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ABSTRACT 

In this work, the thermal expansion behavior in the Ln2TiO5 system was explored, and 

mechanisms behind such behavior were described. The components of the thermal expansion 

tensor were calculated from the refined d-spacings using the program CTEAS for the cubic, 

orthorhombic, and hexagonal phases. In the cubic phase, the thermal expansion behavior was 

found to increase as expected with an increase in thermal vibrations. The orthorhombic phase 

exhibited an interesting shift from an expanding c-axis to one which contracted. Subsequent 

analysis of the crystallographic information of the orthorhombic phase revealed that the 

mechanism behind this behavior was the result of the strained trigonal bipyramidal structure 

overcoming an energy barrier to become more ideal and relaxed. The thermal expansion 

behavior in the hexagonal phase was found to be caused by the movement of the axial oxygen in 

the trigonal bipyramidal structure towards the central Ti cation with increasing temperature. 

This information was paired with insights into the volume expansion, structural elements, and 

geometric units between the orthorhombic and hexagonal phases to describe a potential pathway 

between two crystallographic cells which have no group-subgroup relationship. The novel 

pairing of information to describe a reconstructive transformation in this manner is unique and 

may be a new method to describe such transformations where few tools currently exist today. 

Additionally, a new experimental technique was developed to study the phase transformation 

kinetics between the orthorhombic and hexagonal phases in situ. The activation energy of this 

transformation was found to be 149 kJ/mol. This new technique avoids complications which 

arise from the study of transformations at high temperatures using thermal analysis methods, and 

provides increased time resolution of the data improving the calculation of the activation energy.   
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CHAPTER 1 

INTRODUCTION 

1.1 Motivation 

A knowledge gap exists in our current understanding of the phase transformation behavior in the 

Ln2TiO5 material system. Previous experimental work, performed ex situ, only provides 

superficial knowledge about the phases present and at what temperature these phases undergo 

transformations. As an important engineering material in the nuclear and electronic industries it 

is imperative to understand the relationship between different phases in this system as most of 

the desirable properties are phase dependent. The study of this material system in situ will 

provide much more information about key thermophysical properties and will shed light on the 

underlying mechanisms and kinetics of phase transformations. This will be useful for both 

application as well as basic scientific understanding. 

1.2 Introduction 

The phase transformation behavior in inorganic materials, particularly in oxides, is poorly 

understood. There is an ever increasing amount of technology that relies on phase transformations 

(structural ceramics, actuators, multiferroics, etc). For example, a disruptive phase transformation 

at 950 °C on cooling and 1170 °C on heating will cause zirconia (ZrO2), upon cooling, to shatter 

and render it useless in most materials applications.[1] Garvie et al. reported, while working with 

the material almost a century after its discovery, transformation toughening in zirconia, describing 

it as “ceramic steel”.[2] If a sufficient quantity of the metastable tetragonal phase is present in 

zirconia, an applied stress magnified at the crack tip can cause the tetragonal phase to convert into 

monoclinic, with an associated increase in volume, as described in Figure 1.[3] This phase 
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transformation can compress the crack and impede its growth, increasing the fracture toughness.[4] 

Though zirconia is one of the most well studied transformations in the literature, it is still not fully 

understood and is a very active area of research – highlighting the significant knowledge gaps 

which exist in this field of study.[5-9]  

 

Figure 1. The transformation temperatures and accompanied volume changes in zirconia on 

heating and cooling. 

 

Most of the desirable properties for the application of phase transformations in ceramics occur at 

higher temperatures. One reason a large knowledge gap exists in this area of study is due to the 

limitations of contemporary experimental setups. Previous work relied on ex situ studies in which 

samples were quickly quenched from high temperatures and subsequently characterized. If a 

sample did transform it was noted, along with the approximate transformation temperature. For 

the most part, this was sufficient for the development of phase diagrams and characterization of 

the high temperature crystal structures. However, if a transformation is displacive, having a low 

activation energy, it may be missed using ex situ techniques. In addition, information regarding 

the thermal expansion behavior and relationship between multiple crystalline phases is not 

available. 
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With the advent of computer technologies, advances in detector design, and simplicity of 

experimental setups, it is quickly becoming more popular to perform these same experiments in 

situ. 

