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ABSTRACT

We create a program to simulate diffusion in random graphs. Specifically,

we create a generalization of bootstrap percolation which incorporates any

number of societies λ and an arbitrary weight matrix W. The code was

created from the start to be as general as possible and to easily be modified

with further complications. With it we simulate and analyze diffusion in

networks consisting of one, two and three distinct societies with different

parameters. We study the proportion of adoption Ω as a function of threshold

θ, probability of initial activity α and connectivity Pc. We compare several

different weight matrices in the two and three society cases to understand

the effect of these changes on the diffusion process. The end result is a tool

that we propose can be used with the aid of statistics in social or biological

contexts to predict behaviors and make conjectures on scenarios not yet

observed.
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LIST OF SYMBOLS

G Random graph with set of vertices V and set of edges E.

V Set of vertices in a random graph G.

E Set of edges on a random graph G.

dv Degree of node v; number of edges connecting to v.

~m Population size vector, each entry mi denotes the size of society i,
also mi = |Vi|.

A Adjacency matrix of the nodes in a random graph G.

θ Threshold for which individuals in a network adopt the new be-
havior.

α Probability of initial activity; this is the chance that a member of
the society adopts the innovation at time zero.

A Original behavior.

B Innovation or new behavior.

λ Number of societies interacting to make an overall social network.

~n Population vector. It contains zeros for the individuals that have
adopted the innovation and otherwise it contains ones.

q Payoff parameter for game theoretic model.

dxi Number of neighbors the node i has with behavior x.

fi(x) General functions that serve the purpose of threshold rules and
weights in the General Threshold Model.

gi(j,X) General incremental functions that serve the purpose of threshold
rules and weights in the Cascade Model.

AI Internal adjacency matrix.

AH Hybrid adjacency matrix.
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λCx Combinations of λ in x.

PopSym Symmetry of internal adjacency matrices.

Pc Probability of connectedness. Parameter to determine how con-
nected a given society is.

PopSame Reciprocity in hybrid relations.

W Weight matrix.

r Number of repetitions of each set of parameters that the program
will run.

Ω Proportion of adoption of the initial non-adopters.

µi Initial number of non-adopters.

µf Final number of non-adopters.

Pn Probability of initial non-adoption. Pn = 1− α.

Sx Society x.

θc Critical threshold.

Flowcharts

W [i, j] Entry (i, j) of weight matrix.

A[i, j] Sub-matrix (i, j) of adjacency matrix. This refers to either an
internal or hybrid adjacency matrix.

n[j] Subset (j) of general population vector; this is the population vec-
tor for society j.

m[i] Population size of society i.
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CHAPTER 1

INTRODUCTION

When individuals are connected in a network it becomes possible for them to

influence each other. This is seen in the spread of new ideas, decisions and

behaviors throughout the population, thereby producing a collective outcome

by the aggregate contributions of individuals.

These diffusion processes happen in practically every social setup and can

be observed in many different aspects in which people are influenced by

others: the spread of religious beliefs; the clothes people wear, and therefore

fashion as a phenomenon; the proliferation of political ideas and its influence

in policy making; the products bought and sold and their relationship with

marketing and publicity; the adoption of new technologies in virtually every

sector; the activities people pursue; the popularity of celebrities; the use of

a specific social website; the emergence and implosion of financial market

bubbles, and many other things. Even scenarios where no literal influence

is taking place such as epidemics can be studied in the same context (see

section 2.2.3).

All these situations share a basic set of qualitative properties, regardless

of the specific scenario in which influence happens. They all begin with a

relatively small set of early adopters which, in turn, influence their neighbors,

friends and other relations, and in some cases manage to “convince” others to

adopt this new behavior. An increasing number of people adopt this behavior

by influence of previous adopters and so on. The result is, if successful, the

contagious spread of the behavior through the network.

The creation of models to capture data on these diffusion processes is not

only very helpful to aid our understanding at a fundamental level of how this

phenomenon unfolds, but also as a predictive tool to know in advance the

success or failure of a certain innovation or behavior. Based on the topology
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of any given network, these models could also help us determine other key

factors of diffusion in social networks (see for example [1]): key individuals

with great influence capability, subsets of the network with the most impact,

minimal and necessary conditions for maximum influence or “cascade”, the

speed of contagion and the reach of it, etc.

1.1 Diffusion Studies

Diffusion processes have been studied using many different approaches which

have yielded several important applications. These processes were formally

studied for the first time in a field known as Diffusion of Innovations ; an

area of sociology that developed in the mid-20th century. For a brief history

of the field refer to [2].

General understanding of diffusion has grown immensely as mathematical

tools develop (in the form of better models), and as bigger and more suitable

environments for study arise. Some of these environments are large scale

on-line communities, where the spread of ideas and cascading behavior can

be studied in real time with population sizes never before studied, and with

richer and more available data. Also, computer simulations based on both

data and theory have formed a feedback loop with the rest of the tools, to

advance the field and its understanding.

Because of this, research on diffusion has gone from anecdotal awareness

to empirical studies, to models inspired by game-theoretic motivations, and

finally rich mathematical models based on huge data samples. The book [2]

provides a very comprehensive description, history and achievements of the

field.

1.1.1 General model

One simple model that captures the essence of diffusion of behaviors is the

following: let G = (V,E) be a connected graph. Each node (or vertex) v ∈ V
in the graph represents an individual in the network. We say that given two
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vertices i and j, i ∼ j if (i, j) ∈ E. This represents some kind of social

relation between the individuals i and j. Let dv be the degree of node v.

Overall this graph G represents the entire social network. One example of

such a network is shown in figure 1.1.

Figure 1.1: Social network representing relations in a karate club with 34
members. (Taken from page 2 of [3], originally from [4]. Added with
permission of the Board of Regents of the University of New Mexico.)

The variables in this model are the population size: m = |V |, the nodes’

degrees dv (and therefore generally speaking the adjacency matrix of G: A)

and the following 2 parameters: θ : N→ N and α : N→ [0, 1].

We study the adoption of behaviors in some domain. Let us say that the

original behavior is A and the new one is B (these behaviors can be referred

to as inactive and active states as well). At the beginning of the process each

node v adopts the new behavior B with probability α(dv) independently from

other vertices (to capture a realistic model, this probability is generally small

so that the set of initial adopters is small). At subsequent times t ∈ N the

state of each node i will be updated according to a deterministic process: if

at time t−1 node i had behavior B (or was active), then it will remain active

at time t. Otherwise, i will adopt behavior B (or become active) if at least

θ(di) of its neighbors have adopted behavior B.

The parameter θ(dv) is the “Threshold” of adoption; the number of neigh-

bors that v requires to have in order to “switch” behaviors. The parameter
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α(dv) is related to the “Seed” population, or the initial subset of the network

that are adopters.

In the case where both α and θ are constant, i.e. α(d) = α and θ(d) = θ

∀ d ∈ N, this model is called Bootstrap Percolation and it was first mentioned

and studied in [5]; applications of this model in physics can be seen in [6].

Bootstrap Percolation in random graphs is studied in [7].

1.1.2 Generalizations

Several possible complications to the previous model can be made to enrich it

and make it more realistic, perhaps to capture a specific scenario visualized

in the world. This will be covered more deeply in section 2.2.2 but some

examples are:

1. Relations between individuals might not be symmetric.

2. Weighted relations.

3. More than two possible behaviors.

4. Hybrid thresholds, etc.

1.2 Scope of the Research

In this study we focus on a generalization of Bootstrap Percolation that

consists of the following 2 complications:

1. Populations with different parameters interact to form a collective so-

cial network that is not homogeneous. This means that we could have

a collective network consisting of λ societies, each of them potentially

having different values for connectivity di and seed probability αi where

i ∈ [0, λ]. Note that each population has homogeneous internal pa-

rameters. This could be interpreted not only as λ separate societies

interacting but also as λ subsets of one single population. Therefore,

from this point forward both scenarios will be referred to as societies.
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2. Weight matrix. We can introduce weights in the relations between said

populations to reflect different interests and influences between them.

This way, for example, we can have a 3 society situation where society

A impacts B γ times the impact it has on C for any arbitrary γ. This

results in increased capability to adjust how meaningful each society is

to the rest of them, and as a consequence we can indirectly adjust the

threshold θi for different societies with respect to the others.

1.2.1 Unique aspects and limitations of the study

For this study a program was created in Matlab to simulate the diffusion

process of Bootstrap Percolation with the two mentioned complications. The

creation of such a tool and the application of it to these kind of scenarios is,

as far as the author knows, unique. As far as limitations go, the following

are the main ones:

1. The study was done in a qualitative way, analyzing the overall behav-

ior of different scenarios. The best way to utilize this tool (or a tool

like it), however, would be to relate this to statistical data retrieved

in biological, sociological or other environments, to make models and

predict behaviors similar to the ones observed. This is left for future

studies.

2. Overall, the program could be adapted to incorporate any number of

improvements, some of which are mentioned in sections 2.2.2 and 3.3.

1.3 Overview of the Thesis

Chapter 2 gives a brief theoretical background and discusses some basic mod-

els and studies in the field. Chapter 3 explains the code used to simulate

the diffusion and all the specific parameters utilized in the study in general

and in the program created; this chapter also discusses concepts and defini-

tions used in the simulation and includes a diagram for the code. Chapter 4

presents the results of the research done which are introduced in section 4.1
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(this section also describes the parameters examined and outputs collected

in the different stages of the study); the results are discussed and interpreted

as best as possible. Chapter 5 summarizes the results presented in chapter 4

and goes on to draw conclusions from them and makes suggestions for future

studies. The appendices include all the code from the different programs

created for the thesis.
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CHAPTER 2

THEORY

2.1 Evolution Vector

If we take the general model from section 1.1.1, one of the obvious questions

is: how do the nodes in the network evolve? We use a population vector ~n(t)

to describe the state of each member of the social network at time t; ni(t) = 0

if the node i is active at time t and ni(t) = 1 otherwise. Therefore at time

t = 0 the vector ~n(t) will have zero-entries only for the seeded population

(the ones that were affected by α); in other words ~n(0) is a Bernoulli random

variable with parameter α. Let A be the adjacency matrix of the social

network; this means that Aij = 1 if i ∼ j (i and j are related) and Aij = 0

otherwise. The evolution of the vector ~n(t) is given by:

ni(t+ 1) = ni(t) +
(
1− ni(t)

)
1

( n∑
j=1

Aijnj(t) ≥ θ

)
(2.1)

In the general case where we have a weight matrix affecting the interactions

between society i and j then we have:

ni(t+ 1) = ni(t) +
(
1− ni(t)

)
1

( n∑
j=1

WijAijnj(t) ≥ θ

)
(2.2)

2.2 Brief Theoretical Background

As was briefly mentioned in chapter 1, diffusion studies have made much

progress in the past decades and have diversified into many different ap-
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proaches and disciplines. In this chapter we introduce the reader to some

studies and models created by the research done on Diffusion of Innovations

and networks.

It is important to emphasize how interdisciplinary research on these topics

is: it is done in the context of biology, sociology, marketing, economics, and

mathematics, and it uses tools from statistics, graph theory, game theory,

computer simulations and general mathematics. For example, a diffusion

study with a small emphasis on marketing can be seen in [8],the work found

on [9] empirically studies diffusion in social networks in the context of so-

ciology and links this to phenomena such as riots, rumors, strikes, voting,

migration etc. Other empirical studies can be seen in [10] (analysis of the

diffusion of prescription drug) and [11].

2.2.1 Game theoretic model

Whenever we deal with a complex network we can divide its study into two

parts: the understanding of the underlying structure and the links connecting

it (generally studied in the context of graph theory) and also the interdepen-

dence of the adopted behaviors of the individuals inhabiting said network.

The latter makes it so that decisions being made at an individual level in the

network depend at least indirectly on the collective behavior of the rest of

the network. This can be studied in the context of game theory.

To formulate a model using game theory we start with the same situation

as we did in section 1.1.1: we have a connected graph G = (V,E) with its

nodes being members of some society, while edges in this graph represent a

social interaction. Each node has the option to adopt one of two possible

behaviors: A the original behavior and B the innovation. Given two nodes

i and j with an edge i ∼ j, there is a payoff if those two nodes match their

behavior. Let the payoffs be as follows:

1. If both i and j adopt behavior A then they receive a payoff: q with

0 < q < 1.

2. If both i and j adopt behavior B then they receive a payoff: 1− q with

0 < q < 1.
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3. If i and j adopt different behaviors, they receive a payoff of 0.

This model is based on work found on [12] and can also be seen in [13] and

in chapter 19 of [3].

Say now that an arbitrary node i is trying to select a behavior to adopt

given that all other nodes have already picked one. If we have that the

degree of node i is di and i has dAi of its neighbors with behavior A and dBi

of its neighbors with behavior B, then the payoff node i gets from adopting

behavior A is qdAi while the payoff for adopting B is (1− q)dBi . Suppose that

qdAi > (1− q)dBi , since di = dAi + dBi then node i should adopt behavior A if

qdi > dBi , and similarly i should adopt B if qdi < dBi . To manage when we

have an equality we say that i also adopts B if qdi = dBi .

We can see that even though we started with a game theoretic model

working with payoffs and decision making from each of our nodes, in the end

we are dealing with a threshold q just as we did with θ in section 1.1.1; node

i adopts the innovation B if at least a q fraction of its relations have done so

at any step of the diffusion.

Note that in this model there is nothing stopping any node i from reversing

its behavior from B to A. The case where we allow reversals or deactivations

is called non-progressive, and the case where it is defined that once a node

i adopts the innovation it does so forever is called the progressive case (see

[13]). When studying which initial subsets of the network cause a global

cascade or total adoption, it is important to ask whether or not it is easier

for an innovation to spread in the progressive case. The contagion threshold

of a social network is defined as the maximum value of threshold θ for which

there exists a finite contagious set (this is a subset of the network that causes a

global cascade or total adoption in the network when it is given the innovation

at time zero). It is interesting to see that for any graph G the progressive

and non-progressive models have the same contagion threshold, as can be

seen in [12].
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2.2.2 Other mathematical models

We have already presented a general mathematical model of diffusion in

section 1.1.1. In this model all individuals in the network use the same

threshold θ, and all neighbors have equal weight in influencing another node

to reach said θ. Several other mathematical models exist:

1. Linear Threshold Model : directed graphs are used to have edges point-

ing in both directions between two nodes. Also, a non-negative weight

is introduced in each of these directed edges to account for how much

a certain node “matters” to another one. Finally each node i has its

own threshold picked at random from a uniform distribution.

This is done because in a real world setting relations might not be

symmetric; even when there is a relation between node i and j, i.e.

i ∼ j, it could be the case that i influences j, but not the other way

around. This can happen for example when opinions from celebrities

influence followers, but not necessarily in reverse.

More generally, the influence exerted by node i over j could not be

the same as that exerted by node j over i. This is where weights

matter; certain individuals could be more influential than others and

the addition of this tool helps us model that.

The importance of “influentials” and its comparison with easily influ-

enced individuals can be further studied in [1]. In [9] it is discussed

how the influence between individuals depends on the relationship they

have. An analysis of the final proportion of adoption using random net-

works and the linear threshold model can be seen in [8].

2. General Threshold Model : In this model, hybrid threshold rules are

introduced where if we separate the social networks into various groups

(for example two different cities), we can create hybrid thresholds to

adopt the new behavior where x number of neighbors from city χ, and

y number of neighbors from city ψ, are required to adopt the new

behavior. In this model each node i has function fi(x) with a domain

equal to the neighbors of i. Since now we have general functions fi(x)

serving the purpose of the weighted sum of thresholds we had before in

the Linear Threshold Model, we now have a very general case that could
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adapt to virtually any threshold rule, including hybrid thresholds.

3. Cascade Model : This model is equivalent to the General Threshold

Model (see [13]). The basic difference is the interpretation and setup.

Here we make the nodes adopt a behavior probabilistically, and there-

fore the model captures the notion of contagion more directly. In each

step of the diffusion process, for each edge in the network where we

have 2 nodes i and j connected such that j is active and i is not, there

is a chance that j influences i. The probability of success depends not

only on i and j but also on the set of nodes that have already tried

and failed to activate i. Instead of using functions fi, each node now

has an incremental function gi(j,X) where j is a neighbor of i and X

is a set of neighbors of i not containing j. The function gi(j,X) is the

probability that the node j will activate i given that the entire set X

has already tried and failed. This type of model is more intuitive to

apply to situations where decision making is either not the key factor

or even irrelevant, and contagion happens involuntarily.

These models are further studied in [13]. We could also have variations of

all these models incorporating either the progressive or the non-progressive

case. The latter, for example, would fit models trying to understand creation

and implosion of financial bubbles among other things. Furthermore, all

of these models could be modified to make use of n behaviors instead of

only two, which would have applications and give insight in situations where

competing businesses or technologies influence a social network.

2.2.3 Applications

The context of on-line communities and social networks provides very rich

environments to study these kinds of processes; not only is the population

size generally very big, but also, it is easy to monitor, data can be seen both

in real time and in the span of months and influence happens constantly over

a wide array of behaviors. As a first example we can see figure 2.1 where

the network visualization of document exchange in a committee is displayed.

