204	53572 53572	121103 121103 121103 129425		7024 7044 7557 8049	10555 10555 10559 11499	16176 16176 16176 16972	28358 28358 28358 29708
6	5 10 20 40	15169 16390 18380 20460	28297 28297 30075 34218	53572 53572	121103 121103 121103 133576		7024 7385 7955 8530	10555 10555 10989 11972	16176 16176 16176 17413	28358 28358 28358 30374
7	5 10 20 40	15169 16106 18049 20045	28297 28297 29655 33738	53572 53572	121103 121103 121103 132583		7024 7301 7861 8417	10555 10555 10887 11860	16176 16176 16176 17308	28358 28358 28358 30215
8	5 10 20 40	15459 18111 20382 22877	28297 28297 32477 37132	53572 55201	121103 121103 121103 139639		7111 7878 8509 9176	10555 10555 11563 12642	16176 16176 16508 18048	28358 28358 28358 31336

the 9 target fish. The suitability values are printed out in the Table 7 series (7.001 to 7.123). Table 7.009 is included here as an illustration. The set of 123 tables is included in Volume II of this report (Singh and Ramamurthy, 1981). The Q1 through Q8 are the same as C1 through C8 in table 2.

Pool Conditions

The average flow depth, d_p , in a pool is obtained from $d_p = d_r + b \log A$

in which d_r is the average flow depth at the riffle, A is the drainage area in square miles, and b is a coefficient. The associated average flow velocity in the pool, v_p , is given by

$$v_p = (d_r \times v_r) / d_p$$

in which v_r is the average flow velocity at the riffle. With v_p and d_p , the fish suitabilities were calculated as for the riffle condition for 3 values of b: 0.50, 0.75, and 1.00. A set of 123 tables with b = 0.75, tables 8.001 to 8.123, is included in Volume II of this report (Singh and Ramamurthy, 1981). Table 8.009 is given here as an example. The Q1 through Q8 are the same as C1 through C8 in table 2.

TABLE 7.009 FISH SUITABILITY BASED ON V & D FROM HYDRAULIC GEOMETRY USGS # 3379500 Little Wabash River below Clay City

	USGS #	3379500	Little	Wabash	n Rive	r below	w Clay	City		
FISH	TYPE	CRIT	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8
1	JUVNL	MIN GM	.00	.00	.00	.00	.00	.00	.00	.00
	ADULT	MIN GM	.00	.00	.01	.00	.00	.00	.00	.00
2	JUVNL	MIN GM	.03	.06 .20	.01	.02 .15	.07	.04	.04 .18	.03
	ADULT	MIN GM	.11	.15 .39	.07	.10	.16	.14	.14	.11
3	JUVNL	MIN GM	.00	.00	.00	.00	.00	.00	.00	.00
	ADULT	MIN GM	.00	.00	.00	.00	.00	.00	.00	.00
4	JUVNL	MIN GM	.00	.00	.02	.00	.00	.00	.00	.00
	ADULT	MIN GM	.00	.00	.00	.00	.00	.00	.00	.00
5	JUVNL	MIN GM	.21 .31	.10 .26	.28	.25 .32	.09	.13 .28	.12 .26	.20
	ADULT	MIN GM	.00	.00	.00	.00	.00	.00	.00	.00
6	JUVNL	MIN GM	.27 .37	.15 .31	·34 ·46	•33 •39	.14 .31	.19 .34	.18 .33	.26 .37
	ADULT	MIN GM	.00	.00	.01	.00	.00	.00	.00	.00
7	JUVNL	MIN GM .	.00	.00	.00	.00	.00	.00	.00	.00
	ADULT	MIN GM	.00	.00	.00	.00	.00	.00	.00	.00
8	JUVNL	MIN GM	.00	.00	.00	.00	.00	.00	.00	.00
	ADULT	MIN GM	.00	.00	.00	.00	.00	.00	.00	.00
9	JUVNL	MIN GM	.00	.00	.62 .70	.12 .31	.00	.00	.00	.00
	ADULT	MIN GM	.00	.00	.00	.00	.00	.00	.00	.00

^{1 =} BLUEGILL, 2 = BLUNTNOSE, 3 = CARP, 4 = CHANNEL CAT, 5 = LARGEMOUTH BASS, 6 = SMALLMOUTH BASS, 7 = DRUM, 8 = WHITE BASS, 9 = WHITE CRAPPIE

	TABLE 8.009 USGS #	FISH SUI 3379500					TED V ow Cla			
FISH	H TYPE	CRIT	Q1	Q2	Q3	Q4	Q5	Q6	Q7	ପ୍8
1	JUVNL ADULT	MIN GM MIN GM	.45 .67 .80	.79 .89 .65	.12 .35 .88	.34 .58 .83	.86 .93 .62	.67 .82 .70	.72 .85 .68	.47 .69 .79
2	JUVNL ADULT	MIN GM MIN GM	.00 .00 .00	.00 .00 .00	.00	.00	.00 .00 .00	.00	.00	.00
3	JUVNL ADULT	MIN GM MIN GM	.84 .92 .48	.25 .50 .28	.98 .98 .97	.90 .95 .63	.21 .46 .26	.47 .68 .33	.38 .61 .31	.81 .90 .47
4	JUVNL ADULT	MIN GM MIN GM	.08 .21 .18 .42	.07 .20 .16	.08 .23 .23	.08 .22 .19 .43	.07 .20 .16	.08 .20 .17	.07 .20 .17	.08 .21 .18 .42
5	JUVNL ADULT	MIN GM MIN GM	.98 .99 .23 .48	.99 1.00 .20 .44	•93 •97 •29 •53	.98 .99 .24 .49	.99 1.00 .19	.99 1.00 .21 .46	.99 1.00 .20 .45	.98 .99 .23 .48
6	JUVNL ADULT	MIN GM MIN GM	1.00 1.00 .59 .66	1.00 1.00 .50 .61	.99 1.00 .75 .75	1.00 1.00 .62 .68	1.00 1.00 .49 .60	1.00 1.00 .53 .63	1.00 1.00 .52 .62	1.00 1.00 .58 .66
7	JUVNL ADULT	MIN GM MIN GM	.82 .91 .67	•73 •86 •15 •39	.95 .97 .95	.86 .93 .77	.71 .85 .09	.77 .88 .38	.75 .87 .28	.82 .90 .66
8	JUVNL ADULT	MIN GM MIN GM	.79 .89 .02 .15	.73 .86 .00	.88 .94 .17	.81 .90 .05	.72 .85 .00	.75 .87 .00	.75 .86 .00	.79 .89 .02
9	JUVNL ADULT	MIN GM MIN GM	1.00 1.00 .64 .80	1.00 1.00 .40 .63	.99 .99 .85	1.00 1.00 .69 .83	1.00 1.00 .36 .60	1.00 1.00 .49 .70	1.00 1.00 .45 .67	1.00 1.00 .63 .79

^{1 =} BLUEGILL, 2 = BLUNTNOSE, 3 = CARP,

^{4 =} CHANNEL CAT, 5 = LARGEMOUTH BASS, 6 = SMALLMOUTH BASS,

^{7 =} DRUM, 8 = WHITE BASS, 9 = WHITE CRAPPIE

ANALYSES AND RESULTS

Information on capital costs of reservoirs to meet four water supply rates and eight low flow releases at various drought recurrence intervals was developed with the computer program for 112 gaging stations. The fish preferences for the nine target fish, both juveniles and adults, were developed for values of b (zero which is applicable to riffles, and 0.5, 0.75, and 1.0 for the pools) with both MIN and GM criteria, at 123 gaging stations, for each of the eight low flow releases considered. The costs and fish preferences were analyzed to examine the following:

- 1. How does the fish preference change with the value of b?
- 2. Do the pools provide most of the fish habitat during low flow condition
- 3. What are the relative costs of providing low flow releases?
- 4. Do these costs vary with drainage area above the gaging station and with less variability in low flows?
- 5. What are the trade-offs between costs and fish habitat suitability in different parts of the state?
- 6. What data, field surveys, models, and analyses may be needed to analyze a river drainage system in terms of low flows, costs, and fish habitats?

Sensitivity Analysis: Parameter b

The fish suitability values for the juvenile and adult species of the nine target fish at each of the 123 gaging stations and eight low flow releases were calculated for four values of b: zero, which applies to the riffles; and 0.5, 0.75, and 1.0, which apply to the pools with increasing depth. Values of fish suitability are plotted against values of minimum flow release (ranging from 6.66 cfs to 38.50 cfs) in figure 8 for the juveniles and adults of the target fish as well as an average of these fish, for the Little Wabash River

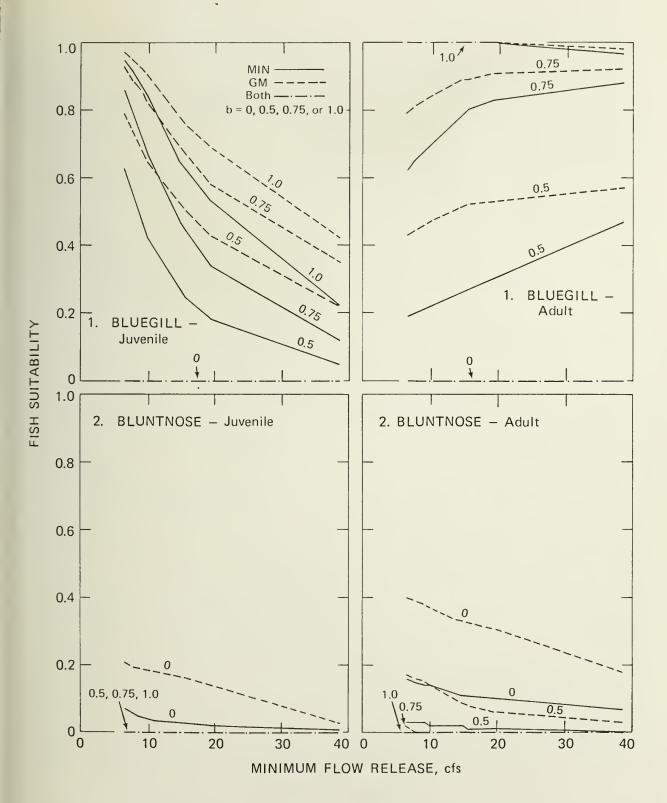


Figure 8. Fish suitability or preference for the low flow range at the Little Wabash River below Clay City (b = 0, 0.5, 0.75, and 1.0)

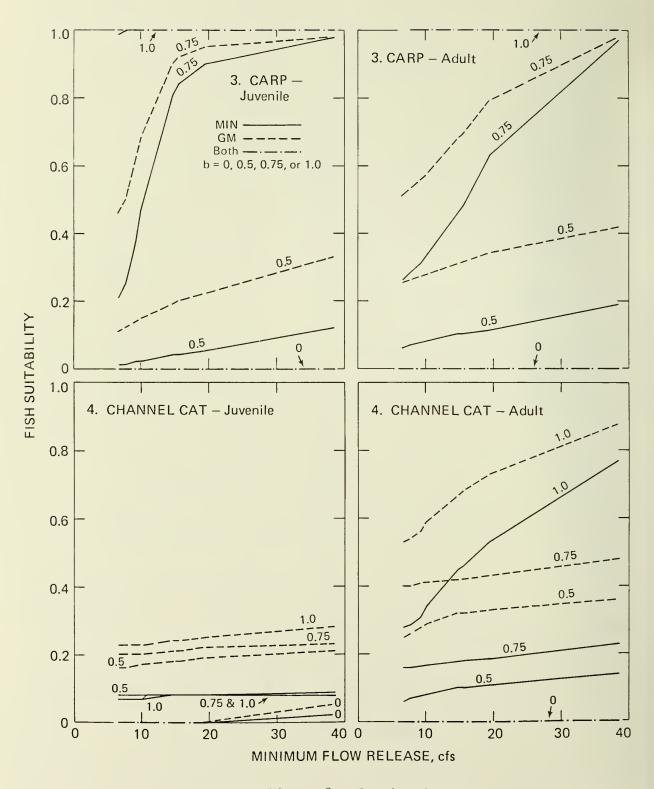


Figure 8. Continued

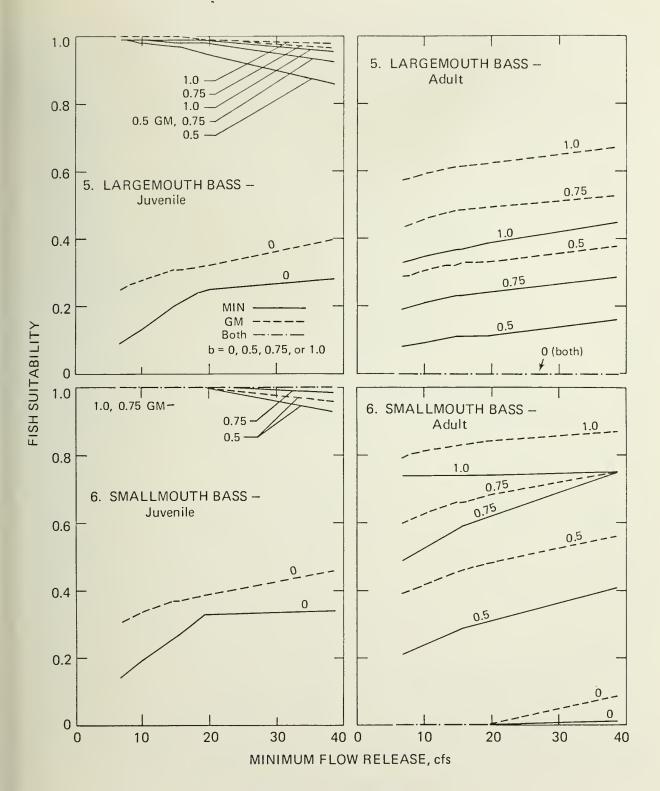


Figure 8. Continued

Figure 8. Continued

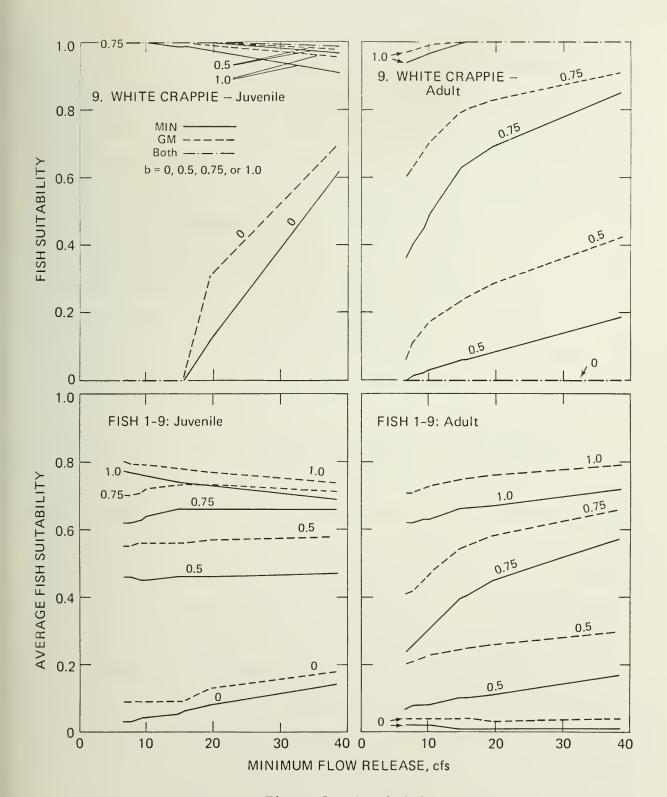


Figure 8. Concluded

below Clay City. The drainage area is 1131 square miles, the $Q_{7,10}$ equals 0.47 cfs, and the mean flow is 881 cfs, as given in table 1.

- 1) Bluegill. The juveniles have zero preference for the riffle condition because the flow velocity for the flow range exceeds 0.48 ft/sec. The preference increases with an increase in b because of larger depths and lower velocities at the low end of the flow range, but it decreases considerably as the flow increases. The GM criterion gives higher values than the MIN. The adults, too, have zero preference for the riffle condition because the flow depth is less than 1.0 ft. The preference increases with an increase in b and an increase in discharge to about 20 cfs. For the bluegill fish, a minimum flow release of 15 to 20 cfs is indicated during a drought period. This range yields a MIN of about 0.8 with b = 0.75, and 1.0 with b = 1.0 for the adult fish. The corresponding values are about 0.4 and 0.6 for the juveniles.
- 2) <u>Bluntnose</u>. The juveniles' GM preference for the riffles decreases from 0.21 to 0.03 and the MIN preference decreases from 0.07 to 0.01 with an increase in flow release from 6.66 to 38.5 cfs. The preference is zero for the pools with b = 0.5, 0.75, or 1.00 because of flow depths exceeding 1.5 ft. The adults' GM preference for b = 0 decreases from 0.40 to 0.18 and their MIN preference decreases from 0.16 to 0.07. The preferences for b = 0.5, 0.75, or 1.00 are either small or zero. Thus, the Little Wabash River below Clay City does not provide a desirable habitat for the bluntnose because of the requirements of low velocities and depths.
- 3) Carp. The juveniles have zero preference for the riffle condition because of small flow depths (0.57-0.94 ft). For the pool conditions, the preference increases greatly from b = 0.5 to 0.75 and it is 1.0 for the entire flow range for b = 1.0. A low flow release of 20 cfs and b = 0.75 give GM

and MIN values of 0.95 and 0.90, respectively. The adults, also, have a zero preference for the riffle condition, but the preferences for the pool condition increase considerably with increases in b and in flow release. For the range of low flow releases under consideration, both GM and MIN are 1.0 with b = 1.0. The corresponding values with b = 0.75 are 0.79 and 0.64 with 20 cfs, and 0.98 and 0.97 with 38.5 cfs.

- 4) Channel Cat. The juveniles have practically zero preference for the riffle condition because of small flow depths. For the pool condition, the MIN preference is about 0.08 for b=0.5, 0.75 or 1.00, but the GM slightly increases from 0.20 to 0.23, with an increase in low flow release. The adults have a zero preference for the riffle condition but the preference for the pool condition increases considerably with increases in b and in flow release. The fish like large depths and low velocities. With b=0.75, the MIN and GM preferences are 0.19 and 0.43 with 20 cfs, and 0.23 and 0.48 with 38.5 cfs. With b=1.0, the MIN and GM preferences are 0.54 and 0.73 with 20 cfs, and 0.77 and 0.88 with 38.5 cfs.
- 5) Largemouth Bass. The juveniles have MIN and GM preferences which vary from 0.25 to 0.28 and from 0.32 to 0.40, respectively, with flow releases from 20 to 38.5 cfs at the riffle. For the pools, with b = 0.5, 0.75 or 1.00, the preferences range from 0.86 to 1.0 for the low flow range under consideration. A flow release of \leq 20 cfs is indicated. The adults have a zero preference for the riffles but their preference increases considerably with an increase in b and somewhat slowly with an increase in flow. The MIN and GM preferences with b = 0.75 are 0.24 and 0.49 with 20 cfs, and 0.29 and 0.53 with 38.5 cfs. These preferences with b = 1.0 are 0.39 and 0.62 with 20 cfs, and 0.45 and 0.67 with 38.5 cfs.

- 6) Smallmouth Bass. The juveniles have MIN and GM preferences which vary from 0.33 to 0.34 and from 0.39 to 0.46, respectively, with flow releases from 20 to 38.5 cfs at the riffle. For the pools with b = 0.5, 0.75, or 1.0, the preferences range from 0.93 to 1.00 for the low flow range. A flow release of 15 to 20 or less cfs is indicated. The adults have a zero preference for the riffles for flow releases \leq 20 cfs, but their preference increases considerably with increases in b and in flow. The MIN and GM preferences with b = 0.75 are 0.62 and 0.68 with 20 cfs, and 0.75 and 0.75 with 38.5 cfs. These preferences with b = 1.0 are 0.74 and 0.84 with 20 cfs, and 0.75 and 0.87 with 38.5 cfs.
- 7) <u>Drum.</u> The juveniles have zero preference for the riffle condition, but their preference for the pools increases considerably with an increase in b. For 20 cfs flow release, the MIN preferences are 0.35, 0.84, and 1.00, and the GM preferences are 0.60, 0.93, and 1.00, for b = 0.5, 0.75 and 1.0, respectively. For 38.5 cfs, the corresponding values are 0.59, 0.95 and 1.0, and 0.76, 0.97 and 1.0. The adults have a zero preference for both riffles and pools with b = 0.5. However, their preference increases rapidly as the flow release increases with b = 0.75, and it is 1.0 with b = 1.0 for both MIN and GM for the entire low flow range. With b = 0.75, the MIN and GM are 0.78 and 0.88 at 20 cfs, and 0.95 and 0.97 at 38.5 cfs.
- 8) White Bass. The juveniles have zero preference for the riffles because of the low depth of flow. However, the preference increases with an increase in b in the pools and with an increase in flow release. The MIN and GM preferences for b = 0.75 are 0.81 and 0.90 at 20 cfs, and 0.88 and 0.94 at 38.5 cfs. Both MIN and GM preferences are close to 1.0 with b = 1.0. The adults have a zero preference for both riffle and pool with b = 0.5. The fish requires larger depth of flow. The MIN and GM preferences

with b = 0.75 are 0.05 and 0.26 for 20 cfs and 0.17 and 0.42 for 38.5 cfs. With b = 1.0, the corresponding values are 0.40 and 0.63 for 20 cfs and 0.54 and 0.73 for 38.5 cfs.

9) White Crappie. The juveniles' MIN preference for the riffle condition increases from 0.0 to 0.62 with the flow release increasing from 15.5 to 38.5 cfs. Their preferences for the pools (b = 0.5, 0.75, or 1.0) lie within 0.91 and 1.0 and decrease with an increase in flow. A 10-20 cfs flow release will be adequate. The adults have zero preference for the riffle condition because of low depths of flow. Their preference increases considerably with an increase in b and to some extent with an increase in the flow release. The MIN and GM preferences with b = 0.75 are 0.70 and 0.83 at 20 cfs and 0.85 and 0.91 at 38.5 cfs. These preferences with b = 1.0 are 1.0 for a flow of 15 to 38.5 cfs.

The fish suitability or preference values of the nine target fish in the Little Wabash River below Clay City indicate that generally a flow of 15 to 20 cfs during drought conditions will be adequate to sustain the fish with the exception of bluntnose (for which the conditions are quite different than those for the others). The preferences for the pools with b = 0.75 and 1.00 are not as much different from each other as are those with b = 0.50 and 0.75. The preferences are higher with b = 1.0 than with 0.75. The pools may have depths which correspond to b varying from 0.25 to 1.25. If a probabilistic distribution of depths within a pool were available, the pool would show a proliferation of one fish in one area and another in another area of the pool. The value of b = 0.75 is considered a reasonable estimate but it needs to be checked for different streams.

The average fish suitability or preference, as a mean of the nine individual preferences, are shown in figure 8 for each flow release and b value. For the juveniles, the average preferences for b = 0.75 are 0.66 MIN and 0.72 GM for 15 to 38.5 cfs flow. For the adults, the average preference for b = 0.75 increases from 0.46 to 0.57 with MIN and 0.58 to 0.66 with GM, as the flow release increases from 20 to 38.5 cfs.

Low Flow Release Costs

Capital cost of the reservoir needed to meet the desired water supply at the design drought recurrence interval (25 or 40 years) is denoted by ${\rm C_o}$. The capital cost of the reservoir needed to meet the desired water supply and the flow release (C1 through C8, or level 1 through 8) at the design drought recurrence interval is denoted by C. The increase in cost in providing the low flow release for the same design drought is, then, ${\rm C-C_o}$. The ratio ${\rm C/C_o}$, CR, is useful for plotting increases in costs with increases in low flow releases for the four water supply rates of 2, 5, 10 and 20 percent of mean flow. The incremental capital cost, $\Delta{\rm C}$, is obtained from

$$\Delta C = {\binom{C}_{C_0}} - 1) C_0 = (CR - 1) C_0$$

In order to provide a space sampling, five river basins (each with 3 gaging stations) were selected. These are:

I.	Litt	le Wabash River Basin	sq mi	Q _{7,10} cfs
	009	Little Wabash River below Clay City	1131	Ó.47
	010	Skillet Fork at Wayne City	464	0.00
	011	Little Wabash River at Carmi	3102	5.70
II.	Kish	waukee River Basin		
	020	Kishwaukee River at Belvidere	538	34.3
	021	S.B. Kishwaukee River near Fairdale	387	9.90
	022	Kishwaukee River near Perryville	1099	62.3
III.	Bay	Creek Basin		
	039	Hadley Creek at Kinderhook	72.7	0.00
	040	Bay Creek at Pittsfield	39.4	0.00
	041	Bay Creek at Nebo	161	0.00

IV.	Verm	ilion River Basin	sq mi	Q _{7,10} cfs
	079	N.F. Vermilion River near Charlotte	186	0.00
	080	Vermilion River at Pontiac	579	0.20
	081	Vermilion River at Lowell	1278	7.30
v.	S.F.	Sangamon River Basin		
	096	Flat Branch near Taylorville	276	0.00
	097	S.F. Sangamon River at Kincaid	562	0.79
	098	S.F. Sangamon River near Rochester	867	0.84

I. Little Wabash River Basin. The range of the low flow releases for the 3 gaging stations in this basin are:

No.	Stream and gaging station	Range, cfs
009	Little Wabash River below Clay City	6.66-38.50
010	Skillet Fork at Wayne City	0.74-7.78
011	Little Wabash River at Carmi	24.00-123.00

The lowest flow release corresponds to C5 and the highest to C3.

The cost ratios, CR, for the four supply rates and range of low flow releases for the above three stations are indicated in figures 9, 10, and 11. For providing 19.3 cfs low flow release, the extra cost for the four supply rates and 25-year design drought for station 009 are:

Supply rate, %	ΔC , 10^6 s
2	2.323
5	2.510
10	2.399
20	1.930

Thus, the ΔC varies from 2 to 2.5 million dollars but the cost ratio is 1.45, 1.31, 1.18, and 1.08 for supply rates of 2, 5, 10, and 20 percent. The cost ratio increases with decreases in supply rate and with increases in low flow release. The values of C_0 with 40-year drought are higher than for the 25-year drought and the difference increases with increases in the supply rate. As a comparison, the extra cost of providing 19.3 cfs low flow release with 40-year design drought for station 009 is given on page 85.