1.3 Limitations of Previous Studies  

Previous work describing the behavior and properties of ceramics have been measured using 

essentially an engineering approach. Much of the literature describes conventionally prepared, 

incompletely reacted ceramics, or those containing grain boundary amorphous phases. These 

samples were studied by X-ray diffraction, dilatometry, thermal analyses (DTA, DSC), and 

optical microscopy, without much knowledge of the microstructure, porosity, strain, or presence 

of microcracks within the material. More recently, studies by electron microscopy (SEM and 

TEM), have identified important microstructural considerations, such as the critical particle size 

effect controlling the onset of transformation.[10]  

In the past, in situ studies were only able to access modest temperatures and needed inert 

atmospheres or vacuum for higher temperatures. However, in the case of oxides, measurements 

under vacuum or reducing atmospheres can be erroneous, due to the unsaturated state of oxygen 

chemistry leading to defects such as oxygen vacancies. A classic example of this is fully or 

partially stabilized zirconia, where the addition of Ca2+, Mg2+, Y3+ or Ce4+ cations disturbs the 

oxygen equilibrium composition in zirconia, necessitating oxygen vacancy defects, and 

stabilizing the high temperature phases in cubic or tetragonal symmetry.[10] 

Crystallographic parameters and thermal expansion coefficients of oxides depend on their level 

of oxygen saturation, which is a function of their processing conditions as well as experimental 

measurement conditions. For example, Figure 2 illustrates the need for oxide phase diagrams to 
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be measured in air. Mullite (3Al2O3•2SiO2), is white in color as a normal oxygen saturated 

ceramic, and black or gray when oxygen deficient.[11,12] The phase transformations can be 

suppressed and the temperature of invariant reactions can be shifted, changing the 

crystallographic parameters. In an example to illustrate this behavior, samples of mullite were 

hot pressed under vacuum in a graphite die and appeared black upon densification. Their 

crystallographic lattice parameters were measured by in situ high temperature neutron diffraction 

to 1600 °C. Due to heating in air, the sample had turned white as they were oxygen saturated. 

When the in situ measurements were repeated, a different set of lattice and thermal expansion 

parameters were observed, and subsequent cycled measurements indicated that the parameters of 

the oxygen saturated mullite were then reproducible. The behavior was observed for the 

crystallographic unit cell volume, which was calculated from the crystallographic axes, each of 

which was different due to oxygen deficiency. Therefore it is important that the phase 

transformation behavior, lattice parameters, and thermal expansion properties of ceramic oxides 

are measured in air. 

Other limitations commonly encountered in interpreting earlier studies include incompleteness of 

reported information or inconsistencies in the units of measurements. The latter, perhaps, is due 

to the cross-disciplinary appeal of phase transformations as a subject, and is evident from 

literature reports by chemists, physicists, material scientists, geologists, crystallographers, and 

metallurgists. Often results presented on phase transformations in material systems are 

incomprehensible due to insufficient information regarding sample preparation, characterization, 

purity, or measurement conditions. There is a definite need for simple, yet comprehensive 

guidelines for reporting phase transformation properties of materials. This will enable 
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assimilation of widely scattered information on the subject, as well as streamline future efforts 

focused on transformation behavior in materials. 

 

 

Figure 2. Lattice parameters a, b and c of mullite [(a) to (c), respectively], as a function of 

temperature. Full circles are experiments on grey mullite, triangles are experiments on 

annealed white mullite.[12] 

 

1.4 Synchrotron Radiation 

Röntgen discovered X-ray radiation in 1895 while studying light emission in evacuated glass 

tubes. With contributions from Laue, W. H. Bragg, and his son, W. L. Bragg, the importance of 

X-ray radiation was realized for the determination of the crystal structures of materials. Up to 

1912, it was difficult to maintain a reliable X-ray beam from a source. Coolidge, working at the 

General Electric Research Laboratories, developed a new X-ray tube that worked by accelerating 

electrons from a filament towards an anode to produce X-rays.[13] The Coolidge tube is the 
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basis of contemporary X-ray radiation sources and works when an electron is promoted from the 

inner shell leaving behind a hole. Figure 3 illustrates the concept behind the Coolidge tube. 