Availability of this kind of data is immense in this and many other situations

and when studied over time can give clear evidence and insight of diffusion
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processes.

Figure 2.1: Network visualization of the ICIC (International Committee on
Intellectual Cooperation) archives. Nodes are individuals (plenary
committee, experts, etc.) and edges are documents exchanged. (Taken from
https://commons.wikimedia.org/wiki/File:Social Network Analysis Visualization.png.)

One can study, for example, the probability of adopting behaviors as a

function of the number of friends or relations that have done so previously.

Figure 2.2 has this exact situation for an on-line blogging site called LiveJour-

nal. We can see from figure 2.2 that the probability of joining a particular

community increases with the number of neighbors who have already joined:

k. Also we can see diminishing returns in this plot; after a certain number

of friends, the probability does increase for every friend added but in a much

more subtle way. We can also see that the first friends have a very pro-

nounced effect; the probability of joining said community more than doubles

if one has two friends compared to only one.

We can even study this kind of dynamic in biological scenarios. Cascad-

ing behavior and influence in general in the context of a social network is

sometimes called “social contagion” because an innovation spreads from one
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Figure 2.2: Probability of joining a LiveJournal community given that k
members have already joined. (Taken from page 93 of [3], originally from
[14]. Added with permission of the Association for Computing Machinery.)

person to another with the same dynamics of an epidemic in a biological

context. Even though the fundamental mechanisms by which biological and

social contagion happen are profoundly different (social contagion is linked

to decision making and preference while biological is based in probability of

being infected by a pathogen), their underlying network dynamics are very

similar. This causes a lot of cross-discipline studies and interesting research

questions.

In figure 2.3 we can see individuals in the context of a tuberculosis outbreak

being infected. Black nodes are individuals with clinical disease, pink nodes

indicate people exposed to the pathogen and with dormant or incubating

infection, green nodes represent exposed people with no infection and finally

gray represent close members to the rest of the network that have not been

evaluated by medical personnel. This image displays clearly how the disease

is being spread through the network.
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Figure 2.3: Spread of tuberculosis in a network. Colors indicate different
degrees of infection. (Taken from page 15 of [3], originally from [15]. Added
with permission of the American Public Health Association.)
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CHAPTER 3

CODE

The entire code was written in Matlab and commented to be as descriptive

as possible in regards to the function and use of each part of the code. It

is added as an Appendix A and B and uploaded to https://github.com/F-

Dominguez/Diffusion-Matlab-Code.

Effort was made to make the overall code as modular as possible, and

therefore it has one main file and several nested functions do all the different

parts of the process. All the files were commented extensively in order to

explain everything as best as possible.

3.1 Required Variables

We start by making the following definitions:

1. An “Internal” adjacency matrix AI is the one defined for the relations

that happen between 2 members of the same society. In the general

case of having λ societies, these are exclusively the ones of the form:{
Aii with i ∈ [1, λ]

}
. These matrices can be symmetrical and that

would represent that in every case where an individual i has a relation

with j, then j has a relation with i or
{
if i ∼ j ⇐⇒ j ∼ i

}
.

2. A “Hybrid” adjacency matrix AH is the one that defines the relation-

ship between members of different societies. Hence, these are the ones

of the form:
{
Aij with i, j ∈ [1, λ] and i 6= j

}
.

3. A “General” adjacency matrix is the one composed of all the adja-

cency matrices in the entire network (all the internal and hybrid ones).

Therefore, in the case of λ societies we have a general A composed of
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λ2 submatrices: λ internal ones and λC2 (or λ2 − λ) hybrid ones.

In the main file (Percolation.m) one has to input all the different parame-

ters for the simulation and the code in turn feeds that information to all the

other functions. The relevant parameters are:

1. λ: The number of different societies interacting in the overall social

network. Each society will have its own parameters, including an ad-

jacency matrix.

2. ~m: Vector with population size entries, where mi is the population size

of society i.

3. α: The probability of initial activity (or initial adoption of new behav-

ior). This probability is defined for every society in the simulation and

has to be reported in the range to be studied, i.e. we need initial and

final values for every αi with i ∈ [1, λ], and the increment to take in be-

tween. There is a total of λ different α values to be reported. Similarly

we can define Pn = 1− α as the probability of initial non-adoption.

4. PopSym: Matrix of order λ stating whether each of the individual sub-

matrices of the general adjacency matrix is symmetrical or not. It is

important to note that the hybrid matrices should not be symmetrical

for 2 reasons:

• For a hybrid adjacency matrix AH
ij to be square it is required that

society i and j have the same population size; mi = mj = m. Since

this does not necessarily happen, then AH
ij can’t be symmetrical.

• Even in the case where the AH
ij are square, it makes no sense to

have hybrid adjacency matrices be symmetrical. This would have

no application to model any real situation for it would represent

the following example:

– Let S1 and S2 represent society 1 and 2 respectively. If we

make A12 symmetrical then we force that if v1i ∼ v2j ⇐⇒
v1j ∼ v2i for v

1
i , v

1
j ∈ S1 and v2i , v

2
j ∈ S2 .

In other words, we are forcing relationships across both societies

for different individuals based solely on their arbitrary position in

the network.
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Therefore this value is only really used to determine if the internal

matrices
{
Aii ∀ i ∈ [1, λ]

}
are symmetrical.

5. Pc: the probability of connectedness. This is the probability that an

arbitrary pair of nodes (i, j) is connected, and is used to determine the

edges ∀ i ∈ G (giving us the degree di of each node i).

The program uses Pcij to generate the matrix Aij ∀ i, j ∈ G and

then unifies them all in the general adjacency matrix A. Thus we

need values of Pcij to determine the connectedness of both internal and

hybrid relations.

For the general case, we need a total of λ2 values of Pcij . This only

happens when Aij 6= Aji (see PopSame below), otherwise, only λ2−λC2

values are needed. Each value of Pcij needs to be input as a range

(initial and final values) with increments.

6. PopSame: Reciprocity in hybrid relations. This vector of size λC2

states if the adjacency matrix Aij is the same as Aji. In other words,

it states whether or not societies are reciprocal in their relations.

In addition to help us distinguish between two cases that are intrinsi-

cally different and have real world applications, this gives us the option

to save considerable computing power.

7. θ: the threshold of each individual population. This has to be reported

as a range with increments.

8. W: Weight matrix. This is multiplied by the adjacency matrix and

helps us introduce different degrees of influence in the social networks.

The full matrix requires λ2 values. With the aid of this entity we can

adjust how important for society i is the behavior of society j for any

i, j ∈ [1, λ]. In other words, we can alter the utility function that each

society has for itself and the rest of the societies.

This allows us to study various interesting scenarios as we will see later.

9. r: number of repetitions of each set of parameters. Since the process

is random, we need to get an average of the proportion of adoption in

order to get stable data; otherwise, it would change every single time

we ran the program and no possible applications could occur from the
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results we have. It was found that a value greater than five is necessary

to get rid of very irregular data. The results presented in this thesis

were run with an r of at least 30.

The observed variable in this code is Ω defined as the proportion of the

initial non-adopters that are influenced at the end of the process. Let µi

be the initial number of non-adopters, i.e. the total number of nodes in the

network that possess the initial behavior (A) at time t = 0, and let µf be

the final number of non-adopters. Therefore, to obtain the proportion of

adoption we use the following equation:

Ω = 1− µi
µf

(3.1)

Thus, we get Ω = 1 when all the initial non-adopters eventually convert

and Ω = 0 when no conversion happens at all. Since we are using µ and not

some other variable counting number of adopters, it is convenient to use Pn

as the probability of initial non-adoption instead of α.

Another output of the program for every set of parameters is the stan-

dard deviation associated with each average Ω depending on the number of

repetitions r performed to obtain it.

3.2 Overview

The main file, Percolation, takes all the data and feeds it to different func-

tions; a diagram of the pseudocode of the file Percolation can be seen in

figure 3.1. The following is a brief description of the use of each one of these.

For further information we refer the reader to the Appendices A and B where

the full code is added with very detailed comments.

1. Variation Perm: This function is used to transform the matrices with

all the values for Pc and α for all the societies in question, into a

matrix containing all the possible permutations of values for these two

parameters respectively. This is then fed to the rest of the program.

2. Init Pop: This function generates the vector of population and Adja-
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Figure 3.1: Flowchart describing the process of Percolation.m.

cency matrix.

• The population vector ~n is created using the population size, num-

ber of societies, and the different values of α. The end result is a

vector with 0’s for active new behavior (according to the proba-

bility of initial activity α) and 1’s for original behavior, and has

dimension equal to the total population size.

• The adjacency matrix is generated using the values of Pc for all

the different submatrices. This part of the code takes into account
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PopSym and PopSame.

3. Variation MP : This function is the main nested “for” loop. It calls

Init Pop to generate the A and ~n, and then feeds them into Evolve

MPopulation where the diffusion takes place. It does this for all possible

permutations calculated previously, and then saves the final proportion

of adoption. A pseudocode flow chart can be seen in figure 3.2.

4. Evolve MPopulation: This is the core of the diffusion or cascade pro-

cess. It applies the rule to activate if more than θ neighbors are ac-

tivated. The program stops if, at any given cycle, no new members

adopted the new behavior. This is separated for all the possible differ-

ent cases of weight being applied to the diffusion. A pseudocode flow

chart can be seen in figure 3.3.

Other than these files, which comprise the main program, we also have

scripts to make any number of plots in two and three dimensions (Graph2D

and Graph3D) and a script to make movies out of the plots obtained so that

we can better visualize the evolution of the behavior. In order for all of these

codes to get the required data out of the general array, Find Perm Data is

used; this is incredibly useful to adapt the data extraction for a general case

and it saves us a lot of time. We also have a graphical user interface and

timebar code to estimate the time remaining until program completion.

Finally we have a Visualization code which is independent of the main

program and is used to make a simulation of how the behavior spreads by

allowing us to see how all the nodes switch from original to new behavior.
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Figure 3.2: Pseudocode flowchart of Variation MP.m.
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Figure 3.3: Pseudocode flowchart of Evolve MPopulation.m.
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3.3 Possible Improvements

The program could be improved to support additional model parameters to

explore diffusion phenomena. Some examples are:

1. Hybrid thresholds. We could adapt the program to study diffusion that

occurs when more complicated threshold rules arise. For example: only

adopt new behaviors when n neighbors of society S1 and l neighbors

of society S2 have also adopted. This can be achieved to some degree

with the use of the weight matrix W currently incorporated, but true

hybrid thresholds would add complexity.

2. Percentage threshold. An easy fix. This would change the model, from

one where x neighbors are required to influence the new behavior to

one where (X%) of the total relations are required.

3. Automatic variation of weight and population size. This could allow us

to get visualizations of the behavior of these diffusion processes with

the variation of either of these parameters.

4. Non-progressive case. At the moment the program works progressively;

once a node has adopted the innovation, it never goes back to the

original behavior. Having the option to also study the non-progressive

case would allow us to use this tool for a wider variety of cases.

5. Multiple thresholds. We could add complexity to the amount of differ-

ent thresholds incorporated into the simulation. This could mean each

society having a different threshold, individual randomized thresholds

for each node in the global social network, or for example simply hav-

ing two thresholds in the overall network representing the difference

between “early-adopters” (or enthusiasts) and “late adopters.”
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CHAPTER 4

RESULTS AND DISCUSSION

4.1 Development Process

In order to create a tool that is able to simulate the generalization of boot-

strap percolation that concerns this study (mentioned in section 1.2), we

started with a simple code that simulates the diffusion in a lattice network

with only four geographical neighbors in total. This has certain applications

but also allowed us to visualize the diffusion for the first time. After this

we created a modified version that did a simulation for a case of one society

with a general adjacency matrix, which is more related to the objective set

out by this study. We then created the general program which simulates

most of the work presented in this thesis. It is capable of getting the average

proportion of adoption Ω for any number of cases of repeat r, connectivity

Pc, initial activity α and weight matrix W. This tool is meant to provide

intuition about the influence of all these parameters in the diffusion process.

We begin analyzing a one society case by introducing visual simulations of

the diffusion processes in a case with a lattice network, and then a general

adjacency matrix. The proportion of adoption Ω as a function of θ and α is

then studied. We also observe the impact of the number of repetitions in the

reported standard deviation. To finish the study of one society we analyze

how varying Pc affects the results and end with three-dimensional plots of the

data. This is followed by the two society case where we study several different

cases of weight matrices W. Finally we compare two different weights for a

three society case.

In the following sections an effort is made to present the results in increas-

ing complexity. Therefore, we start with simple visual representations of the

diffusion process in a single population and end with weight adjustments in
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multiple societies.

4.2 One Society

With the one society case we aim to get some intuition and basic understand-

ing of how the process of diffusion unfolds, so we can study more complicated

cases.

4.2.1 Visualizations

In this section we will obtain a visualization of how the diffusion process

occurs for two distinct models. We begin with a simple diffusion process.

We generate a Finite Lattice Network (as seen in figure 4.1) G = (V,E)

with population size m = |V |; in a lattice network the edges are exclusively

between first neighbors. In general infinite lattice networks have a fixed

degree for all nodes in the graph of
{
dv = 4

}
; if we have a finite lattice

network, nodes will have degrees of two, three or four, depending on whether

they are situated in corners, in the edge of the graph or if they are internal.

In this case we have a finite lattice network but edges in the top are connected

to the bottom and the right is connected to the left making it so that
{
dv =

4 ∀ v ∈ V
}

. See figure 4.2.

As previously explained, the society starts with an initial seed popula-

tion determined by α, but in this simpler scenario, no random generation of

adjacency matrix is required and therefore no average connectivity or Pc is

needed.

We run the diffusion process for the following parameters:

1. One society, i.e. λ = 1.

2. Population size m = 1, 000, 000, represented as a 1000× 1000 lattice.

3. Threshold θ = 3.

4. Probability of initial activity α = 0.05.
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Figure 4.1: Finite lattice network.

Figure 4.2: Finite lattice network when united in the extremes of graph.

The result of the diffusion process is captured in the images contained in

figure 4.3. These have black pixels to represent individuals in the network

with behavior A (original behavior) and white pixels to represent those with
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Figure 4.3: Visualization of diffusion in a Lattice network. λ = 1,
m = 1x106, θ = 3, α = 0.05.

behavior B. Whenever a node has more than 3 of its neighbors with behav-
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ior B it switches to B. We can see how given this set of parameters, the

innovation spreads contagiously.

Models like these are especially useful to represent phenomena where geo-

graphical positioning is a fundamental aspect of the diffusion; in these cases

neighbors take a literal meaning, for example, bacteria growth processes,

contagion of disease, etc. For other applications we need a model that can

capture any arbitrary number of relations between individuals, even when

the nodes’ position in a network is irrelevant or unknown.

For this we generate an adjacency matrix that contains all the relations of

members in a social network. To visualize it, we simulate the diffusion with

the following parameters:

1. One society, i.e. λ = 1.

2. Population size m = 10, 000, represented as a 100× 100 lattice.

3. Threshold θ = 3.

4. Probability of initial activity α = 0.10.

5. Probability of connectedness Pc = 0.06% (6 neighbors per node on

average).

The results can be seen in figure 4.4. The difference is immediately noted,

since the diffusion is occurring at the same time in the entire network. Po-

sitioning is now irrelevant; this model could represent a more general social

network where influence is happening over several different media, and there-

fore not bound by adjacency.

In figure 4.4 the last image (step 74) is the final stage of the process; no

changes happen after this. We can see that some nodes in the network are

never affected in this situation. This makes intuitive sense since a subgroup

of the entire network could be isolated from members of behavior B.

In both figures 4.3 and 4.4 we can see that at first, when the amount of

nodes “infected” is low, the diffusion happens slowly, while in the last stages,

the spread is much faster.
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Figure 4.4: Visualization of diffusion in a random Network. λ = 1,
m = 1x104, θ = 3, α = 0.10, Pc = 0.06%.
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4.2.2 Proportion of adoption vs. threshold (Ω vs. θ)

In the previous section we visualized how a behavior is spread through the

network for a unique set of parameters. We did this for two different models;

the first model is one with geographical neighbors more suited for biological

scenarios for example, while the second one is Bootstrap Percolation and

had a general adjacency matrix to represent the relations in the network.

From now on, we will deal exclusively with the latter and the generalization

explained in section 1.2. We also saw how a subset of the network could

be isolated and therefore never influenced by the innovation. To study the

amount of people converted to the new behavior we use the proportion of

adoption: Ω. Using this, we can now study how Ω is affected by variation in

θ, as we can see in figure 4.5.

Since the creation of both the adjacency matrix A and the population vec-

tor ~n is random, the process in itself will be random and with huge variance;

therefore, we need to repeat the experiment several times to obtain an av-

erage and get some idea of the distribution. The error bars in 4.5, which

are calculated with the standard deviation of the total number of repetitions

done for each data set, are understandably big given the random nature of

the experiment. Note that figure 4.5 was obtained with a repeat (r) value of

30; in contrast, figure 4.6 was done with 600 repetitions for each data set.

Given that very little distinction is found between the two results, and to

save computation time, all results from now on are produced with a value of

around r = 30.