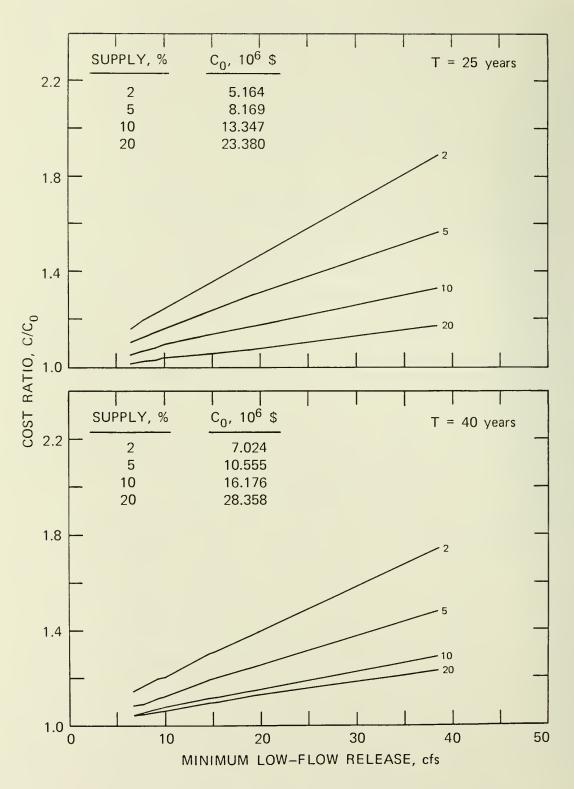


Figure 9. Cost ratio vs. low-flow release curves: Little Wabash River below Clay City

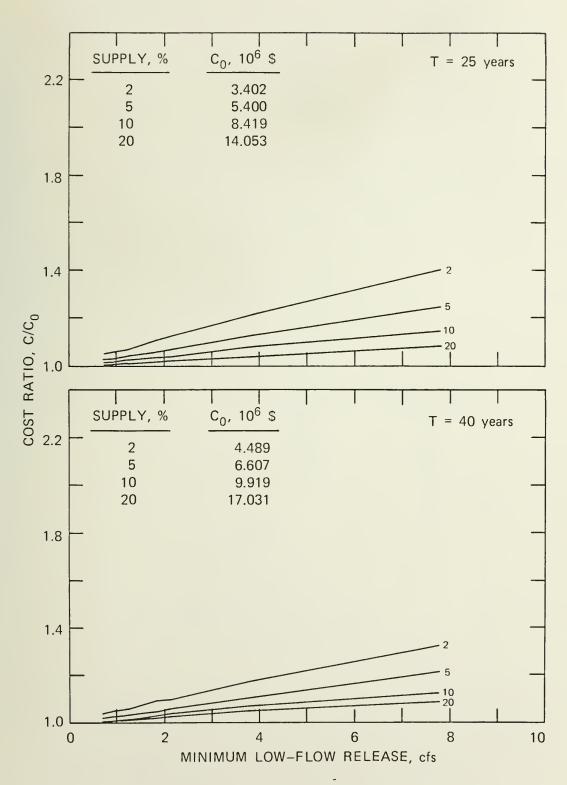


Figure 10. Cost ratio vs. low-flow release curves: Skillet Fork at Wayne City

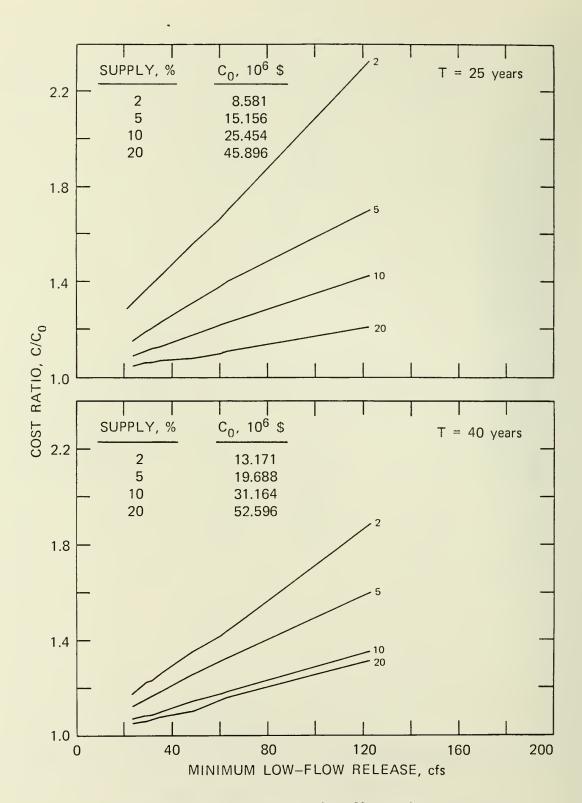


Figure 11. Cost ratio vs. low-flow release curves:
Little Wabash River at Carmi

Supply rate, %	ΔC , 10^6 \$
2	2.715
5	2.668
10	2.432
20	3.829

The low flow range, 0.74 - 7.78 cfs, for the Skillet Fork at Wayne City (figure 10) provides cost ratios <1.41 which are smaller than for station 009. The relatively high flow range, 24-130 cfs, for the Little Wabash River at Carmi (figure 11) provides cost ratios <2.33. The extra capital cost per cfs of flow release for a given design drought can be estimated from figures 9, 10, and 11 for the net water supply rates of 2, 5, 10, and 20 percent. Some approximate estimates are:

Station	T, years	Supply rate, %	ΔC per cfs, 10^6 \$
009	25	2	0.12
		5	0.12
		10	0.12
		20	0.12
010	25	2	0.18
		5	0.17
		10	0.17
		20	0.16
011	25	2	0.095
		5	0.092
		10	0.092
		20	0.082

The unit cost is higher for the Skillet Fork, which has more variable low flow, than for the other two. The unit costs decrease with increase in drainage area.

II. Kishwaukee River Basin. The range of the low flow releases for

the three gaging stations in this basin are:

No.	Stream and gaging station	Range, cfs
020	Kishwaukee River at Belvidere	36.90-92.00
021	S.B. Kishwaukee River near Fairdale	10.10-28.60
022	Kishwaukee River near Perryville	69.00-156.00

The lowest low flow release corresponds to C2 and the highest to C3. The lowest flow releases are somewhat higher than the 0.7,10 of 34.3, 9.9, and 62.3 cfs.

The cost ratios, CR, for the 2 or 3 supply rates and range of low flow releases for the above three stations are shown in figures 12, 13, and 14. The curves for 2 and 5 percent supply rates for stations 020 and 022 and the curve for 2 percent for station 021 are not shown because these supplies can be developed from the streams without any impoundments. The extra capital cost per cfs of flow release for a 25-year design drought for net water supply rates of 10 and 20 percent of mean flow, as developed from these figures, are given below for the three stations.

Station	T, years	Supply rate, %	∆C per cfs, 10 ⁶ \$
020	25	10	0.13
		20	0.13
021	25	10	0.15
		20	0.14
022	25	10	0.11
		20	0.11

The unit cost decreases with increase in low streamflows and decrease in their variability, or with increase in drainage area.

III. Bay Creek Basin. The range of the low flow releases for the 3

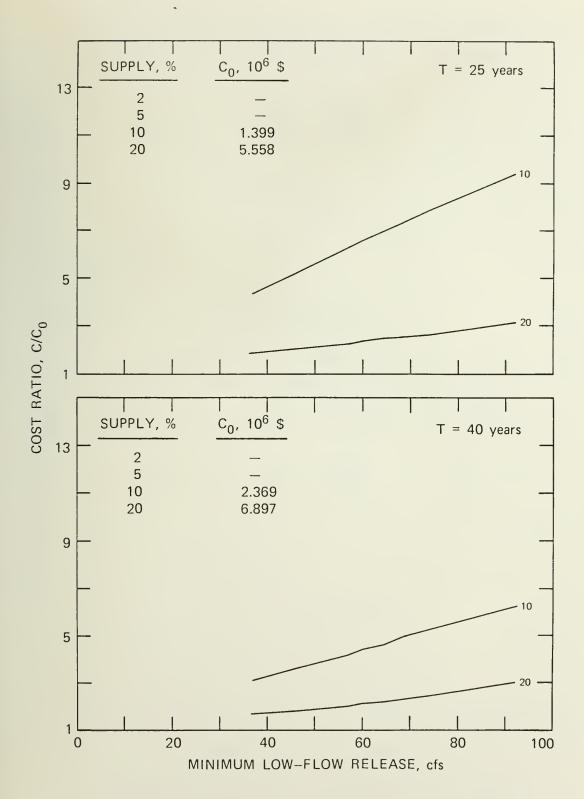


Figure 12. Cost ratio vs. low-flow release curves:
Kishwaukee River at Belvidere

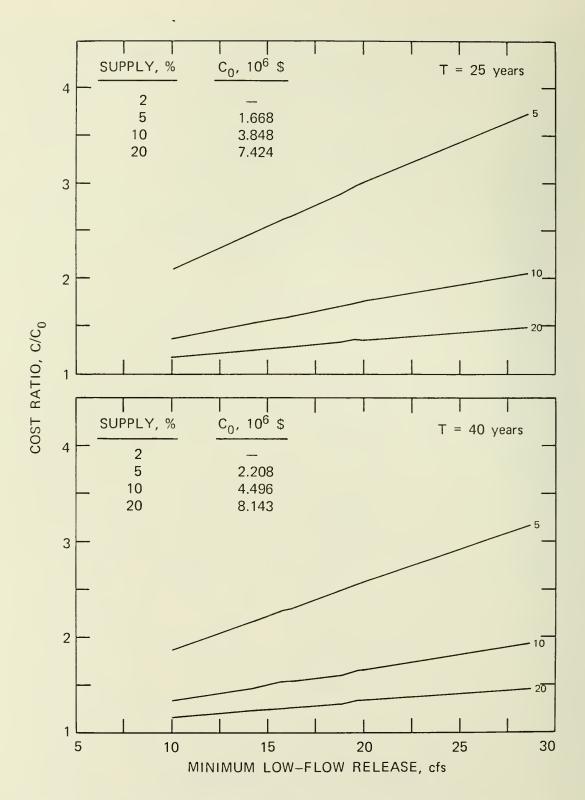


Figure 13. Cost ratio vs. low-flow release curves: S.B. Kishwaukee River near Fairdale

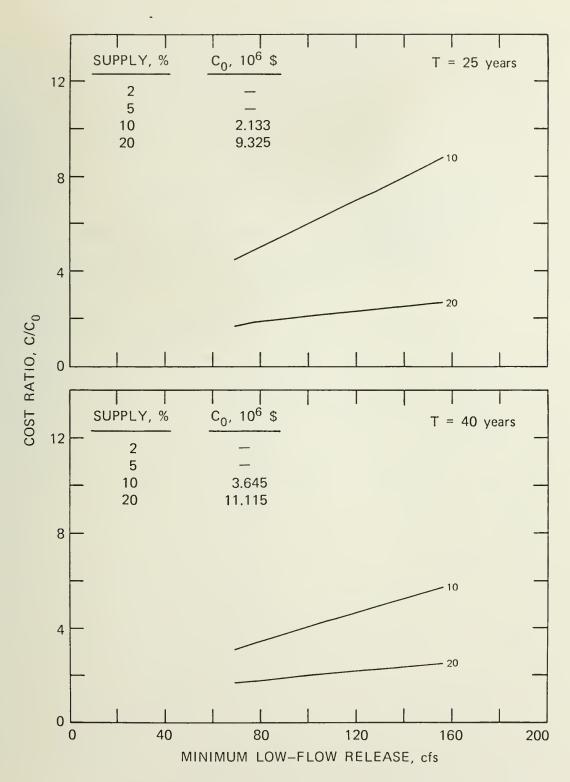


Figure 14. Cost ratio vs. low-flow release curves:

Kishwaukee River near Perryville

gaging stations in this basin are:

No.	Stream and gaging station	Range, cfs
039	Hadley Creek at Kinderhook	0.19-4.50
040	Bay Creek at Pittsfield	0.15-1.91
041	Bay Creek at Nebo	0.69-10.50

The lowest flow release corresponds to C5 and the highest to C3. The 7-day 10-year low flow at each of these stations is zero. The range of drainage areas for this basin, 39.4 to 161 sq mi, is much smaller than for the other 4 basins.

The cost ratios, CR, for the four supply rates and range of low flow releases for the above three stations are shown in figures 15, 16, and 17. The extra capital cost per cfs of flow release for a 25-year design drought for net water supply rates of 2, 5, 10, and 20 percent of mean flow, as developed from these figures, are given below for the three stations.

Station	T, years	Supply rate, %	ΔC per cfs, 10 ⁶ \$
039	25	2	0.27
		5	0.27
		10	0.32
		20	0.44
040	25	2	0.41
		5	0.43
		10	0.44
		20	0.60
041	25	2	0.23
		5	0.26
		10	0.31
		20	0.40

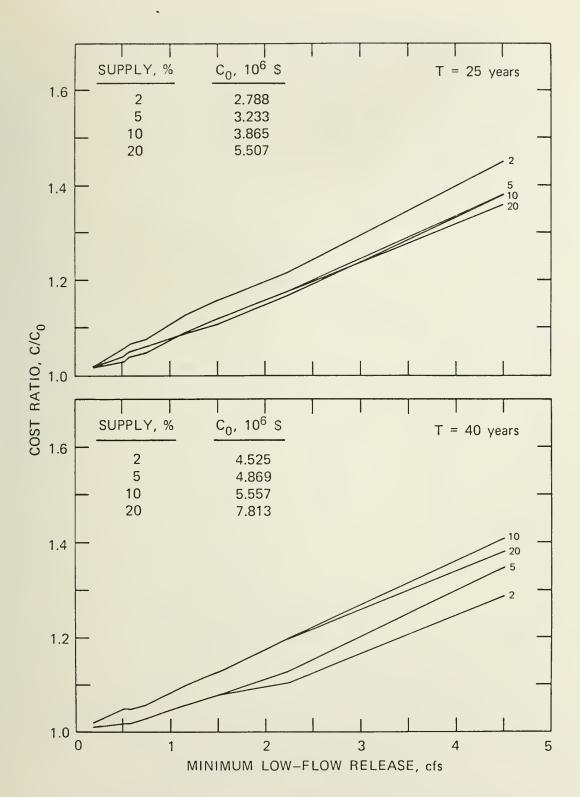


Figure 15. Cost ratio vs. low-flow release curves:
Hadley Creek at Kinderhook

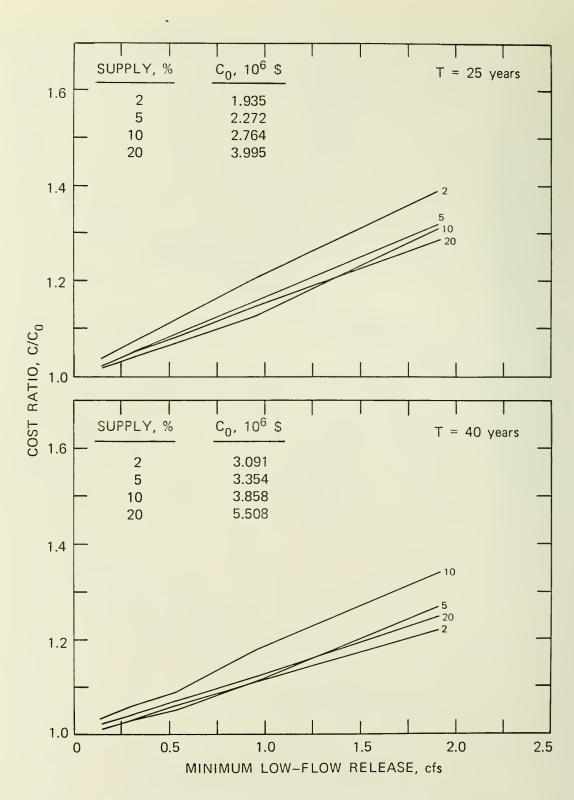


Figure 16. Cost ratio vs. low-flow release curves:
Bay Creek at Pittsfield

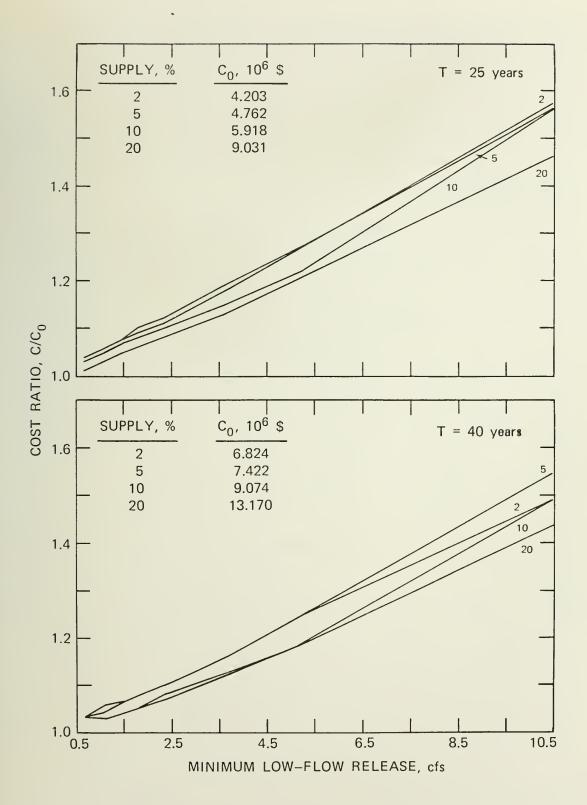


Figure 17. Cost ratio vs. low-flow release curves: Bay Creek at Nebo

The unit cost of low flow release is much higher for this basin than for the previous two basins. The reasons are smaller drainage areas and more low flow variability. The increase in unit cost with the net supply rate is attributed to high sediment potential in addition to low flow variability.

IV. Vermilion River Basin. The range of the low flow releases for the three gaging stations in this basin are:

No.	Stream and gaging station	Range, cfs
079	N.F. Vermilion River near Charlotte	0.49-2.16
080	Vermilion River at Pontiac	3.13-9.97
081	Vermilion River at Lowell	8.95-26.20

The lowest flow release corresponds to C5 for station 079 and to C2 for stations 080 and 081. The highest flow release corresponds to C3 for all three stations. The 7-day 10-year low flows are 0.00, 0.20, and 7.30 cfs, respectively. The $Q_{7,10}$ for Vermilion River at Pontiac would have been 2.0 cfs if the town was not withdrawing water for municipal use.

The cost ratios, CR, for the four water supply rates and range of low flow releases for the above three stations are shown in figures 18, 19, and 20. The extra capital cost per cfs of flow release for a 25-year design drought, as developed from these figures are given below for the three stations.

Station	T, years	Supply rate, %	ΔC per cfs, 10^6 \$
079	25	2	0.29
		5	0.29
		10	0.24
		20	0.37
080	25	2	0.19
		5	0.19
		10	0.17

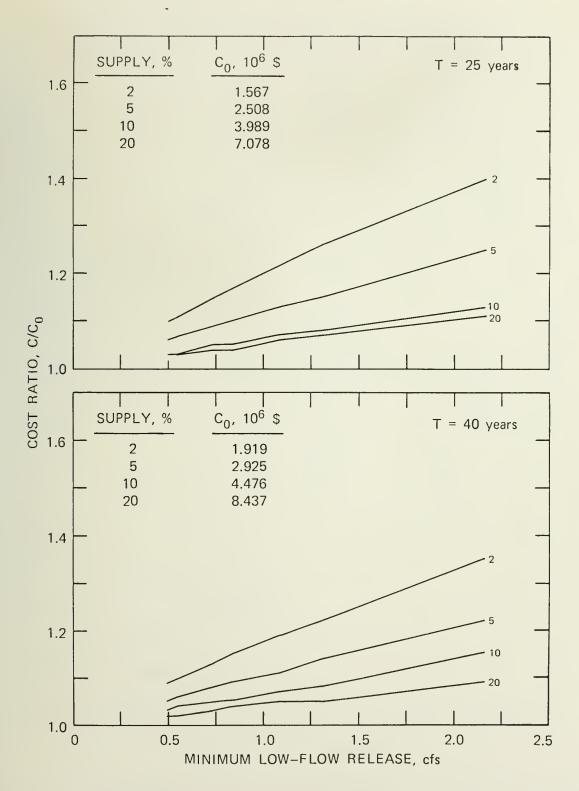


Figure 18. Cost ratio vs. low-flow release curves: N.F. Vermilion River near Charlotte

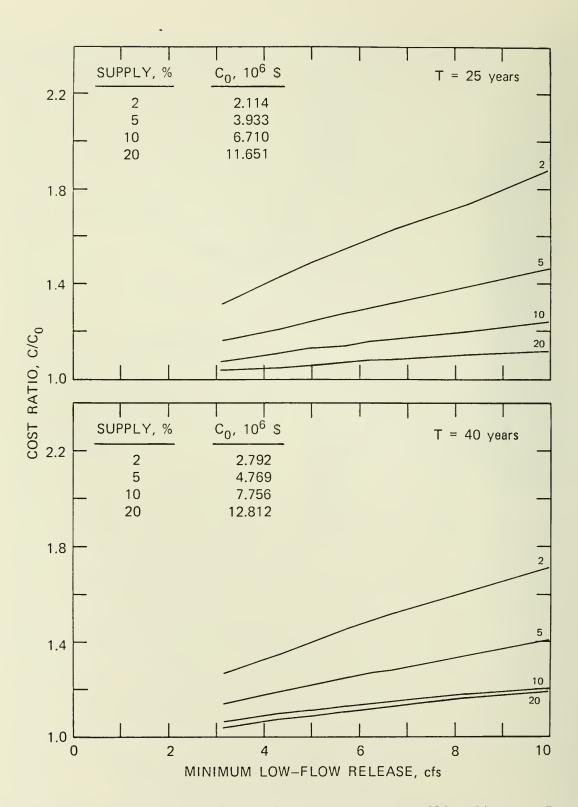


Figure 19. Cost ratio vs. low-flow release curves: Vermilion River at Pontiac

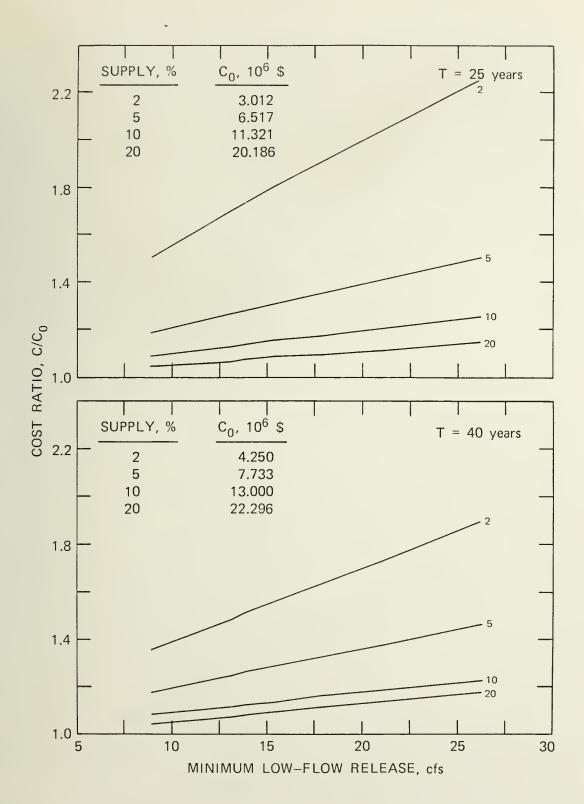


Figure 20. Cost ratio vs. low-flow release curves: Vermilion River at Lowell

Station	T, years	Supply rate, %	C per cfs, 10^6
		20	0.14
081	25	2	0.15
		5	0.13
		10	0.11
		20	0.11

The unit cost is significantly higher for station 079, with a smaller drainage area, than for stations 080 and 081 with larger drainage areas. Within a river basin, the flow duration curve for flows \geq 50 percent duration becomes less steep with the increase in drainage area (Singh, 1971).

V. South Fork Sangamon River Basin. The range of low flow releases for the 3 gaging stations in this basin are:

No.	Stream and gaging station	Range, cfs
096	Flat Branch near Taylorville	1.02-8.17
097	S.F. Sangamon River at Kincaid	4.13-19.60
098	S.F. Sangamon River near Rochester	8.00-37.80

The lowest flow releases correspond to C5 and the highest to C3. The 7-day 10-year low flows are 0.00, 0.79, and 0.84 cfs, respectively. These are much lower than the minimum low flow releases considered above.

The cost ratios, CR, for the four water supply rates and range of low flow releases for the three stations are shown in figures 21, 22, and 23. The extra capitol costs per cfs of flow release for a 25-year design drought, as developed from these figures, are given on page 102.

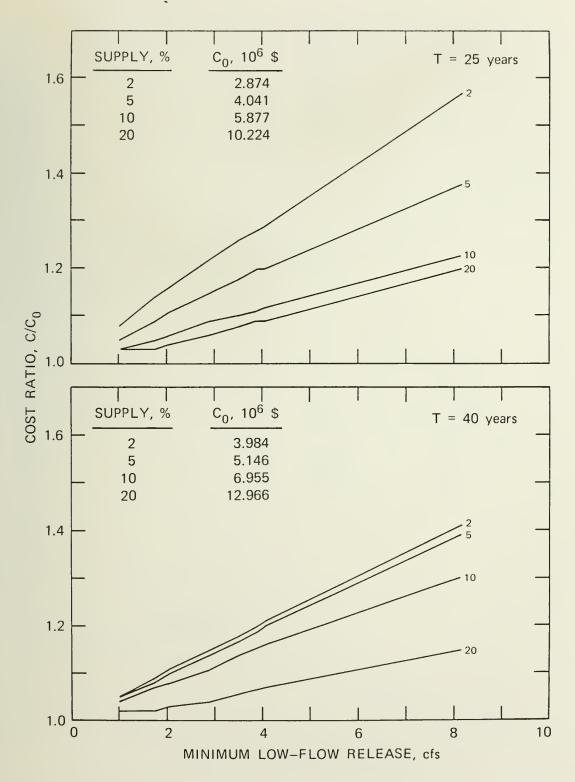


Figure 21. Cost ratio vs. low-flow release curves: Flat Branch near Taylorville

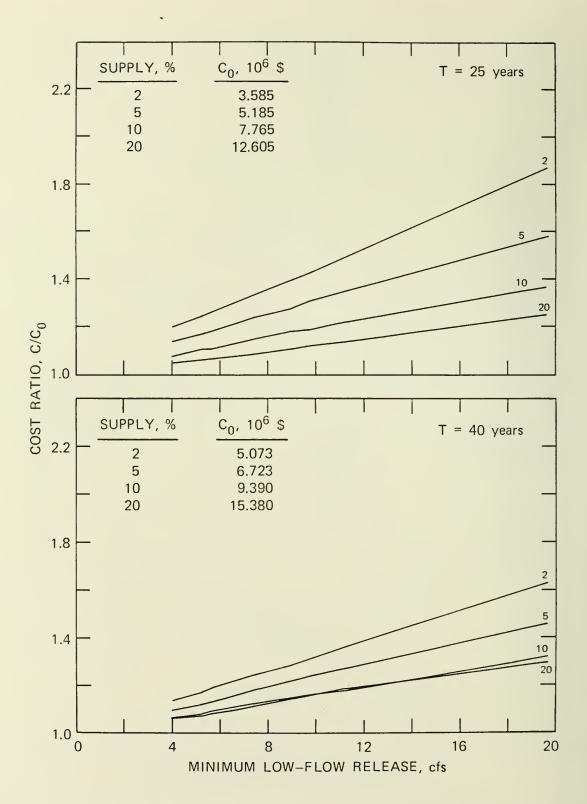


Figure 22. Cost ratio vs. low-flow release curves: S.F. Sangamon River at Kincaid

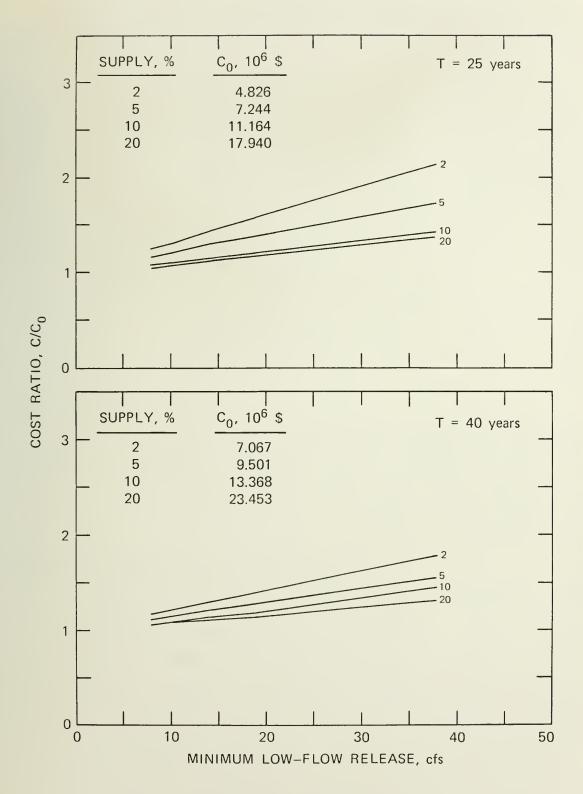


Figure 23. Cost ratio vs. low-flow release curves: S.F. Sangamon River near Rochester

	•		
Station	T, years	Supply rate, %	ΔC per cfs, 10^6 \$
096	25	2	0.20
		5	0.19
		10	0.17
		20	0.25
097	25	2	0.16
		5	0.15
		10	0.15
		20	0.16
098	25	2	0.15
		5	0.14
		10	0.13
		20	0.18

The unit cost is significantly higher for station 096 with a 276-sq mi drainage area than for stations 097 and 098 with 562- and 867-sq mi drainage areas.

