ANION PHOTOELECTRON SPECTROSCOPY OF NbW $^-$ and W $_2$ $^-$

<u>D. ALEX SCHNEPPER</u>, MELISSA A. BAUDHUIN, DOREEN LEOPOLD, *Chemistry Department, University of Minnesota, Minneapolis, MN, USA*; SEAN M. CASEY, *Department of Chemistry, University of Nevada, Reno, Reno, NV, USA*.

The 488 nm vibrationally-resolved photoelectron spectra of NbW⁻ and W₂⁻ are reported. The electron affinity of W₂ ($^1\Sigma_g^+ \leftarrow ^2\Sigma_u^+$) is found to be 1.118 ± 0.007 eV, which differs from the value reported in a previous anion photoelectron spectroscopic study of W₂⁻ (1.46 eV)^a, but was accurately predicted by density functional calculations (1.12 eV)^b. The fundamental vibrational frequency of W₂ is measured to be 345 \pm 15 cm⁻¹, in agreement with the value previously reported in matrix resonance Raman studies (337 cm⁻¹)^c. The W₂⁻ anion is measured to have a fundamental frequency of 320 \pm 15 cm⁻¹. Several weak transitions to excited electronic states are seen and tentatively assigned based on calculated energies. NbW has an electron affinity of 0.856 \pm 0.007 eV. Vibrational frequencies are found, by Franck-Condon fitting of overlapping transitions, to be 365 \pm 20 cm⁻¹ for NbW⁻ and 410 \pm 20 cm⁻¹ for NbW. This increase in vibrational frequency upon photodetachment suggests that the extra electron is in an antibonding orbital, leading to ground state assignments of $^3\Delta$ and $^2\Delta$ for the anion and neutral, respectively. These results are compared to those obtained for other Group V and Group VI transition metal dimers and trends are discussed.

^aH. Weidele et al., Chem. Phys. Lett. 237 (1995) 425-431

^bZ. J. Wu, X. F. Ma, Chem. Phys. Lett. 371 (2003) 35-39

^cZ. Hu, J.-G. Dong, J. R. Lombardi, D. M. Lindsay, J. Chem. Phys. 97 (1992) 8811-8812