From figures 4.5 and 4.6 we can see that the contagion model behaves in

a simple way; below certain threshold θ1 (49 in the mentioned figures) the

contagion is absolute and above a threshold θ2 (53 in this case) essentially

no diffusion is seen. Values in between these thresholds have a very heavy

growth, making the overall function highly non-linear. This non-linearity

plays a very important role in the study of diffusion of innovations in general

and is studied further in [16].

This same non-linearity can be seen when we analyze what happens with

the contagion as a function of α, i.e. Ω vs. α in figure 4.7
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Figure 4.5: Ω vs. θ. λ = 1, m = 1x104, α = 0.30, Pc = 1.2%, r = 30.

Figure 4.6: Ω vs. θ. λ = 1, m = 1x104, α = 0.30, Pc = 1.2%, r = 600.
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Figure 4.7: Ω vs. α. λ = 1, m = 1x104, θ = 6, Pc = 0.2%, r = 30.

4.2.3 Critical threshold: θc

We are now interested in finding the critical threshold, θc, the maximum

threshold for which we can trigger a global cascade; this is when we have a

proportion of adoption of 1, or more generally when Ω ≥ q for q ∈ [0, 1].

From figures 4.5 and 4.6 we can see that if q = 1 then θc is 49.

A natural extension of figures 4.5 and 4.6 is to observe what changes when

we vary Pc. As we can see from figure 4.8 (where the function from previous

figures is the one in the middle) changes in the connectivity have an impact

on the location of the θc. This is expected; if we increase Pc then we expect

that influence will be easier to achieve even on a higher θ given that we have

a bigger number of total connections, therefore the θc also increases.

If we take q = 0.5, i.e. we are interested in the θc that give us an Ω

of at least 0.5 and we analyze critical threshold versus population size, we

obtain figure 4.9. This behaves linearly for the range where we varied the

population size (0 to 30, 000) and as we can see the adjusted linear plot has

a linear correlation coefficient of R = 0.9984.
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Figure 4.8: Ω vs. θ. λ = 1, m = 1x104, α = 0.30, r = 600.

Figure 4.9: Critical threshold as a function of population size: θc vs. m.
λ = 1, α = 0.10, Pc = 1%, r = 30. The adjusted plot has the equation:
Ω = 0.0014m+ 5.3 with R = 0.9984.
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4.2.4 Adding Pc

So far we have been able to observe the behavior of Ω with respect to θ (figures

4.5, 4.6 and 4.8), α (or Pn in figure 4.7), Pc (in figure 4.8) and indirectly

with respect to m in figure 4.9. It was also observed that with respect to

population size the behavior is linear for a given set of parameters. We now

leave population size constant and try to analyze the same phenomenon in a

more general way. Figure 4.10 and figure 4.17 will be the only images with

this particular point of view.

Figure 4.10: Ω vs. (Pc, θ). λ = 1, m = 10, 000, r = 30.
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In figure 4.10 we can now see six 3-D plots of the diffusion process. Each

image corresponds with a fixed value of Pn = 1 − α. We can see in each

image the Ω for a range of θ and Pc. Several things can be noted:

1. As expected the zones of low θ and high Pc have higher Ω.

2. As we reduce the value of α, the zone where Ω = 1 shrinks to the corner

where we have low values of θ and high values of Pc. This happens

because in order to reach total influence given that we reduced the

initial seed population, one or both of these parameters have to be

changed accordingly.

3. For a given Pc the critical threshold θc decreases as we reduce α.

4. The θc is found at the intersection of the plane of high growth and

a given Pc. We can see that as α is reduced, this plane lowers its

projection into the θ-axis. Therefore for smaller values of α the diffusion

happens faster around θc.

To finish this section we plot another Ω vs. (Pc, θ) in figure 4.11. This

figure has a range of parameters including those used in figure 4.4. We can

see that for θ = 3, α = 0.10, Pc = 0.06% we obtain a Ω ≈ 0.85 which is

congruent with our results in figure 4.4. This figure and the rest included in

this thesis (with the exception of figure 4.17) will have the same viewpoint.

Figure 4.11: Ω vs. (Pc, θ). λ = 1, m = 10, 000, r = 30.
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4.3 Two Societies

For two societies we now have substantially increased complexity. Instead

of being scalars, both the weight and connectivity are now matrices. Also

we can now choose between having reciprocal relations between different

societies (or not); their populations can be different among other things.

We therefore start with the simplest possible case of equal population

sizes: symmetric relations inside each society, a weight matrix of only ones

and reciprocal hybrid adjacency matrices. The results of the simulation are

plotted in the usual way and shown in figure 4.12. In this figure all six images

have the same parameters with the only exception being Pn1 . We can note

the following:

1. When compared to 4.10 we can notice that instead of just one plain (to-

tal adoption) we now have three of these regions: one for total adoption

of both societies simultaneously and two for adoption of one of them

individually.

2. Looking at the first three images, for low values of Pc (which refers

to the connectivity of society 1 with itself) only society 2 manages

to achieve total adoption. This makes sense since the connectivity of

society 2 is constant at Pc22 = 0.1 which is higher than Pc11 in that

region. Once we increase this connectivity then both adopt fully unless

we have high thresholds in which case only society 1 achieves total

diffusion.

3. Very clearly, as we decrease α the zone of no adoption grows while the

zones with Ω = 1 and Ω = 0.5 shrink.
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Figure 4.12: Ω vs. (Pc, θ). λ = 2, m = (104, 104), r = 30, Pn2 = 0.8.

We also add figure 4.13 as another example. The parameters and images

are all the same with the only change being that Pn2 = 0.9 instead of 0.8.

We can see that this change decreased adoption of society 2 in all scenarios

and also slightly affected society one through the hybrid relations between

both.
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Figure 4.13: Ω vs. (Pc, θ). λ = 2, m = (104, 104) r = 30, Pn2 = 0.9.

To show the local complexity of these plots we include figure 4.14. It shows

a zoom made to a section of an image in figure 4.13.

To further emphasize the complex local features of these plots we also

include figure 4.15 where we show a zoom of a different section of the domain

of a plot taken from figure 4.13. If we take this zoom for all the images

presented in 4.13, we produce figure 4.16.

Figure 4.16 shows how complicated the behavior of the diffusion can be

at a smaller scale in the parameters θ and Pc. While all the previous figures

give the impression that the process is simple and occurs in steps, we can see
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Figure 4.14: Ω vs. (Pc, θ). λ = 2, m = (104, 104) r = 30.

Figure 4.15: Zoom used in figure 4.13 to produce the images in figure 4.16.

that there are zones of smooth surfaces with slow growth.
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Figure 4.16: Ω vs. (Pc, θ). λ = 2, m = (104, 104) r = 30.
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4.4 Weights

So far the only weight matrix used has been W = ( 1 1
1 1 ). In this section we

will now present several variations from this weight matrix and their results.

Most of the following cases have real world applications while others have

more implausible adaptations.

4.4.1 W =

[
1 0
0 0

]
This is probably the most simple weight variation we can do. It is basically

the situation where S1 is isolated and S2 is deactivated entirely. This means

that S2 affects neither of the two societies present and S1 only affects itself.

The end result is that this is basically the same situation we had with one

society but now the population size is twice what it was and half of that (the

half of S2) will never adopt the new behavior (except for initial conditions of

α2).

The results are included in figure 4.17 (right column) along with the pre-

vious results from 4.10 (left column) for easy comparison. As we can see, the

behavior is identical, as it should be.
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Figure 4.17: Comparison between one society and two societies with
W = ( 1 0

0 0 ) .
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4.4.2 W =

[
1 0
0 1

]
This case has both societies active but not interacting. We can now com-

pare this situation with the canonical case W = ( 1 1
1 1 ) to understand the

differences. The results are presented in figures 4.18 (Pn2 = 0.8) and 4.19

(Pn2 = 0.9).

What is expected occurs: since there is no interaction between the two

societies and therefore no feedback to spread the innovation with greater

speed, we see that the zone with Ω = 1 reduced in size because it is harder

for both societies to achieve a global cascade. Also, for the same reason, the

zone with Ω = 0 increased in size. And finally we now have bigger zones

where only one of the societies fully adopts the new behavior.
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Figure 4.18: Comparison between two societies with W = ( 1 1
1 1 ) and with

W = ( 1 0
0 1 ) with Pn2 = 0.8.
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Figure 4.19: Comparison between two societies with W = ( 1 1
1 1 ) and with

W = ( 1 0
0 1 ) with Pn2 = 0.9.
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4.4.3 W =

[
1 -1
1 1

]
In this scenario we have both societies interacting and active. Since W21 = 1

then S1 influences S2 positively, meaning that S2 will be influenced by S1

to adopt the innovation; in contrast, W12 = -1 which means that S1 has,

effectively, a more complicated threshold rule where members of S2 contribute

in a negative way. Basically S1 is less likely to adopt the innovation given

that S2 is adopting it. Since the program currently cannot make individuals

switch back to the original behavior, then we never get a scenario where S1

abandons the innovation caused by stronger adoption in S2.

The results are included in figures 4.20 and 4.21 for Pn2 = 0.8 and Pn2 = 0.9

respectively. We can notice that now the plateau linked to full adoption by

society two alone has increased in size, which makes sense given that S1 has

a lower chance of adoption. Notice how the plateau linked to full adoption

on S1 is identical to the canonical case.

Obviously the decrease in zones Ω = 1 close to the plateau for S2 is even

bigger than in the previous case W = ( 1 0
0 1 ) since a contribution 0 is bigger

than the negative contribution in this case.
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Figure 4.20: Comparison between two societies with W = ( 1 1
1 1 ) and with

W = ( 1 -1
1 1 ) with Pn2 = 0.8.
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Figure 4.21: Comparison between two societies with W = ( 1 1
1 1 ) and with

W = ( 1 -1
1 1 ) with Pn2 = 0.9.
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4.4.4 W =

[
1 -1
-1 1

]
We now have a negative interaction between both societies so we expect that

what happened in the last scenario with S2 will now occur for both S1 and S2.

To verify this and summarize the last three weights we include a comparison

in figure 4.22.

Figure 4.22: Comparison between two societies with W = ( 1 1
1 1 ), W = ( 1 0

0 1 ),
W = ( 1 -1

1 1 ) and W = ( 1 -1
-1 1 ).

As we can see, the reduction in the zone of total adoption Ω = 1 varies

with the weight matrix and the negative contribution of W12 = W21 = −1

creates the biggest reduction of adoption. The full results for the weight

matrix of this section are plotted in figures 4.23 and 4.24.
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Figure 4.23: Comparison between two societies with W = ( 1 1
1 1 ) and with

W = ( 1 -1
-1 1 ) with Pn2 = 0.8.
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Figure 4.24: Comparison between two societies with W = ( 1 1
1 1 ) and with

W = ( 1 -1
-1 1 ) with Pn2 = 0.9.
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4.4.5 W =

[
1 1
0 0

]
This is the case where society S1 is affected by itself and S2 but society S2

is immune to influence of either societies. The results are included in figures

4.25 and 4.26. We can observe the following:

1. There is no zone with Ω = 1, with the exception of θ = 0 which is a

trivial case and will produce Ω = 1 regardless of the parameters utilized.

This is reasonable given that S2 is not affected by either society.

2. The general behavior of S1 is almost the same as when the case was

that of one society or two societies with W = ( 1 0
0 0 ) (figure 4.17). The

only difference is that now, the initial population seeded by α2 = 0.8

(or α2 = 0.9) is affecting S1 as well as its own seed population. This

achieves higher adoption than in the isolated case.
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Figure 4.25: Comparison between two societies with W = ( 1 1
1 1 ) and with

W = ( 1 1
0 0 ) with Pn2 = 0.8.

53



Figure 4.26: Comparison between two societies with W = ( 1 1
1 1 ) and with

W = ( 1 1
0 0 ) with Pn2 = 0.9.
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4.4.6 W =

[
1 0
1 0

]
Now we have the scenario where only the influence from S1 matters to both

societies, but none are isolated. In contrast to the last weight observed, for

low values of θ, society S2 will adopt the innovation. That is, if S1 grows

enough it also affects S2. These are basically the only notable differences

between these two cases.

Results are plotted in figures 4.27 and 4.28. If we play close attention to

these figures and compare them to figures 4.25 and 4.26 we can see that the

behavior is the same as it was before, but with a smooth “hump” attached

in the zone with low thresholds. This makes sense because now S2 can also

reach full adoption for low values of θ and when the influence of S1 is high

enough to affect the population.
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Figure 4.27: Comparison between two societies with W = ( 1 1
1 1 ) and with

W = ( 1 0
1 0 ) with Pn2 = 0.8.
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Figure 4.28: Comparison between two societies with W = ( 1 1
1 1 ) and with

W = ( 1 0
1 0 ) with Pn2 = 0.9.
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4.4.7 W =

[
0 1
1 0

]
The only relations in this example are hybrid ones; the societies interact with

one another and are influenced that way but no internal influence exists.

Since W11 = W22 = 0, then neither Pc11 or Pc22 will be used in the plots

of the results because Ω is independent of those two values. We use Pc12

instead. The results, shown in figure 4.29, are very different from all the

previous results and this comes from the fact that we used a new variable to

plot them. Figure 4.30 shows contour plots of figure 4.29 and it is included

to better appreciate the resulting behavior.

Finally, for completeness, figure 4.31 is included with Pn2 = 0.9 as we have

done before for all other cases.
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Figure 4.29: Two societies with W = ( 0 1
1 0 ) with Pn2 = 0.8.
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Figure 4.30: Contour plot of images in figure 4.29.
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Figure 4.31: Two societies with W = ( 0 1
1 0 ) with Pn2 = 0.9.

4.4.8 Other cases

What about cases left out in these observations? The variation in question

in the last section has been the weight matrix W. Therefore we have that

the total set of possible W is the linear space of matrices of dimension 2, so

even if we had no intuition about the phenomena studied, we have already

covered a base of that space in the following elements:
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a =

[
1 0

0 0

]
b =

[
1 0

1 0

]
c =

[
1 0

0 1

]
d =

[
1 -1

-1 1

]

Using this we can now get some intuition of what happens with an ar-

bitrary case, for example W1 = ( 2 0
2 1 ), by writing it as a function of linear

combinations of the proposed base of the space:

W1 = 2 · b + c − a (4.1)

The behavior of the diffusion with the matrix W1 can be predicted given

that we understand what happens with the base elements.

4.5 N Societies

The program created for this study can handle N societies in total, each of

them with unique parameters. Also the observations made about the two

societies scenario also apply to N societies; there was nothing intrinsic to

λ = 2 about the things observed or discussed. Therefore this analysis could

be made for any number of societies using the tools developed for this study.

As an example of this and to give an intuition about how these phenomena

scale, we studied a three society case. This case involves the following weight

matrix W and population vector ~m:

W =

 1 1 1

1 1 1

1 1 1

 ~m =
(

10, 000 10, 000 10, 000
)

The results are included in figure 4.32. We can see three zones of adoption

now: S1 adopting alone, S1 and S2 adopting together and all three of them

with full adoption.
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Figure 4.32: Three societies with W =
(

1 1 1
1 1 1
1 1 1

)
and Pn2 = 0.8,

m = (104, 104, 104).

Also, as we increase Pn2 (therefore decreasing α), the zone of non-adoption

increases in size and as happened in figures like 4.17, 4.25, 4.27 etc., the

plane of “high growth” rotates so that higher connectivity values are needed

to maintain the same adoption as before.

Finally, to emphasize how the program can handle different population

sizes and any arbitrary weight matrix, we simulate the diffusion process with

the following W and ~m:

W =

 1.8 0.1 0.5

0.6 3.1 0.0

0.0 0.3 2.2

 ~m =
(

5, 000 10, 000 15, 000
)

The results from the simulation with these values are included in figure

4.33 along with the results of figure 4.32 to allow for easy comparison; as

usual both columns have images plotted with the same parameters (except

W and ~m). The following can be noted:
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1. The plateaus found are of different size given that we changed the

population size of the societies.

2. We now notice five different plateaus instead of the three we had before.

As before we can see society one fully adopting (a), societies S1 and S2

with full adoption (b) and all societies with Ω = 1 (c), but now we can

also see a region with the adoption of both S2 and S3 (d) and a zone

with adoption from only S2 (e). These regions did not appear in the

first scenario.

3. Since we changed the weight matrix to incorporate several entries with

values Wij ∈ [0, 1), most of the adoption plateaus changed:

• The adoption for S1 and S2 simultaneously (b) shrank in size, i.e.

it is now harder for those societies to fully adopt the innovation.

• Possibly as a consequence of the last point, plateau a increased in

size.

4. All the zones of high growth now happen slower. Notice how these

regions have several points in them, in contrast to the one or none

in the original case. This creates a situation where more needs to be

invested to push the populations to adopt the innovation.