A summary of the unit costs, $\Delta \text{C/}_{\text{cfs}}$, in million dollars with a 25-year design drought is given below.

			Unit cost in	million do.	llars with %	supply rate	C :
Basin	Station	D.A. sq mi	<u>2</u>	<u>5</u>	10	20	
I	009	1131	0.12	0.12	0.12	0.12	3
	010	464	0.18	0.17	0.17	0.16	Ŋ
	011	3102	0.095	0.092	0.092	0.082	

		D.A.	Unit cost in	n million	dollars with	% supply r	ate of
Basin	Station	sq mi	2	<u>5</u>	10	20	
II	020	538	-	-	0.13	0.13	
	021	387	-	-	0.15	0.14	
	022	1099	-	-	0.11	0.11	
III	039	72.7	0.27	0.27	0.32	0.44	
	040	39.4	0.41	0.43	0.44	0.60	
	041	161	0.23	0.26	0.31	0.40	
IV	079	186	0.29	0.29	0.24	0.37	
	080	579	0.19	0.19	0.17	0.14	
	081	1278	0.15	0.13	0.11	0.11	
V	096	276	0.20	0.19	0.17	0.25	
	097	562	0.16	0.15	0.15	0.16	
	098	867	0.15	0.14	0.13	0.18	

Cost Versus Fish Preference

Tables 5 and 6 can be used to develop cost ratio versus flow release information as well as the unit cost of providing the flow releases from impoundments designed for various water supply rates and two drought recurrence intervals. Tables 7 and 8 yield the fish suitability values, for various flow releases, for juveniles and adults and for MIN and GM criteria. Average fish suitability indexes are developed for the nine target fish by combining their individual preferences. Thus, the cost ratios or the incremental costs can be plotted against the average fish preference or suitability for any low flow release considered. These curves can be of considerable help to the decision maker in choosing a suitable low flow release. considering the impacts on both costs and fish habitats. Such curves, developed for the five river basins, are analyzed here.

The riffles serve the purpose of reaerating the water at low flows.

There is some reaeration in the pools also. However, the fish and other oxygen demand in the pools need to be balanced by reaeration in the riffle-pool sequences. Field experiments need to be conducted to determine the minimum flows required to maintain suitable DO levels for the maintenance of fish and their habitats. The information on such flows is not available at the present. The inferences drawn in the following analyses are based only on the flow velocity and depth in the riffles and pools during low flows.

I. Little Wabash River Basin. Cost ratio vs average fish preference curves for juvenile and adult species, applicable to riffle and pool conditions, are shown in figure 24 for a net water supply of 10 percent of meanflow, a 25-year design drought, and b = 0.75, for the following three stations:

1009 Little Wabash River below Clay City $C_0 = 13.347 million

Olo Skillet Fork at Wayne City $C_0 = 8.419 million

Oll Little Wabash River at Carmi $C_0 = 25.454 million

The information used in developing the curves is given in tables 9 through 14. The 7-day 10-year low flows are 0.00, 0.47, and 5.70 cfs, respectively.

For the Little Wabash River below Clay City, the average fish preference for the riffles is negligible for the adults and rather small for the juveniles for the low flow release range of 6.66 to 38.50 cfs. In the pools, the juvenile fish preference increases from 0.62 to 0.66 with MIN and 0.70 to 0.73 with GM as the flow increases from 6.66 to 38.5 cfs. The preference for the adults increases from 0.24 to 0.57 with MIN and 0.41 to 0.66 with GM. The cost preference curve steepens beyond $^{\rm C}/_{\rm C}$ = 1.15 which corresponds to a flow of 15 cfs.

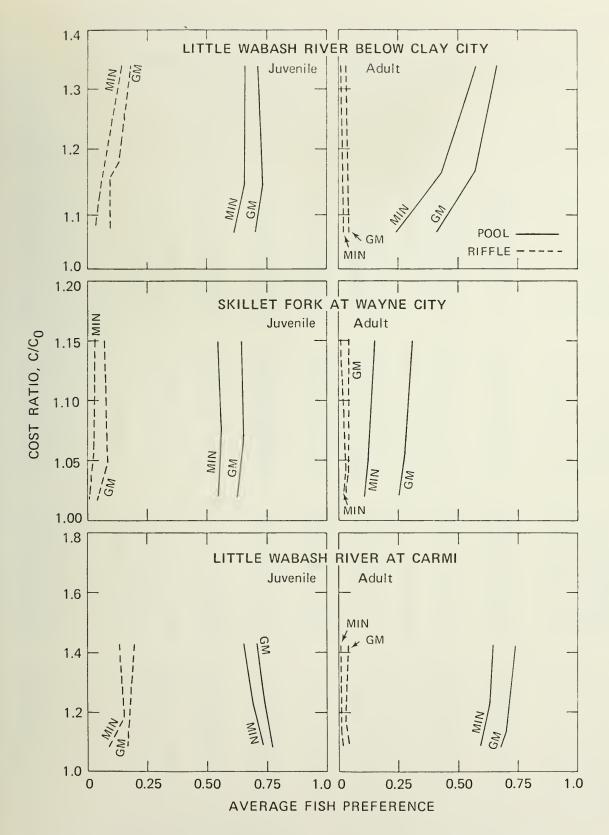


Figure 24. Cost ratio vs. average fish preference. Little Wabash River Basin

Table 9. Fish Suitability (MIN Criterion) for the Range of Low Flow Releases Station No. 9; USGS No. 03379500; Little Wabash River below Clay City D.A. 1131 Sq Mi; Mean Flow 881 cfs; Q(7,10) 0.47 cfs

Q					bility	for	Fish Nu	mber				
cfs							6				avg	C/C _o
ΑΤι			fle co									
6.66		.00	.07	.00	.00	.09	. 14	.00	.00	.00	.03	1.06
7.75		.00	.06	.00	.00	.10	. 15	.00	.00	.00	.03	1.07
9.20	7	.00	.04	.00	.00	.12	.18	.00	.00	.00	.04	1.09
10.00		.00	.04	.00	.00	. 13	.19	.00	.00	.00	.04	1.10
14.90		.00	.03	.00	.00	.20	.26	.00	.00	.00	.05	1.14
15.50		.00	.03	.00	.00	.21	.27	.00	.00	.00	.06	1.15
19.30		.00	.02	.00	.00	.25	• 33	.00	.00	.12	.08	1.18
38.50	3	.00	.01	.00	.02	.28	.34	.00	.00	.62	. 14	1.34
			condi									
6.66		.00	.16	.00	.00	.00	.00	.00	.00	.00	.02	1.06
7.75		.00	. 15	.00	.00	.00	.00	.00	.00	.00	.02	1.07
9.20		.00	. 14	.00	.00	.00	.00	.00	.00	.00	.02	1.09
14.90		.00	.14	.00	.00	.00	.00	.00	.00	.00	.02	1.10
15.50		.00	.11	.00	.00	.00	.00	.00	.00	.00	.01	1.15
19.30		.00		.00	.00	.00	.00	.00	.00	.00	.01	1.18
38.50		.01	.07	.00	.00	.00	.01	.00	.00	.00	•01	1.34
C Tu	vonilo	(200	ol cond	ition								
6.66		.86	.00	.21	.07	•99	1.00	.71	.72	1.00	.62	1.06
7.75		•79	.00	.25	.07	•99	1.00	•73	.73	1.00	.62	1.07
9.20		•72	.00	.38	.07	.99	1.00	•75	•75	1.00	.63	1.09
10.00		.67	.00	.47	.08	•99	1.00	•77	•75	1.00	.64	1.10
14.90	8	.47	.00	.81	.08	.98	1.00	.82	•79	1.00	.66	1.14
15.50	1	.45	.00	.84	.08	.98	1.00	.82	•79	1.00	.66	1.15
19.30		.34	.00	. 90	.08	. 98	1.00	.86	.81	1.00	.66	1.18
38.50	3	.12	.00	.98	.08	•93	•99	• 95	.88	• 99	.66	1.34
D. Ad	ult (pool 0	eonditi	on)								
6.66		.62	.00	.26	.16	.19	.49	.09	.00	.36	.24	1.06
7.75	2	.65	.00	.28	. 16	.20	.50	. 15	.00	.40	.26	1.07
9.20	7	.68	.00	.31	. 17	.20	•52	.28	.00	• 45	.29	1.09
10.00		.70	.00	•33	. 17	.21	•53	.38	.00	.49	•31	1.10
14.90		•79	.00	.47	.18	.23	.58	.66	.02	.63	.40	1.14
15.50		.80	.00	.48	. 18	•23	•59	.67	.02	.64	.40	1.15
19.30		.83	.00	.63	•19	.24	.62	.77	.05	.69	.45	1.18
38.50	3	.88	.00	• 97	.23	.29	•75	•95	. 17	.85	•57	1.34

C/C = Ratio of reservoir cost with Q to that with Q=0 (T=25 years,
 net water supply equals 10% of mean flow)

Table 10. Fish Suitability (GM Criterion) for the Range of Low Flow Releases

Station No. 9; USGS No. 03379500; Little Wabash River below Clay City

D.A. 1131 Sq Mi: Mean Flow 881 cfs; Q(7,10) 0.47 cfs

D - A -	11	31 3	Sq	Mi	:	Mean	F.T.OM	881	ers;	Q(7,1	0) 0.47	CIS			
Q							Suita	bilit	y for	Fish N	lumber				
cfs		No.		1		2	3	4	5	6	7	8	9	avg	C/C _o
Α	Juv	eni	le	(ri	iff:	le co	nditio	n)							
6.6		5		.00		.21	.00	.00	.25	.31	.00	.00	.00	.09	1.06
7.7		2		.00		.20	.00	.00	.26	.31	.00	.00	.00	.09	1.07
9.2		7		.00		.18	.00	.00	.26 .28	•33 •34	.00	.00	.00	.09	1.09
10.0		6 8		.00		. 19 . 17	.00	.00	.31	•34	.00	.00	.00	.09 .09	1.10 1.14
15.5		1		.00		.17	.00	.00	.31	•37	.00	.00	.00	.09	1.15
19.3		4		.00		.15	.00	.00	.32	•39	.00	.00	•31	.13	1.18
38.5	50	3		.00		.03	.00	.05	.40	.46	.00	.00	.70	.18	1.34
В. А	Adu:	lt ((r:	iffl	Le	condi	tion)								
6.6		5		.00		.40	.00	.00	.00	.00	.00	.00	.00	.04	1.06
7.7		2		.00		•39	.00	.00	.00	.00	.00	.00	.00	.04	1.07
9.2		7		.00		.38	.00	.00	.00	.00	.00	.00	.00	.04 .04	1.09
14.9		8		.00		•37 •33	.00	.00	.00	.00	.00	.00	.00	.04	1.10 1.14
15.5		1		.00		•33	.00	.00	.00	.00	.00	.00	.00	.04	1.15
19.3		4		.00		.31	.00	.00	.00	.00	.00	.00	.00	.03	1.18
38.5		3		.03		. 18	.00	.00	.04	.09	.00	.00	.00	.04	1.34
C. 3	Juv	enil	le	(pc	ool	cond	ition)								
6.6		5		.93		.00	.46	.20	1.00	1.00	.85	.85	1.00	.70	1.06
7.7		2		.89		.00	•50	.20	1.00	1.00	.86	.86	1.00	.70	1.07
9.2		7		.85		.00	.61	.20	1.00	1.00	.87	.86	1.00	.71	1.09
10.0		6 8		.82		.00	.68 .90	.20 .21	1.00	1.00 1.00	.88 .90	.87 .89	1.00 1.00	.72 .73	1.10 1.14
15.5		1		.67		.00	.92	.21	.99	1.00	•91	.89	1.00	•73	1.15
19.3		4		.58		.00	•95	.22	.99	1.00	•93	.90	1.00	•73	1.18
38.5	50	3		•35		.00	.98	.23	•97	1.00	• 97	.94	•99	.71	1.34
D. A	Adu]	lt ((pc	ool	COI	nditio	on)								
6.6	56	5		•79		.02	•51	.40	.44	.60	.29	.00	.60	.41	1.06
7.7		2		.81		.00	•53	.40	.44	.61	• 39	.00	.63	.42	1.07
9.2		7		.82		.00	•55	.41	.45	.62	•53	.00	.67	.45	1.09
10.0		6 8		.84		.00	•57 •68	.41	.46 .48	.63 .66	.61 .81	.00	.70	• 47	1.10 1.14
15.5		1		.89 .89		.00	.69	.42 .42	.48	.66	.82	.13	•79 •80	•54 •55	1.15
19.3		4		.91		.00	•79	.43	.49	.68	.88	.23	.83	.58	1.18
38.5		3		.92		.00	.98	.48	•53	.75	•97	.42	.91	.66	1.34

 $^{{\}rm C/C}_{\rm o}$ = Ratio of reservoir cost with Q to that with Q=0 (T=25 years, net water supply equals 10% of mean flow)

Table 11. Fish Suitability (MIN Criterion) for the Range of Low Flow Releases Station No. 10; USGS No. 03380500; Skillet Fork at Wayne City D.A. 464 Sq Mi; Mean Flow 392 cfs; Q(7,10) 0.00 cfs

D • A •	404 50	4 141 9	Mean	LIOM	394	CIS;	4(1,1)	3) 0.00	CIS			
Q				Suita	bilit	y for	Fish Nu	mber				
cfs	No.	1	2	3	4	5	6	7	8	9	avg	C/C _o
A. J:	uvenile	e (rif	fle co	nditio	n)							
• 7		.00	.00	.00	.00	.02	.05	.00	.00	.00	.01	1.02
. 9	2 2	.00	.00	.00	.00	.02	.05	.00	.00	.00	.01	1.02
1.2	1 6	.00	.00	.00	.00	.03	.06	.00	.00	.00	.01	1.03
1.2		.00	.00	.00	.00	.03	.06	.00	.00	.00	.01	1.03
1.8		.00	.08	.00	.00	.04	.08	.00	.00	.00	.02	1.04
2.1		.00	•13	.00	.00	.05	.08	.00	.00	.00	.03	1.04
3.8		.00	. 10	.00	.00	.07	.11	.00	.00	.00	.03	1.08
7.7	8 3	.00	.03	.00	.00	. 10	. 15	.00	.00	.00	.03	1.15
		riffle										
• 7		.00	. 18	.00	.00	.00	.00	.00	.00	.00	.02	1.02
. 9		.00	.20	.00	.00	.00	.00	.00	.00	.00	.02	1.02
1.2		.00	.28	.00	.00	.00	.00	.00	.00	.00	.03	1.03
1.2		.00	.28	.00	.00	.00	.00	.00	.00	.00	.03	1.03
1.8		.00	.27	.00	.00	.00	.00	.00	.00	.00	.03	1.04
2.1		.00	.25	.00	.00	.00	.00	.00	.00	.00	.03	1.04
3.8		.00	. 19	.00	.00	.00	.00	.00	.00	.00	.02	1.08
7.7	8 3	.00	.12	.00	.00	.00	.00	.00	.00	.00	.01	1.15
C. J	uvenile	e (poo		ition)								
• 7		1.00	.00	.04	.07	1.00	1.00	.32	.47	1.00	.54	1.02
• 93		1.00	.00	.04	.07	1.00	1.00	•33	.48	1.00	•55	1.02
1.2		1.00	.00	.05	.07	1.00	1.00	• 35	.50	1.00	•55	1.03
1.2		1.00	.00	.05	.07	1.00	1.00	• 35	.50	1.00	•55	1.03
1.8		•99	.00	.05	.07	1.00	1.00	.38	.52	1.00	.56	1.04
2.1		.98	.00	.05	.07	1.00	1.00	• 39	•53	1.00	.56	1.04
3.89		.92	.00	.06		•99	1.00	.44	.56	1.00	.56	1.08
7.7	3	.61	.00	.09	.08	• 99	1.00	•53	.61	1.00	•55	1.15
D. A	dult (pool c	onditi	on)								
.7		.28	.01	.10	.11	.11	.29	.00	.00	.06	.11	1.02
. 97		.29	.01	.10	.11	.11	.30	.00	.00	.07	.11	1.02
1.2		.30	.01	.11	.11	.11	.31	.00	.00	.07	.11	1.03
1.2		.30	.01	.11	.11	.11	.31	.00	.00	.07	.11	1.03
1.8		.32	.01	.12	.11	. 12	•32	.00	.00	.08	.12	1.04
2.1		•33	.01	.12	.11	.12	•33	.00	.00	.09	.12	1.04
3.8		•36	.01	. 14	.12	.13	• 35	.00	.00	. 10	•13	1.08
7.7	8 3	.41	.01	. 16	.13	. 15	.38	.00	.00	• 15	.15	1.15

C/C = Ratio of reservoir cost with Q to that with Q=0 (T=25 years, net water supply equals 10% of mean flow)

Table 12. Fish Suitability (GM Criterion) for the Range of Low Flow Releases Station No. 10; USGS No. 03380500; Skillet Fork at Wayne City D.A. 464 Sq Mi; Mean Flow 392 cfs; Q(7,10) 0.00 cfs

D.A.		-1 : 1 ± ;										
Q				Suita	bilit	y for	Fish N	umber				
cfs	No.							7				C/C _o
A. Ju	venile	e (rif	fle co	nditio	n)							
.74		.00	.00	.00	.00	. 14	.22	.00	.00	.00	.04	1.02
. 92		.00	.00	.00	.00	. 15	.23	.00	.00	.00	.04	1.02
1.21		.00	.00	.00	.00	. 17	.25	.00	.00	.00	.05	1.03
1.27		.00	.00	.00	.00	. 17	.25	.00	.00	.00	.05	1.03
1.84		.00	.20	.00	.00	.19	.27	.00	.00	.00	.07	1.04
2.17 3.89		.00	.22	.00	.00	.20	.28	.00	.00	.00	.08 .08	1.04
7.78		.00	.15	.00	.00	.23	.28	.00	.00	.00	.07	1.15
1.10	, ,	•00	• +)	• 00	•00	• 2 3	• 20	• 00	• 00	•00	• • •	1010
B. Ad	ult (riffle	e condi	tion)								
.74	5	.00	.26	.00	.00	.00	.00	.00	.00	.00	.03	1.02
. 92		.00	.27	.00	.00	.00	.00	.00	.00	.00	.03	1.02
1.21		.00	.29	.00	.00	.00	.00	.00	.00	.00	.03	1.03
1.27		.00	.29	.00	.00	.00	.00	.00	.00	.00	.03	1.03
1.84 2.17		.00	.31 .32	.00	.00	.00	.00	.00	.00	.00	.03 .04	1.04
3.89		.00	•32	.00	.00	.00	.00	.00	.00	.00	.04	1.04
7.78		.00	.34	.00	.00	.00	.00	.00	.00	.00	.04	1.15
		e (poc						- 4			4.5	
.74		1.00		.20	. 17	1.00	1.00	.56	.69	1.00	.62	1.02
• 92		1.00	.00	.21	. 17	1.00	1.00	•57	.69	1.00	.63	1.02
1.21 1.27		1.00	.00	.22 .22	.17	1.00	1.00	•59 •59	.70 .70	1.00	.63 .63	1.03
1.84		•99	.00	.23	.18	1.00	1.00	.61	.70	1.00	.64	1.04
2.17		•99	.00	.23	.18	1.00	1.00	.63	.73	1.00	.64	1.04
3.89		.96	.00	.25	.18	1.00	1.00	.67	.75	1.00	.65	1.08
7.78		.78	.00	.30	. 19	1.00	1.00	.72	.78	1.00	.64	1.15
		pool o					1. 6				- 4	
.74		•53	.11	.32	•33	•33	.46	.00	.00	.25	.26	1.02
•92 1.21		.54	.11	.32	•33	•33 •34	.47 .48	.00	.00	.26	.26	1.02
1.27		•55 •55	.10	•33 •33	•33 •33	.34	.48	.00	.00	.27 .27	.27 .27	1.03
1.84		.56	.10	•35	.34	.34	.48	.00	.00	.29	.27	1.04
2.17		•57	.09	•35	.34	.34	.49	.00	.00	.30	.28	1.04
3.89		.60	.09	•37	•35	.36	.51	.00	.00	•32	.29	1.08
7.78	3	.64	.07	.40	.36	.38	•53	.00	.00	•39	.31	1.15

C/C = Ratio of reservoir cost with Q to that with Q=0 (T=25 years,
 net water supply equals 10% of mean flow)

Table 13. Fish Suitability (MIN Criterion) for the Range of Low Flow Releases

Station No. 11: USGS No. 03381500; Little Wabash River at Carmi

D.A. 3102 Sq Mi; Mean Flow 2521 cfs; Q(7,10) 5.70 cfs

Q				Suita	ability	for	Fish N	umber				
cfs	No.	1	2	3	4	5	6	7	8	9	avg	C/C _o
A. Ju	venil	.e (rif	fle c	onditio	on)							
24.00	5	.00	.08	.00	.00	•25	·33	.00	.00	.12 .21	.09	1.09
32.00	2	.00	.05 .04	.00	.00	.28 .30	•39	.00	.00	.25	•10 •11	1.11
36.00 49.76		.00	.04	.00	.00	•32 •39	.40 .47	.00	.00	.29 .46	•12 •15	1.13
61.50	4	.00	.02	.00	.01	•35	.41	.00	.00	•57	.15	1.22
63.90 123.00		.00	.01	.00	.01 .08	•33 •18	.40 .21	.00	.00	.58 .69	•15 •13	1.23
		riffle										
24.00	5	.00	.17	.00	.00	.00	.00	.00	.00	.00	.02	1.09
29.93 32.00		.00	. 15 . 14	.00	.00	.00	.00	.00	.00	.00	.02 .02	1.11
36.00		.00	.13	.00	.00	.00	.00	.00	.00	.00	.01	1.13
49.76 61.50		.01	.09	.00	.00	.00	.00	.00	.00	.00	.01 .01	1.18
63.90		.01 .01	.08	.00	.00	.00	.00	.00	.00	.00	.01	1.23
123.00	3	.03	•03	.00	.00	.02	.03	.00	.00	.00	.01	1.43
C. Ju		-		dition					0.5			
24.00 29.93		.69 .56	.00	.98 .98	.08 .08	•99 •99	1.00	.96 .97	.89 .91	1.00	•73 •72	1.09
32.00	2	•53	.00	•99	.08	•99	1.00	.98	.91	1.00	.72	1.12
36.00 49.76		.48 .30	.00	•99 1•00	.08 .08	.98 .97	1.00	.98 1.00	.91 .94	1.00	.71 .70	1.13
61.50		.24	.00	1.00	.08	.96	1.00	1.00	• 95	1.00	.69	1.22
63.90		.21	.00	1.00	.08	.96	1.00	1.00	•95	1.00	.69	1.23
123.00	3	.06	.00	•97	.08	.88	•94	•98	•97	•97	.65	1.43
		pool c			O.lı	.30	.74	06	10	.88	5 0	1.09
24.00 29.93		•98 •99	.00	•98 •98	.24 .25	.30	.74	.96 .98	.19 .21	.90	•59 •60	1.11
32.00	2	•99	.00	•99	.26	.31	.74	.98	.22	.91	.60	1.12
36.00 49.76		1.00 1.00	.00	.99 1.00	.27 .29	•32 •33	•74 •75	.99 1.00	.23 .27	•92 •95	.61 .62	1.13
61.50	4	.97	.00	1.00	•34	• 35	•75	1.00	.30	•97	.63	1.22
63.90 123.00		.96 .72	.00	1.00 .96	•35 •56	•35 •39	•75 •77	1.00 1.00	.30 .41	•97 •92	.63 .64	1.23

Note: Q = Minimum flow release

C/C = Ratio of reservoir cost with Q to that with Q=0 (T=25 years,
 net water supply equals 10% of mean flow)

Table 14. Fish Suitability (GM Criterion) for the Range of Low Flow Releases Station No. 11; USGS No. 03381500; Little Wabash River at Carmi D.A. 3102 Sq Mi; Mean Flow 2521 cfs; Q(7,10) 5.70 cfs

D.H. J		-1 ::T	, 1104				٠	07 3.1				
Q				Suita								
cfs		1	2	3	4	5	6	7	8	9	avg	C/C _o
A. Ju												
24.00	5	.00	.26	.00	.00	.41	.48	.00	.00	•33	. 16	1.09
29.93	7	.00	.18	.00	.00	.42	.48	.00	.00	. 44	. 17	1.11
32.00 36.00	2 6	.00	.12	.00	.00	.42	.48 .48	.00	.00	.47	. 17	1.12
49.76	8	.00	.07	.00	.00	.41	.40	.00	.00	.51 .63	.17	1.13 1.18
61.50	4	.00	.05	.00	.03	.41	.47	.00	.00	.68	.18	1.22
63.90	1	.00	.05	.00	.04	.41	.47	.00	.00	.69	.18	1.23
123.00		.00	.00	.00	. 14	.40	.45	.00	.00	.74	.19	1.43
3												
B. Adı												
24.00	5	.00	.41	.00	.00	.00	.00	.00	.00	.00	.05	1.09
29.93	7	.02	.38	.00	.00	.00	.00	.00	.00	.00	.04	1.11
32.00	2	.02	•37	.00	.00	.00	.00	.00	.00	.00	.04	1.12
36.00 49.76	6 8	.03	.35 .29	.00	.00	.00	.00	.00	.00	.00	.04 .03	1.13 1.18
61.50	4	.03	.26	.00	.00	.03	.05	.00	.00	.00	.03	1.22
63.90	1	.03	.26	.00	.00	.03	.06	.00	.00	.00	.04	1.23
123.00		.04	.09	.00	.00 -		.18	.00	.00	.00	.04	1.43
C. Ju												
24.00	5	.83		• 99	.22	1.00	1.00	.98	• 95	1.00	•77	1.09
29.93	7	•75	.00	•99	.23	1.00	1.00	•99	• 95	1.00	•77	1.11
32.00	2	.73	.00	•99	.23	•99	1.00	•99	.95	1.00	.76	1.12
36.00 49.76	6 8	.69 .54	.00	•99	.23	•99	1.00	.99	.96	1.00	.76	1.13
61.50	4	.47	.00	1.00	.24 .24	•99 •98	1.00	1.00 1.00	•97 •97	1.00 1.00	•75 •74	1.18 1.22
63.90	1	.45	.00	1.00	.24	.98	1.00	1.00	•97	1.00	.74	1.23
123.00	3	.23		•99	.27		•97	•99	•99	•97	.71	1.43
5	3	5		• , ,		• ,	- 7 1		• , ,	• 51		
D. Adı												
24.00	5	•99	.00	•99	.49	•55	.76	.98	. 44	. 94	.68	1.09
29.93	7	•99	.00	• 99	.50	•55	•77	•99	. 46	•95	.69	1.11
32.00	2	1.00	.00	•99	.51	.56	.78	•99	. 47	•95	.69	1.12
36.00	6	1.00	.00	•99	•52	.56	.78	•99	.48	.96	.70	1.13
49.76	8	1.00	.00	1.00	.54	.58	.80	1.00	.52	.98	.71	1.18
61.50	4	•99	.00	1.00	.58	.58	.82	1.00	•55	.98	.72	1.22
63.90 123.00	1 3	.98 .85	.00	1.00 .98	•59 •73	•59 •60	.82	1.00 1.00	•55 •64	•99 •96	.72 .74	1.23 1.43
					•13					.90	• / 4	

C/C = Ratio of reservoir cost with Q to that with Q=0 (T=25 years, net water supply equals 10% of mean flow)

In the case of Skillet Fork at Wayne City, the average fish preference for the riffles is very small, both for the juveniles and adults, for the low flow range of 0.74 to 7.78 cfs. In the pools, the juvenile fish preference is about 0.55 with MIN and 0.64 with GM for the entire low flow range considered. The preference for the adults increases from 0.11 to 0.15 with MIN and 0.26 to 0.31 with GM as flow increases from 0.74 to 7.78 cfs (the extra capital cost increases from \$0.13 to 1.13 million). Probably much higher flow releases than 7.78 cfs will be needed to increase the adult fish preferences considerably.