In order to appreciate the different heights in another perspective we in-

clude figure 4.34 where we can see contour plot versions of the plots in figure

4.33. Here we can see that the growth between plateaus happens at a slower

rate than in other cases.
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Figure 4.33: Comparison between three societies with W =
(

1 1 1
1 1 1
1 1 1

)
and

W =
(

1.8 0.1 0.5
0.6 3.1 0.0
0.0 0.3 2.2

)
; population sizes also vary.
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Figure 4.34: Contour plots of the results presented in figure 4.33.
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CHAPTER 5

CONCLUSION

In this thesis we studied, with increasing complexity, the diffusion of behav-

iors in a random network using a generalization of the Bootstrap Percola-

tion model that consists of the following two complications: λ societies each

with different parameters, making the overall social network heterogeneous

(if λ ≥ 2); and arbitrarily weighted relations between those societies. The

studies were divided into λ = 1, λ = 2 and λ = 3:

1. λ = 1: For one society we first visualized how the diffusion spreads for

a case with a lattice network and then in the case of a general adjacency

matrix. We also studied how the proportion of adoption Ω behaves as

a function of θ and α and also observed how the connectivity Pc affects

this behavior. Then we studied the critical threshold as a function

of population size and concluded it was a linear relation. Finally we

obtained 3-D plots of the process Ω vs. (Pc, θ) to summarize most of

the previous results.

2. λ = 2: For the two society case we studied the canonical case W =

( 1 1
1 1 ) and obtained several different plots to observe the behavior of

the process. Zooms of some plots were also obtained to highlight the

complexity in a smaller scale. Also in the two society case we analyzed

multiple weight matrices and the effect they had on the diffusion. We

did this by comparing all these different weights with the canonical

weight previously mentioned.

3. λ = 3: Finally for a three society case we prove that the created tool

is general. We simulated a three society case with an arbitrary weight

matrix and compared it to the canonical weight matrix of dimension

three.
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We were successful in creating a program to analyze the diffusion of in-

novations in contexts with any number of societies and an arbitrary weight

matrix to alter the relations between them.

We believe that this tool could prove to be very helpful with the aid of

sociological statistics. Given enough information being fed to the program

about real world scenarios, this code could be used to predict the behavior

of the phenomenon in question but with different parameters than the ones

provided. This simulation would obviously be more reliable if the simulated

points are in close proximity to the ones empirically observed.

5.1 Possible Future Studies

Several small applications of the current program were left untested:

1. Cases where the cross connectivity between societies was higher than

the internal connectivity. It was partially covered by making an analysis

of the weight case W = ( 0 1
1 0 ) but further studies could have been done.

2. Proportion of adoption in general as a function of population size,

specifically when studied in the context of different weight scenarios.

For a given set of parameters, particularly if we are close to the crit-

ical threshold, increasing population size might make the society not

trigger a global cascade, for example. Studying how sensitive different

scenarios are to changes in population size might be interesting.

Other than this, possible improvements to the program could be made to

study more complicated scenarios such as the ones mentioned in section 3.3:

non-progressive cases, hybrid thresholds, percentage thresholds, more than

two behaviors, individual randomized thresholds etc.
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APPENDIX A

MAIN MATLAB CODE

All the following files can be found at https://github.com/F-Dominguez/Diffusion-

Matlab-Code.

A.1 Main File

%*************************************************

%* Percolation simulation in heterogeneous media *

%* Final Version Programmed April 4, 2012 *

%* By Francisco Dominguez *

%*************************************************

tic; close all; clc

%% Define Parameters

% n: Dimension of Adjacency matrix.

% Thresh Begin: Initial value of Threshold.

% Thresh Intv: Increment of Threshold for variation.

% Thresh End: Final Value of Threshold.

% Repeat: Number of times percolation experiment is re−
% peated to obtain the average of the proportion

% of adoption.

% Pseed : Probability of initial activity, or initial

% adoption of new behaviour. Pn = 1−Pseed.
% Pconnect: Probability of connectedness for the Adjacency

% Matrix; this is the probability that connections

% between members will arise.

% NumPop: Number of societies.

% PopSize: Vector stating the size of all societies.
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% PopSame: Vector stating if we need the submatrices (of the

% Adjacency matrix) representing interaction between

% societies to be equal; for example if we need the Adja−
% cency matrix of society i interacting with j to be equal

% to society j interacting with i. Anything other than

% 'Same' will make them be generated differently, i.e.

% will get us non symmetric relations between

% populations.

% PopSym: Matrix stating if the submatrices of the Adjacency

% matrix are generated symmetrically or not. Anything

% other than Sym will yield non symmetric random matrices,

% i.e. we won't have a symmetric relation inside

% societies.

% Weight Pop: Vector introducing weight to the utility function

% of individuals in a particular society. This is to vary

% the importance of adoption of a certain society in a

% given individual. This is also a way to make a relative

% variation of threshold amongst the societies.

%

% It is possible for this code to simulate percolation for any

% number of societies. One must define a Pn vector with dimen−
% sion equal to this number. Also one must define a Pconnect

% matrix with values for every interacting society; NumPopˆ2.

% Pn Mat and Pconnect Mat are 3xNumPop matrices. First row de−
% fines the initial values of Pn or Pconnect respectively, se−
% cond row gives the increment for simulation and third row

% gives the final value for simulation. The code takes all po−
% ssible permutations of values introduced in this matrices.

% This last step is achieved in the function Variation Perm.

%

% One Society

Thresh Begin = 6;

Thresh Intv = 1;

Thresh End = 6;

Repeat = 500;

Pn Mat = cat(3,.70,.001,.99);

Pconnect Mat = cat(3,.002,.00005,.002);

NumPop = 1;

PopSize = [10000];
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PopSame = {'Same'};
PopSym = {'Diff'};
Weight Pop = [1];

%

%% Two Societies

Thresh Begin = 0;

Thresh Intv = 1;

Thresh End = 100;

Repeat = 3;

Pn Mat = cat(3,[0.70 0.80],...

[0.05 0.10],...

[0.95 0.90]);

Pconnect Mat = ...

cat(3,[0.000 0.001;0.001 0.010],...

[0.005 0.001;0.001 0.010],...

[0.300 0.001;0.001 0.010]);

NumPop = 2;

PopSize = [10000 10000];

PopSame = {'Same','Same'};
PopSym = {'Diff','Diff';'Diff','Diff'};
Weight Pop = [1 −1;−1 1];

%

% Three Societies

Thresh Begin = 20;

Thresh Intv = 1;

Thresh End = 90;

Repeat =10;

Pn Mat = cat(3,[0.84 0.85 0.90],...

[0.02 0.05 0.05],...

[0.94 0.85 0.90]);

Pconnect Mat = ...

cat(3,...

[0.000 0.005 0.001;0.005 0.005 0.001;0.001 0.001 0.005],...

[0.002 0.001 0.001;0.001 0.005 0.001;0.001 0.001 0.005],...

[0.090 0.005 0.001;0.005 0.005 0.001;0.001 0.001 0.005]);

NumPop = 3;

PopSize = [10000 10000 10000];
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PopSame = {'Same','Same','Same'};
PopSym = {'Diff','Diff','Diff';...

'Diff','Diff','Diff';...

'Diff','Diff','Diff'};
Weight Pop = [1 1 1;1 1 1;1 1 1];

%

%% Simulation

[Pconnect Perm] = Variation Perm(Pconnect Mat);

[Pn Perm] = Variation Perm(Pn Mat);

[Average,MSE] = Variation MP(Thresh Begin,Thresh Intv,...

Thresh End,Pconnect Perm,Pn Perm,Repeat,NumPop,PopSize,...

PopSame,PopSym,Weight Pop);

elapsedtime = toc;

%

%% GUI

% To execute the Graphical User Interface, either uncomment the

% following line or execute it in the command prompt. This will

% load the data into the interface and allow for dynamical ob−
% servation of the results.

% test1(Pconnect Perm,Pn Perm,Thresh Begin:Thresh End,...

Average,MSE,NumPop)
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A.2 Nested Files

%*************************************************

%* Variation Perm *

%* *

%* Calculation and reformatting of all possible *

%* permutations asked in the program. *

%* By Francisco Dominguez *

%*************************************************

%This code transforms the Pconnect Mat and Pn Mat into a useful

%form that encompasses all possible permutations of values of

%Pconnect or Pn for the program to execute the simulation.

%

%Mat Intv : The input matrix in question; it can be Pconnect Mat

% or Pn Mat.

%Intv Nums: Calculates the total number of steps for each para−
% meter, i.e. the total number of steps that the program

% will do for a particular parameter of a population, for

% example Pconnect11, Pconnect12 etc.

%Num Cols : Is the total number of steps for all parameters, en−
% compassing all possible Pconnect or Pn depending on the

% input matrix.

%ForVar : This is the output of the function, It will be

% Pconnect Perm or Pn Perm depending on the input matrix.

%

function [ForVar] = Variation Perm(Mat Intv)

%Calculation of number of increments.

Intv Nums = (round((Mat Intv(:,:,3)−Mat Intv(:,:,1))./...

Mat Intv(:,:,2))+1)';

%Total number of increments.

Num Cols = prod(prod(Intv Nums));

%Preallocation for speed.

ForVar = zeros(numel(Mat Intv)/3,Num Cols);

%Obtaining the permutations in form of a matrix.

for i = 1:size(Mat Intv,1)
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for j = 1:size(Mat Intv,2)

RowNum = j + (i−1) * size(Mat Intv,1);

Ent Block Len = prod(Intv Nums(RowNum:end));

Block Num Len = Ent Block Len/Intv Nums(j,i);

Block = zeros(1,Ent Block Len);

for z = 1:Ent Block Len/Block Num Len

Block Part val = Mat Intv(i,j,1) + (z−1)*...
Mat Intv(i,j,2);

Block((1+(z−1)*Block Num Len):Block Num Len*z) = ...

repmat(Block Part val,1,Block Num Len);

end

ForVar(RowNum,:) = ...

repmat(Block,1,Num Cols/Ent Block Len);

end

end

76



%*****************************************************

%* Variation MP *

%* Nested 'for' loop for every combination of values *

%* This is fed to Init Pop which creates the Nvect *

%* and Adjacency Matrix, and to Evolve MPopulation *

%* which carries out the evolution. *

%* By Francisco Dominguez *

%*****************************************************

%This code is essentially a nested 'for' loop that executes the

%functions 'Init Pop' and 'Evolve MP' for all possible combina−
%tions of values input in Pn Mat and Pconnect Mat and then re−
%formatted into Pn Perm and Pconnect Perm.

%

%Pconnect Len, Pn Len and Thresh Len are the number of values of

% Pconnect, Pn and Threshold that are desired to be simu−
% lated by the program.

%WEight Pop Len: In the current version of the code, it is not

% possible to vary the desired values of the weight for

% the utility functions related to threshold in each so−
% ciety. This part is therefore not used but was included

% for a future version of the program.

%Proportion: This value is the main result and object of study

% in our simulations. It represent the proportion of non−
% adopters (defined as the initial non adopting fraction

% of the population) that ended up adoptting the beha−
% viour. Therefore it will be a value of 1 if everyone

% adopted at the end or 0 if no one did, with every va−
% lue in between as a possible outcome.

%Regarding the counters, zz counts the total number of steps,

%this is used in the function 'timebar' which is a modified ver−
%sion of the Matlab function waitbar to also incorporate time

%remaining. The counter r is for the number of Repeat, c is for

%Pconnect, s is for Pseed or Pn and t is for Threshold.

%

%For each combination of numbers, the Adjacency Matrix using

%Pconnect and the Nvect (vector of states for each member of the

%society) is calculated using Init Pop. Once those matrices are

%obtained, the function Evolve MPopulation carries the evolution

%of the percolation through its final state and then the final

%Proportion is saved in the 4 dimensional array (For repeat,

%connect, seed and threshold). Finally the average is calculated

%over all repetitions.
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%

%The counters in this code are:

%

%zz: Counter for total steps.

%c: Counter for Pconnect steps.

%s: Counter for Pseed or Pn steps.

%t: Counter for Threshold steps.

%

function [Average,MSE,AllPerms] = Variation MP(Thresh Begin,...

Thresh Intv,Thresh End,Pconnect Perm,Pn Perm,Repeat,NumPop,...

PopSize,PopSame,PopSym,Weight Pop)

%Length calculation.

Pconnect Len = size(Pconnect Perm,2);

Pn Len = size(Pn Perm,2);

Thresh Len = (Thresh End−Thresh Begin)/Thresh Intv +1;

% Following line reserved for following version incorporating

% weight variation.

% Weight Pop Len = numel(Weight Pop);

Weight Pop Len =1;

%Preallocation for speed.

Proportion = zeros(Thresh Len,Pn Len,Pconnect Len,Repeat,...

Weight Pop Len);

AllPerms = zeros(1 + size(Pconnect Perm,1) + ...

size(Pn Perm,1),Thresh Len*Pn Len*Pconnect Len);

Par Connect = cell(NumPop,NumPop);

h = timebar(0,sprintf('%3.1f Percent Done',0));

zz=0;

for r = 1:Repeat

c=1;

for Pconnect = Pconnect Perm

[Adj Mat] = Init Pop(NumPop,PopSize,...

reshape(Pconnect,NumPop,...

[]),PopSame,PopSym);

%Total number of connections.

Tot Connect = sum(cell2mat(Adj Mat),2);

for Active Pop = 1:NumPop

for Connected Pop = 1:NumPop

Par Connect{Active Pop, Connected Pop} =...
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sum(Adj Mat{Active Pop, Connected Pop},2);
end

end

s=1;

for Pn = Pn Perm

%Network vector. It has 1's for non adopters, 0's

%for adopters.

[NvectO] = Init Pop(NumPop,PopSize,Pn);

%Initial Number of non−adopters.
IN = sum(cell2mat(NvectO));

t = 1;

for Threshold = Thresh Begin:Thresh Intv:Thresh End

Nvect = NvectO;

[NAf] = Evolve MPopulation(Weight Pop,NumPop,...

Adj Mat,Nvect,Tot Connect,...

Par Connect,Threshold,PopSize);

%Proportion of non−adopters that adopted the ...

%behaviour.

Proportion(t,s,c,r) = 1−(NAf/IN);
t = t + 1;

zz = zz+1;

steps = ...

(zz)/(Repeat*Thresh Len*Pn Len*Pconnect Len);

timebar(steps,h,...

sprintf('%3.1f Percent Done',steps*100));

end

s=s+1;

end

c=c+1;

end

end

%Average of Proportion over r runs.

Average = mean(Proportion,4);

%MSE of each set of numbers.

MSE = std(Proportion,1,4);

close(h);
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%************************************************************

%* Init Pop

%*

%* Generation of General Adjacency Matrix and Population Vector.

%* By Francisco Dominguez

%************************************************************

%This function generates the Adjacency Matrix if the Pval in

%question is Pconnect or the Nvect (vector of population con−
%taining 0 for new behaviour or 1 for original behaviour) if

%the Pval is the Pn.

%

%The matrix PopSym dictates wether a submatrix of the adjacency

%matrix (AdjM) is symmetrical or not. In this program, the AdjM

%for each society and the AdjM for the relationship between so−
%cieties are all included in the same general AdjM. The same is

%done for the Nvect which encompasses the Nvect of each indivi−
%dual society. Therefore, each component of the general AdjM

%dictates the relation of individual societies or between two

%particular societies.

%PopSym determines if those relations are symmetrical. If so

%then the matrix is generated using a random sparse symmetrical

%matrix command instead of just sparse symmetric matrix. Note

%that if symmetric matrix is desired, then it must be a square

%matrix i.e. PopSize(i) = PopSize(j). In other words PopSym dic−
%tates if we have symmetric adjacency matrices for societies;

%AdjM 11 is symmetric.

%

%The vector PopSame, on the other hand dictates whether or not

%interaction within societies are symmetrical between them; for

%example if we need the Adjacency matrix of society i inter−
%acting with j to be equal to society j interacting with i;

%AdjM 13 = AdjM 31. Anything other than 'Same' will make them

%be generated differently. Note that if Same is desired, then

%the Pconnect values must be equal too.

%

%OutVar: This output will be either AdjM or Nvect, depending on

% the input Pval.

%Pval : Can be Pn or Pconnect, if Pn then OutVar will be Nvect,

% if Pconnect then OutVar will be AdjM.

function [OutVar] = Init Pop(NumPop,PopSize,Pval,PopSame,PopSym)
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%In the following case the program is considering Pconnect.

if nargin > 3

OutVar = cell(NumPop);

k = 1;

for i = 1:NumPop

for j = 1:NumPop

%If Same is reported on the vector PopSame and

%the inserted values are equal.

if i > j && strncmpi('Same',PopSame{k},4) && ...

Pval(i,j) == Pval(j,i)

%Then the Adjacency matrix is the same.

OutVar{i,j} = OutVar{j,i}';
k = k + 1;

else

if i > j

k = k + 1;

end

%If the entry for the (i.j) adjacency com−
%ponent in the PopSym matrix starts with Sym

%and the population size of those 2 societies

%is equal then use symmetric.

if strncmpi('Sym',PopSym{i,j},3) &&...

PopSize(i) == PopSize(j)

OutVar{i,j} = ...

spones(sprandsym(PopSize(i),Pval(i,j)));

else

OutVar{i,j} = spones(sprand...

(PopSize(i),PopSize(j),Pval(i,j)));

end

end

end

end

%In the following case the program is considering Pn.

else

OutVar = cell(NumPop,1);

for i = 1:NumPop

OutVar{i} = rand(PopSize(i),1)<Pval(i);

end

end
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%***********************************************************

%* Evolve MPopulation *

%* Core of the program, the percolation is simulated here. *

%* By Francisco Dominguez *

%***********************************************************

%This is the core of the Percolation or cascade simulation. It

%applies at each step, the rule that if a member has more or

%equal than Threshold neighbors with the new behaviour (which

%is represented by 0) then it adopts that behaviour from the

%original one (represented by 1). The programs stops if at any

%given cycle, no new individuals adopted the new behaviour, in

%which case all of them adopted it or there was a cluster that

%wasn't connected enough to the rest of the network.

%

%Active Pop: Refers to the current population being evolved. The

% Active Pop refers to 'rows' in the Adjacency matrix's sub

% matrix configuration. This means that if we have Active Pop

% = 1 in a 3 society configuration, we are taking into account

% the submatrices referring to the interaction of society 1

% with itself, with society 2 and society 3.

%

%Connected Pop: Refers to 'columns' in the Adjacency matrix's

% sub matrix configuration.

%

%With both of these numbers the program does the product of Ad−
%jacency matrix and Vector of Population by parts to then report

%the vector of population at the next step.

%

%The weight parameter is considered here. Although the threshold

%is the same throughout the societies, each assigns a weight on

%their links (relations) with each other society, and therefore

%we can manipulate how important relations are between interac−
%ting societies. If we set the weight to 0, no feedback will

%occur when behaviours change in the interacting societies.

%We can also set it as negative and therefore, it will have the

%effect of making the adoption of the new behaviour undesirable

%for a certain population if another population is adopting it.

%

function [NAf] = Evolve MPopulation(Weight Pop,NumPop,...

Adj Mat,Nvect,Tot Connect,Threshold,PopSize)

%In the following code, Active pop refers to 'rows' in the AdjM,
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%while Connected Pop is used to denote 'columns' in the AdjM.

%These rows and columns are not of scalars but of submatrices,

%referring to particular societies. Therefore 13 is the interac−
%tion if society 1 with society 3, and therefore an entire matrix

%itself.

dNA = 1;

Connect2one = cell(1,NumPop);

Connect2zero = cell(1,NumPop);

while dNA

for Active Pop = 1:NumPop

for Connected Pop = 1:NumPop

if Weight Pop == ones(NumPop)

if Connected Pop == 1

%Vector stating the amount of connec−
%tions to 1's. This is basically a part

%of the utility function for members of

%Active Pop.

Connect2one{Active Pop} = ...

Adj Mat{Active Pop, Connected Pop}*...
Nvect{Connected Pop};

else

%Vector stating the amount of connec−
%tions to 1's.

Connect2one{Active Pop} = ...

Connect2one{Active Pop} + ...

Adj Mat{Active Pop, Connected Pop}*...
Nvect{Connected Pop};

end

else

switch Weight Pop(Active Pop, Connected Pop)

case 0,

if Connected Pop == 1

Connect2zero{Active Pop} = ...

zeros(PopSize(Connected Pop),1);

end

case 1,

if Connected Pop == 1

Connect2zero{Active Pop} = ...

Par Connect{Active Pop,Connected Pop}...
− (Adj Mat{Active Pop,Connected Pop}*...
Nvect{Connected Pop});

else
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Connect2zero{Active Pop} = ...

Connect2zero{Active Pop} + ...

Par Connect{Active Pop,Connected Pop}...
− (Adj Mat{Active Pop,Connected Pop}*...
Nvect{Connected Pop});

end

otherwise,

if Connected Pop == 1

Connect2zero{Active Pop} = ...

Weight Pop(Active Pop,Connected Pop)*(...

Par Connect{Active Pop,Connected Pop}...
− (Adj Mat{Active Pop,Connected Pop}*...
Nvect{Connected Pop}));

else

Connect2zero{Active Pop} = ...

Connect2zero{Active Pop} + ...

Weight Pop(Active Pop,Connected Pop)*(...

Par Connect{Active Pop,Connected Pop}...
− (Adj Mat{Active Pop,Connected Pop}*...
Nvect{Connected Pop}));

end

end

end

end

end

if Weight Pop == ones(NumPop)

%If number of connections to 0's is less than m,then

%the behaviour stays the same.

Amask = ((Tot Connect−cell2mat(Connect2one'))<Threshold);
%Initial Number of nonadopters at each step.

NAi = sum(cell2mat(Nvect));

%Percolation step.

Nvect = mat2cell(cell2mat(Nvect).*Amask,PopSize);

%Final Number of nonadopters at each step.

NAf = sum(cell2mat(Nvect));

%Number of adopters gained.

dNA = NAi−NAf;
else

Amask = ((cell2mat(Connect2zero'))<Threshold);

NAi = sum(cell2mat(Nvect));

Nvect = mat2cell(cell2mat(Nvect).*Amask,PopSize);

NAf = sum(cell2mat(Nvect));

dNA = NAi−NAf;
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end

end
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A.3 Remaining Time Program

%***************************************************

%* Timebar *

%* Modified waitbar function of Matlab to estimate *

%* time remaining. *

%***************************************************

%This is a modified version of MATLAB's waitbar function with

%the added functionality of displaying time estimation. It was

%obtained from the following webpage:

%(www.mathworks.com/matlabcentral/

%fileexchange/22161−waitbar−with−time−estimation)
%after which it was very slightly modified to fit into the

%rest of the program.

function h = timebar(X,varargin)

% TIMEBAR a modified version of MATLAB's waitbar function.

%

% H = WAITBAR(X,'message') creates and displays a waitbar of

% fractional length X. The handle to the waitbar

% figure is returned in H. X should be between 0 and 1.

%

% WAITBAR(X) will set the length of the bar in the most re−
% cently created waitbar window to the fractional length X.

%

% WAITBAR(X,H) will set the length of the bar in waitbar H

% to the fractional length X.

%

% WAITBAR(X,H,'message') will update the message text in

% the waitbar figure, in addition to setting the fractional

% length to X.

%

% WAITBAR is typically used inside a FOR loop that performs a

% lengthy computation.

%

% Example:

% h = waitbar(0,'Please wait...');

% for i=1:1000,

% % computation here %

% waitbar(i/1000,h)
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% end

%

% NOTES:

% − This program produced with heavy modification of Chad

% English's timebar function. The update was designed to

% receive input identically to MATLAB's waitbar function to

% allow for interchangeability.

%

% − This program does not apply the property values that the

% traditional waitbar allows.

%

%

% 1 − GATHER THE INPUT

if nargin == 1;

h = findobj(allchild(0),'flat','Tag','waitbar');

message = '';

elseif isnumeric(X) & ishandle(varargin{1}) & nargin == 2;

h = varargin{1}; message = '';

elseif isnumeric(X) & ischar(varargin{1}) & nargin == 2;

h = []; message = varargin{1};
elseif isnumeric(X) & ishandle(varargin{1}) & nargin == 3;

h = varargin{1}; message = varargin{2};
else

disp('Error defnining waitbar'); return;

end

% 2 − BUILD/UPDATE THE MESSAGE BAR

if isempty(h) | | ˜ishandle(h(1));

h = buildwaitbar(X,message);

else updatewaitbar(h,X,message); end

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% SUBFUNCTION: buildwaitbar

function h = buildwaitbar(X,message)

% BUILDWAITBAR constructs the figure containing the waitbar

% 1 − SET WINDOW SIZE AND POSITION

% 1.1 − Gather screen information

screensize = get(0,'screensize'); % User's screen size

screenwidth = screensize(3); % User's screen width

screenheight = screensize(4); % User's screen height
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% 1.2 − Define the waitbar position

winwidth = 300; % Width of timebar window

winheight = 85; % Height of timebar window

winpos = [0.5*(screenwidth−winwidth), ...

% Position

0.5*(screenheight−winheight), winwidth, winheight];

% 2 − OPEN FIGURE AND SET PROPERTIES

wincolor = 0.85*[1 1 1]; % Define window color

% 2.1 − Define the main waitbar figure

h = figure('menubar','none','numbertitle','off',...

'name','0% Complete','position',winpos,'color',...

wincolor,'tag','waitbar','IntegerHandle','off');

% 2.2 − Define the message textbox

userdata.text(1) = uicontrol(h,'style','text','hor',...

'left','pos',[10 winheight−30 winwidth−20 20],...

'string',message,'backgroundcolor',wincolor,...

'tag','message');

% 2.3 − Build estimated remaining static text textbox

est text = 'Estimated time remaining: ';

userdata.text(2) = uicontrol(h,'style','text',...

'string',est text,'pos',[10 15 winwidth/2 20],...

'FontSize',7,'backgroundcolor',wincolor,...

'HorizontalAlignment','right');

% 2.4 − Build estimated time textbox

userdata.remain = uicontrol(h,'style','text','string','',...

'FontSize',7,'HorizontalAlignment','left',...

'pos',[winwidth/2+10 14.5 winwidth−25 20], ...

'backgroundcolor',wincolor);

% 2.5 − Build elapsed static text textbox

est text = 'Total elapsed time: ';

userdata.text(3) = uicontrol(h,'style','text','string',...

est text,'pos',[10 3 winwidth/2 20],'FontSize',7,...

'backgroundcolor',wincolor,'HorizontalAlignment',...

'right');

% 2.6 − Build elapsed time textbox

userdata.elapse = uicontrol(h,'style','text','string','',...

88



'pos',[winwidth/2+10 3.5 winwidth−25 20],...

'FontSize',7,'backgroundcolor',wincolor,...

'HorizontalAlignment','left');

% 2.7 − Build percent progress textbox

userdata.percent = uicontrol(h,'style','text','hor',...

'right','pos',[winwidth−35 winheight−52 28 20],...

'string','','backgroundcolor',wincolor);

% 2.8 − Build progress bar axis

userdata.axes = axes('parent',h,'units','pixels',...

'xlim',[0 1],'pos',[10 winheight−45 winwidth−50 15],...

'box','on','color',[1 1 1],'xtick',[],'ytick',[]);

% 3 − INITILIZE THE PROGESS BAR

userdata.bar = ...

patch([0 0 0 0 0],[0 1 1 0 0],'r'); % Bar to zero area

userdata.time = clock; % Record the current time

userdata.inc = clock; % Set incremental clock

set(h,'userdata',userdata) % Store data in the figure

updatewaitbar(h,X,message); % Updates waitbar if X˜=0

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% SUBFUNCTION: updatewaitbar

function updatewaitbar(h,progress,message)

% UPDATEWAITBAR changes the status of the waitbar progress

% 1 − GATHER WAITBAR INFORMATION

drawnow; % Needed for window to appear

h = h(1); % Only allow newest bar to update

userdata = get(h,'userdata'); % Get userdata from bar figure

% Check object tag to see if it is a timebar

if ˜strcmp(get(h,'tag'), 'waitbar')

error('Handle is not for a waitbar window')

end

% Update the message

if ˜isempty(message);

hh = guihandles(h);

set(hh.message,'String',message);

end
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% 2 − UPDATE THE GUI (only update if more than 1 sec has passed)

if etime(clock,userdata.inc) > 1 | | progress == 1

% 2.1 − Compute the elapsed time and incremental time

% the total elapsed time

elap = etime(clock,userdata.time);

% store current

userdata.inc = clock; set(h,'Userdata',userdata);

% 2.2 − Calculate the estimated time remaining

sec remain = elap*(1/progress−1);
e mes = datestr(elap/86400,'HH:MM:SS');

r mes = datestr(sec remain/86400,'HH:MM:SS');

% 2.3 − Produce error if progress is > 1

if progress > 1; r mes = 'Error, progress > 1'; end

% 2.4 − Update information

% Update bar

set(userdata.bar,'xdata',[0 0 progress progress 0])

% Update remaining time string

set(userdata.remain,'string',r mes);

% Update elapsed time string

set(userdata.elapse,'string',e mes);

% Update progress %

set(userdata.percent,'string',...

strcat(num2str(floor(100*progress)),'%'));

set(h,'Name',[num2str(floor(100*progress)),...

'% Complete']); % Update figure name

end
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APPENDIX B

AUXILIARY PROGRAMS

The following files are not the core of the program but several auxiliary

scripts to aid in plotting 2D and 3D graphs, a Graphical User Interface and

several other tools.

%*****************************************************

%* Visualization *

%* Visual aid for diffusion progress in networks *

%* Lattice networks and Random networks *

%* By Francisco Dominguez *

%*****************************************************

%This program does the diffusion process in 2 different sce−
%narios. The first scenario is for Lattice Networks where the

%threshold is 4 throughout the population. Relations are with

%first neighbors only.

%

%The second does the same for an arbitrary adjacency matrix.

%In both cases it captures snapshots of the diffusion and then

%produces a video of the contagion.

%

%% Lattice

L = 1000;

p = 0.95;

m = 3;

dNA = 1;

A = int8(rand(L)<p);

B = (zeros(L,L));

i = 1;

index = 0;
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while dNA

Aright = circshift(A, [0, 1]);

Aleft = circshift(A, [0, −1]);
Adown = circshift(A, [1, 0]);

Aup = circshift(A, [−1, 0]);

Amask = int8((Aright + Aleft + Adown + Aup) >= m);

NAi=sum(sum(A));

imagesc((1−A)), title({ 'Frame Number: ' num2str(i) }),...
colormap(gray), axis square;

set(gca, 'FontSize',12)

pause(0.04)

B=B+double(A);

A=A.*Amask;

NAf=sum(sum(A));

dNA=NAi−NAf;
Speed(i)=dNA;

if (i >= index)

filename = strcat('Animation2D ', num2str(index), '.jpg');

print (filename , '−djpeg', '−r250')
index = index + 30;

end

i=i+1;

end

%% Adjacency Matrix

clear all

clc

while (i <= 70)

L = 100;

Pob = Lˆ2;

Pn = 0.90;

Pc = 0.00058;

Threshold = 3;

dNA = 1;

i = 1;

Connect2zero=zeros(Pob,1);

A = double(rand(L)<Pn);

Nvect = reshape(A,Pob,1);
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Adj Mat=spones(sprand(Pob,Pob,Pc));

Par Connect=sum(Adj Mat,2);

index = 0;

while dNA

Connect2zero = Par Connect − Adj Mat * Nvect;

Amask = (Connect2zero'<Threshold);

NAi = sum(Nvect);

Nvect = Nvect.*Amask';

NAf = sum(Nvect);

A=reshape(Nvect,[L L]);

imagesc((1−A)), title({ 'Step Number: ' num2str(i) }),...
colormap(gray),axis square

set(gca, 'FontSize',15)

pause(0.1)

dNA=NAi−NAf;
Speed(i)=dNA;

if (i >= index)

filename = strcat('Animation2D ',...

num2str(index), '.jpg');

print (filename , '−djpeg', '−r250')
index = index + 2;

end

i=i+1;

end

end
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%*****************************************************

%* Graph3d *

%* Graphing script for single 3D graphs of Pconnect, *

%* Pn and Threshold versus Proportion of Adoption *

%* By Francisco Dominguez *

%*****************************************************

%This Script is to facilitate the plotting of 3d graphs using

%the results of the simulation. One selects all but one value

%of Pconnect and Pn to be constant and plots the Threshold and

%Proportion of Adoption with this variable Pconnect or Pn. In

%the case of two societies one must select the value amongst 4

%Pconnects and two Pns.

%This program uses Find Perm Data to obtain all the permutations

%of the desired values to plot and to arrange them in a format

%that Matlab will use.

%In this program the Pc represents a different Pconnect value

%for a different submatrix while Pn represents a Pn value for a

%different subvector. It is worthwhile to notice that Matlab

%numbers cells in a matrix ordered by column; in a 3x3 matrix the

%numbering will be #1 for the first cell, then below that cell

%#2 and to the right of #1 will be #4.

%

%% Data Loading

% clear all

% load('C:\Users\...\Percolation\Results\Run 1.mat')

%

%% 1 Society

Pn = 0.95;

conditions = {'Pn' [1 Pn]};

Thresh Perm = Thresh Begin:Thresh Intv:Thresh End;

[PconCols,PnCols,ThreshCols] = ...

Find Perm Data(conditions,Pconnect Perm,...

Pn Perm,Thresh Perm);

Result = Average(ThreshCols,PnCols,PconCols);

ResResult = reshape(Result,[size(Result,1) size(Result,3)]);

94



X = Thresh Begin:Thresh Intv:Thresh End;

Y = Pconnect Mat(1,1,1):Pconnect Mat(1,1,2):Pconnect Mat(1,1,3);

[XX,YY] = meshgrid(Y,X);

%(cool, winter, summer, spring, map, autumn(5),etc)

colormap cool(7);

surf(XX,YY,ResResult);

set(gca, 'FontSize',12)

xlim([Pconnect Mat(1,1,1) Pconnect Mat(1,1,3)]);

ylim([Thresh Begin Thresh End]);

zlim([0 1]);

% view([−127.5 30]);

xlabel('P c','fontweight','bold','FontSize',16);

ylabel('\theta','fontweight','bold','FontSize',22);
set(get(gca,'ZLabel'),'Rotation',0);

zlabel('\Omega ','fontweight','bold','FontSize',18);

title({['P n = (' num2str(Pn) '), P c = ( : ), W = ('...

num2str(Weight Pop(1,1)) ') ']},'FontSize',18);
print −djpeg 1−socPn0.95.jpg −r250;
saveas(gcf,'1−socPn0.75.fig');

%

%% 2 Societies

% Define Parameters

Pc2 = 0.001;

Pc3 = 0.001;

Pc4 = 0.010;

Pn1 = 0.80;

Pn2 = 0.90;

% Formatting

conditions = { 'Pconnect' [2 Pc2];

'Pconnect' [3 Pc3];

'Pconnect' [4 Pc4];

'Pn' [1 Pn1];

'Pn' [2 Pn2]};

Thresh Perm = Thresh Begin:Thresh Intv:Thresh End;

[PconCols,PnCols,ThreshCols] = ...
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Find Perm Data(conditions,Pconnect Perm,...