For the Little Wabash River at Carmi, the average fish preference for the riffles is negligible for the adults and varies from 0.09 to 0.13 with MIN and 0.16 to 0.19 with GM for the juveniles, for the low flow range of 24 to 123 cfs. In the pools, the juvenile fish preferences decrease from 0.73 to 0.65 with MIN and 0.77 to 0.71 with GM as the flow increases from 24 to 123 cfs. The preference for adult fish increases from 0.59 to 0.64 with MIN and from 0.68 to 0.74 with GM with increase in flow. The increase in preference is rather small. The fish preferences need to be calculated for flows less than 24 cfs to determine if a lesser flow release may be appropriate. The 7-day 10-year low flow is 5.7 cfs.

A summary of the fish preferences at the two ends of low flow range (and an intermediate value for station 009) is given in table 15. The preference of the bluntnose for the low flow ranges analyzed is very small. The decision on a suitable low flow release will be governed by the relative weight for the target species, their preferences, and extra capital costs, ΔC .

II. Kishwaukee River Basin. Cost ratio vs average fish preference curves for juvenile and adult species, applicable to riffle and pool conditions, are

TABLE 15. Costs and Fish Preferences: Little Wabash River Basin (Pool Condition)

	Q	ΔC				Fish nu	mber* with	preference	
No.	cfs	106\$	<u>+</u>	Crit	<0.1	0.10-0.24	0.25-0.49	0.50-0.74	0.75-1.00
009	6.66	0.85	J	MIN	2,4	3		7,8	1,5,6,9
				GM	2	4	3		1,5-9
			Α	MIN	2,7,8	4,5	3,6,9	1	
				GM	2,8	7	4,5	3,6,9	1
	38.50	4.60	J	MIN	2,4	1			3,5-9
				GM	2	4	1		3,5-9
			Α	MIN	2	4,8	5		1,3,6,7,9
				GM	2		4,8	5	1,3,6,7,9
	14.9	1.87	J	MIN	2,4		1		3,5-9
				GM	2	4		1	3,5-9
			Α	MIN	2,8	4,5	3	6,7,9	1
				GM	2	8	4,5	3,6	1,7,9
010	0.74	0.13	J	MIN	2,3,4		7,8		1,5,6,9
				GM	2	3,4		7,8	1,5,6,9
			Α	MIN	2,7,8,9	3,4,5	1,6		
				GM	7,8	2	3,4,5,6,9	1	
	7.78	1.28	J	MIN	2,3,4			1,7,8	5,6,9
				GM	2	4	3	7	1,5,6,8,9
			A	MIN	2,7,8	3,4,5,9	1,6		
				GM	2,7,8		3,4,5,9	1,6	
011	24.0	2.27	J	MIN	2,4			1	3,5-9
				GM	2	4			1,3,5-9
			Α	MIN	2	4,8	5	6	1,3,7,9
				GM	2		4,8	5	1,3,6,7,9
	123.0	10.87	J	MIN	1,2,4				3,5-9
				GM	2	1	4		3,5-9
			A	MIN	2		5,8	1,4	3,6,7,9
				GM	2			4,5,8	1,3,6,7,9

^{* 1 =} Bluegill, 2 = Bluntnose, 3 = Carp, 4 = Channel Cat, 5 = Largemouth Bass, 6 = Smallmouth Bass, 7 = Drum, 8 = White Bass, 9 = White Crappie

[†] J and A denote Juvenile and Adult, respectively.

shown in figure 25 for net water supply of 10 percent of mean flow, 25-year drought, and b = 0.75, for the following three stations:

020 Kishwaukee River at Belvidere $C_0 = 1.399 million

021 S.B. Kishwaukee River near Fairdale $C_0 = 3.848 million

022 Kishwaukee River near Perryville $C_0 = 2.133 million

The $C_{\rm o}$ is much higher for station 021 because the low flows are not as well sustained as for stations 020 and 022. The information used in developing the curves in figure 25 is given in tables 16 through 21.

For the Kishwaukee River at Belvidere, the average fish preference for the riffles is negligible for the adults and rather small for the juveniles for the low flow range of 36.9 to 92 cfs. In the pools, the juvenile fish preference increases from 0.55 to 0.62 with MIN and from 0.65 to 0.68 with GM as the flow increases from 36.9 to 92 cfs (the 7-day 10-year low flow is 34.3 cfs). The preference for the adults increases from 0.20 to 0.43 with MIN and from 0.35 to 0.56 with GM. The cost-preference curve has practically the same slope for the low flow release range studied.

In the case of South Branch Kishwaukee River near Fairdale, the average fish preference for the riffles is negligible or very small for the juveniles and adults, for the low flow range of 10.1 to 28.6 cfs. In the pools, the juvenile fish preference is 0.53 with MIN and 0.63 with GM for the entire flow range considered. The preference for the adults increases from 0.14 to 0.20 with MIN and 0.30 to 0.34 with GM as flow increases from 10.1 to 28.6 cfs (the extra capital cost increases from \$1.50 to \$4.14 million). The 7-day 10-year low flow is 9.9 cfs.

For the Kishwaukee River, the average fish preference for the riffles is negligible for the adults and is 0.14 with MIN and 0.18 with GM for the juveniles, for the flow range of 69 to 156 cfs (the 7-day 10-year low

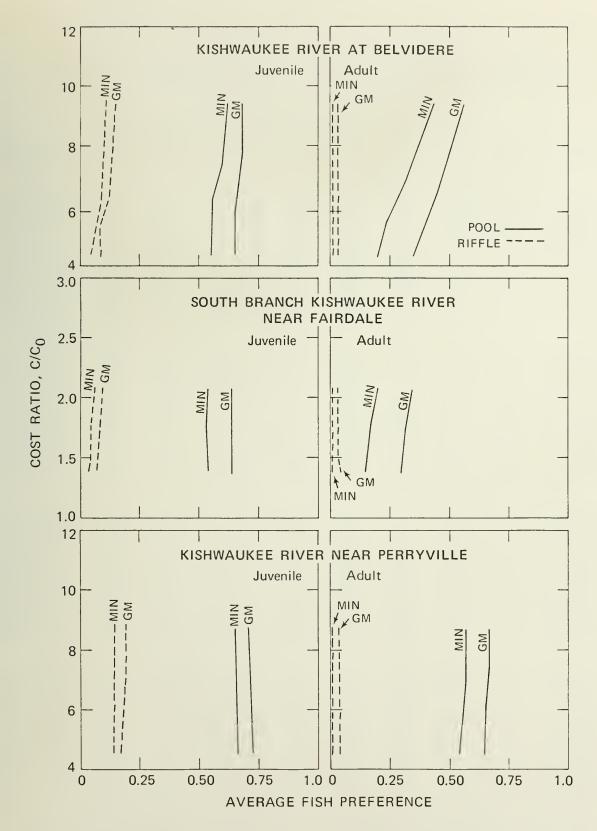


Figure 25. Cost ratio vs. average fish preference: Kishwaukee River Basin

Table 16. Fish Suitability (MIN Criterion) for the Range of Low Flow Releases

Station No. 20; USGS No. 05438500; Kishwaukee River at Belvidere

D.A. 538 Sq. Mi : Mean Flow 337 cfs : Q(7.10) 34.3 cfs

D.A.	5	38	Sq	Mi	;	Mean	Flow	337	cfs :	Q(7	,10)	34.3	cfs			
Q							Suita	bilit	y for	Fish	Numl	ber				
cfs	3	No.		1		2	3	4	5	6		7	8	9	avg	C/C _o
Α.	Juv	eni	le	(ri	.ff	le co	nditio	n)								
36.		2		.00		.02	.00	.00	.16			.00	.00	•00	.04	4.38
46. 57.		4 5		.00		.02 .01	.00	.00	.2			.00	.00	.00 .14	.06	5.24 6.32
59.		7		.00		.01	.00	.00	.27			.00	.00	. 17	.09	6.55
64.	_	6		.00		.01	.00	.00	.27			.00	.00	.23	.09	6.98
68.		8		.00		.00	.00	.00	.20			.00	.00	•29	.10	7.38
73. 92.		1		.00		.00	.00	.00	.25			.00	.00	•35 •55	.10	7.86 9.42
92•	.00	5		•00		•00	•00	.00	• ८ ।	. • ∠	O	•00	•00	• 55	• 1 1	9.42
В.	Adu	ılt	(r	iff1	.е	condi	tion)									
36.	-	2		.00		.09	.00	.00	.00			.00	.00	.00	.01	4.38
46. 57.		4		.00		.08	.00	.00	.00			.00	.00	.00	.01	5.24 6.32
59 .		5 7		.00		.07 .07	.00	.00	.00			.00	.00	.00	.01	6.55
64.		6		.00		.07	.00	.00	.00			.00	.00	.00	.01	6.98
68.		8		.00		.06	.00	.00	.00			.00	.00	.00	.01	7.38
73.		1		.00		.06	.00	.00	.00			.00	.00	.00	.01	7.86
92.	.00	3		.01		.05	.00	.00	• 00	0.0	U	.00	.00	.00	.01	9.42
С.	Juv	reni	le.	(pc	001	cond	ition)									
36.	.90	2		.37		.00	.16	.08	• 9			.66	.69	1.00	•55	4.38
46.		4		.28		.00	.20	.08	• 9'			.70	.72	1.00	•55	5.24
	.22	5 7		.19		.00	.34 .40	.08	• 9! • 9!			.75 .76	•74 •75	1.00	•56 •57	6.32 6.55
	.36	6		.15		.00	.49	.08	• 9			•77	.76	•99	.58	6.98
	.57	8		.13		.00	•59	.08	.9			•79	•77	•99	•59	7.38
73.		1		.12		.00	.68	.08	• 9			.80	•77	•99	.60	7.86
92.	.00	3		.07		.00	.89	.08	• 91	.9	6	.85	.81	.98	.62	9.42
D.	Adı	ılt	(k	0001	co	nditi	on)									
	.90	2		•55		.00	.22	. 15				.00	.00	.27	.20	4.38
	.00	4 5		.61		.00	.25 .30	.16 .16				.05 .24	.00	•33 •43	.23	5.24 6.32
	.65	7		.69		.00	.31	.17				.31	.00	.46	.30	6.55
	.36	6		.71		.00	•33	.17				.40	.00	•50	.32	6.98
68.	• 57	8		.73		.00	• 37	. 17	.2	2 •5	5	•50	.00	•54	.34	7.38
	.70	1		.76		.00	.41	.17				•59	.00	•57	.36	7.86
92.	.00	3		•77		.00	.60	.19	.2	+ .6		.76 	.05	.68	.43	9.42

C/C_o = Ratio of reservoir cost with Q to that with Q=0 (T=25 years, net water supply equals 10% of mean flow)

Table 17. Fish Suitability (GM Criterion) for the Range of Low Flow Releases

Station No. 20; USGS No. 05438500; Kishwaukee River at Belvidere

D.A. 538 Sq Mi; Mean Flow 337 cfs; Q(7,10) 34.3 cfs

D • A •	538 S	q Mi	, Mean	PLOW	331 0	18;	Q(7,10		o CIS			
Q				Suita	bility	for	Fish N	umber				
cfs	No.	1	2	3	4	5	6	7	8	9	avg	C/C _o
А. Ј	uvenile	e (rif	ffle co	nditic	on)							
36.9	0 2	.00	. 15	.00	.00	.25	.32	.00	.00	.00	.08	4.38
46.0		.00	.12	.00	.00	.26	•33	.00	.00	.00	.08	5.24
57.2 59.6		.00	.09 .08	.00	.00	.27	•35 •35	.00	.00	•33 •37	.12 .12	6.32 6.55
64.3		.00	.05	.00	.00	.28	•35	.00	.00	.42	.12	6.98
68.5		.00	.03	.00	.00	.29	.36	.00	.00	.47	.13	7.38
73.7		.00	.02	.00	.00	.29	.36	.00	.00	.51	.13	7.86
92.0	0 3	.00	.00	.00	.03	.32	• 37	.00	.00	.64	. 15	9.42
В. А	dult (riffle	e condi	tion)								
36.9		.00	•30	.00	.00	.00	.00	.00	.00	.00	.03	4.38
46.0		.00	.28	.00	.00	.00	.00	.00	.00	•00	.03	5.24
57.2 59.6		.00 .01	.27 .26	.00	.00	.00	.00	.00	.00	.00	.03	6.32 6.55
64.3		.01	.26	.00	.00	.00	.00	.00	.00	.00	.03	6.98
68.5		.02	.25	.00	.00	.00	.00	.00	.00	.00	.03	7.38
73.7		.02	.24	.00	.00	.00	.00	.00	.00	.00	.03	7.86
92.0	0 3	.03	.20	.00	.00	.02	.04	•00	.00	.00	•03	9.42
C. J	uvenile		ool con	dition	1)							
36.9		.60	.00	. 41	.20	.99	1.00	.81	.83	1.00	.65	4.38
46.0		•53	.00	.45	.20	.98	1.00	.84	.85	1.00	.65	5.24
57.2 59.6		.44 .42	.00	.58 .63	.21 .21	.98 .98	1.00	.86 .87	.86 .86	1.00	.66 .66	6.32 6.55
64.3		•39	.00	.70	.21	•97	1.00	.88	.87	1.00	.67	6.98
68.5		.36	.00	.76	.21	.97	1.00	.88	.87	1.00	.67	7.38
73.7	0 1	.34	.00	.82	.22	.96	•99	.89	.88	•99	.68	7.86
92.0	0 3	.27	.00	•93	.22	•95	.98	•92	.90	•99	.68	9.42
D. A	dult (pool o	conditi	on)								
36.9		.74	.04	. 47	•39	.42	.58	.00	.00	•52	•35	4.38
46.0		.78	.02	.50	•39	.43	.60	.22	.00	•57	•39	5.24
57.2		.80	.00	•55	.40	.44	.62	.49	.00	.66	.44	6.32
59.6 64.3		.80 .81	.00	.56 .57	.41 .41	.45	.63 .64	.55 .63	.00	.67 .70	.45 .47	6.55 6.98
68.5		.81	.00	.60	.41	.45	.64	.71	.00	.72	.48	7.38
73.7		.81	.00	.63	.41	.46	.65	.77	.00	.75	.50	7.86
92.0		.80	.00	.76	.42	.47	.68	.87	.22	.80	.56	9.42

C/C = Ratio of reservoir cost with Q to that with Q=0 (T=25 years,
 net water supply equals 10% of mean flow)

Table 18. Fish Suitability (MIN Criterion) for the Range of Low Flow Releases Station No. 21; USGS No. 05439500; S. B. Kishwaukee River near Fairdale D.A. 387 Sq Mi; Mean Flow 253 cfs; Q(7,10) 9.90 cfs

D • A •	301 20	1 111	; Mean	FLOW	200 0	:15;	Q(/, I	0) 9.90	CIS			
0				Suita	bility	for	Fish N	umber				
cfs	No.	1	2	3	4	5	6	7	8	9	avg	C/C _o
Δ .Τι:	venile	. (ni	ffle co	nditio	m)							
10.10		.00	.03	.00	.00	.10	.14	.00	.00	.00	.03	1.39
14.30		.00	.03	.00	.00	.12	.18	.00	.00	.00	.04	1.55
15.73		.00	.02	.00	.00	.13	.19	.00	.00	.00	.04	1.60
16.22		.00	.02	.00	.00	.13	.19	.00	.00	•00	.04	1.62
18.78		.00	.02	.00	.00	.16	.22	.00	.00	.00	.04	1.72
19.66	8	.00	.02	.00	.00	.16	.22	.00	.00	.00	.04	1.75
20.10		.00	.02	.00	.00	.16	.22	.00	.00	.00	.04	1.77
28.60) 3	.00	.01	.00	.00	.22	.29	.00	.00	.02	.06	2.08
		riffl	e condi	tion)								
10.10		.00	.12	.00	.00	.00	.00	.00	.00	.00	.01	1.39
14.30		.00	.10	.00	.00	.00	.00	.00	.00	.00	.01	1.55
15.73		.00	. 10	.00	.00	.00	.00	.00	.00	.00	.01	1.60
16.22		.00	.09	.00	.00	.00	.00	.00	.00	.00	.01	1.62
18.78		.00	.09	.00	.00	.00	.00	.00	.00	.00	.01	1.72
19.66		.00	.09	.00	.00	.00	.00	.00	.00	.00	.01	1.75
20.10		.00	.09	.00	.00	.00	.00	.00	.00	.00	.01	1.77
28.60) 3	.00	.07	.00	.00	.00	.00	•00	•00	.00	.01	2.08
			ol cond									
10.10		.61	.00	.07	.08	•99	1.00	. 47	.58	1.00	•53	1.39
14.30		• 45	.00	.09	.08	.98	1.00	•53	.61	1.00	•53	1.55
15.73		.42	.00	.10	.08	.98	1.00	•54	.62	1.00	•53	1.60
16.22		.41	.00	.10	.08	.98	1.00	•54	.62	1.00	•53	1.62
18.78		•33	.00	.11	.08	.98	1.00	.58	.64	1.00	.52	1.72
19.66		.31	.00	.11	.08	• 97	1.00	•58	.64	1.00	•52	1.75
20.10		.31	.00	.11	.08	•97	1.00	.58	.64	1.00	•52	1.77
28.60) 3	.21	.00	.16	.08	.96	1.00	•65	•69	1.00	•53	2.00
D. Ad	lult (pool	conditi	on)								
10.10		.38	.01	. 15	. 12	.13	.36	.00	.00	. 12	. 14	1.39
14.30		.41	.01	.16	.13	. 15	.38	.00	.00	. 16	.16	1.55
15.73		.43	.01	. 17	.13	. 15	•39	.00	.00	. 17	.16	1.60
16.22		.43	.01	. 17	.13	. 15	•39	.00	.00	.17	.16	1.62
18.78		.45	.00	. 18	. 14	.16	.41	.00	.00	. 19	. 17	1.72
19.66		.46	.00	.19	. 14	.16	.41	.00	.00	•19	.17	1.75
20.10		.46	.00	.19	.14	.16	.41	.00	.00	• 19 26	.17	1.77
28.60) 3	.54	.00	.21	. 15	.17	.44	.00	.00	.26	.20	2.08

C/C = Ratio of reservoir cost with Q to that with Q=0 (T=25 years, net water supply equals 10% of mean flow)

Table 19. Fish Suitability (GM Criterion) for the Range of Low Flow Releases Station No. 21; USGS No. 05439500; S. B. Kishwaukee River near Fairdale D.A. 387 Sq Mi; Mean Flow 253 cfs; Q(7,10) 9.90 cfs

Q				Suita	abilit	y for	Fish N	umber				
cfs	No.	1	2	3	4	5	6	7	8	9	avg	C/C
A. J	uveni	le (ri	ffle co	onditio	on)							
10.1		.00	. 15	.00	.00	.22	.28	.00	.00	.00	.07	1.39
14.3			. 15	.00	.00	.23	.30	.00	.00	.00	.08	1.55
15.7 16.2		.00	. 15 . 15	.00	.00	.24	.30 .30	.00	.00	.00	.08	1.60 1.62
18.7		.00	.14	.00	.00	.25	.31	.00	.00	.00	.08	1.72
19.6		.00	.14	.00	.00	.25	.31	.00	.00	.00	.08	1.75
20.1	0 1	.00	.14	.00	.00	.25	.31	.00	.00	.00	.08	1.77
28.6	0 3	.00	.10	.00	.00	.26	•33	.00	.00	. 12	.09	2.08
B. A	dult ((riffl	e condi	ition)								
10.1		.00	• 35	.00	.00	.00	.00	.00	.00	.00	.04	1.39
14.3		.00	.31	.00	.00	.00	.00	.00	.00	.00	.03	1.55
15.7		.00	.31	.00	.00	.00	.00	.00	.00	.00	.03	1.60
16.2		.00	.31 .30	.00	.00	.00	.00	.00	.00	.00	.03	1.62 1.72
19.6		.00	.30	.00	.00	.00	.00	.00	.00	.00	.03	1.75
20.1		.00	.30	.00	.00	.00	.00	.00	.00	.00	.03	1.77
28.6		.00	.27	.00	.00	.00	.00	.00	.00	.00	.03	2.08
CT	uvani.	le (po	ol con	dition')							
10.1		.78	.00	.27	• 19	1.00	1.00	.68	.76	1.00	.63	1.39
14.3		.67	.00	.31	. 19	.99	1.00	.73	.78	1.00	.63	1.55
15.7	_	.65	.00	.32	. 19	•99	1.00	.74	.79	1.00	.63	1.60
16.2		.64	.00	•32	.19	.99	1.00	.74	•79	1.00	.63	1.62
18.7		•57	.00	•33	.20	•99	1.00	.76	.80	1.00	.63	1.72
19.6		.56 .56	.00	.34 .34	.20	•99 •99	1.00	.76 .76	.80 .80	1.00	.63 .63	1.75 1.77
28.6		.46	.00	•39	.20	.98	1.00	.80	.83	1.00	.63	2.08
D 4	17.4	(1.1									
		.61	.08	.38	•35	27	E 2	00	00	25	20	1 20
10.1		.64	.03	.40	.36	•37 •38	•52 •54	.00	.00	•35 •39	.30 .31	1.39 1.55
15.7		.65	.07	.41	.36	•39	.54	.00	.00	.41	.31	1.60
16.2		.65	.07	.41	.36	•39	.54	.00	.00	.41	.31	1.62
18.7		.67	.06	.43	•37	.40	•55	.00	.00	.43	.32	1.72
19.6		.68	.05	.43	•37	.40	•55	.00	.00	. 44	.32	1.75
20.1		.68	.05	.43	•37	.40	•55	.00	.00	. 44	• 32	1.77
28.6	0 3 	•72	.03	.46 	.38	.41 	.58	.00	.00	.51	.34	2.08

C/C_o = Ratio of reservoir cost with Q to that with Q=0 (T=25 years,
 net water supply equals 10% of mean flow)

Table 20. Fish Suitability (MIN Criterion) for the Range of Low Flow Releases Station No. 22; USGS No. 05440000; Kishwaukee River near Perryville D.A. 1099 Sq Mi; Mean Flow 690 cfs; Q(7,10) 62.3 cfs

D • H •	10	99 30	4 1,17	; riean	LTOM	090 0	15 ;	2(1,10	J) UZ•3	CIS			
Q					Suita	ability	for	Fish Nu	mber				
cfs		No.	1	2	3	4	5	6	7	8	9	avg	C/C _o
			· · ·	0.03		\							
				ffle co			.38	.44	0.0	00	.46	4.11	4.52
69.0 78.0		2 4	.00	.02 .02	.00	.00	.36	.42	.00	.00	.50	.14 .14	4.98
107.		5	.00	.02	.00	.02	.29	.36	.00	.00	.61	.14	6.39
111.		7	.00	.01	.00	.02	.28	•35	.00	.00	.62	.14	6.59
121.		6	.00	.01	.00	.03	.27	•33	.00	.00	.65	.14	7.08
128.		8	.00	.00	.00	.03	.26	•33	.00	.00	.68	.14	7.41
138.		1	.00	.00	.00	.04	.25	.30	.00	.00	.69	.14	7.90
156.		3	.00	.00	.00	.05	.24	.28	.00	.00	.71	.14	8.79
100.	00)	•00	•00	•00	•05	• 4 7	• 20	•00	• 00	• / '	• 1 ¬	0.13
				e condi									
69.		2	.01	.09	.00	.00	.00	.00	.00	.00	.00	.01	4.52
78.		4	.01	.08	.00	.00	.00	.00	.00	.00	.00	.01	4.98
107.		5	.01	.07	.00	.00	.00	.01	.00	.00	.00	.01	6.39
111.		7	.01	.07	.00	.00	.00	.01	.00	.00	.00	.01	6.59
121.		6	.01	.07	.00	.00	.01	.01	.00	.00	.00	.01	7.08
128.		8	.01	.06	.00	.00	.01	.01	.00	.00	.00	.01	7.41
138.		1	.02	.06	.00	.00	.01	.02	.00	.00	.00	.01	7.90
156.	00	3	.02	.05	.00	.00	.01	.02	.00	.00	•00	.01	8.79
C •	Juv	enile	e (po	ol cond	ition)							
69.		2	.23	.00	.96	.08	.96	1.00	.92	.86	1.00	.67	4.52
78.		4	.20	.00	.96	.08	.96	1.00	.92	.86	1.00	.66	4.98
107.		5	.13	.00	•97	.08	.94	•99	.94	.88	.99	.66	6.39
111.		7	.12	.00	.97	.08	•93	•99	•95	.88	•99	.66	6.59
121.		6	.11	.00	.98	.08	•93	.99	• 95	.89	•99	.66	7.08
128.		8	.10	.00	.98	.08	.92	.98	.96	.89	.98	.65	7.41
138.		1	.10	.00	.98	.08	.92	.97	.96	.89	.98	.65	7.90
156.		3	.08	.00	.98	.08	.91	• 97	.97	.90	.98	.65	8.79
					,								
				conditi		0.1	0.77	70	0.0	12	0.0	-1 1	11 50
69.		2	.91	.00	.92	.21	.27	.70	.89	.13	.80	•54	4.52
78.		4	.92	.00	.94	.21	.27	.71	.90	.13	.81	•54	4.98
107.		5	.89	.00	•97	.23	.29	.74	.94	.16	.84	.56	6.39
111.		7	.88	.00	•97	.23	.29	•75	• 94	. 17	.85	.56	6.59
121.		6	.86	.00	•97	•23	.29	.76	•95	.18	.86	•57	7.08
128.		8	.85	.00	.98	.24	.29	.76	.96	.19	.87	•57	7.41 7.90
138.		1	.83	.00	.98	.24	.30	.76	.96	.19	.87	•57	8.79
156.	00	3	•79	.00	•97	.25	.30	.76	•97	.20	.89	•57	

Note: Q = Minimum flow release

C/C = Ratio of reservoir cost with Q to that with Q=0 (T=25 years, net water supply equals 10% of mean flow)

Table 21. Fish Suitability (GM Criterion) for the Range of Low Flow Releases Station No. 22; USGS No. 05440000; Kishwaukee River near Perryville D.A. 1099 Sq Mi; Mean Flow 690 cfs; Q(7,10) 62.3 cfs

Q				Suita	ability	for	Fish Nu	umber				
cfs	No.	1	2	3	4	5	6	7	8	9	avg	C/C
Λ Τ,		e (rif										
69.00		• (1.11	.07	.00	.00	•39	.46	.00	.00	.62	.17	4.52
78.00		.00	.06	.00	.00	•39	.46	.00	.00	.64	.17	4.98
107.00		.00	.04	.00	.05	.40	.46	.00	.00	.70	.18	6.39
111.00		.00	.03	.00	.05	.41	.46	.00	.00	.70	.18	6.59
121.00		.00	.03	.00	.06	.41	•47	.00	.00	.71	• 19	7.08
128.00		.00	.02	.00	.07	.42	.47	.00	.00	.72	. 19	7.41
138.00		.00	.01	.00	.08	.42	.46 .46	.00 .00	.00	•73	• 19	7.90
150.00) 3	•00	•00	•00	•09	•43	• 40	•00	.00	•73	• 19	8.79
		riffle	condi	ition)								
69.00		.03	.29	.00	.00	.00	.00	.00	.00	.00	.04	4.52
78.00		.03	.28	.00	.00	.00	.00	.00	.00	.00	.03	4.98
107.00		.03	.21 .19	.00	.00	.04	.08 .09	.00	.00	•00	.04	6.39
121.00		.03	. 17	.00	.00	.05	.10	.00	.00	.00	.04 .04	6.59 7.08
128.00		.04	.16	.00	.00	.05	.11	.00	.00	.00	.04	7.41
138.00		.04	.15	.00	.00	.05	.12	.00	.00	.00	.04	7.90
156.00	3	.04	. 14	.00	.00	.06	. 14	.00	.00	.00	.04	8.79
C I	wanile	e (poo	l cond	iition'	1							
69.00		.48	.00	.98	.22	.98	1.00	.96	•93	1.00	•73	4.52
78.00		.44	.00	.98	.23	.98	1.00	.96	•93	1.00	.72	4.98
107.00		.36	.00	.98	.23	•97	1.00	•97	.94	1.00	.72	6.39
111.00		•35	.00	.98	.23	•97	1.00	•97	.94	•99	.71	6.59
121.00		.34	.00	.98	.23	.96	•99	•97	•94	•99	.71	7.08
128.00		•32	.00	.98	.23	.96	•99	.98	.94	•99	.71	7.41
138.00		.31	.00	.98	.23	.96	•99	.98	.94		.71	7.90
156.00) 3	.29	.00	.98	.24	.95	.98	.98	• 95	•99	.71	8.79
D. Ac	dult (pool c	onditi	ion)								
69.00	2	.94	.00	.96	.46	.52	.72	.94	. 35	.89	.64	4.52
78.00		.94	.00	•97	.46	•52	•73	•95	•37	.90	.65	4.98
107.00		.92	.00	.98	.47	•52	•75	•97	.40	.91	.66	6.39
111.00		•92	.00	.98	.47	•52	•75	.97	.41	.91	.66	6.59
121.00		.91 .91	.00	•98 •98	.48 .48	•53 •53	.76 .76	•97 •98	.42 .43	.91 .92	.66 .67	7.08 7.41
138.00		.90	.00	.98	.48	•53	.77	.98	.44	•92	.67	7.90
156.00		.88	.00	.98	.49	•53	.77	•99	.45	.92	.67	8.79

C/C_o = Ratio of reservoir cost with Q to that with Q=0 (T=25 years, net water supply equals 10% of mean flow)

TABLE 22. Costs and Fish Preferences: Kishwaukee River Basin (Pool Condition)

	Q	ΔС			Fish number* with preference										
No.	cfs	10 ⁶ \$	<u>†</u>	Crit	<0.1	0.10-0.24	0.25-0.49	0.50-0.74	0.75-1.00						
020	36.9	4.731	J	MIN	2,4	3	1	7,8	5,6,9						
				GM	2	4	3	1	5,6,7,8,9						
			Α	MIN	2,7,8	3,4,5	6,9	1							
				GM	2,7,8		3,4,5	1,6,9							
	92.0	11.775	J	MIN	1,2,4				3,5-9						
				GM	2	4	1		3,5-9						
			A	MIN	2,8	4,5		3,6,9	1,7						
				GM	2	8	4,5	6	1,3,7,9						
021	10.1	1.505	J	MIN	2,3,4		7	1,8	5,6,9						
				GM	2	4	3	7	1,5,6,8,9						
			A	MIN	2,7,8	3,4,5,9	1,6								
				GM	2,7,8		3,4,5,9	1,6							
	28.6	4.144	J	MIN	2,4	1,3		7,8	5,6,9						
				GM	2	4	1,3		5,6,7,8,9						
			A	MIN	2,7,8	3,4,5	6,9	1							
				GM	2,7,8		3,4,5	1,6,9							
022	69.0	7.507	J	MIN	2,4	1			3,5-9						
				GM	2	4	1		3,5-9						
			Α	MIN	2	4,8	5	6	1,3,7,9						
				GM	2		4,8	5,6	1,3,7,9						
	156.0	16.623	J	MIN	1,2,4				3,5-9						
				GM	2	4	1		3,5-9						
			A	MIN	2	8	4,5		1,3,6,7,9						
				GM	2		4,8	5	1,3,6,7,9						

^{* 1 =} Bluegill, 2 = Bluntnose, 3 = Carp, 4 = Channel Cat, 5 = Largemouth Bass, 6 = Smallmouth Bass, 7 = Drum, 8 = White Bass, 9 = White Crappie

[†] J and A denote Junevnile and Adult, respectively.

flow is 62.3 cfs). In the pools, the juvenile fish preference is about 0.66 with MIN and 0.72 with GM over the low flow range studied. Similarly, the preference for the adult fish is about 0.55 with MIN and 0.66 with GM. The fish preferences need to be calculated at flows less than 69 cfs to determine if a lesser flow release may be appropriate.

A summary of the fish preferences at the two ends of the low flow range is given in table 22. The decision on a suitable low flow release will be governed by the relative importance of the different target fish, their preferences, and extra capital costs, ΔC .

III. Bay Creek Basin. Cost ratio vs average fish preference curves for juvenile and adult species, applicable to riffle and pool conditions, are shown in figure 26 for net water supply of 10 percent of mean flow, 25-year design drought, and b = 0.75 for the following three stations:

039	Hadley Creek at Kinderhook	$C_0 = \$3.865 \text{ million}$
040	Bay Creek at Pittsfield	$C_o = 2.764 million
041	Bay Creek at Nebo	$C_0 = 5.918 million

The information used in developing the curves in figure 26 is given in tables 23 through 28. The 7-day 10-year low flows at all the above stations are zero.

For Hadley Creek at Kinderhook (drainage area 72.7 sq mi), the average fish preference for the riffles is negligible for both juveniles and adults for the low flow range of 0.19 to 4.50 cfs. In the pools, the juvenile fish preference is about 0.45 with MIN and 0.48 with GM for the low flow range studied. The preference for the adults is much lower, about 0.03 with MIN and 0.13 with GM. The preferences are rather independent of the flow for the range 0.19 to 4.50 cfs.

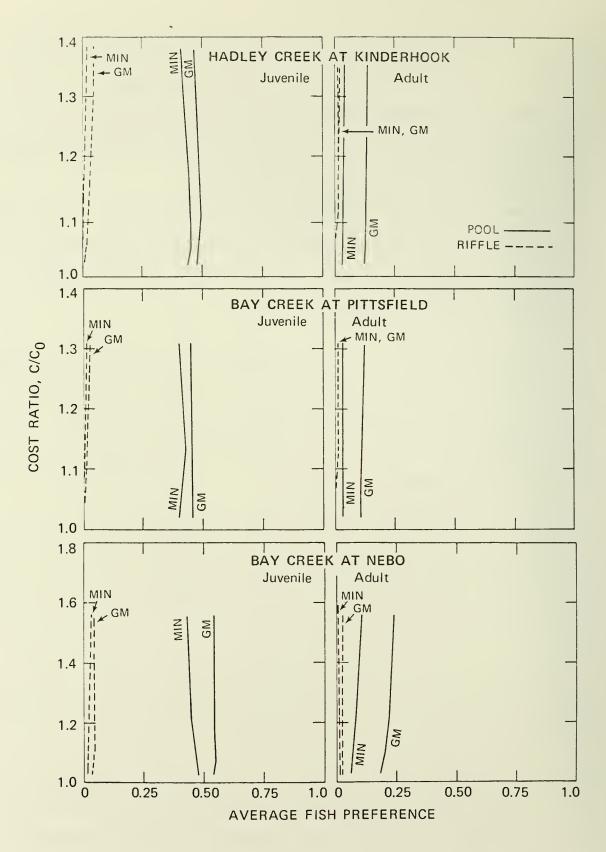


Figure 26. Cost ratio vs. average fish preference: Bay Creek Basin

Table 23. Fish Suitability (MIN Criterion) for the Range of Low Flow Releases Station No. 39; USGS No. 05510500; Hadley Creek at Kinderhook D.A. 72.7 Sq Mi; Mean Flow 53.5 cfs; Q(7,10) 0.00 cfs

D • A •	12	. 1 50	I MI	; Mean	L TOM	22.2	cis,	2(191	0) 0.00	CIS			
Q					Suita	abilit	y for	Fish N	lumber				
cfs		No.	1	2 	3	4	5 	6	7	8	9	avg	C/C _o
Α	Juv	enile	e (ri:	ffle co	nditio	on)							
•	19	5	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	1.02
• 5	53	6	.00	.00	.00	.00	.00	.01	.00	.00	.00	.00	1.05
	58	7	.00	.00	.00	.00	.00	.02	.00	.00	.00	.00	1.05
• ,	76	2	.00	.00	.00	.00	.00	.02	.00	.00	.00	.00	1.05
1.1	16	8	.00	.00	.00	.00	.01	.03	.00	.00	.00	.00	1.09
1.9	52	1	.00	.00	.00	.00	.02	.05	.00	.00	.00	.01	1.11
2.2	25	4	.00	.00	.00	.00	.03	.06	.00	.00	.00	.01	1.17
4.5	50	3	.00	.02	.00	.00	.06	.09	.00	.00	.00	.02	1.38
В. А	Adu	1t (riffl	e condi	tion)								
• 1	19	5	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	1.02
	53	6	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	1.05
	58	7	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	1.05
	76	2	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	1.05
1.		8	.00	.08	.00	.00	.00	.00	.00	.00	.00	.01	1.09
1.5		1	.00	. 14	.00	.00	.00	.00	.00	.00	.00	.02	1.11
2.2		4	.00	.12	.00	.00	.00	.00	.00	.00	.00	.01	1.17
4.5	50	3	.00	.09	.00	.00	.00	.00	.00	.00	.00	.01	1.38
C	Juv	enile	e (po	ol cond	ition)							
• '	19	5	.90	.00	.00	.07	1.00	1.00	.00	.05	.94	.44	1.02
• 5	53	6	•93	.00	.00	.07	1.00	1.00	.00	.07	.96	.45	1.05
• 5	58	7	.94	.00	.00	.07	1.00	1.00	.00	.08	.97	.45	1.05
	76	2	• 95	.00	.00	.07	1.00	1.00	.00	.09	•97	.45	1.05
1.		8	•94	.00	.00	.07	• 99	1.00	.00	. 10	.98	.45	1.09
1.5		1	.87	.00	.00	.07	• 99	1.00	.00	.12	•99	.45	1.11
2.2		4	.74	.00	.00	.07	• 99	1.00	.00	. 14	1.00	.44	1.17
4.5	50	3	.44	.00	.00	.08	.98	1.00	.00	.18	1.00	.41	1.38
D. 1	Adu	1t (pool	conditi	on)								
•	19	5	.07	.12	.01	.00	.03	.07	.00	.00	.00	.03	1.02
• !	53	6	.08	.10	.01	.00	.04	.08	.00	.00	.00	.03	1.05
	58	7	.08	.10	.01	.00	.04	.09	.00	.00	.00	.04	1.05
	76	2	.08	.09	.01	.00	.04	.09	.00	.00	.00	.03	1.05
1.	16	8	.09	.09	.02	.00	.04	. 10	.00	.00	.00	.04	1.09
1.5	52	1	.10	.08	.02	.00	.04	.11	.00	.00	.00	.04	1.11
2.2	25	4	.11	.07	.02	.00	.05	.12	.00	.00	.00	.04	1.17
4.5	50	3	.12	.05	.03	.00	.06	. 14	.00	.00	.00	.04	1.38

 $^{{\}rm C/C_{\rm o}}$ = Ratio of reservoir cost with Q to that with Q=0 (T=25 years, net water supply equals 10% of mean flow)

Table 24. Fish Suitability (GM Criterion) for the Range of Low Flow Releases

Station No. 39; USGS No. 05510500; Hadley Creek at Kinderhook

D.A. 72.7 Sq Mi; Mean Flow 53.5 cfs; Q(7,10) 0.00 cfs

D • A •	12	.7 S	q Mi	; Mean	k.TOM	53.5 (ers ;	Q(1,	10) 0.00	crs			
Q					Suit	abilit	y for	Fish	Number				
cfs		No.	1 	2	3	4	5	6	7 	8	9	avg	C/C _o
Α.	Juv	enil	e (ri	ffle com	nditi	on)							
	19	5	.00	.00	.00	.00	.00	.00		.00	.00	.00	1.02
	53	6	.00	.00	.00	.00	.00	. 10		.00	.00	.01	1.05
	58	7	.00	.00	.00	.00	.00	.11		.00	.00	.01	1.05
	76	2	.00	.00	.00	.00	.00	.13		.00	.00	.01	1.05
	16	8	.00	.00	.00	.00	.06	.15		.00	.00	.02	1.09
	52	1	.00	.00	.00	.00	.10	. 17		.00	.00	.03	1.11
	25	4	.00	.00	.00	.00	.12	.18		.00	.00	.03	1.17
4.	50	3	.00	.06	.00	.00	. 15	.20	.00	.00	.00	.05	1.38
				e condi									
	19	5	.00	.00	.00	.00	.00	.00		.00	.00	.00	1.02
	53	6	.00	.00	.00	.00	.00	.00		.00	.00	.00	1.05
	58	7	.00	.00	.00	.00	.00	.00		.00	.00	.00	1.05
	76	2	.00	.00	.00	.00	.00	.00		.00	.00	.00	1.05
	16	8	.00	.11	.00	.00	.00	.00		.00	.00	.01	1.09
	52 25	1 4	.00	. 15 . 17	.00	.00	.00	.00		.00	.00	.02	1.11
	50	3	.00	.21	.00	.00	.00	.00		.00	.00	.02	1.38
	,	J	•00	•	• • • •	• • • •	• • • •	• • • •	• • • • • • • • • • • • • • • • • • • •	•00	• • • •	• • •	. • 50
С.	Juv	enil	e (po	ol cond	ition)							
	19	5	•95	.00	.00	.11	1.00	1.00	.00	.23	• 97	.47	1.02
	53	6	.96	.00	.00	.11	1.00	1.00		.27	. 98	.48	1.05
	58	7	.96	.00	.00	.12	1.00	1.00		.28	. 98	.48	1.05
	76	2	.96	.00	.00	.12	1.00	1.00		.30	•99	.49	1.05
	16	8	.96	.00	.00	.12	1.00	1.00		.32	•99	.49	1.09
	52	1	•93	.00	.00	. 13	1.00	1.00		. 34	• 99	.49	1.11
	25	4	.86	.00	.00	.13	1.00	1.00		• 37	1.00	.48	1.17
4.	50	3	.66	.00	.00	. 14	•99	1.00	.00	.42	1.00	.46	1.38
D.	Adu	ılt (pool	condition	on)								
	19	5	.26	.34	.09	.00	. 18	.23	.00	.00	.00	.12	1.02
	53	6	.28	•32	.11	.00	.19	.25		.00	.00	.13	1.05
	58	7	.28	.31	.11	.00	.19	.25		.00	.00	.13	1.05
	76	2	.29	.30	.12	.00	.20	.26	.00	.00	.00	.13	1.05
	16	8	.30	.29	.13	.00	.20	.27		.00	.00	. 13	1.09
	52	1	.31	.27	. 14	.00	.21	. 28		.00	.00	. 13	1.11
	25	4	•32	.25	. 15	.00	.22	.30		.00	.00	. 14	1.17
4.	50	3	•35	.20	. 17	.00	.24	•33	.00	.00	.00	. 14	1.38

 $^{{\}rm C/C_{o}}$ = Ratio of reservoir cost with Q to that with Q=0 (T=25 years, net water supply equals 10% of mean flow)

Table 25. Fish Suitability (MIN Criterion) for the Range of Low Flow Releases

Station No. 40; USGS No. 05512500; Bay Creek at Pittsfield

D.A. 39.4 Sq Mi; Mean Flow 26.7 cfs; Q(7,10) 0.00 cfs

D • A			1 111 ,	1,001				٠,١١	10) 0.00	015			
Q					Suita	bility	for	Fish	Number				
cf	S	No.							7			avg	C/C _o
	7												
			e (rif				0.0	00	00	00	0.0	0.0	1 00
	. 15	5	.00	.00	.00	.00	.00	.00		.00	.00	.00	1.02
	.20	7	.00	.00	.00	.00	.00	.00		.00	.00	.00	1.02
	.23	6	.00	.00	.00	.00	.00	.01		.00	.00	.00	1.03
	.27	2	.00	.00	.00	.00	.00	.01		.00	.00	.00	1.03
	.30	8	.00	.00	.00	.00	.00	.01		.00	.00	.00	1.04
	•53	1	.00	.00	.00	.00	.00	.02		.00	.00	.00	1.07
	.96	4	.00	.00	.00	.00	.01	.03		.00	.00	.00	1.13
1	.91	3	.00	.00	.00	.00	.03	.06	.00	.00	.00	.01	1.31
В.	Adu	1t (riffle	e condi	Ltion)								
	. 15	5	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	1.02
	.20	7	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	1.02
	.23	6	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	1.03
	. 27	2	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	1.03
	.30	8	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	1.04
	•53	1	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	1.07
	.96	4	.00	.08	.00	.00	.00	.00	.00	.00	.00	.01	1.13
1	.91	3	.00	.08	.00	.00	.00	.00	.00	.00	.00	.01	1.31
C.	Juv	enile	e (poo	ol cond	dition))							
	. 15	5	.63	.06	.00	.07	.95	1.00	.00	.00	.85	.40	1.02
	.20	7	.65	.06	.00	.07	.95	1.00		.00	.86	.40	1.02
	.23	6	.67	.06	.00	.07	.96	1.00		.00	.86	.40	1.03
	.27	2	.67	.06	.00	.07	.96	1.00		.00	.86	.40	1.03
	.30	8	.69	.05	.00	.07	•97	1.00		.00	.87	.41	1.04
	•53	1	•75	.04	.00	.07	.98	1.00		.00	.88	.41	1.07
	.96	4		.03	.00	.07	•99	1.00		.01	.90	.42	1.13
	.91	3	.49	.01	.00	.08	•99	1.00		.04	•93	•39	1.31
·	٠,٠	5	• , ,	• • •	•00	•00	•))	100	•00	• • •	• 75	• 37	,• ,,
			pool o										
	. 15	5	.04	.19	.00	.00	.02	.05		.00	.00	.03	1.02
	.20	7	.04	.18	.00	.00	.02	.05		.00	.00	.03	1.02
	.23	6	.04	. 17	.00	.00	.02	.05		.00	.00	.03	1.03
	.27	2	•04	. 17	.00	.00	.02	.05		.00	.00	.03	1.03
	.30	8	.04	. 17	.00	.00	.02	.05	.00	.00	.00	.03	1.04
	•53	1	.05	• 15	.00	.00	.03	.05		.00	.00	.03	1.07
	.96	4	.05	. 14	.00	.00	.03	.06		.00	.00	.03	1.13
1	.91	3	.06	. 12	.01	.00	.03	.07	.00	.00	.00	.03	1.31

Table 26. Fish Suitability (GM Criterion) for the Range of Low Flow Releases

Station No. 40; USGS No. 05512500; Bay Creek at Pittsfield

D.A. 39.4 Sq Mi; Mean Flow 26.7 cfs; Q(7,10) 0.00 cfs

D • A •	39	.4 Sq	MI	; Mean	F. T.OM	20./ C	15;	Q(1, 10) 0.00	CIS			
Q					Suit	ability	for	Fish N	umber				
cfs		No.	1	2	3	4	5	6	7	8	9	avg	C/C _o
Α.	Juv	enile	(ri	ffle co	nditi	on)							
	15	5	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	1.02
	20	7	.00	.00	.00	.00	.00	.06	.00	.00	.00	.01	1.02
	23	6	.00	.00	.00	.00	.00	.08	.00	.00	.00	.01	1.03
	27	2	.00	.00	.00	.00	.00	.08	.00	.00	.00	.01	1.03
	30	8	.00	.00	.00	.00	.00	.10	.00	.00	.00	.01	1.04
	53	1	.00	.00	.00	.00	.00	.12	.00	.00	.00	.01	1.07
	96	4 3	.00	.00	.00	.00	.06	.14 .15	.00	.00	.00	.02	1.13
1 •	91	3	•00	•00	•00	•00	•09	• 15	•00	•00	•00	.03	1.51
В.	Adu	1t (riffl	e condi	tion)								
	15	5	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	1.02
•	20	7	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	1.02
	23	6	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	1.03
	27	2	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	1.03
	30	8	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	1.04
	53	1	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	1.07
	96	4	.00	.09	.00	.00	.00	.00	.00	.00	.00	.01	1.13
1 •	91	3	.00	.13	.00	.00	.00	.00	.00	.00	.00	.01	1.31
С.	Juv	enile	(po	ol cond	ition)							
	15	5	.80	.25	.00	.09	.97	1.00	.00	.00	•92	.45	1.02
	20	7	.81	.24	.00	.09	.98	1.00	.00	.00	•93	.45	1.02
	23	6	.82	.23	.00	.09	.98	1.00	.00	.00	•93	.45	1.03
	27	2	.81	.23	.00	.09	.98	1.00	.00	.00	•93	•45	1.03
	30	8	.83	.23	.00	.09	.98	1.00	.00	.00	•93	•45	1.04
	53	1	.85	.20	.00	.10	•99	1.00	.00	.00	.94	. 45	1.07
	96	4	.82	. 17	.00	.10	•99	1.00	.00	.09	•95	.46	1.13
1.	91	3	.66	.09	.00	.11	•99	1.00	.00	. 19	.96	. 44	1.31
D .	Adu	1t. (Lood	conditi	on)								
	15	5	.20	.43	.00	.00	. 15	.18	.00	.00	.00	.11	1.02
	20	7	.20	.42	.00	.00	. 15	.19	.00	.00	.00	.11	1.02
	23	6	.21	.41	.00	.00	. 15	. 19	.00	.00	.00	.11	1.03
	27	2	.21	.41	.00	.00	. 15	.19	.00	.00	.00	.11	1.03
	30	8	.21	.40	.00	.00	.15	.19	.00	.00	.00	.11	1.04
	53	1	.22	.38	.00	.00	.16	.20	.00	.00	.00	.11	1.07
	96	4	.23	.36	.04	.00	.17	.21	.00	.00	.00	.11	1.13
1.	91	3	.25	•32	.08	.00	.18	.22	.00	.00	.00	.12	1.31

C/C = Ratio of reservoir cost with Q to that with Q=0 (T=25 years, net water supply equals 10% of mean flow)

Table 27. Fish Suitability (MIN Criterion) for the Range of Low Flow Releases

Station No. 41; USGS No. 05513000; Bay Creek at Nebo D.A. 161 Sq Mi; Mean Flow 96.7 cfs; Q(7,10) 0.00 cfs