Pn Perm,Thresh Perm);

Result = Average(ThreshCols,PnCols,PconCols);

ResResult = reshape(Result,[size(Result,1) size(Result,3)]);

% Plotting

X = Thresh Begin:Thresh Intv:Thresh End;

Y = Pconnect Mat(1,1,1):Pconnect Mat(1,1,2):Pconnect Mat(1,1,3);

[XX,YY] = meshgrid(Y,X);

%(cool, winter, summer, spring, map, autumn(5),etc)

colormap cool(3);

surf(XX,YY,ResResult);

xlim([Pconnect Mat(1,1,1) Pconnect Mat(1,1,3)]);

ylim([Thresh Begin Thresh End]);

zlim([0 1]);

view([−127.5 30]);

xlabel('P c','fontweight','bold','FontSize',16);

ylabel('\theta','fontweight','bold','FontSize',22);
set(get(gca,'ZLabel'),'Rotation',0);

zlabel('\Omega ','fontweight','bold','FontSize',18);

title({['P n = (' num2str(Pn1) ', ' num2str(Pn2) '), W = ('...

num2str(Weight Pop(1,1)) ',' num2str(Weight Pop(1,2)) ','...

num2str(Weight Pop(2,1)) ',' num2str(Weight Pop(2,2)) ')'],...

['P c = ( :, ' num2str(Pc2) ', ' num2str(Pc3) ', '...

num2str(Pc4) ')']},'FontSize',16);
print −djpeg W1Pn(.80,.90).jpg −r250
saveas(gcf,'W1Pn(.80,.90).fig');

%

%% 3 Societies

%Define Parameters

Pc2 = 0.005;

Pc3 = 0.001;

Pc4 = 0.005;

Pc5 = 0.005;

Pc6 = 0.001;

Pc7 = 0.001;

Pc8 = 0.001;

Pc9 = 0.005;
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Pn1 = 0.90;

Pn2 = 0.85;

Pn3 = 0.90;

% Formatting

conditions = { 'Pconnect' [2 Pc2];

'Pconnect' [3 Pc3];

'Pconnect' [4 Pc4];

'Pconnect' [5 Pc5];

'Pconnect' [6 Pc6];

'Pconnect' [7 Pc7];

'Pconnect' [8 Pc8];

'Pconnect' [9 Pc9];

'Pn' [1 Pn1];

'Pn' [2 Pn2];

'Pn' [3 Pn3]};

Thresh Perm = Thresh Begin:Thresh Intv:Thresh End;

[PconCols,PnCols,ThreshCols] = ...

Find Perm Data(conditions,Pconnect Perm,...

Pn Perm,Thresh Perm);

Result = Average(ThreshCols,PnCols,PconCols);

ResResult = reshape(Result,[size(Average,1) size(Average,3)]);

% Plotting

X = Thresh Begin:Thresh Intv:Thresh End;

Y = 0.000:0.001:0.09;

[XX,YY] = meshgrid(Y,X);

%(winter, summer, spring, parula(5), map, autumn(5),etc)

colormap cool;

surf(XX,YY,ResResult);

view([−127.5 30]);

xlabel('P c','fontweight','bold','FontSize',16);

ylabel('\theta','fontweight','bold','FontSize',22);
set(get(gca,'ZLabel'),'Rotation',0);

zlabel('\Omega','fontweight','bold','FontSize',18);
title({['P n = (' num2str(Pn1) ', ' num2str(Pn2)...

',' num2str(Pn3) ')'], ['P c = ( :, ' num2str(Pc2)...

', ' num2str(Pc3) '; ' num2str(Pc4) ', ' num2str(Pc5)...
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', ' num2str(Pc6) '; ' num2str(Pc7) ', ' num2str(Pc8)...

', ' num2str(Pc9) ')']},'FontSize',18);
print −djpeg run2 3Pn(.90,.85,.90).jpg −r250 ;

figure (2);

contour(XX,YY,ResResult);
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%*****************************************************

%* Movievolution *

%* Graphing script for 3D graphs videos of Pconnect, *

%* Pn and Threshold versus Proportion of Adoption *

%* By Francisco Dominguez *

%*****************************************************

%Similar to Graph3d, this script uses Find Perm Data to generate

%multiple graphs of the simulation data. This program then cre−
%ates a video in .avi format to show the evolution of the beha−
%viour of the model when one parameter is varied. Therefore in

%this case two parameters remain variable.

%Each frame in the video is a graph plotted in a similar way to

%Graph3d. This script is particularly useful for analysis of the

%behaviour of the model.

%As in Graph3d Pc represents a different Pconnect value for a

%different submatrix while Pn represents a Pn value for a dif−
%ferent subvector. It is worthwhile to notice that Matlab num−
%bers cells in a matrix ordered by column; in a 3x3 matrix the

%numbering will be #1 for the first cell, then below that cell

%#2 and to the right of #1 will be #4.

%

%% 1−Society

numframes = 1+(Pn Mat(1,1,3)−Pn Mat(1,1,1))/Pn Mat(1,1,2);

clear i;

fig1 = figure;

set(fig1,'render','painters')

for i = 1:numframes;

Pn = Pn Mat(1,1,1) + (i−1)*Pn Mat(1,1,2);

conditions = {'Pn' [1 Pn]};
Thresh Perm = Thresh Begin:Thresh Intv:Thresh End;

[PconCols,PnCols,ThreshCols] = Find Perm Data(conditions,...

Pconnect Perm,Pn Perm,Thresh Perm);

Result = Average(ThreshCols,PnCols,PconCols);

ResResult = reshape(...

Result,[size(Average,1) size(Average,3)]);

X = Thresh Begin:Thresh Intv:Thresh End;

Y = Pconnect Mat(1,1,1):Pconnect Mat(1,1,2):...
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Pconnect Mat(1,1,3);

[XX,YY] = meshgrid(Y,X);

%(cool, winter, summer, spring, map, autumn(5),etc)

colormap cool(7);

surf(XX,YY,ResResult);

% zlim([0 1]);

% ylim([0 10]);

view([−127.5 30]);

xlabel('P c','fontweight','bold','FontSize',16);

ylabel('\theta','fontweight','bold','FontSize',22);
set(get(gca,'ZLabel'),'Rotation',0);

zlabel('\Omega','fontweight','bold','FontSize',18);
title({['P n = (' num2str(Pn) '), P c = ( : ), W = ('...

num2str(Weight Pop(1,1)) ') ']},'FontSize',16);
pause(.03);

A(i) = getframe(fig1);

cla;

end

close(fig1);

movie2avi(A,'1 Society.avi','compression','Cinepak','fps',3)

%% 2 Societies

% Define Parameters

%'numframes' is the number of graphs (and therefore frames)

%to be made for the video.

numframes = 1+(Pn Mat(1,1,3)−Pn Mat(1,1,1))/Pn Mat(1,1,2);

clear i;

Pn2 = 0.80;

Pc2 = 0.001;

Pc3 = 0.001;

Pc4 = 0.01;

% Frame Generation

%In this example Pn1 is the parameter changing every frame while

%Pc1 is the variable being plotted along with Threshold and

%Proportion.

100



fig1 = figure;

set(fig1,'render','painters')

for i = 1:numframes;

Pn1 = Pn Mat(1,1,1) + (i−1)*Pn Mat(1,1,2);

conditions = { 'Pconnect' [2 Pc2];

'Pconnect' [3 Pc3];

'Pconnect' [4 Pc4];

'Pn' [1 Pn1];

'Pn' [2 Pn2]};

Thresh Perm = Thresh Begin:Thresh Intv:Thresh End;

[PconCols,PnCols,ThreshCols] = Find Perm Data(conditions,...

Pconnect Perm,Pn Perm,Thresh Perm);

Result = Average(ThreshCols,PnCols,PconCols);

ResResult = reshape(...

Result,[size(Average,1) size(Average,3)]);

X = Thresh Begin:Thresh Intv:Thresh End;

Y = 0.001:0.001:0.02;

[XX,YY] = meshgrid(Y,X);

colormap cool;

surf(XX,YY,ResResult);

view([−127.5 30]);

xlabel('Pconnect');

ylabel('Threshold');

zlabel('Proportion of Adoption');

title(['Adoption for Pn = (' num2str(Pn1) ', ' num2str...

(Pn2)'), Pconnect = ( : , ' num2str(Pc2) ', ' ...

num2str(Pc3) ', 'num2str(Pc4) '), Weight = (' ...

num2str(Weight Pop(1,1)) ', 'num2str(Weight Pop...

(1,2)) ', ' num2str(Weight Pop(2,1)) ', ' ...

num2str(Weight Pop(2,2)) ') ']);

pause(.05);

A(i) = getframe(fig1);

cla;

end

% Movie making

close(fig1);

movie2avi(A,'testsss.avi','compression','Cinepak','fps',3)
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%% 3−Societies

%Define Parameters (3−D)

%'numframes' is the number of graphs (and therefore frames)

%to be made for the video.

numframes = 1+(Pn Mat(1,1,3)−Pn Mat(1,1,1))/Pn Mat(1,1,2);

clear i;

Pc2 = 0.005;

Pc3 = 0.001;

Pc4 = 0.005;

Pc5 = 0.01;

Pc6 = 0.001;

Pc7 = 0.001;

Pc8 = 0.001;

Pc9 = 0.01;

Pn1 = 0.75;

Pn3 = 0.90;

% Frame Generation (3−D)

% In this example Pn1 is the parameter changing every frame while

% Pc1 is the variable being plotted along with Threshold and

% Proportion.

fig1 = figure;

set(fig1,'render','painters')

for i = 1:numframes;

Pn2 = Pn Mat(1,1,1) + (i−1)*Pn Mat(1,1,2);

conditions = { 'Pconnect' [2 Pc2];

'Pconnect' [3 Pc3];

'Pconnect' [4 Pc4];

'Pconnect' [5 Pc5];

'Pconnect' [6 Pc6];

'Pconnect' [7 Pc7];

'Pconnect' [8 Pc8];

'Pconnect' [9 Pc9];

'Pn' [1 Pn1];

'Pn' [2 Pn2];

'Pn' [3 Pn3]};
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Thresh Perm = Thresh Begin:Thresh Intv:Thresh End;

[PconCols,PnCols,ThreshCols] = Find Perm Data(conditions,...

Pconnect Perm,Pn Perm,Thresh Perm);

Result = Average(ThreshCols,PnCols,PconCols);

ResResult = reshape(...

Result,[size(Average,1) size(Average,3)]);

X = Thresh Begin:Thresh Intv:Thresh End;

Y = 0.001:0.0005:0.02;

[XX,YY] = meshgrid(Y,X);

colormap cool;

surf(XX,YY,ResResult);

view([−127.5 30]);

xlabel('Pconnect');

ylabel('Threshold');

zlabel('Proportion of Adoption');

title(['Pn = (' num2str(Pn1) ', ' num2str(Pn2)...

',' num2str(Pn3) '), Pc = ( :, ' num2str(Pc2)...

', ' num2str(Pc3) '; ' num2str(Pc4) ', ' num2str(Pc5)...

', ' num2str(Pc6) '; ' num2str(Pc7) ', ' num2str(Pc8)...

', ' num2str(Pc9) ')']);

pause(.03);

A(i) = getframe(fig1);

cla;

end

% Movie making (3−D)

close(fig1);

movie2avi(A,'run2Pn1 0.75Pn3 0.90.avi','compression','Cinepak','fps',3)
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%*****************************************************

%* Find Perm Data *

%* Data Ordering and formatting for plot generation. *

%* By Francisco Dominguez *

%*****************************************************

%In order to easily access any values of the entire data array

%this script was created. With the use of this code we can ac−
%cess data with ease even from an array of N dimensions in the

%case that we have N different parameters of M societies. This

%code is used in Graph3d and in Movievolution. It essentially

%obtains the required data from the data array and the output

%is synthetized into a simpler matrix. The code takes the va−
%lues input in 'conditions' as constant values and searches for

%that location in the data array. Whatever is not input in

%'conditions' the code considers variable and so that entire

%dimension in the data array is what becomes the output of the

%code.

%

function [PconCols,PnCols,ThreshCols] = Find Perm Data(...

conditions,Pconnect Perm,Pn Perm,Thresh Perm)

CheckPcon = [];CheckPn = [];CheckThresh = [];

%Checks for the variable parameter.

for i = 1 : size(conditions,1)

if strncmpi(conditions{i,1},'Pconnect',7)
CheckPcon = strcat(CheckPcon,[' abs(Pconnect Perm(' ...

num2str(conditions{i,2}(1)) ',:)−' ...

num2str(conditions{i,2}(2)) ')<1e−10 & ']);

elseif strncmpi(conditions{i,1},'Pn',7)
CheckPn = strcat(CheckPn,[' abs(Pn Perm(' ...

num2str(conditions{i,2}(1)) ',:)−' ...

num2str(conditions{i,2}(2)) ')<1e−10 & ']);

else

CheckThresh = strcat(CheckThresh,[' abs(Thresh Perm−' ...

num2str(conditions{i,2}(1)) ')<1e−10 & ']);

end

end
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%Outputs Variable parameter information according to

%fixed parameters input.

if isempty(CheckPcon)

PconCols = 1:size(Pconnect Perm,2);

else

PconCols = eval(CheckPcon(1:end−2));
end

if isempty(CheckPn)

PnCols = 1:size(Pn Perm,2);

else

PnCols = eval(CheckPn(1:end−2));
end

if isempty(CheckThresh)

ThreshCols = 1:size(Thresh Perm,2);

else

ThreshCols = eval(CheckThresh(1:end−2));
end
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%*********************************************************

%*Graph2D *

%*Template for generating 2D plot. *

%* By Francisco Dominguez *

%*********************************************************

%This is basically a template for plotting 2D plots of data

%from the simulation. It must be edited based on individual

%plot requirements.

%

%%One Society 2−D Plot

Pc = 0.012;

Pn = 0.7;

conditions = { 'Pconnect' [1 Pc];

'Pn' [1 Pn]};
Thresh Perm = Thresh Begin:Thresh Intv:Thresh End;

[PconCols,PnCols,ThreshCols] = Find Perm Data(conditions,...

Pconnect Perm,Pn Perm,Thresh Perm);

Result = Average(ThreshCols,PnCols,PconCols);

Error = MSE(ThreshCols,PnCols,PconCols);

figure (1);

h = errorbar(Thresh Begin:Thresh Intv:Thresh End,Result,Error);

% h = plot(Thresh Begin:Thresh Intv:Thresh End,Result);

set(h,'color',[0, 0.5078, 0]) %// data

set(h,'LineWidth',1.4,{'LineStyle'},{'−'}); %'−−'; ':'; '−.'
set(h,{'Marker'},{'o'}); %'none';'o';'x'

set(gca, 'FontSize',14)

grid on;

xlim([44 58]);

ylim([−0.1 1.1]);

xlabel('\theta','fontweight','bold','FontSize',18);
ylabel('\Omega ','fontweight','bold','FontSize',16);

set(get(gca,'YLabel'),'Rotation',0);

title({['P n = (' num2str(Pn) '), P c = (' num2str(Pc) '),...

W = (' num2str(Weight Pop(1,1)) ') ']},'FontSize',16);
print −djpeg Pn0.7Pc0.012error.jpg −r250;
saveas(gcf,'Pn0.7Pc0.012error.fig');

%% Multiple 2−D Plots
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Pn = 0.7;

z = 1;

Result = zeros(1+(Thresh End − Thresh Begin)/Thresh Intv,...

(Pconnect Mat(1,1,3)−Pconnect Mat(1,1,1))/...

Pconnect Mat(1,1,2));

for i= Pconnect Mat(1,1,1):Pconnect Mat(1,1,2):...

Pconnect Mat(1,1,3);

conditions = { 'Pconnect' [1 i];

'Pn' [1 Pn]};
Thresh Perm = Thresh Begin:Thresh Intv:Thresh End;

[PconCols,PnCols,ThreshCols] = Find Perm Data(conditions,...

Pconnect Perm,Pn Perm,Thresh Perm);

Result(:,z) = Average(ThreshCols,PnCols,PconCols);

Error(:,z) = MSE(ThreshCols,PnCols,PconCols);

z = z + 1;

end

k1 = 0.01;

k2 = 0.012;

k3 = 0.014;

x1 = 1 + (k1 − Pconnect Mat(1,1,1))/Pconnect Mat(1,1,2);

x2 = 1 + (k2 − Pconnect Mat(1,1,1))/Pconnect Mat(1,1,2);

x3 = 1 + (k3 − Pconnect Mat(1,1,1))/Pconnect Mat(1,1,2);

figure (1);

h = plot(Thresh Begin:Thresh Intv:Thresh End,Result(:,x1),...