D • A •	101 30		reali	f. TOM	90.1 0	15 ;	2(1,10	0.00	015			
Q				Suita	bility	for	Fish Nu	mber				
cfs	No.	1	2	3	4	5	6	7	8	9	avg	C/C
ΔΤιι			fle co									
.69		.00	.00	.00	.00	.02	.05	.00	.00	.00	.01	1.03
1.13		.00	.00	.00	.00	.03	.06	.00	.00	.00	.01	1.05
1.50		.00	.02	.00	.00	.04	.07	.00	.00	.00	.01	1.07
1.81		.00	.02	.00	.00	.04	.08	.00	.00	.00	.02	1.08
2.38		.00	.02	.00	.00	.05	.08	.00	.00	.00	.02	1.10
3.62 5.25		.00	.01	.00	.00	.06	.10 .12	.00	.00	.00	.02	1.15 1.22
10.50		.00	.00	.00	.00	.11	.16	.00	.00	.00	.02	1.56
10.00	2	•00	•00	• 0 0	•00	• 1 1	• 10	• 00	•00	•00	•05	1.00
B. Ad	ult (riffle	condi	tion)								
.69	5	.00	.13	.00	.00	.00	.00	.00	.00	.00	.01	1.03
1.13		.00	.11	.00	.00	.00	.00	.00	.00	.00	.01	1.05
1.50		.00	.10	.00	.00	.00	.00	.00	.00	.00	.01	1.07
1.81 2.38		.00	.09	.00	.00	.00	.00	.00	.00	.00	.01	1.08
3.62		.00	.08 .07	.00	.00	.00	.00	.00	.00	.00	.01	1.10 1.15
5.25		.00	.06	.00	.00	.00	.00	.00	.00	.00	.01	1.22
10.50		.00	.03	.00	.00	.00	.00	.00	.00	.00	.00	1.56
C T.,	nila	/ 200	1 0000	1 + 1 - m '								
.69		• (poo	l cond	•00	.07	•99	1.00	.06	.24	1.00	.48	1.03
1.13		.81	.00	.00	.07	•99	1.00	.08	.27	1.00	.47	1.05
1.50		•73	.00	.01	.07	•99	1.00	.10	.28	1.00	.46	1.07
1.81		.66	.00	.01	.08	.99	1.00	.11	.29	1.00	.46	1.08
2.38	8	•57	.00	.01	.08	.99	1.00	.13	.31	1.00	.45	1.10
3.62		.44	.00	.01	.08	.98	1.00	.15	•33	1.00	.44	1.15
5.25		.30	.00	.02	.08	.97	1.00	. 19		1.00	. 44	1.22
10.50	3	.15	.00	.03	.08	.94	1.00	.26	.42	•99	.43	1.56
D. Ad	ult (pool c	onditi	on)								
.69		.16	.04	.05	.04	.07	.18	.00	.00	.00	.06	1.03
1.13		.17	.04	.05	.05	.08	.19	.00	.00	.00	.06	1.05
1.50		.17	.03	.05	.05	.08	.19	.00	.00	.00	.06	1.07
1.81		.18	.03	.06	.06	.08	.20	.00	.00	.00	.07	1.08
2.38 3.62		.18	.03	.06 .07	.06 .07	.08	.20	.00	.00	.00	.07	1.10
5.25		.20 .21	.03 .02	.08	.08	.09	.22	.00	.00	.01 .02	.08 .08	1.15 1.22
10.50		.25	.02	.09	.10	.10	.27	.00	.00	.05	.10	1.56
	,		• 0 -			. 10	• -	• 00	• 00	• 0)	• 10	1.00

Table 28. Fish Suitability (GM Criterion) for the Range of Low Flow Releases

Station No. 41; USGS No. 05513000'; Bay Creek at Nebo D.A. 161 Sq Mi; Mean Flow 96.7 cfs; Q(7,10) 0.00 cfs

D•R•			, 170011		JO• \	,	2(1)10					
Q				Suita	bilit	y for	Fish Nu	umber				
cfs	No.	1	2	3	4	5	6	7	8	9	avg	C/C _o
A. Ju	venile	(ri	ffle co	nditio	on)							
.69	5	.00	.00	.00	.00	.10	.16	.00	.00	.00	.03	1.03
1.13	7	.00		.00	.00	.12	.18	.00	.00	.00	.03	1.05
1.50	6	.00	.03	.00	.00	. 12	. 18	.00	.00	.00	.04	1.07
1.81	2	.00	.04	.00	.00	.13	.18	.00	.00	.00	-04	1.08
2.38	8	.00	.05	.00	.00	.13	. 19	.00	.00	.00	.04	1.10
3.62		.00	.04	.00	.00	.13	.19	.00	.00	.00	.04	1.15
5.25		.00	.00	.00	.00	. 14	.19	.00	.00	.00	•04	1.22
10.50	3	.00	.00	.00	.00	. 14	.18	.00	.00	.00	.04	1.56
B. Ad	ult (riffle	e condi	tion)								
.69		.00	. 14	.00	.00	.00	.00	.00	.00	.00	.02	1.03
1.13		.00	.16	.00	.00	.00	.00	.00	.00	.00	.02	1.05
1.50	6	.00	.17	.00	.00	.00	.00	.00	.00	.00	.02	1.07
1.81	2	.00	.18	.00	.00	.00	.00	.00	.00	.00	.02	1.08
2.38	8	.00	.18	.00	.00	.00	.00	.00	.00	.00	.02	1.10
3.62	1	.00	.20	.00	.00	.00	.00	.00	.00	.00	.02	1.15
5.25		.00	.22	.00	.00	.00	.00	.00	.00	.00	.02	1.22
10.50	3	.00	.18	.00	.00	.00	.00	.00	.00	.00	.02	1.56
C. Ju	venile	(000	ol cond	ition`)							
.69		.96			•15	1.00	1.00	.24	.49	1.00	•54	1.03
1.13		.90	.00	.07	.15	1.00	1.00	.29	•52	1.00	•55	1.05
1.50	6	.86	.00	.08	.15	1.00	1.00	.31	•53	1.00	•55	1.07
1.81		.81	.00	.09	.16	1.00	1.00	•33	.54	1.00	•55	1.08
2.38	8	.75	.00	.10	.16	1.00	1.00	•35	•55	1.00	•55	1.10
3.62		.66	.00	.12	.16	•99	1.00	•39	.58	1.00	•54	1.15
5.25		•55	.00	. 14	. 17		1.00	.43	.60	1.00	•54	1.22
10.50		•39	.00	.18	.18	•97	1.00	.50	.65	1.00	.54	1.56
D. Ad		-			00	05	26	0.0	0.0	00	10	1 02
.69	5	.40	.19	.21	.20	.27	.36	.00	.00	.00	.18	1.03
1.13	7	.41	.18	.23	.22	.28	• 37	.00	.00	.00	•19	1.05
1.50	6	.42	. 18	•23	.23	.28	.38	.00	.00	.00	.19	1.07
1.81	2 8	.42	. 17	.24	.24	.28	.38	.00	.00	.00 .04	.19 .20	1.08
2.38 3.62	1	.43 .44	. 17 . 15	.25 .26	.25 .26	.29 .29	•39 •40	.00	.00	.11	.21	1.15
5.25	4	.46	.12	.27	.28	.30	.42	.00	.00	.15	.22	1.22
10.50	3	.47	.08	.30	.31	.31	.45	.00	.00	.21	.24	1.56
10.00		• 1			• • • •							

Note: Q = Minimum flow release

 $^{{\}rm C/C_{O}}$ = Ratio of reservoir cost with Q to that with Q=0 (T=25 years, net water supply equals 10% of mean flow)

TABLE 29. Costs and Fish Preferences: Bay Creek Basin (Pool Condition)

	Q	ΔС				Fish nu	mber* with	preference	
No.	cfs	106\$	+	Crit	<0.1	0.10-0.24	0.25-0.49	0.50-0.74	0.75-1.00
039	0.19	0.064	J	MIN	2,3,4,7,8				1,5,6,9
				GM	2,3,7	4,8			1,5,6,9
			A	MIN	1,3-9	2			
				GM	3,4,7,8,9		1,2,5,6		
	4.50	1.478	J	MIN	2,3,4,7	8	1		5,6,9
				GM	2,3,7	4	8	1	5,6,9
			Α	MIN	2-5,7-9	1,6			
				GM	4,7,8,9	2,3,5	1,6		
040	0.15	0.066	J	MIN	2,3,4,7,8			1	5,6,9
				GM	3,4,7,8		2		1,5,6,9
			A	MIN	1,3-9	2			
				GM	3,4,7,8,9	2,5,6	2		
	1.91	0.870	J	MIN	2,3,4,7,8		1		5,6,9
				GM	2,3,7	4,8		1	5,6,9
			A	MIN	1,3-9	2			
				GM	3,4,7,8,9	5,6	1,2		
041	0.69	0.187	J	MIN	2,3,4,7	8			1,5,6,9
				GM	2,3	4,7	8		1,5,6,9
			A	MIN	2-5, 7-9	1,6			
				GM	7,8,9	2,3,4	1,5,6		
	10.50	3.291	J	MIN	2,3,4	1	7,8		5,6,9
				GM	2	3,4	1	7,8	5,6,9
			A	MIN	2,3,7,8,9		1,6		
				GM	2,7,8	9	1,3,4,5,6		

^{* 1 =} Bluegill, 2 = Bluntnose, 3 = Carp, 4 = Channel Cat, 5 = Largemouth Bass, 6 = Smallmouth Bass, 7 = Drum, 8 = White Bass, 9 = White Crappie

[†] J and A denote Juvenile and Adult, respectively.

In the case of Bay Creek at Pittsfield (drainage area 39.4 sq mi), the average fish preference for the riffles is negligible for both juveniles and adults for the low flow range of 0.15 to 1.91 cfs. In the pools, the juvenile fish preference is about 0.40 with MIN and 0.45 with GM for the low flow range studied. The preference for the adults is much lower, about 0.03 with MIN and 0.11 with GM. The preferences are rather independent of the flow for the range of 0.15 to 1.91 cfs.

For Bay Creek at Nebo (drainage area 161 sq mi), the average fish preference for the riffles is negligible for both juveniles and adults for the low flow range of 0.69 to 10.50 cfs. In the pools, the juvenile fish preference is about 0.46 with MIN and 0.55 with GM for the low flow range studied. The preference for the adults is lower, varying from 0.06 to 0.10 with MIN and from 0.18 to 0.24 with GM.

A summary of the fish preferences at the two ends of the low flow range is given in table 29. It is evident that unless much higher flow releases are considered, it may be satisfactory to keep minimum low flow release for maintenance of the pools if the water quality is not adversely affected at low flows.

IV. Vermilion River Basin. Cost ratio vs average fish preference curves for juvenile and adult species, applicable to riffle and pool conditions, are given in figure 27 for net water supply of 10 percent of mean flow, 25-year design drought, and b = 0.75 for the following three stations:

N.F. Vermilion River near Charlotte $C_0 = 3.989 million

080 Vermilion River at Pontiac $C_0 = 6.710 million

Vermilion River at Lowell $C_0 = 11.321 million

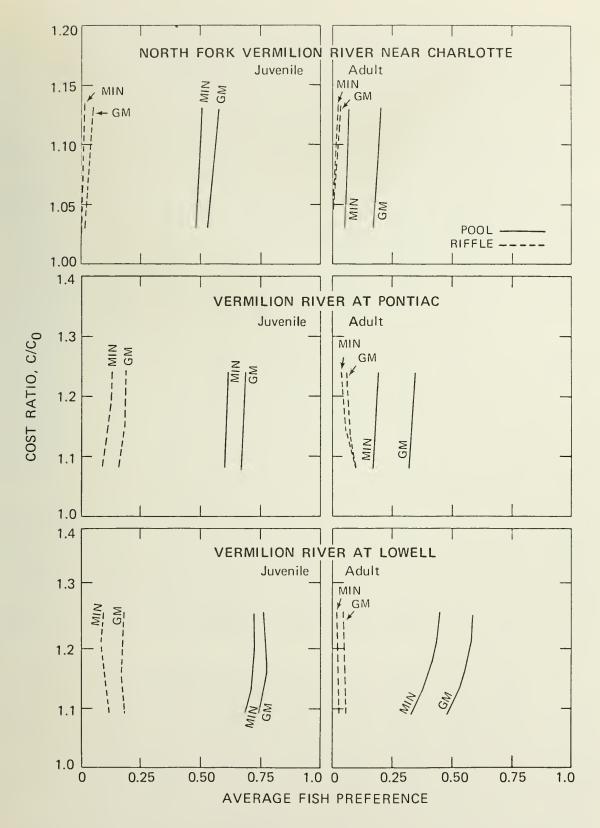


Figure 27. Cost ratio vs. average fish preference: Vermilion River Basin

The information used in developing the curves in figure 27 is given in tables 30 through 35. The 7-day 10-year low flows at the above stations are 0.00, 0.20, and 7.30 cfs. The 7-day 10-year low flow at Pontiac is 2.0 cfs, but 1.8 cfs is withdrawn by the town upstream of the gaging station.

For the North Fork Vermilion River near Charlotte (drainage area 186 sq mi), the average fish preference for the riffles is negligible for both juveniles and adults for the low flow range of 0.49 to 2.16 cfs. In the pools, the juvenile fish preference is about 0.49 with MIN and 0.55 with GM for the low flow range studied. The preference for the adults is much lower, about 0.06 with MIN and 0.18 with GM. The preferences do not vary appreciably with increases in low flow in the range of 0.49 to 2.16 cfs.

In the case of the Vermilion River at Pontiac (drainage area 579 sq mi), the average fish preference for the riffles increases from 0.09 to 0.13 with MIN and from 0.16 to 0.19 with GM for the juveniles, and decreases from 0.10 to 0.04 with MIN and 0.10 to 0.06 with GM for the adults, as the flow increases from 3.13 to 9.97 cfs. In the pools, the juvenile fish preference is about 0.60 with MIN and 0.68 with GM, and the adult fish preference is about 0.18 with MIN and 0.33 with GM for the low flow range studied. The preferences for the pools are practically independent of the low flow release within the study range.

For the Vermilion River at Lowell (drainage area 1278 sq mi), the average fish preference for the riffles is about 0.10 with MIN and 0.17 with GM for the juveniles, and about 0.03 and 0.05 for the adults for the low flow range of 8.95 to 26.20 cfs. In the pools, the juvenile fish preference is about 0.71 with MIN and 0.76 with GM, and the adult fish preference increases from 0.33 to 0.46 with MIN and from 0.48 to 0.59 with an increase in

Table 30. Fish Suitability (MIN Criterion) for the Range of Low Flow Releases Station No. 79; USGS No. 05554000; N. F. Vermilion River near Charlotte D.A. 186 Sq Mi; Mean Flow 124 cfs; Q(7,10) 0.00 cfs

				, Mean					0, 0.00				
Q								Fish N					
cfs		No.	1	2	3	4	5	6	7	8	9	avg	C/C _o
٨	Tive	oni	le (ri										
			.00	.00	.00	.00	.00	.00	00	00	00	00	1 02
	49	5		.00	.00				.00	.00	.00	.00	1.03
	55	2	.00			.00	.00	.01	.00	.00	.00	.00	1.03
	73 83	7	.00	.00	.00	.00	.00	.02	.00	.00	.00	.00	1.05
			.00	.00		.00		.02	.00	.00		.00	1.05
1.		4	.00	.00	.00	.00	.00	.03	.00	.00	.00	.00	1.07
1.		1	.00	.00	.00	.00	.00	•03	.00	.00	.00	.00	1.07
1.		8	.00	.00	.00	.00	.01	.04	.00	.00	.00	.01	1.08
۷٠	16	3	.00	.00	.00	.00	.03	.06	.00	.00	.00	.01	1.13
В.	Adu	1t ((riffl	e condi	ition)								
	49	5	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	1.03
•	55	2	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	1.03
	73	7	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	1.05
	83	6	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	1.05
1.		4	.00	.05	.00	.00	.00	.00	.00	.00	.00	.01	1.07
1.		1	.00	.05	.00	.00	.00	.00	.00	.00	.00	.01	1.07
	31	8	.00	.10	.00	.00	.00	.00	.00	.00	.00	.01	1.08
		3	.00	.25	.00	.00	.00	.00	.00	.00	.00	.03	1.13
0	7	7		-1	1262 \								
			le (po				1 00	1 00	0.1	21	1 00	11.0	1 02
	49	5	1.00		.00	.07	1.00	1.00	.01	.21	1.00	.48	1.03
	55	2	1.00	.00	.00	.07	1.00	1.00	.02	.22	1.00	.48	1.03
	73	7	1.00	.00	.00	.07	1.00	1.00	.04	.23	1.00	.48	1.05
	83	6	1.00	.00	.00	.07	1.00	1.00	.04	•23	1.00	.48	1.05
1.		4	1.00	.00	.00	.07	1.00	1.00	.06	.25	1.00	.49	1.07
	09	1	1.00	.00	.00	.07	1.00	1.00	.06	.25	1.00	.49	1.07
		8	1.00	.00	.00	.07	1.00	1.00	.08	.26	1.00	.49	1.08
2.	16	3	1.00	.00	.01	.07	1.00	1.00	.12	.30	1.00	•50	1.13
D.	Adu	lt i	(pool	conditi	ion)								
	49	5	.14	.04	.04	.02	.07	.16	.00	.00	.00	.05	1.03
	55	2	.14	.04	.04	.02	.07	.16	.00	.00	.00	.05	1.03
	73	7	•15	.04	.04	.03	.07	.17	.00	.00	.00	.06	1.05
	83	6	.15	.04	.04	.03	.07	.17	.00	.00	.00	.06	1.05
1.		4	.16	.04	.05	.04	.07	.18	.00	.00	.00	.06	1.07
	09	1	.16	.04	.05	.04	.07	.18	.00	.00	.00	.06	1.07
	31	8	.17	.04	.05	.05	.07	.18	.00	.00	.00	.06	1.08
2.		3	.18	.03	.06	.06	.08	.20	.00	.00	.00	.07	1.13

C/C = Ratio of reservoir cost with Q to that with Q=0 (T=25 years,
 net water supply equals 10% of mean flow)

Table 31. Fish Suitability (GM Criterion) for the Range of Low Flow Releases Station No. 79; USGS No. 05554000; N. F. Vermilion River near Charlotte D.A. 186 Sq Mi; Mean Flow 124 cfs; Q(7,10) 0.00 cfs

D • A	•	100	Sq Mi	; Mear	1 FLOW	124 (cis;	Q(1,	10) 0.00	cis			
Q					Suita	abilit;	y for	Fish	Number				
ofs	3	No.	1	2	3	4	5	6	7	8	9	avg	C/C
A. Juvenile (riffle condition)													
	49	5	.00	.00	.00	.00	.00	.06	.00	.00	.00	.01	1.03
	55	2	.00	.00	.00	.00	.00	.09	.00	.00	.00	.01	1.03
	73	7	.00	.00	.00	.00	.00	.12		.00	.00	.01	1.05
	.83	6	.00	.00	.00	.00	.00	. 14		•00	.00	.02	1.05
	.08	4	.00		.00	.00	.06	. 17		.00	.00	.03	1.07
	.09	1	.00		.00	.00	.06	. 17		.00	.00	.03	1.07
	31	8	.00		.00	.00	.10	. 19		.00	.00	.03	1.08
2.	. 16	3	.00	.00	.00	.00	. 17	.25	.00	.00	•00	.05	1.13
В.	B. Adult (riffle condition)												
	.49	5	.00	.00	.00	.00	.00	.00		.00	.00	.00	1.03
	55	2	.00		.00	.00	.00	.00		.00	.00	.00	1.03
	.73	7	.00		.00	.00	.00	.00		.00	.00	.00	1.05
	.83	6	.00		.00	.00	.00	.00		.00	.00	.00	1.05
	.08	4	.00		.00	.00	.00	.00		.00	.00	.02	1.07
	.09	1	.00		.00	.00	.00	.00		.00	.00	.02	1.07
	31	8 3	.00		.00	.00	.00	.00		.00	.00	.02	1.08
۷.	. 10	2	•00	• > >	.00	•00	•00	•00	•00	•00	•00	•04	1.13
			-	ool cond									
	.49	5	1.00		.00	.14	1.00	1.00		.46	1.00	.52	1.03
	55	2	1.00		.00	. 14	1.00	1.00		. 47	1.00	•53	1.03
	.73	7	1.00		.00	. 14	1.00	1.00		.48	1.00	•53	1.05
	.83	6	1.00		.00	. 14	1.00	1.00		.48	1.00	.54	1.05
	.08	4	1.00		.03	.15	1.00	1.00		.50	1.00	•55	1.07
	.09	1	1.00		.03	.15	1.00	1.00		.50	1.00	•55	1.07
	.31	8	1.00		.06	.15	1.00	1.00		.51	1.00	.56	1.08
۷.	. 16	3	1.00	.00	.10	. 15	1.00	1.00	.34	•55	1.00	•57	1.13
D.	Adı	ılt	(pool	conditi	on)								
	. 49	5	.38	.21	. 19	.13	.26	. 34		.00	.00	. 17	1.03
	55	2	.38	.21	.19	. 14	.26	.34		.00	.00	. 17	1.03
	73	7	•39	.20	.20	. 17	.26	• 35		.00	.00	. 17	1.05
	. 83	6	•39	.20	.21	. 18	.26	• 35		.00	.00	.18	1.05
	.08	4	.40	.19	.22	.21	.27	.36		.00	.00	.18	1.07
	.09	1	.40	.19	.22	.21	.27	. 36		.00	.00	.18	1.07
	31	8	.41	•19	.22	.22	.27	• 37		.00	.00	. 19	1.08
2.	. 16	3	.43	. 18	.24	.24	.29	.38	.00	.00	.00	.20	1.13

C/C_o = Ratio of reservoir cost with Q to that with Q=O (T=25 years, net water supply equals 10% of mean flow)

Table 32. Fish Suitability (MIN Criterion) for the Range of Low Flow Releases Station No. 80; USGS No. 05554500; Vermilion River at Pontiac D.A. 579 Sq Mi; Mean Flow 378 cfs; Q(7,10) 0.20 cfs

D.A.	J1	<i>y</i> 04	rii.	, loan	I LOW	5,0							
Q					Suita	bilit	y for	Fish	Number				
cfs	N		1	2	3	4	5	6	7	8	9	avg	C/C _o
A. Juvenile (riffle condition)													
3.1		2	.00	.57	.00	.00	.09	.13	.00	.00	.00	.09	1.08
4.3		5	.00	.67	.00	.00	.10	. 15	.00	.00	.00	.10	1.11
4.9		4	.01	.70	.00	.00	.10	. 15	.00	.00	.00	.11	1.13
5.7	_	7	.01		.00	.00	.11	.16	.00	.00	.00	.12	1.14
6.2		1	.01	.77	.00	.00	.11	.16	.00	.00	.00	.12	1.16
6.7		6	.01	.80	.00	.00	.11	.17	.00	.00	.00	.12	1.17
8.2		8	.02	.85	.00	.00	.12	.18	.00	.00	.00	.13	1.20
9.9		3	.02	.80	.00	.00	.13	.19	.00	.00	.00	.13	1.24
J• J	, ,	J	•02	• 00	•00	•00	• 15	• 17	•00	•00	• 00	• 15	1 • 4 7
				condi									
3.1		2	.00	.87	.00	.00	.00	.00	.00	.00	.00	.10	1.08
4.3		5	.00	.80	.00	.00	.00	.00	.00	.00	.00	.09	1.11
4.9		4	.00	.70	.00	.00	.00	.00	.00	.00	.00	.08	1.13
5.7		7	.00	•55	.00	.00	.00	.00	.00	.00	.00	.06	1.14
6.2		1	.00	.50	.00	.00	.00	.00	.00	.00	.00	.06	1.16
6.7		6	.00	. 44	.00	.00	.00	.00	.00	.00	.00	.05	1.17
8.2		8	.00	.36	.00	.00	.00	.00	.00	.00	.00	.04	1.20
9.9	97	3	.00	.32	.00	.00	.00	.00	.00	.00	.00	.04	1.24
C. J	Juve	nile	(poc	ol cond	ition)								
3.1			1.00	.00	.11	.07	1.00	1.00	.56	.63	1.00	.60	1.08
4.3			1.00	.00	.11	.07	1.00	1.00	•59	.64	1.00	.60	1.11
4.9			1.00	.00	. 12	.07	1.00	1.00	•59	.65	1.00	.60	1.13
5.7	77	7	.99	.00	.13	.07	1.00	1.00	.61	.66	1.00	.61	1.14
6.2	26	1	.99	.00	.13	.07	1.00	1.00	.61	.66	1.00	.61	1.16
6.7	70	6	.99	.00	.13	.07	1.00	1.00	.61	.66	1.00	.61	1.17
8.2	22	8	.98	.00	. 14	.07	1.00	1.00	.63	.67	1.00	.61	1.20
9.9	97	3	•97	.00	. 15	.07	1.00	1.00	.64	.68	1.00	.61	1.24
D 1	\dul	+ (,	2001	conditi	on)								
بر 3.1		2	.44	.00	.18	. 14	. 15	.40	.00	.00	. 18	. 17	1.08
4.3		5	.46	.00	.19	.14	.16	.41	.00	.00	.19	.17	1.11
4.9		4	.47	.00	.19	.14	.16	.41	.00	.00	.20	.17	1.13
5.7		7	.49	.00	.20	.14	.16	.42	.00	.00	.21	.18	1.14
6.2		1	.49	.00	.20	.14	.16	.42	.00	.00	.21	.18	1.16
6.7		6	.50	.00	.20	.14	.16	.42	.00	.00	.22	.18	1.17
8.2		8	.51	.00	.21	.14	. 17	.43	.00	.00	.23	.19	1.20
9.9		3	•53	.00	.21	.15	. 17	.44	.00	.00	.25	.19	1.24

 $^{{\}rm C/C_{O}}$ = Ratio of reservoir cost with Q to that with Q=0 (T=25 years, net water supply equals 10% of mean flow)

Table 33. Fish Suitability (GM Criterion) for the Range of Low Flow Releases

Station No. 80; USGS No. 05554500; Vermilion River at Pontiac D.A. 579 Sq Mi; Mean Flow 378 cfs; Q(7,10) 0.20 cfs