Thresh Begin:Thresh Intv:Thresh End,Result(:,x2),...

Thresh Begin:Thresh Intv:Thresh End,Result(:,x3));

set(h,'LineWidth',1.4,{'LineStyle'},{'−'}); % '−−' ; ':' ; '−.'
set(h,{'Marker'},{'o'}); % 'none';'o';'x'

set(gca, 'FontSize',14)

axis tight;

grid on;

xlim([36 66]);

ylim([−0.1 1.1]);

legend('P c = 0.01','P c = 0.012','P c = 0.014');

xlabel('\theta','fontweight','bold','FontSize',18);
ylabel('\Omega ','fontweight','bold','FontSize',16);

set(get(gca,'YLabel'),'Rotation',0);

title({['P n = (' num2str(Pn) '), W = ('...

num2str(Weight Pop(1,1)) ') ']},'FontSize',16);
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print −djpeg Pn0.7triplePc.jpg −r250;
saveas(gcf,'Pn0.7triplePc.fig');

%% Critical Threshold

Pc = Pconnect Begin;

Pn = Pn Begin;

Weight Pop = 1;

n =2;

x = Critical(2, 1 : n :end);

y = Critical(1, 1 : n :end);

h = plot( x ,y,'MarkerSize', 4);

set(h,'LineWidth',1.4,{'LineStyle'},{'−'}); % '−−' ; ':' ; '−.'
set(h,{'Marker'},{'o'}); % 'none';'o';'x'

set(h,{'Color'},{'b'}); % 'r';'g';'b'

set(gca, 'FontSize',14)

pbaspect([1.8 1 1]);

axis tight;

grid on;

xlabel('m','fontweight','bold','FontSize',18);

ylabel('\theta c ','fontweight','bold','FontSize',16);

set(get(gca,'YLabel'),'Rotation',0);

title({['P n = (' num2str(Pn) '), P c = (' num2str(Pc) '),...

W = (' num2str(Weight Pop) ') ']},'FontSize',16);

%Obtain a Fit.

coeffs = polyfit(x, y, 1);

% Get fitted values

b = 1 + (Pop End − Pop Begin) / (Pop Intv*n);

fittedX = linspace(min(x), max(x), b);

fittedY = polyval(coeffs, fittedX);

R = corrcoef([y' fittedY'])

% Plot the fitted line

hold on;
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plot(fittedX, fittedY, 'r−', 'LineWidth', 2);

print −djpeg Critical.jpg −r250;
saveas(gcf,'Critical.fig');
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%*********************************************************

%* Reshape Variable *

%* Data Reshaping for 2d plots. *

%* By Francisco Dominguez *

%*********************************************************

%This script was made to quickly access data for 2D plotting.

%Later Find Perm Data was made to be more general but this

%script is included for completeness and for the fact that

%for 2D plots it is still more efficient.

%If the data array is too big, getting data in a form that

%Matlab understands for plotting 2D graphs can be cumbersome.

%This script was made to aid in that task.

%The code will take and entry data matrix (Average or MSE for

%example) then a number or vector determining the constant

%dimension or dimensions, and finally a number or vector

%determining the constant entry in those dimensions.

%

%As an example:

%

% AvgThresh = Reshape Variable(Average,2,1);

% MSEThresh = Reshape Variable(MSE,2,1);

% Graph Thresh(Thresh Begin,Thresh Intv,Thresh End,...

% AvgThresh,MSEThresh);

%

%In here, the code will take the second dimension of the Average

%and MSE arrays and of that dimension the first entry and it

%will report the result in a vector form. The code will not work

%properly if the desired output is of a higher dimension than 1,

%i.e. it only works well to output vectors, therefore one must

%be careful to determine the correct number of constants.

%

%Another example:

%

% AvgThresh = Reshape Variable(Average,[2 1],[1 3]);

% MSEThresh = Reshape Variable(MSE[2 1],[1 3]);

% Graph Thresh(Thresh Begin,Thresh Intv,Thresh End,...

% AvgThresh,MSEThresh);

%

function [z] = Reshape Variable(x,Const Dim,entry num)
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Dimen = size(x);

[Const Dim,IX] = unique(Const Dim);

NumConsts = length(Const Dim);

entry num = entry num(IX);

if NumConsts == 1

if Const Dim == 1

y = x(entry num,:,:);

rows = Dimen(2);

elseif Const Dim == 2

y = x(:,entry num,:);

rows = Dimen(1);

else

y = x(:,:,entry num);

rows = Dimen(1);

end

z = reshape(y,rows,[]);

else

[˜,IX] = sort(Const Dim,'descend');

for i = 1:NumConsts

if Const Dim(IX(i)) == 1

x = x(entry num(IX(i)),:,:);

elseif Const Dim(IX(i)) == 2

x = x(:,entry num(IX(i)),:);

else

x = x(:,:,entry num(IX(i)));

end

end

z=x(:);

end
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%*********************************************************

%* Critical Test *

%* Templates to perform critical Threshold tests. *

%* By Francisco Dominguez *

%*********************************************************

%This is only a template for a very specific kind of task. We

%want to find the first value of Threshold that gives us a

%Proportion of adoption greater than X%. This can be then

%plotted as a function of population size, Pconnect or Pn.

%Both of the following templates were used as a basis when this

%kind of graph was being studied.

%

%% Template 1

loop rows = find(Pconnect Perm(1,:)==.01007);

g = zeros(1,length(loop rows));

for i = 1:length(loop rows)

f = find(Average(:,loop rows(i))>2e−5,1,'last');
if ˜isempty(f)

g(i) = Thresh Begin + Thresh Intv*(f−1);
end

end

plot(Pconnect Perm(4,loop rows),g)

%% Template 2

g = zeros(1,size(Average,3));

for i = 1 :size(Average,3)

f = find(Average(:,i)>4e−3,1,'last');
if ˜isempty(f)

g(i) = f;

end

end

112



B.1 Graphical User Interface

%**********************************************************

%* GraphUserInt *

%* Graphical User Interface for dynamic plotting of data. *

%* By Francisco Dominguez *

%**********************************************************

%This is the Graphical User Interface for the dynamic plots of

%data. The GUI was designed as an upgraded tool of videomaking

%for the purpose of data analysis. In the GUI one can load the

%data of a simulation for 2 populations, then pick from Thres−
%hold, Pconnect and Pn the values that will vary (picking 1 will

%net us a 2D graph and picking 2 a 3D graph), set the specific

%value of everything that is constant and then plot the data.

%

%One must fill the values of everything that is to be constant.

%This means the appropriate Pn and Pconnect for both populations

%and for the interaction between them. To do this, when one

%clicks on the space provided to input the values, a slider with

%all the possibilities within that data set will appear; one can

%then choose the desired value. To obtain the graph one simply

%clicks on the "Generate Graph" button.

%

%Another important feature activated by checking the box

%'Activate Slider' gives us the possibility to change one of the

%fixed values and obtain a new graph with those values. The graph

%is actually updated with the simple move of the slider represen−
%ting the vales of a given parameter. The 'Activate Slider'

%checkbox must be checked before generating a graph.

%

%

%NOTE: eventdata reserved − to be defined in a future version...

%of MATLAB

function varargout = GraphUserInt(varargin)

% GraphUserInt(Pconnect Perm,Pn Perm,Thresh Begin:...

% Thresh End,Average,MSE,NumPop)

% GraphUserInt MATLAB code for GraphUserInt.fig

% GraphUserInt, by itself, creates a new GraphUserInt or raises
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% the existing singleton*.

%

% H = GraphUserInt returns the handle to a new GraphUserInt or

% the handle to the existing singleton*.

%

% GraphUserInt('CALLBACK',hObject,eventData,handles,...) calls

% the local function named CALLBACK in GraphUserInt.M with the

% given input arguments.

%

% GraphUserInt('Property','Value',...) creates a new GraphUserInt

% or raises the existing singleton*. Starting from the left,

% property value pairs are applied to the GUI before

% GraphUserInt OpeningFcn gets called. An unrecognized property

% name or invalid value makes property application stop. All

% inputs are passed to GraphUserInt OpeningFcn via varargin.

%

% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows

% only one instance to run (singleton)".

%

% See also: GUIDE, GUIDATA, GUIHANDLES

% Edit the above text to modify the response to help GraphUserInt

% Last Modified by GUIDE v2.5 16−May−2012 16:24:00

% Begin initialization code − DO NOT EDIT

gui Singleton = 1;

gui State = struct('gui Name', mfilename, ...

'gui Singleton', gui Singleton, ...

'gui OpeningFcn', @GraphUserInt OpeningFcn, ...

'gui OutputFcn', @GraphUserInt OutputFcn, ...

'gui LayoutFcn', [] , ...

'gui Callback', []);

if nargin && ischar(varargin{1})
gui State.gui Callback = str2func(varargin{1});

end

if nargout

[varargout{1:nargout}] = gui mainfcn(gui State, varargin{:});
else

gui mainfcn(gui State, varargin{:});
end

% End initialization code − DO NOT EDIT
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% −−− Executes just before GraphUserInt is made visible.

function GraphUserInt OpeningFcn(hObject, eventdata, handles,...

varargin %#ok<*INUSL>

% This function has no output args, see OutputFcn.

% hObject handle to figure

% handles structure with handles and user data (see GUIDATA)

% Choose default command line output for GraphUserInt

handles.output = hObject;

if isempty(varargin)

handles.PopNums = 2;

% handles.Pcon Perm = {0:.4:3;1:2:10;1:1;1.2:.13:5};
% handles.Pn Perm = {1:1;1.2:.13:5};
% handles.Thresh Perm = 17:2:25;

else

handles.Pcon Perm = varargin{1};
handles.Pn Perm = varargin{2};
handles.Thresh Perm = varargin{3};
handles.Average = varargin{4};
handles.MSE = varargin{5};
handles.PopNums = size(handles.Pcon Perm,1);

end

handles.Cond{1} = [0 0];

handles.Cond{2} = 0;

handles.Cond{3} = 0;

handles.Cond{4} = [0 0];

handles.Thresh = 0;

handles.activebutton = 0;

% Update handles structure

guidata(hObject, handles);

setappdata(handles.figure1,'fhUpdateGraph',...

@Generate Graph Callback)

setappdata(0,'hMainGui',handles.figure1);

setappdata(handles.figure1,'handles',handles);

% UIWAIT makes GraphUserInt wait for user response (see UIRESUME)

% uiwait(handles.figure1);

% −−− Outputs from this function are returned to the

% command line.

function varargout = GraphUserInt OutputFcn(hObject,...
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eventdata, handles)

% varargout cell array for returning output args

% (see VARARGOUT);

% hObject handle to figure

% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure

varargout{1} = handles.output;

% −−− Executes on selection change in popupmenu1.

function popupmenu1 Callback(hObject, eventdata, handles)...

%#ok<*DEFNU,*INUSD>

% hObject handle to popupmenu1 (see GCBO)

% handles structure with handles and user data (see GUIDATA)

% Hints: contents = cellstr(get(hObject,'String'))

% returns popupmenu1 contents as cell array

% contents{get(hObject,'Value')} returns selected item

% from popupmenu1

% get(hObject,

% −−− Executes during object creation, after setting

% all properties.

function popupmenu1 CreateFcn(hObject, eventdata, handles)

% hObject handle to popupmenu1 (see GCBO)

% handles empty − handles not created until after all

% CreateFcns called

% Hint: popupmenu controls usually have a white background

% on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,'BackgroundColor'), ...

get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

% −−− Executes on button press in Thresh Box.

function Thresh Box Callback(hObject, eventdata, handles)

% hObject handle to Thresh Box (see GCBO)

% handles structure with handles and user data (see GUIDATA)

CheckBox Change(hObject,handles)

116



% Hint: get(hObject,'Value') returns toggle state of Thresh Box

% −−− Executes on button press in Pcon Box.

function Pcon Box Callback(hObject, eventdata, handles)

% hObject handle to Pcon Box (see GCBO)

% handles structure with handles and user data (see GUIDATA)

CheckBox Change(hObject,handles)

% Hint: get(hObject,'Value') returns toggle state of Pcon Box

% −−− Executes on button press in Pseed Box.

function Pseed Box Callback(hObject, eventdata, handles)

% hObject handle to Pseed Box (see GCBO)

% handles structure with handles and user data (see GUIDATA)

CheckBox Change(hObject,handles)

% Hint: get(hObject,'Value') returns toggle state of Pseed Box

function CheckBox Change(hObject,handles)

Pcon Check = get(handles.Pcon Box,'value');

Pseed Check = get(handles.Pseed Box,'value');

Thresh Check = get(handles.Thresh Box,'value');

NumChecks = Pcon Check + Thresh Check + Pseed Check;

if NumChecks>2

set(hObject,'Value',0)

warndlg('You can only have a max of 2 boxes checked...

for graphing.')

end

% −−− Executes on selection change in Condition Pop.

function Condition Pop Callback(hObject, eventdata, handles)

% hObject handle to Condition Pop (see GCBO)

% handles structure with handles and user data (see GUIDATA)

% Hints: contents = cellstr(get(hObject,'String'))

% returns Condition Pop

% contents as cell array

% contents{get(hObject,'Value')} returns selected item

% from Condition Pop

PopNum = get(hObject,'value');

if handles.PopNums<2
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set(hObject,'value',1);

warndlg('There is only one population for this data set!')

else

if sqrt(PopNum)==round(sqrt(PopNum))

set(handles.Pseed Edit,'string',num2str(...

handles.Cond{PopNum}(2)),'enable','inactive')
else

set(handles.Pseed Edit,'string',num2str(0),...

'enable','off')

end

set(handles.Pcon Edit,'string',num2str(handles....

Cond{PopNum}(1)))
end

% −−− Executes during object creation, after setting all

% properties.

function Condition Pop CreateFcn(hObject, eventdata, handles)

% hObject handle to Condition Pop (see GCBO)

% handles empty − handles not created until after all

% CreateFcns called

% Hint: popupmenu controls usually have a white background

% on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,'BackgroundColor'), ...

get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

function Pcon Edit Callback(hObject, eventdata, handles)

% hObject handle to Pcon Edit (see GCBO)

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of Pcon Edit as

% text

% str2double(get(hObject,'String')) returns contents of Pcon Edit

% as a double

PopNum = get(handles.Condition Pop,'value');

handles.Cond{PopNum}(1) = str2double(get(hObject,'string'));

guidata(hObject, handles);
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% −−− Executes during object creation, after setting all

% properties.

function Pcon Edit CreateFcn(hObject, eventdata, handles)

% hObject handle to Pcon Edit (see GCBO)

% handles empty − handles not created until after all

% CreateFcns called

% Hint: edit controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,'BackgroundColor'), ...

get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

function Pseed Edit Callback(hObject, eventdata, handles)

% hObject handle to Pseed Edit (see GCBO)

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of Pseed Edit

% as text

% str2double(get(hObject,'String')) returns contents of

% Pseed Edit

% as a double

PopNum = get(handles.Condition Pop,'value');

handles.Cond{PopNum}(2) = str2double(get(hObject,'string'));

guidata(hObject, handles);

% −−− Executes during object creation, after setting all

% properties.

function Pseed Edit CreateFcn(hObject, eventdata, handles)

% hObject handle to Pseed Edit (see GCBO)

% handles empty − handles not created until after all

% CreateFcns called

% Hint: edit controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,'BackgroundColor'), ...

get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');
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end

function Thresh Edit Start Callback(hObject, eventdata, handles)

% hObject handle to Thresh Edit Start (see GCBO)

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of

% Thresh Edit Start as

% text str2double(get(hObject,'String')) returns contents of

% Thresh Edit Start as a double

handles.Thresh(1) = str2double(get(hObject,'String'));

guidata(hObject, handles);

% −−− Executes during object creation, after setting all

% properties.

function Thresh Edit Start CreateFcn(hObject, eventdata, handles)

% hObject handle to Thresh Edit Start (see GCBO)

% handles empty − handles not created until after all

% CreateFcns called

% Hint: edit controls usually have a white background on Windows.

% See ISPC and COMPUTER.

function Thresh Edit End Callback(hObject, eventdata, handles)

% hObject handle to Thresh Edit End (see GCBO)

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of

% Thresh Edit End as text

% str2double(get(hObject,'String')) returns contents of

% Thresh Edit End as a double

handles.Thresh(1) = str2double(get(hObject,'String'));

guidata(hObject, handles);

% −−− Executes during object creation, after setting all

% properties.

function Thresh Edit End CreateFcn(hObject, eventdata, handles)

% hObject handle to Thresh Edit End (see GCBO)

% handles empty − handles not created until after all

% CreateFcns called

% Hint: edit controls usually have a white background on Windows.
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% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,'BackgroundColor'), ...

get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

% −−− Executes on button press in Generate Graph.

function Generate Graph Callback(hObject, eventdata, handles)

% hObject handle to Generate Graph (see GCBO)

% handles structure with handles and user data (see GUIDATA)

hMainGui = getappdata(0,'hMainGui');

handles = getappdata(hMainGui,'handles');

Pcon Check = get(handles.Pcon Box,'value');

Pseed Check = get(handles.Pseed Box,'value');

Thresh Check = get(handles.Thresh Box,'value');

NumChecks = Pcon Check + Pseed Check + Thresh Check;

NumPop = length(handles.Cond);

PconCond = 1:NumPop;

PnCond = (1:sqrt(NumPop)).ˆ2;

if NumChecks

conditions = cell(0);

for i = 1:NumPop

if sqrt(i)==round(sqrt(i))

if handles.Cond{i}(2)˜=0
conditions(end+1,:) = {'Pn' [sqrt(i)...

handles.Cond{i}(2)]}; %#ok<*AGROW>

PnCond(PnCond==i) = [];

end

end

if handles.Cond{i}(1)˜=0
conditions(end+1,:) = {'Pconnect'...
[i handles.Cond{i}(1)]};

PconCond(PconCond==i) = [];

end

end

if handles.Thresh(1)˜=0

conditions(end+1,:) = {'Thresh' handles.Thresh};
end

% conditions(end+1,:) = {'Pn' [2 .8]};
% conditions(end+1,:) = {'Pn' [3 .8]};
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[PconCols,PnCols,ThreshCols] = Find Perm Data...