D.A.	219 3	ų mi ,	rical.	I I TOW	510	· · · · ·	~(1)10		CIS			
Q Suitability for Fish Number												
cfs	No.	1	2	3	4	5	6	7	8	9	avg	C/C _o
A. Juvenile (riffle condition)												
3.1	3 2	.00	.74	.00	.00	.30	.36	.00	.00	.00	. 16	1.08
4.1	_		•79	.00	.00	.31	.38	.00	.00	.00	. 17	1.11
4.9		.04	.81	.00	.00	.32	• 39	.00	.00	.00	. 17	1.13
5.7		.05	.84	.00	.00	•33	.40	.00	.00	.00	.18	1.14
6.2 6.7		.05 .06	.83 .85	.00	.00	•33 •33	.40 .41	.00	.00	.00	.18	1.16
8.2		.06	.86	.00	.00	.34	.43	.00	.00	.00	.19	1.20
9.9		.05	.86	.00	.00	• 35	.44	.00	.00	.00	.19	1.24
		riffle	e condi	.00	.00	.00	.00	.00	.00	.00	.10	1.08
3.1 4.1		.00	.89	.00	.00	.00	.00	.00	.00	.00	.10	1.11
4.9	_	.00	.84	.00	.00	.00	.00	.00	.00	.00	.09	1.13
5.7	-	.00	.74	.00	.00	.00	.00	.00	.00	.00	.08	1.14
6.2		.00	.70	.00	.00	.00	.00	.00	.00	.00	.08	1.16
6.7		.00	.67	.00	.00	.00	.00	.00	.00	.00	.07	1.17
8.2		.00	.60	.00	.00	.00	.00	.00	.00	.00	.07	1.20
9.9	7 3	.00	.56	•00 -	.00	.00	.00	.00	.00	.00	.06	1.24
C. J	uvenil	e (pod	ol cond	dition)								
3.1		1.00	.00	.32	- 19	1.00	1.00	.75	.79	1.00	.67	1.08
4.1		1.00	.00	. 34	. 19	1.00	1.00	.76	.80	1.00	.68	1.11
4.9		1.00	.00	. 34	. 19	1.00	1.00	•77	.81	1.00	.68	1.13
5.7		1.00	.00	• 35	. 19	1.00	1.00	.78	.81	1.00	.68	1.14
6.2		1.00	.00	•35	.19	1.00	1.00	.78 .78	.81 .81	1.00	.68	1.16 1.17
6.7 8.2		•99 •99	.00	.36 .38	.19 .19	1.00	1.00	•79	.82	1.00	.69	1.20
9.9		•99	.00	•39	.19	1.00	1.00	.80	.83	1.00	.69	1.24
		pool			25	20	C 11	0.0	0.0	110	22	1 00
3.1		.66	.07	.42	• 37	•39	•54 55	.00	.00	.42 .44	•32 •33	1.08
4.1 4.9		.68 .69	.07 .06	.43 .44	•37 •37	.40 .40	•55 •55	.00	.00	.44	•33	1.13
5.7	-	.70	.06	.44	.38	.40	.56	.00	.00	.46	•33	1.14
6.2		.70	.06	44	.38	.40	.56	.00	.00	.46	•33	1.16
6.7		.70	.06	• 45	.38	.41	.56	.00	.00	.47	.34	1.17
8.2		.72	.06	. 45	.38	.41	.56	.00	.00	.48	. 34	1.20
9.9	7 3	•73	.05	.46	.38	.41	•57	.00	.00	.50	• 34	1.24

 $^{{\}rm C/C_{\rm O}}$ = Ratio of reservoir cost with Q to that with Q=0 (T=25 years, net water supply equals 10% of mean flow)

Table 34. Fish Suitability (MIN Criterion) for the Range of Low Flow Releases

Station No. 81; USGS No. 055555500; Vermilion River at Lowell

D.A. 1278 Sq Mi; Mean Flow 734 cfs; Q(7,10) 7.30 cfs

D • A •	127	o Sq	MI	; Mean	FIOM	134	cis;	Q(1)	10) 7.30	J CIS			
Q					Suita	bilit	y for	Fish A	Number				
cfs	No	o.	1	2	3	4	5	6	7	8	9	avg	C/C _o
Α	Juvei	nile	(ri	ffle co	nditic	on)							
8.9		2	.02	.74	.00	.00	.13	.19	.00	.00	.00	.12	1.09
13.		4	.04	.51	.00	.00	. 16	.22	.00	.00	.00	.10	1.13
13.9		5	.04	.47	.00	.00	. 17	.23	.00	.00	.00	. 10	1.14
15.		7	.04	.42	.00	.00	.18	.24	.00	.00	.00	.10	1.16
17.		1	.03	•33	.00	.00	.20	.26	.00	.00	.00	.09	1.18
17.9		5 3	.03	•33 •20	.00	.00	.22	.29	.00	.00	.00 .02	.09 .08	1.18 1.21
26.		3	.00	.16	.00	.00	.24	.32	.00	.00	.10	.09	1.26
200		,	•00	• 10	• • • •	• • • •	• -				• , •	• • • •	,,,,
В.	Adul	t (:	riffl	e condi	tion)								
8.		2	.00	.29	.00	.00	.00	.00	.00	.00	.00	.03	1.09
13.		4	.00	.27	.00	.00	.00	.00	.00	.00	.00	.03	1.13
13.		5	.00	.26	.00	.00	.00	.00	.00	.00	.00	.03	1.14
15.1 17.1		7 1	.00	.25 .24	.00	.00	.00	.00	.00	.00	.00	.03	1.16 1.18
17.		5	.00	.24	.00	.00	.00	.00	.00	.00	.00	.03	1.18
20.		3	.00	.22	.00	.00	.00	.00	.00	.00	.00	.02	1.21
26.		3	.00	.21	.00	.00	.00	.00	.00	.00	.00	.02	1.26
				ool cond					-0	- 6			
8.9		2	•97	.00	.56	.07	1.00	1.00	.78	.76	1.00	.68	1.09
13.		4	• 95	.00	•75	.07	•99	1.00	.81 .81	.78	1.00	.71	1.13
13.9 15.1		5 7	.94	.00	.78 .84	.07	•99 •99	1.00	.82	.78 .79	1.00 1.00	.71 .71	1.14 1.16
17.		1	.88	.00	.86	.07	•99	1.00	.84	.80	1.00	.72	1.18
17.		5	.88	.00	.86	.07	•99	1.00	.84	.80	1.00	.72	1.18
20.	_	3	.83	.00	.89	.07	.99	1.00	.85	.81	1.00	.72	1.21
26.2	20	3	.76	.00	.92	.07	•99	1.00	.87	.82	1.00	.71	1.26
D	Adul 1	. (nool	conditi	on)								
8.		2	•73	.00	•35	. 17	.21	- 55	.47	.00	•52	•33	1.09
13.		4	.78	.00	.44	.18	.22	•57	.63	.01	.60	.38	1.13
13.		5	.78	.00	.45	. 18	.23	.58	.64	.01	.61	•39	1.14
15.		7	.80	.00	.48	. 18	.23	•59	.67	.02	.64	.40	1.16
17.		1	.81	.00	•54	.18	.23	.60	•72	.03	.66	.42	1.18
17.		5	.81	.00	.54	.18	.23	.60	.72	.03	.66	.42	1.18
20.9		3	.83	.00	.61	.19	.24	.61	.76	.05	.68	.44	1.21
20.		3 - 	.85 	.00	.69 	.19	.25	.63	•79	.06	.71	.46	1.26

C/C_o = Ratio of reservoir cost with Q to that with Q=0 (T=25 years, net water supply equals 10% of mean flow)

Table 35. Fish Suitability (GM Criterion) for the Range of Low Flow Releases

Station No. 81; USGS No. 05555500; Vermilion River at Lowell

D.A. 1278 Sq Mi; Mean Flow 734 cfs; Q(7,10) 7.30 cfs

D.A.				, mai	1 100		, ,	۷(۱)					
Q					Suita	ability	for	Fish	Number				
cfs		No.	1	2	3	4	5	6	7	8	9	avg	C/C _o
Α.	Juv	enile	e (ri	ffle co	nditio	on)							
8.		2	.05	.81	.00	.00	.34	.43		.00	.00	.18	1.09
13.		4	.05		.00	.00	.38	.46		.00	.00	.18	1.13
13. 15.	-	5 7	.04 .05	.68 .65	.00	.00	.38	.46 .47		.00	.00	.17 .17	1.14
17.		1	.04	.58	.00	.00	.41	.49		.00	.00	.17	1.18
17.		6	.04	.58	.00	.00	.41	.49		.00	.00	.17	1.18
20.		8	.04	.44	.00	.00	.42	.50		.00	. 14	.17	1.21
26.		3	.02	.38	.00	.00	.43	•52		.00	.30	.18	1.26
В.	Adu	1t (riffle	e condi	tion)								
8.		2	.00	.54	.00	.00	.00	.00		.00	.00	.06	1.09
13.		4	.00	•52	.00	.00	.00	.00		.00	.00	.06	1.13
13.		5	.00	•51	.00	.00	.00	.00		.00	.00	.06	1.14
15. 17.	_	7 1	.00	.50 .49	.00	.00	.00	.00		.00	.00	.06 .05	1.16
17.		6	.00	.49	.00	.00	.00	.00		.00	.00	.05	1.18
20.		8	.00	.47	.00	.00	.00	.00		.00	.00	.05	1.21
26.		3	.00	.46	.00	.00	.00	.00		.00	.00	.05	1.26
С.	Juv	enile	e (po	ol cond	lition)							
8.		2	•99	.00	.75	.20	1.00	1.00		.87	1.00	.74	1.09
13.		4	• 97	.00	.86	.20	1.00	1.00		.88	1.00	.76	1.13
13.		5	•97	.00	.88	.21	1.00	1.00		.89	1.00	.76	1.14
15.		7	.96	.00	.92	.21	1.00	1.00		.89	1.00 1.00	•77 •77	1.16
17. 17.		1 6	.94 .94	.00	•93 •93	.21 .21	1.00	1.00		.89 .89	1.00	• 77	1.18
20.		8	.91	.00	•93 •94	.21	1.00	1.00		.90	1.00	.76	1.21
26.		3	.87	.00	.96	.21	1.00	1.00		.91	1.00	.76	1.26
D.	Adu	1t (pool	conditi	on)								
8.		2	.85	.00	•59	.41	.46	.63		.00	.72	.48	1.09
13.		4	.88	.00	.66	.42	.47	.65		.09	.78	•53	1.13
13.		5	.89	.00	.67	.42	.48	.65		.11	.78	•53	1.14
15.		7	.89	.00	.69	.42	.48	.66		.15	.80	•55	1.16
17.		1 6	.90	.00	.74 .74	.43 .43	.48 .48	.67 .67		.19 .19	.81 .81	.56	1.18
17. 20.		8	.90 .91	.00	.78	.43	.49	.67		.22	.83	.58	1.21
26.		3	•91	.00	.83	.44	•50	.68		.25	.84	•59	1.26

C/C_o = Ratio of reservoir cost with Q to that with Q=0 (T=25 years, net water supply equals 10% of mean flow)

TABLE 36. Costs and Fish Preferences: Vermilion River Basin (Pool Condition)

	Q	ΔC				Fish nu	mber* with	preference	
No.	cfs	10 ⁶ \$	+	Crit	< 0.1	0.10-0.24	0.25-0.49	0.50-0.74	0.75-1.00
079	0.49	0.124	J	MIN	2,3,4,7	8			1,5,6,9
				GM	2,3	4,7	8		1,5,6,9
			A	MIN	2-5,7-9	1,6			
				GM	7,8,9	2,3,4	1,5,6		
	2.16	0.530	J	MIN	2,3,4	7	8		1,5,6,9
				GM	2	3,4	7	8	1,5,6,9
			A	MIN	2-5,7-9	1,6			
				GM	7,8,9	2,3,4	1,5,6		
080	3.13	0.532	J	MIN	2,4	3		7,8	1,5,6,9
				GM	2	4	3		1,5-9
			Α	MIN	2,7,8	3,4,5,9	1,6		
				GM	2,7,8		3,4,5,9	1,6	
	9.97	1.628	J	MIN	2,4	3		7,8	1,5,6,9
				GM	2	4	3		1,5-9
			Α	MIN	2,7,8	3,4,5	6,9	1	
				GM	2,7,8		3,4,5,9	1,6	
081	8.95	1.036	J	MIN	2,4			3	1,5-9
				GM	2	4			1,3,5-9
			A	MIN	2,8	4,5	3,7	1,6,9	
				GM	2,8		4,5	3,6,7,9	1
	26.20	2.970	J	MIN	2,4				1,3,5-9
				GM	2	4			1,3,5-9
			A	MIN	2,8	4	5	3,6,9	1,7
				GM	2		4,8	5,6	1,3,7,9

^{* 1 =} Bluegill, 2 = Bluntnose, 3 = Carp, 4 = Channel Cat, 5 = Largemouth Bass, 6 = Smallmouth Bass, 7 = Drum, 8 = White Bass, 9 = White Crappie

[†] J and A denote Juvenile and Adult, respectively.

flow from 8.95 to 26.20 cfs. The cost-preference curve steepens as the ratio $^{\rm C}/_{\rm C}$ increases.

A summary of the fish preferences at the two ends of the low flow range is given in Table 36. It is evident that unless much higher flow releases are considered, it may be satisfactory to keep minimum low flow releases for maintenance of the pools if the water quality is not affected adversely at low flows. Generally, the fish preferences increase with drainage area, largely because of higher pool depths.

V. S.F. Sangamon River Basin. Cost ratio vs average fish preference curves for juvenile and adult species, applicable to riffle and pool conditions, are drawn in figure 28 for a net water supply of 10 percent of mean flow, 25-year design drought, and b = 0.75, for the following three stations:

O96 Flat Branch near Taylorville $C_0 = 5.877 million

097 S.F. Sangamon River at Kincaid $C_0 = 7.765 million

O98 S.F. Sangamon River near Rochester $C_0 = 11.164 million

The information used in developing the curves in figure 28 is given in tables 37 through 42. The 7-day 10-year low flows at the above stations are 0.00, 0.79 and 0.84 cfs.

For the Flat Branch near Taylorville (drainage area 276 sq mi), the average fish preference for the riffles is about 0.06 with MIN and 0.13 with GM for the juveniles and about 0.03 and 0.02 for the adults, for the low flow range of 1.02 to 8.17 cfs. In the pools, the juvenile fish preference is about 0.55 with MIN and 0.64 with GM for the low flow range studied. The preference for the adults is much lower, from 0.11 to 0.16 with MIN and from 0.26 to 0.31 with GM as the flow increases from 1.02 to 8.17 cfs. The preferences do not increase appreciably with increase in flow.

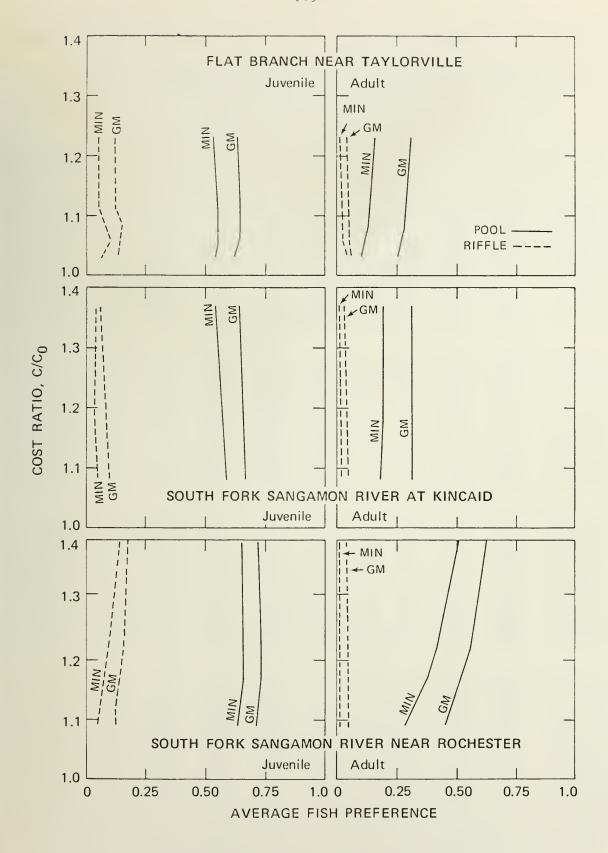


Figure 28. Cost ratio vs. average fish preference: S.F. Sangamon Basin

Table 37. Fish Suitability (MIN Criterion) for the Range of Low Flow Releases Station No. 96; USGS No. 05574500; Flat Branch near Taylorville D.A. 276 Sq Mi; Mean Flow 203 cfs; Q(7,10) 0.00 cfs

D . N .	-10 04	,	. icai.				۷(۱),۱۵					
Q							Fish Nu					
cfs	No.	1	2	3	4	5	6	7	8	9	avg	C/C _o
Λ Τι	venile	(nif	flo or	nditio	n)							
1.02		.00	.36	.00	.00	.07	.11	.00	.00	.00	.06	1.03
1.76		.00	.60	.00	.00	.09	.14	.00	.00	.00	.09	1.05
2.0		.00	.60	.00	.00	.10	.15	.00	.00	.00	.09	1.06
2.90		.01	•33	.00	.00	.11	.17	.00	.00	.00	.07	1.09
3.52	2 1	.02	.20	.00	.00	.12	.18	.00	.00	.00	.08	1.10
3.90	8 (.01	. 17	.00	.00	.13	. 19	.00	.00	.00	.05	1.11
4.08	3 4	.00	.16	.00	.00	.13	. 19	.00	.00	.00	.05	1.12
8.17	7 3	.00	.05	.00	.00	. 19	.25	.00	.00	.00	.05	1.23
	dult (riffle		ltion)								
1.02		.00	.36	.00	.00	.00	.00	.00	.00	.00	.04	1.03
1.76		.00	.29	.00	.00	.00	.00	.00	.00	.00	.03	1.05
2.0		.00	.28	.00	.00	.00	.00	.00	.00	.00	.03	1.06
2.90		.00	.24	.00	.00	.00	.00	.00	.00	.00	.03	1.09
3.57		.00	.22	.00	.00	.00	.00	.00	.00	.00	.02	1.10
3.90		.00	.21	.00	.00	.00	.00	.00	.00	.00	.02	1.11
4.08 8.1		.00	.21 .15	.00	.00	.00	.00	.00	.00	.00	.02	1.12
0.1	د ۱	•00	• 1)	•00	•00	•00	• • • •	•00	•00	•00	•02	1.2
C. Ju	uvenile	e (pod	ol cond									
1.02		•99	.00	.04	.07	1.00	1.00	.32	.47	1.00	•54	1.03
1.76		•97	.00	.05	.07	1.00	1.00	• 37	.51	1.00	•55	1.05
2.0		.96	.00	.05	.07	• 99	1.00	.38	.52	1.00	•55	1.06
2.90		.88	.00	.06	.07	• 99	1.00	.42	•55	1.00	•55	1.09
3.5		.83	.00	.06	.07	•99	1.00	•43 •44	.56 .56	1.00	•55 •55	1.10
3.90 4.00		.80	.00	.06 .07	.07 .07	•99 •99	1.00	.45	•57	1.00	•55	1.12
8.1		.77 .48	.00	.10	.08	.98	1.00	•53	.62	1.00	•53	1.23
0.1	(3	• 40	.00	. 10	.00	. 90	1.00	• 23	.02	1.00	• 23	1.2
	dult (2.0	0.7		1 00
1.0		.28	.01	.10	.11	.11	.29	.00	.00	.07	.11	1.03
1.7		•31	.01	.12	.11	.12	•32	.00	.00	.08	.12	1.05
2.0		• 32	.01	.12	.11	.12	• 32	.00	.00	.09	.12	1.06
2.9		.34	.01	.13 .14	.12	.12 .13	•34 •34	.00	.00	.10 .10	.13	1.10
3.50 3.90		•35 •36	.01	.14	.12	.13	•34	.00	.00	.11	.14	1.11
4.0		•30	.01	.14	.12	.13	• 35	.00	.00	.11	. 14	1.12
8.1		.42	.01	.17	.13	.15	• 39	.00	.00	.16	.16	1.23

C/C = Ratio of reservoir cost with Q to that with Q=0 (T=25 years, net water supply equals 10% of mean flow)

Table 38. Fish Suitability (GM Criterion) for the Range of Low Flow Releases

Station No. 96; USGS No. 05574500; Flat Branch near Taylorville

D.A. 276 Sq Mi; Mean Flow 203 cfs; Q(7,10) 0.00 cfs

D.A.	276 Sq	Mi	; Mean	FLOW	203	crs;	Q(7,10	0.00	crs			
Q				Suita	bilit	y for	Fish N	umber				
cfs	No.	1	2	3	4	5 	6	7	8	9	avg	C/C _o
A. Ju	uvenile	(rii	fle co	nditio	n)							
1.02		.00	•55	.00	.00	.27	.34	.00	.00	.00	.13	1.03
1.76		.00	.64	.00	.00	.29	.36	.00	.00	.00	. 14	1.05
2.01		.01	.63	.00	.00	.30	• 37	.00	.00	.00	. 14	1.06
2.90		.02	•52	.00	.00	.31	•39 •40	.00	.00	.00	.14	1.09 1.10
3.52 3.90		.02	.42 .39	.00	.00	•31	.40	.00	.00	.00	.13	1.11
4.08		.01	.38	.00	.00	.32	.40	.00	.00	.00	.12	1.12
8.17		.00	.23	.00	.00	•35	.40	.00	.00	.00	.11	1.23
B. Ac	dult (niffla	e condi	tion)								
1.02		.00	• 55	.00	.00	.00	.00	.00	.00	.00	.06	1.03
1.76		.00	•53	.00	.00	.00	.00	.00	.00	.00	.06	1.05
2.01		.00	•53	.00	.00	.00	.00	.00	.00	.00	.06	1.06
2.90		.00	.49	.00	.00	.00	.00	.00	.00	.00	.05	1.09
3.52		.00	.47	.00	.00	.00	.00	.00	.00	.00	.05	1.10
3.90		.00	.46	.00	.00	.00	.00	.00	.00	.00	.05	1.11
4.08		.00	.46	.00	.00	.00	.00	.00	.00	.00	.05	1.12
8.17	7 3	.00	•39	.00	.00	.00	.00	.00	.00	.00	.04	1.23
	uvenile		ol cond									
1.02		•99	.00	.20	. 17	1.00	1.00	.56	• 69	1.00	.62	1.03
1.76		.98	.00	.22	.18	1.00	1.00	.61	.71	1.00	.63	1.05
2.01 2.90		.98 .94	.00	.23 .24	.18 .18	1.00	1.00 1.00	.62 .65	•72 •74	1.00 1.00	.64 .64	1.06 1.09
3.52		•94	.00	.25	.18	1.00	1.00	.66	• 75	1.00	.64	1.10
3.90		.89	.00	.25	.19	1.00	1.00	.67	•75	1.00	.64	1.11
4.08		.88	.00	.26	.19	1.00	1.00	.67	•75	1.00	.64	1.12
8.17	7 3	.69	.00	.31	.19	•99	1.00	.73	•79	1.00	.63	1.23
D. Ac	3p1t (nool (conditi	on)								
1.02		•53	.11	•32	•33	•33	.46	.00	.00	.26	.26	1.03
1.76		.56	.10	• 34	•33	.34	.48	.00	.00	.28	.27	1.05
2.0		•57	.09	•35	.34	.34	.49	.00	.00	.29	.27	1.06
2.90	0 6	•59	.09	.36	.34	. 35	.50	.00	.00	•31	.28	1.09
3.5		.60	.09	•37	• 35	.36	.50	.00	.00	• 32	.29	1.10
3.90		.60	.09	•37	•35	.36	•51	.00	.00	• 32	.29	1.11
4.08		.60	.08	.38	•35	.36	.51	.00	.00	•33	.29	1.12
8.17	7 3	.65	.07	.41	.36	.38	•54	.00	.00	.40	.31	1.23

 $^{{\}rm C/C_o}$ = Ratio of reservoir cost with Q to that with Q=0 (T=25 years, net water supply equals 10% of mean flow)

Table 39. Fish Suitability (MIN Criterion) for the Range of Low Flow Releases Station No. 97; USGS No. 05575500; S. F. Sangamon River at Kincaid D.A. 562 Sq Mi; Mean Flow 408 cfs; Q(7,10) 0.79 cfs

D • A •	702	od MT	; Mea	11 LIOM	400 (;;	الوا الا	0) 0.13	y CIS			
Q				Suita	ability	for	Fish N	umber				
cfs	No.	1	2	3	4	5	6	7	8	9	avg	C/C _o
			iffle c				4.2	0.0	0.0	0.0	2.5	
4.1		.00		.00	.00	.09	.13	.00	.00	.00	.05	1.08
5.3		.00		.00	.00	.09	. 14	.00	.00	.00	.04	1.11
5.6 7.5		.00		.00	.00	.09	.14 .14	.00	.00	.00	.04 .04	1.11
9.0		.00		.00	.00	.10	.15	.00	.00	.00	.03	1.18
9.8		.00		.00	.00	.10	.15	.00	.00	.00	•03	1.19
11.3		.00		.00	.00	.10	• 15	.00	.00	.00	.03	1.22
19.6		.00		.00	.00	.11	. 16	.00	.00	.00	.03	1.37
В. А	dult	(riff)	le cond	ition)								
4.1		.00	.22	.00	.00	.00	.00	.00	.00	.00	.02	1.08
5.3		.00	.20	.00	.00	.00	.00	.00	.00	.00	.02	1.11
5.6	5 2	.00	. 19	.00	.00	.00	.00	.00	.00	.00	.02	1.11
7.5		.00	. 17	.00	.00	.00	.00	.00	.00	.00	.02	1.15
9.0		.00	. 15	.00	.00	.00	.00	.00	.00	.00	.02	1.18
9.8		.00		.00	.00	.00	.00	.00	.00	.00	.02	1.19
11.3		.00		.00	.00	.00	.00	.00	.00	.00	.01	1.22
19.6	0 3	.00	.09	.00	.00	.00	.00	.00	.00	.00	.01	1.37
			ool con									
4.1		•93		.10	.07	• 99	1.00	•55	.63	1.00	•59	1.08
5.3		.89		.11	.07	.99	1.00	.56	.63	1.00	.58	1.11
5.6		.88		.11	.07	.99	1.00	.56	.63	1.00	.58	1.11
7.5		.80	.00	.11	.07	•99	1.00	•57 •58	.64	1.00 1.00	.58	1.15
9.0 9.8		•75	.00	.11	.07 .07	•99 •99	1.00 1.00	.58	.64 .64	1.00	•57 •57	1.19
11.3		.72 .67		.11	.08	•99	1.00	.58	.64	1.00	.56	1.22
19.6		.48		.12	.08	.98	1.00	•59	.65	1.00	.54	1.37
19.0	0 5	• 40	•00	• 1 4	•00	• 50	1.00	• 2 2	• 0)	1.00	• 🧷 -	1.001
			condit		12	1.5	11.0	0.0	0.0	1.77	16	1 00
4.1		.43	.01	.17	.13	.15	.40	.00	.00	.17	.16	1.08
5.3		.44	.00	.18 .18	.14 .14	. 15 . 15	.40 .40	.00	.00	.18 .18	.17	1.11
5.6 7.5		.44 .45	.00	. 18	.14	. 15	.40	.00	.00	.18	.17	1.15
9.0		.46	.00	.18	. 14	.16	.41	.00	.00	.19	.17	1.18
9.8		.46	.00	.18	.14	.16	.41	.00	.00	•19	.17	1.19
11.3		.46	.00	.18	. 14	.16	.41	.00	.00	.19	. 17	1.22
19.6		.47		. 19	. 14	.16	.41	.00	.00	.20	. 17	1.37

 $^{{\}rm C/C_{O}}$ = Ratio of reservoir cost with Q to that with Q=0 (T=25 years, net water supply equals 10% of mean flow)

Table 40. Fish Suitability (GM Criterion) for the Range of Low Flow Releases

Station No. 97; USGS No. 05575500; S. F. Sangamon River at Kincaid

D.A. 562 Sq. Mi: Mean Flow 408 cfs: Q(7,10) 0.79 cfs

D.A.	562 Sq	Mi	; Mean	Flow	408	cfs;	Q(7,10	3) 0.79	ef's			
Q				Suita	bilit	y for	Fish N	umber				
cfs	No.	1	2	3	4	5	6	7 	8	9	avg	C/C ₀
A. Ju	uvenile	e (rii	ffle co	nditic	n)							
4.13		.00	.32	.00	.00	.27	•34	.00	.00	.00	.10	1.08
5.30		.00	.27	.00	.00	.27	•33	.00	.00	.00	. 10	1.11
5.65		.00	.26	.00	.00	.27	•33	.00	.00	.00	. 10	1.11
7.50		.00	.22	.00	.00	.26	.32	.00	.00	.00	.09	1.15
9.00		.00	.19	.00	.00	.25	.31	.00	.00	.00	.08	1.18 1.19
11.30		.00	.17 .16	.00	.00	.25 .24	.30 .29	.00	.00	.00	.08	1.19
19.60		.00	.12	.00	.00	.20	.26	.00	.00	.00	.06	1.37
19.00	, ,	•00	• 14	•00	•00	• 20	• 20	•00	•00	•00	•00	1.001
B. Ad	lult (riffle	e condi	tion)								
4.13	3 5	.00	.46	.00	.00	.00	.00	.00	.00	.00	.05	1.08
5.30	7	.00	.44	.00	.00	.00	.00	.00	.00	.00	.05	1.11
5.65	2	.00	.43	.00	.00	.00	.00	.00	.00	.00	.05	1.11
7.50		.00	.41	.00	.00	.00	.00	.00	.00	.00	.05	1.15
9.00		.00	•39	.00	.00	.00	.00	.00	.00	.00	.04	1.18
9.80		.00	.38	.00	.00	.00	.00	.00	.00	.00	.04	1.19
11.30		.00	.36	.00	.00	.00	.00	.00	.00	.00	.04	1.22
19.60) 3	.00	•30	.00	.00	.00	.00	.00	.00	.00	•03	1.37
C. Ju	venile	e (pod	ol cond	ition)								
4.13	3 5	.96	.00	•32	. 19	1.00	1.00	.74	•79	1.00	.67	1.08
5.30		.94	.00	•33	. 19	1.00	1.00	.75	•79	1.00	.67	1.11
5.65		•94	.00	•33	. 19	1.00	1.00	.75	•79	1.00	.67	1.11
7.50		•90	.00	•33	. 19	1.00	1.00	•75	.80	1.00	.66	1.15
9.00		.86	.00	•33	. 19	1.00	1.00	.76	.80	1.00	.66	1.18
9.80		.85	.00	•33	.19	1.00	1.00	.76	.80	1.00	.66	1.19
11.30		.82	.00	•33	.19	1.00	1.00	.76	.80	1.00	.66	1.22
19.60) 3	.69	•00	.34	.20	•99	1.00	•77	.81	1.00	.64	1.37
D. Ac	lult (pool o	conditi	on)								
4.13		.66	.07	.42	•37	•39	.54	.00	.00	.41	.32	1.08
5.30		.66	.07	.42	•37	• 39	•54	.00	.00	.42	.32	1.11
5.65	5 2	.66	.07	.42	•37	•39	.54	.00	.00	.42	.32	1.11
7.50		.67	.07	.42	• 37	•39	•55	.00	.00	.43	.32	1.15
9.00		.68	.07	.43	•37	.40	•55	.00	.00	.43	•33	1.18
9.80		.68	.06	•43	•37	.40	•55	.00	.00	.43	•32	1.19
11.30		.68	.06	.43	•37	.40	•55	.00	.00	.43	•32	1.22
19.60) 3	.69	.06	. 44	•37	.40	•56	.00	.00	. 44	•33	1.37

C/C_o = Ratio of reservoir cost with Q to that with Q=0 (T=25 years, net water supply equals 10% of mean flow)

Table 41. Fish Suitability (MIN Criterion) for the Range of Low Flow Releases Station No. 98; USGS No. 05576000; S. F. Sangamon River near Rochester D.A. 867 Sq Mi; Mean Flow 571 cfs; Q(7,10) 0.84 cfs

D • A •	001 20	1 111 }	riean	LIOM	5/1 6	. 5 ,	Q(1, 1	0) 0.04	CIS			
Q				Suit	abilit	y for	Fish	Number				
cfs	No	1	2	3	4	5	6	7	8	9	avg	C/C _o
ΔΤ	uvenile	e (rij	ffle co	nditic	n)							
8.0		.00	.11	.00	•00	.16	.22	.00	.00	.00	.05	1.09
8.1		.00	.11	.00	.00	. 16	.22	.00	.00	.00	.05	1.09
10.2	7 7	.00	.09	.00	.00	.19	.25	.00	.00	.00	.06	1.12
14.4		.00	.05	.00	.00	.24	•31	.00	.00	.08	.08	1.17
16.2		.00	.04	.00	.00	.25	•33	.00	.00	. 12	.08	1.19
18.2		.00	.04	.00	.00	.27	•35	•00	.00	. 17	.09	1.21
18.9		.00	.03	.00	.00	.28	.36	•00	.00	• 19	. 10	1.22
37.8	30 3	.00	.01	.00	.00	•32	•39	.00	.00	•54	. 14	1.43
В.	Adult	(rif	fle con	dition	1)							
8.0		.00	- 19	.00	.00	.00	.00	.00	.00	.00	.02	1.09
8.1		.00	• 19	.00	.00	.00	.00	.00	.00	.00	.02	1.09
10.2		.00	.18	.00	.00	.00	.00	.00	.00	.00	.02	1.12
14.4		.00	. 15	.00	.00	.00	.00	.00	.00	.00	.02	1.17
16.2 18.2		.00	.14 .13	.00	.00	.00	.00	.00	.00	.00	.02	1.19
18.9		.00	• 13	.00	.00	.00	.00	.00	.00	.00	.01	1.22
37.8		.01	.08	.00	.00	.00	.00	.00	.00	.00	.01	1.43
		-	ol cond									
8.0		.78	.00	• 35	.07	•99	1.00	•75	•74	1.00	.63	1.09
8.1		.78	.00	•35	.07	•99	1.00	• 75	.74	1.00	.63	1.09
10.2		.69	.00	.51	.08	•99	1.00	•77	.76	1.00	.64 .66	1.12
14.4		.52	.00	•73	.08 .08	•99 •98	1.00	.81 .82	.78 .79	1.00	.66	1.19
16.2 18.2		.45 .42	.00	•79 •85	.08	.98	1.00	.83	•79	1.00	.66	1.21
18.9		• 39	.00	.86	.08	.98	1.00	.83	.80	1.00	.66	1.22
37.8		.16	.00	•95	.08	•95	1.00	•90	.85	•99	.65	1.43
5,												
		-	conditi					0.5	0.0	11.11	20	1 00
8.0		.67	.00	.30	.16	.20	.52	.26	.00	.44 .44	.28	1.09
8.7 10.2		.67	.00	.30 .34	•16 •17	.20	.52 .54	.26 .42	.00	.50	.32	1.12
14.4		•71 •77	.00	• 34 • 43	.18	.22	•54	.62	.01	•59	.38	1.17
16.2		•77	.00	.46	.18	.23	.58	.65	.01	.62	•39	1.19
18.2		.81	.00	•51	.18	.23	•59	.69	.03	.65	.41	1.21
18.9		.81	.00	•53	.18	.23	.60	.71	.03	.66	.42	1.22
37.8		.90	.00	.90	.20	.26	.68	.86	.11	.78	.52	1.43

 $^{{\}rm C/C_O}$ = Ratio of reservoir cost with Q to that with Q=0 (T=25 years, net water supply equals 10% of mean flow)

Table 42. Fish Suitability (GM Criterion) for the Range of Low Flow Releases Station No. 98; USGS No. 05576000; S. F. Sangamon River near Rochester D.A. 867 Sq Mi; Mean Flow 571 cfs; Q(7,10) 0.84 cfs

Q				Suita	bilit	y for	Fish Nu	umber				
cfs	No.	1	2	3	4	5	6	7	8	9	avg	C/C _o
A. Ju	venile	e (rif	offle co	nditio	n)							
8.00		.00	•33	.00	.00	• 35	.42	.00	.00	.00	.12	1.09
8.10 10.27		.00	•33 •30	.00	.00	•35 •37	.42	.00	.00	.00	.12	1.09 1.12
14.41		.00	.20	.00	.00	.38	.44	.00	.00	.26	.14	1.17
16.20		.00	.18	.00	.00	.38	.44	.00	.00	.32	. 15	1.19
18.20		.00	.17	.00	.00	.38	• 45	.00	.00	•39	• 15	1.21
18.90		.00	.16	.00	.00	.38	•45	.00	.00	.41	.16	1.22
37.80	3	.00	.05	•00	.00	.38	. 45	.00	.00	.66	.17	1.43
B. Ad	ult (riffle	e condi	tion)								
8.00		.00	. 44	.00	.00	.00	.00	.00	.00	.00	.05	1.09
8.10 10.27		.00	.44	.00	.00	.00	.00	.00	.00	.00	.05	1.09 1.12
14.41		.00	.42 .38	.00	.00	.00	.00	.00	.00	.00	.05 .04	1.17
16.20		.00	•37	.00	.00	.00	.00	.00	.00	.00	.04	1.19
18.20		.01	.36	.00	.00	.00	.00	.00	.00	.00	.04	1.21
18.90		.01	•35	.00	.00	.00	.00	.00	.00	.00	.04	1.22
37.80	3	.03	.26	.00	.00	.00	.00	.00	.00	.00	.03	1.43
C. Ju	venile	e (poc	ol cond	lition)	ı							
8.00		.89	.00	.60	.20	1.00	1.00	.87	.86	1.00	.71	1.09
8.10		.89	.00	.60	.20	1.00	1.00	.87	.86	1.00	.71	1.09
10.27 14.41		.83 .72	.00	.71 .85	.20 .21	1.00	1.00	.88 .90	.87 .88	1.00	.72 .73	1.12 1.17
16.20		.68	.00	.89	.21	•99	1.00	.90	.89	1.00	•73	1.19
18.20		.64	.00	.92	.21	.99	1.00	.91	.89	1.00	•73	1.21
18.90		.63	.00	•93	.21	•99	1.00	.91	.89	1.00	•73	1.22
37.80	3	.40	.00	• 97	.22	•97	1.00	•95	.92	1.00	.71	1.43
D. Ad	ult (pool o	conditi	on)								
8.00		.82		•55	.41	. 45	.62	•51	.00	.66	. 45	1.09
8.10		.82	.00	•55	.41	. 45	.62	•51	.00	.66	.45	1.09
10.27		.85	.00	.58	.41	.46	.63	.65	.00	.71	.48	1.12
14.41 16.20		.88 .89	.00	.65 .68	.42 .42	.47 .48	.65 .66	•79 •81	.08	•77 •79	.52 .54	1.17 1.19
18.20		.90	.00	.71	.43	.48	.66	.83	.17	.81	•55	1.21
18.90		.90	.00	•73	.43	.48	.67	.84	.18	.81	.56	1.22
37.80	3	•91	.00	•95	. 45	.51	.72	•93	•33	.88	.63	1.43

In the case of South Fork Sangamon River at Kincaid (drainage area 562 sq mi), the average fish preference for the riffles is about 0.04 with MIN and 0.09 with GM for the juveniles, and about 0.02 and 0.04 for the adults, for the low flow range of 4.13 to 19.60 cfs. In the pools, the juvenile fish preference is about 0.57 with MIN and 0.66 with GM, and the adult fish preference is 0.17 with MIN and 0.32 with GM, for the low flow range studied. The fish preferences are practically unaffected by change in flow within the range of 4.13 to 19.60 cfs.

For the South Fork Sangamon River near Rochester (drainage area 867 sq mi), the average fish preference for the riffles varies from 0.05 to 0.14 with MIN and from 0.12 to 0.17 with GM for the juveniles and about 0.02 with MIN and 0.04 with GM for the adults, for the low flow range of 8.00 to 37.80 cfs. In the pools, the juvenile fish preference is about 0.65 with MIN and 0.72 with GM, and the adult fish preference increases from 0.28 to 0.52 with MIN and from 0.45 to 0.63 with GM as the flow increases from 8.00 to 37.80 cfs. There is a significant increase in adult fish preference with increase in flow but there is no such effect for the juveniles in the pools.

A summary of the fish preferences at the two ends of the low flow range is given in table 43. It is evident that unless much higher flow releases are considered, it may be satisfactory to keep minimum low flow releases for stations 096 and 097 for maintenance of the pools if the water quality is not affected adversely at low flows. The adult fish preferences increase with drainage area, largely because of higher pool depths.

TABLE 43. Costs and Fish Preferences: S.F. Sangamon River Basin (Pool Condition)

	Q	ΔC				Fish nu	mber* with	preference	
No.	cfs	106\$	+	Crit	<0.1	0.10-0.24	0.25-0.49	0.50-0.74	0.75-1.00
096	1.02	0.180	J	MIN	2,3,4		7,8		1,5,6,9
				GM	2	3,4		7,8	1,5,6,9
			A	MIN	2,7,8,9				
				GM	7,8	2	3,4,5,6,9	1	
	8.17	1.357	J	MIN	2,4	3	1	7,8	5,6,9
				GM	2	4	3	1,7	5,6,8,9
			A	MIN	2,7,8	3,4,5,9	1,6		
				GM	2,7,8		3,4,5,9	1,6	
097	4.13	0.654	J	MIN	2,4	3		7,8	1,5,6,9
				GM	2	4	3	7	1,5,6,8,9
			A	MIN	2,7,8	3,4,5,9	1,6		
				GM	2,7,8		3,4,5,9	1,6	
	19.60	2.901	J	MIN	2,4	3	1	7,8	5,6,9
				GM	2	4	3	1	5-9
			A	MIN	2,7,8	3,4,5,9	1,6		
				GM	2,7,8		3,4,5,9	1,6	
098	8.00	1.049	J	MIN	2,4		3	8	1,5,6,7,9
				GM	2	4		3	1,5-9
			A	MIN	2,8	4,5	3,7,9	1,6	
				GM	2,8		4,5	3,6,7,9	1
	37.80	4.752	J	MIN	2,4	1			3,5-9
				GM	2	4	1		3,5-9
			A	MIN	2	4,8	5	6	1,3,7,9
				GM	2		4,8	5,6	1,3,7,9

^{* 1 =} Bluegill, 2 = Bluntnose, 3 = Carp, 4 = Channel Cat, 5 = Largemouth Bass, 6 = Smallmouth Bass, 7 = Drum, 8 = White Bass, 9 = White Crappie

[†] J and A denote Juvenile and Adult, respectively.

CONCLUSIONS AND SUGGESTIONS

The hydraulic geometry parameters (flow velocity and depth, V and D; flow width, W; and flow section area, A) have been derived (Singh, 1981), but only V and D are given in this report for 8 low flow releases at each of the 123 gaging stations. Methodologies have been developed for adjusting reservoir storage to allow for capacity loss from evaporation and sedimentation in the reservoir, for various design droughts and net water supply rates of 2, 5, 10 and 20 percent of mean flow. The velocity-depth domains have been analyzed for the juveniles and adults of the nine target fish: bluegill, bluntnose, carp, channel cat, largemouth bass, smallmouth bass, drum, white bass, and white crappie. The domain charts indicate that most of the fish will be in the pools and that the desirable flow environment of some fish is quite different from that of others. Information on fish preference and reservoir costs at each of the stations is included in Volume II of this report (Singh and Ramamurthy, 1981). The following conclusions are drawn from this study:

- 1) The suitable criterion for defining a fish suitability or preference from individual V and D preferences is somewhere between MIN and GM. The basic data, from which individual preferences are derived, can be analyzed to clarify the criterion selection.
- 2) C3 or the median 61-day low flow during the period May to October is the highest low flow release at each of the 123 stations, but the lowest flow release is C2 (i.e., one-half of the 31-day median low flow during the period May to October) for 83 stations, and C5 (i.e., flow at 90 percent duration using daily flows during May to October) for 40 stations.
- 3) The formula, $d_p = d_r + b \times (\log of drainage area in sq mi)$, was used in computing the average depth in the pools. The sensitivity analysis on

the value of b shows that fish preferences for the pools with b = 0.5 are significantly low and that these preferences with b = 0.75 and b = 1.00 are not significantly different from each other. A value of 0.75 has been used in this study and it is considered to be satisfactory. However, field data need to be collected to improve the estimate.

- 4) The role of the pools is very important in maintaining suitable habitats for fish during low flow conditions as represented by the low flow releases C1 through C8. The role of the riffles is important in their acting as submerged dams to slow down the release of water from the pools behind them, as well as in providing greater opportunity for oxygenation because of shallow flow depths, higher velocity than in pools, and flow turbulence.
- 5) Generally, the fish preference along a stream increases with drainage area because of increases in pool depths with comparable flows, if other factors such as substrate, cover, and water quality remain similar.
- 6) Fish preferences and costs have been analyzed in detail for five basins to provide geographical, areal, and hydrologic variation. For the Little Wabash River Basin, the bluegill, carp, smallmouth bass, drum, and white crappie have about 0.5 and higher preferences in the Clay City reach at 15 cfs; for the Skillet Fork at Wayne City, an increase in flow from 0.74 to 7.78 cfs does not significantly affect the low fish preferences; and for the Carmi reach with low flow range 24-123 cfs, the bluegill, carp, largemouth bass, smallmouth bass, drum, and white crappie have about 0.5 and higher preferences with 24 cfs, though the channel cat is added to the list with 123 cfs. For the Kishwaukee River Basin, the fish preference steadily increases with an increase in low flow release over the range studied at Belvidere;

the increase is much smaller for the South Branch with less sustained low flows; and the fish preference near Perryville is practically the same for the flow range studied, i.e., 69 to 156 cfs.

For the Bay Creek Basin with small drainage area sub-basins, the average fish preferences are rather low for the low flow range studied. The sub-basins have zero flow for many days in most years. Much higher low flows than considered in this study will increase the reservoir costs tremendously. In such very low flow streams, provision of some low flow releases provides fish habitat for many fish though the preferences may vary from less than 0.1 to about 0.5. The Vermilion River Basin (draining to the Illinois River) portrays the significant increase in fish preferences with an increase in drainage area for the low flow releases considered. The increase in preference at a station is significant for minimum to mean range at Lowell, whereas at the upper two stations, the increase in preference with increase in release is rather small. Similar behavior is exhibited by the South Fork Sangamon River Basin.

The information developed in this report (both Volumes I and II) can be used to make rational decisions about the desirability of mandating minimum low flow release from a dam, considering the historical low flows, 7-day 10-year low flow, increase in variety and preference of the fish versus the costs, etc.

- 7) The cost versus fish preference (average as well as individual) curves provide information for a decision maker regarding trade-offs between the two objectives: maximizing fish suitability and minimizing reservoir cost.
- 8) The range of low flow releases studied does not satisfactorily delineate the cost-preference relationship over the entire low flow range. In some cases, this range needs to be expanded for both lower and higher flows.

In the low flow range studied in this report, in most cases, the increase in fish suitability is rather small with increase in flow; in some cases the fish suitability is independent of the flow range; and in some cases the fish suitability is negligible for the riffles.

- 9) For a design drought of 25 years, the minimum low flow release will last for the critical drought duration. In other years, the flows released will be higher. The reservoirs can be so regulated as to provide desirable flow release sequences (much higher than the mandatory minimum) for most of the years.
- 10) Low flow release criteria to preserve fish habitats will vary from one basin to another depending on the variability of the low flow regimen and hydraulic geometry of the stream.
- 11) The lowest flow in the low flow range (C1 through C8) is much higher than the 7-day 10-year low flow.
- 12) The design low flow releases are available in the first to the final year of the design drought period, T, years. However, the storage lost to sediments entrapped in the reservoir increases with years. Thus, higher low flow releases can be mandated in the beginning, and these can be reduced with the passage of years to the design values in the Tth year.

Suggestions for Future Research

1) The reaeration capacity of the riffles at different low flows as well as the dissolved oxygen, DO, levels in riffles and pools may be studied for different streams and drainage areas to determine the minimum low flow needed to maintain suitable DO levels in pools in different seasons of the year. These flows will provide seasonal low flow benchmarks and thus allow consideration of the water quality factor.

- 2) A number of pools may be studied to develop percentages of area with different depth intervals, the distribution of velocities in these subareas, and the quality of substrates. Modeling of this information for a stream system will help in better definition of fish preferences because of the consideration of subareas. Some fish, excluded because of average depth, may be there because of significant variation in pool depth from one place to the other.
- 3) The desirability of occasionally flushing out some sediment to improve the substrate may be examined from field observations and data collections.
- 4) The value of b in determining pool depth may be examined statistically from extensive field data. Factors which affect b are probably the stream order or drainage area, runoff characteristics, sediment characteristics, channel and land slopes, etc.
- 5) The question about combined preference being represented by MIN or GM, or some value between the two, may be answered by re-examining the available data collected by the Fish and Wildlife Service Group and other agencies, and by augmenting the available data, where necessary, by more field work for fish found predominantly in Illinois streams.
- 6) Relative weights may be developed for Illinois fish in computing the average fish preference. These weights will reflect preferences of fishermen, ecologists, commercial interests, and others for each target fish.
- 7) The analyses done in this report may be extended to a wider range of low flows to provide more information on fish suitability and costs to the decision maker.

The impact of damming, or regulation, of rivers on obligate riverine fishes is generally negative (Holden, 1979). Some obvious immediate impacts are the blockage of upstream and/or downstream migration, habitat alteration,

changes in temperature regimen of water released, and changes in turbidity and water chemistry. Temperature effects can be moderated by providing multiple-port release mechanisms that allow flow releases from the upper water layers which are also rich in dissolved oxygen. The delayed impacts are not well understood but may be caused by changes in flow duration and suspended solid concentrations, and by the introduction of new species. The relative magnitude of impacts depends on the project purposes, the existing fisheries and flow regimen, and the severity of changes caused by the reservoir operation.

REFERENCES

- Austin, M.E. 1965. Lind resource regions and major land resource areas of the United States. U.S. Department of Agriculture, Handbook 296, 82 p.
- Bovee, K.D., and R.T. Milhous. 1978. Hydraulic simulation in instream flow studies: theory and techniques. Cooperative Instream Flow Service Group, Paper No. 5, Fort Collins, Colorado, 121 p.
- Brune, G.M. 1953. Trap efficiency of reservoirs. Transactions, American Geophysical Union, Vol. 34, p. 407-418.
- Dawes, J.H., and M. Wathne. 1968. Cost of reservoirs in Illinois. Illinois State Water Survey, Circular 96, 22 p.
- Dewsnup, R.L. et al. 1977. State laws and instream flows. Fish and Wildlife Service, U.S. Department of the Interior, publication FWS/OBS-77/27, 72 p.
- Environmental Protection Agency. 1971. Water quality control through flow augmentation. Report prepared by the Biology Department, Heidelberg College, Tiffin, Ohio, for the Environmental Protection Agency, 157 p.
- Friedkin, J.F. 1945. A laboratory study of the meandering of alluvial rivers.
 Waterways Experiment Station, U.S. Army Corps of Engineers, Vicksburg,
 Mississippi.
- Gould, G.A. et al. 1977. Promising strategies for reserving instream flows. Fish and Wildlife Service, U.S. Department of the Interior, publication FWS/OBS-77/29, 64 p.
- Herricks, E.E. et al. 1980. Instream flow needs analysis of the Little Wabash River Basin. University of Illinois, Environmental Engineering Series No. 61, 151 p.
- Holden, P.B. 1979. In the Ecology of Regulated Streams, edited by J.V. Ward and J.A. Stanford. Plenum Press, New York. p. 58-63.
- Leopold, L.B., and T. Maddock. 1953. The hydraulic geometry of stream channels and some physiographic implications. U.S. Geological Survey Professional Paper 252.
- Leopold, L.B., and M.G. Wolman. 1957. River patterns: braided, meandering, and straight. U.S. Geological Survey Professional Paper 282-B.
- Leopold, L.B., M.G. Wolman, and J.P. Miller. 1964. Fluvial processes in geomorphology. W.H. Freeman, San Francisco, California, p. 203-215.
- Roberts, W.J., and J.B. Stall. 1967. Lake evaporation in Illinois. Illinois State Water Survey, Report of Investigation 57, 44 p.

- Singh, K.P. 1971. Model flow duration and streamflow variability. Water Resources Research, Vol. 7, No. 4, p. 1031-1036.
- Singh, K.P. 1981. Evaluation of hydraulic geometry parameters for various low flow releases downstream of dams on Illinois streams. Illinois State Water Survey, Contract Report 251, 42 p.
- Singh, K.P., and J.R. Adams, 1980. Adequacy and economics of water supply in northeastern Illinois, 1985-2010. Illinois State Water Survey, Report of Investigation 97, 205 p.
- Singh, K.P., and G.S. Ramamurthy. 1981. Desirable low flow releases from impounding reservoirs: fish habitats and reservoir costs. Volume II:

 Appendices. Illinois State Water Survey Contract Report 273 (Volume II),
 478 p.
- Singh, K.P., and J.B. Stall. 1973. The 7-day 10-year low flows of Illinois streams. Illinois State Water Survey, Bulletin 57, 24 p. and 11 maps.
- Singh, K.P., A.P. Visocky, and C.G. Lonnquist. 1972. Plans for meeting water requirements in the Kaskaskia River Basin, 1970-2020. Illinois State Water Survey, Report of Investigation 70, 24 p.
- Stall, J.B. 1964. Low flows of Illinois streams for impounding reservoir design. Illinois State Water Survey, Bulletin 51, 395 p.
- Stall, J.B., and Y.S. Fok. 1968. Hydraulic geometry of Illinois streams. University of Illinois Water Resources Center, Research Report No. 15, 47 p.
- Terstriep, M.L., et al. In preparation, 1981. Low flows of Illinois streams for impounding reservoir design. Illinois State Water Survey, Bulletin 51A.
- UMRCBS.1970. Upper Mississippi River Comprehensive Basin Study. Prepared by different agencies for the UMRCBS Coordinating Committee.
- Yang, C.T. 1971. Formation of riffles and pools. Water Resources Research, Vol. 7, No. 6, p. 1567-1574.