(conditions,handles.Pcon Perm,handles.Pn Perm,...

handles.Thresh Perm);

Average = handles.Average(ThreshCols,PnCols,PconCols);

MSE = handles.MSE(ThreshCols,PnCols,PconCols);

if NumChecks>1

if Thresh Check && Pcon Check

ResResult = reshape(Average,[size(Average,1) ...

size(Average,3)]);

X = handles.Thresh Perm;

Y = unique(handles.Pcon Perm(PconCond,PconCols));

[XX,YY] = meshgrid(Y,X);

colormap cool;

surf(handles.axes1,XX,YY,ResResult);

view(handles.axes1,[−127.5 30]);

xlabel(handles.axes1,'Pconnect');

ylabel(handles.axes1,'Threshold');

zlabel(handles.axes1,'Proportion of Adoption');

% title(['Adoption for Pn = (' num2str(handles.Cond{) ',...

% ' num2str(Pn2)'), Pconnect = ( : , ' num2str(Pc2) ',...

% ' num2str(Pc3) ', 'num2str(Pc4) '), Weight = (5,0,5,1)']);

elseif Thresh Check && Pseed Check

ResResult = reshape(Average,[size(Average,1)...

size(Average,2)]);

X = handles.Thresh Perm;

Y = unique(handles.Pn Perm(PnCond,PnCols));

[XX,YY] = meshgrid(Y,X);

colormap cool;

surf(handles.axes1,XX,YY,ResResult);

view(handles.axes1,[−127.5 30]);

xlabel(handles.axes1,'Pn');

ylabel(handles.axes1,'Threshold');

zlabel(handles.axes1,'Proportion of Adoption');

elseif Pcon Check && Pseed Check

ResResult = reshape(Average,[size(Average,2)...

size(Average,3)]);

X = unique(handles.Pn Perm(PnCond,PnCols));

Y = unique(handles.Pcon Perm(PconCond,PconCols));

[XX,YY] = meshgrid(Y,X);
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colormap cool;

surf(handles.axes1,XX,YY,ResResult);

view(handles.axes1,[−127.5 30]);

xlabel(handles.axes1,'Pconnect');

ylabel(handles.axes1,'Pn');

zlabel(handles.axes1,'Proportion of Adoption');

end

else

if Thresh Check

errorbar(handles.axes1,...

handles.Thresh Perm(ThreshCols),Average,MSE);

title(handles.axes1,'Proportion vs. Thresh')

xlabel(handles.axes1,'Threshold')

ylabel(handles.axes1,...

'Proportion of Adoption P=1−(NAf/IN)');
elseif Pcon Check

errorbar(handles.axes1,...

handles.Pcon Perm(PconCols),Average,MSE);

title(handles.axes1,'Proportion vs. Pconnect')

xlabel(handles.axes1,'Pconnect')

ylabel(handles.axes1,...

'Proportion of Adoption P=1−(NAf/IN)');
else

errorbar(handles.axes1,...

handles.Pn Perm(1,PnCols),Average,MSE);

title(handles.axes1,'Proportion vs. Pseed')

xlabel(handles.axes1,'Pseed')

ylabel(handles.axes1,...

'Proportion of Adoption P=1−(NAf/IN)');
end

end

axis(handles.axes1,'tight')

elseif ˜NumChecks | | NumChecks>2

warndlg('Must have at least one graph type checked!')

end

% −−− If Enable == 'on', executes on mouse press in

% −−− 5 pixel border.

% −−− Otherwise, executes on mouse press in 5 pixelr

% −−− border or over Pcon Edit.

function Pcon Edit ButtonDownFcn(hObject, eventdata, handles)

% hObject handle to Pcon Edit (see GCBO)
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% handles structure with handles and user data (see GUIDATA)

PopNum = get(handles.Condition Pop,'value');

PconVal = str2double(get(hObject,'string'));

PconStr = get(handles.Condition Pop,'string');

pUniq = unique(handles.Pcon Perm(PopNum,:));

pmin = min(pUniq);

pmax = max(pUniq);

if (pmax−pmin) %#ok<*BDLOG>

pint = abs(pUniq(2)−pUniq(1))/(pmax−pmin);
pintL = .25;

if pintL < pint

pintL = pint;

end

else

pint = 1;

pintL = pint;

end

if PconVal<pmin | | PconVal>pmax

PconVal = pmin;

end

newPconVal = ex guide timergui(pmin,pmax,PconVal,[pint pintL],...

[PconStr{PopNum} ' Pconnect'],handles.activebutton);

if ˜isempty(newPconVal)

handles.Cond{PopNum}(1) = newPconVal;

set(hObject,'string',num2str(newPconVal))

hMainGui = getappdata(0,'hMainGui');

setappdata(hMainGui,'handles',handles);

guidata(hObject, handles);

end

% −−− If Enable == 'on', executes on mouse press in

% −−− 5 pixel border.

% −−− Otherwise, executes on mouse press in 5 pixelr

% −−− border or over Pseed Edit.

function Pseed Edit ButtonDownFcn(hObject, eventdata, handles)

% hObject handle to Pseed Edit (see GCBO)

% handles structure with handles and user data (see GUIDATA)

if strncmp(get(hObject,'enable'),'inactive',5)

PopNum = get(handles.Condition Pop,'value');
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PnVal = str2double(get(hObject,'string'));

PnStr = get(handles.Condition Pop,'string');

pUniq = unique(handles.Pn Perm(sqrt(PopNum),:));

pmin = min(pUniq);

pmax = max(pUniq);

if (pmax−pmin)
pint = abs(pUniq(2)−pUniq(1))/(pmax−pmin);
pintL = .25;

if pintL < pint

pintL = pint;

end

else

pint = 1;

pintL = pint;

end

if PnVal<pmin | | PnVal>pmax

PnVal = pmin;

end

newPnVal = ex guide timergui(pmin,pmax,PnVal,[pint pintL],...

[PnStr{PopNum} ' Pn'],handles.activebutton);

if ˜isempty(newPnVal)

handles.Cond{PopNum}(2) = newPnVal;

set(hObject,'string',num2str(newPnVal))

hMainGui = getappdata(0,'hMainGui');

setappdata(hMainGui,'handles',handles);

guidata(hObject, handles);

end

end

% −−− If Enable == 'on', executes on mouse press in

% −−− 5 pixel border.

% −−− Otherwise, executes on mouse press in 5 pixelr

% −−− border or over Thresh Edit Start.

function Thresh Edit Start ButtonDownFcn(hObject,...

eventdata, handles)

% hObject handle to Thresh Edit Start (see GCBO)

% handles structure with handles and user data (see GUIDATA)

if strncmp(get(hObject,'enable'),'inactive',5)

ThVal = str2double(get(hObject,'string'));
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ThStr = 'Threshold Value';

pUniq = unique(handles.Thresh Perm);

pmin = min(pUniq);

pmax = max(pUniq);

if (pmax−pmin)
pint = abs(pUniq(2)−pUniq(1))/(pmax−pmin);
pintL = .25;

if pintL < pint

pintL = pint;

end

else

pint = 1;

pintL = pint;

end

if ThVal<pmin | | ThVal>pmax

ThVal = pmin;

end

newThVal = ex guide timergui(pmin,pmax,ThVal,[pint pintL],...

ThStr,handles.activebutton);

if ˜isempty(newThVal)

handles.Thresh(1) = newThVal;

set(hObject,'string',num2str(newThVal))

hMainGui = getappdata(0,'hMainGui');

setappdata(hMainGui,'handles',handles);

guidata(hObject, handles);

end

end

% −−− Executes on button press in Active Slider.

function Active Slider Callback(hObject, eventdata, handles)

% hObject handle to Active Slider (see GCBO)

% handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject,'Value') returns toggle state of...

% Active Slider

handles.activebutton = get(hObject,'Value');

guidata(hObject, handles);
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%*********************************************************

%* ex guide timergui *

%* Matlab generated code for the GUI. *

%* By Francisco Dominguez *

%*********************************************************

%This is part of the GUI. It is essentially a Matlab generated

%code for the designed GUI to obtain the graphs.

%

% NOTE: eventdata reserved − to be defined in a future

% version of MATLAB

function varargout = ex guide timergui(varargin)

% EX GUIDE TIMERGUI − Execute graphic updates at

% regular intervals

% MATLAB code for ex guide timergui.fig

% EX GUIDE TIMERGUI, by itself, creates a new

% EX GUIDE TIMERGUI or raises the existing singleton*.

%

% H = EX GUIDE TIMERGUI returns the handle to a new

% EX GUIDE TIMERGUI or the handle to the existing

% singleton*.

%

% EX GUIDE TIMERGUI('CALLBACK',hObject,eventData,...

% handles,...)

% calls the local function named CALLBACK in

% EX GUIDE TIMERGUI.M with the given input arguments.

%

% EX GUIDE TIMERGUI('Property','Value',...) creates a new

% EX GUIDE TIMERGUI or raises the existing singleton*.

% Starting from the left, property value pairs are applied

% to the GUI before ex guide timergui OpeningFcn gets

% called. An unrecognized property name or invalid value

% makes property application stop. All inputs are passed

% to ex guide timergui OpeningFcn via varargin.

%

% *See GUI Options on GUIDE's Tools menu. Choose "GUI

% allows only one instance to run (singleton)".

%

% See also: GUIDE, GUIDATA, GUIHANDLES, TIMER

% Last Modified by GUIDE v2.5 16−May−2012 13:24:20
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% Begin initialization code − DO NOT EDIT

gui Singleton = 1;

gui State = struct('gui Name', mfilename, ...

'gui Singleton', gui Singleton, ...

'gui OpeningFcn', @ex guide timergui OpeningFcn, ...

'gui OutputFcn', @ex guide timergui OutputFcn, ...

'gui LayoutFcn', [] , ...

'gui Callback', []);

if nargin && ischar(varargin{1})
gui State.gui Callback = str2func(varargin{1});

end

if nargout

[varargout{1:nargout}] = gui mainfcn(gui State, varargin{:});
else

gui mainfcn(gui State, varargin{:});
end

% End initialization code − DO NOT EDIT

% −−− Executes just before ex guide timergui is made visible.

function ex guide timergui OpeningFcn(hObject, eventdata,...

handles, varargin)

% This function has no output args, see OutputFcn.

% hObject handle to figure

% handles structure with handles and user data (see GUIDATA)

% varargin command line arguments to ex guide timergui

% (see VARARGIN)

% Choose default command line output for ex guide timergui

handles.output = [];

% START USER CODE

% Create a timer object to fire at 1/10 sec intervals

% Specify function handles for its start and run callbacks

% handles.timer = timer(...

% 'ExecutionMode', 'fixedRate', ... % Run timer repeatedly

% Initial period is 1 sec.

% 'Period', 1, ...

% Specify callback function

% 'TimerFcn', {@update display,hObject});
% Initialize slider and its readout text field
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if isempty(varargin)

handles.pmin = 0;

handles.pmax = 100;

pVal = 50;

handles.pStep = [.01 .1];

handles.Activ = 0;

else

handles.pmin = varargin{1};
handles.pmax = varargin{2};
pVal = varargin{3};
handles.pStep = varargin{4};
handles.GUItitle = varargin{5};
set(handles.guilabel,'String',handles.GUItitle)

handles.Activ = varargin{6};
end

set(handles.periodsldr,'Min',handles.pmin,'Max',handles.pmax,...

'Value',pVal,'SliderStep',handles.pStep)

% set(handles.periodsldr,'Value',get(handles.timer,'Period'))

set(handles.slidervalue,'String',...

num2str(get(handles.periodsldr,'Value')))

set(handles.text4,'String',num2str(handles.pmin))

set(handles.text5,'String',num2str(handles.pmax))

% END USER CODE

guidata(hObject,handles);

% Update handles structure

uiwait(handles.figure1);

% −−− Outputs from this function are returned to the command

% −−− line.

function varargout = ex guide timergui OutputFcn(hObject,...

eventdata,handles)

% varargout cell array for returning output args

% (see VARARGOUT);

% hObject handle to figure

% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure

varargout{1} = handles.output;

delete(hObject);
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% −−− Executes on slider movement.

function periodsldr Callback(hObject, eventdata, handles)

% hObject handle to periodsldr (see GCBO)

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'Value') returns position of slider

% get(hObject,'Min') and get(hObject,'Max') to determine

% range of slider

% START USER CODE

% Read the slider value

period = get(handles.periodsldr,'Value');

% Timers need the precision of periods to be greater than about

% 1 millisecond, so truncate the value returned by the slider

% period = period − mod(period,.01);

pmax = handles.pmax;

pmin = handles.pmin;

pStep = handles.pStep;

if abs(round(period/(pmax−pmin)/pStep(1))−(period/(pmax−pmin)////
pStep(1)))>eps

period = round(period/(pmax−pmin)/...
pStep(1))*(pmax−pmin)*pStep(1);

end

if period>pmax

period = pmax;

elseif period<pmin

period = pmin;

end

% Set slider readout to show its value

set(handles.slidervalue,'String',num2str(period))

set(handles.periodsldr,'Value',period)

if handles.Activ

hMainGui = getappdata(0,'hMainGui');

% setappdata(hMainGui,'Slider',period)

fhUpdateGraph = getappdata(hMainGui,'fhUpdateGraph');

handles2 = getappdata(hMainGui,'handles');

if strncmp(handles.GUItitle(end),'e',1)

handles2.Thresh(1) = period;

set(handles2.Thresh Edit Start,'string',num2str(period))

else

if strncmp(handles.GUItitle(end),'t',1)

set(handles2.Pcon Edit,'string',num2str(period))

handles2.Cond{get(handles2.Condition Pop,...
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'value')}(1) = period;

else

set(handles2.Pseed Edit,'string',num2str(period))

handles2.Cond{get(handles2.Condition Pop,...

'value')}(2) = period;

end

end

setappdata(hMainGui,'handles',handles2);

feval(fhUpdateGraph,[],[],[])

end

% If timer is on, stop it, reset the period, and start it again.

% if strcmp(get(handles.timer, 'Running'), 'on')

% stop(handles.timer);

% set(handles.timer,'Period',period)

% start(handles.timer)

% else % If timer is stopped, reset its period only.

% set(handles.timer,'Period',period)

% end

% END USER CODE

% −−− Executes during object creation, after setting

% −−− all properties.

function periodsldr CreateFcn(hObject, eventdata,handles)

% hObject handle to periodsldr (see GCBO)

% handles empty − handles not created until after all

% CreateFcns called

% Hint: slider controls usually have a light gray background.

if isequal(get(hObject,'BackgroundColor'), get(0,...

'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor',[.9 .9 .9]);

end

% −−− Executes when user attempts to close figure1.

function figure1 CloseRequestFcn(hObject, eventdata, handles)

% hObject handle to figure1 (see GCBO)

% handles structure with handles and user data (see GUIDATA)

% START USER CODE

% Necessary to provide this function to prevent timer callback

% from causing an error after GUI code stops executing.

% Before exiting, if the timer is running, stop it.
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% if strcmp(get(handles.timer, 'Running'), 'on')

% stop(handles.timer);

% end

% % Destroy timer

% delete(handles.timer)

% END USER CODE

% Hint: delete(hObject) closes the figure

uiresume(handles.figure1);

% −−− Executes on button press in OK Button.

function OK Button Callback(hObject, eventdata, handles)

% hObject handle to OK Button (see GCBO)

% handles structure with handles and user data (see GUIDATA)

period = get(handles.periodsldr,'Value');

% Timers need the precision of periods to be greater than about

% 1 millisecond, so truncate the value returned by the slider

% period = period − mod(period,.01);

handles.output = period;

% Update handles structure

guidata(hObject,handles);

uiresume(handles.figure1);

% −−− Executes on button press in Cancel Button.

function Cancel Button Callback(hObject, eventdata, handles)

% hObject handle to Cancel Button (see GCBO)

% handles structure with handles and user data (see GUIDATA)

uiresume(handles.figure1);

% −−− Executes on button press in Clear.

function Clear Callback(hObject, eventdata, handles)

% hObject handle to Clear (see GCBO)

% handles structure with handles and user data (see GUIDATA)

handles.output = 0;

% Update handles structure

guidata(hObject,handles);

uiresume(handles.figure1);
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