Electrons from higher shells fall to fill this hole, emitting a photon with energy equal to the 

difference between the two shells, Figure 3 describes this process.[13] 

 

Figure 3. Illustration of different methods of X-ray radiation generation. Depicted here is the 

traditional Coolidge tube, an early predecessor of the common X-ray generation tubes of 

today, and a rotating anode, known for producing a large photon flux.[13] 
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The development of the rotating anode X-ray generation source was an improvement over the 

Coolidge tube in terms of brilliance, the description of the intensity of radiation through an area 

given by the equation below:[13] 

𝐵𝑟𝑖𝑙𝑙𝑖𝑎𝑛𝑐𝑒 =  

𝑝ℎ𝑜𝑡𝑜𝑛𝑠
𝑠𝑒𝑐

(𝑚𝑟𝑎𝑑2)(𝑚𝑚2 𝑠𝑜𝑢𝑟𝑐𝑒 𝑎𝑟𝑒𝑎)(0.1% 𝐵𝑊)
 

Although the brilliance of the beam was improved over the Coolidge tube, rotating anodes still 

worked on the same principle, and such, suffered the same drawbacks (i.e. Kα2 and Kβ 

generation, non-polarized, non-tunable wavelength, etc). 

Synchrotron radiation was discovered in 1946 by researchers at General Electric.[14] Figure 4 

depicts the first image of synchrotron radiation from the General Electric setup. Unlike 

conventional sources, electromagnetic radiation is generated in a very different manner. First 

electrons are accelerated to high velocities in vacuum. When accelerated close to the speed of 

light, the electrons trajectory is modified and bent by a magnetic field. The process of changing 

the direction of a charged particle (acceleration/deceleration) results in the emission of a photon. 

These emitted photons have a broad range of wavelengths; see Figure 5 as an example. A single 

crystal monochromator, usually Si, Ge, or C can be employed to single out a particular 

wavelength via the Bragg relationship. After which, the X-ray beam can be modified by other 

optical components (mirrors, slits, filters, etc). Synchrotron radiation is generally used to produce 

light in the X-ray, UV, or IR range and has significant advantages of conventional laboratory 

sources. These benefits include: tunable wavelength, minimal divergence, linear polarization, 

and most importantly extremely high brilliance. The brilliance of synchrotron radiation can be 



8 

 

more than 10 orders of magnitude larger than the best rotating anode. Figure 6 illustrates the 

differences in brilliance between different sources.[13] 

 
Figure 4. The first image of synchrotron X-ray radiation at General Electric in 1946. 

 
Figure 5. The normalized spectrum of radiation from a bending magnet. 
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Figure 6. The brilliance of X-ray sources as a function of time.[15] 

 

Synchrotron sources can be characterized by two main criteria: characteristic frequency and 

opening angle, α, given by the equations[13] 

𝐸𝑐 = ћω = 0.665 𝜀𝑒
2 𝐵 

where, Ec is the characteristics energy, ћ Plank’s constant, ω the frequency, εe the energy of an 

electron, and B the magnetic field of the bending magnet, and  

𝛼 =
1

𝛾
=

0.511 𝑀𝑒𝑉

𝐸𝑐 𝐺𝑒𝑉
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where, Ec is the characteristics energy, and γ the opening angle related to the curvature of the 

electron storage ring. 

A typical schematic of an electron storage ring used to produce synchrotron radiation is provided 

in Figure 7. 

 

Figure 7. A schematic of a typical X-ray beamline at a third generation X-ray source. Bunches 

of charged electrons circulate in a storage ring. When the charged particles are bent while 

traveling around the ring they produce a spectrum of light. 
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1.5 The Debye-Scherrer Diffraction Geometry 

When performing high temperature X-ray diffraction experiments in reflection geometry 

complications can arise from sample displacement errors. This can be due to sagging of strip 

heaters at temperature, creating a shift in peak position making thermal expansion measurements 

erroneous.[16] The uncertainty in peak position, θ, is related to the sample displacement by  

∆2𝜃 = −2𝑑 cos
𝜃

𝑅
 

where, d is the sample displacement and R is the radius of the diffractometer. 

This uncertainty can be removed/minimized if the experiment is done in transmission, the most 

popular of which is the Debye-Scherrer geometry, Figure 8 illustrates this geometry.[16] 

 

Figure 8. An illustration of the Debye-Scherrer geometry. The rings of intensity are a result of 

the diffraction of light from planes in the crystalline structure. 

 

In combination with the quadrupole lamp furnace, which has its own positional uncertainties 

independent of the diffraction geometry (see Chapter 4.3), the Debye-Scherrer geometry 
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provides unparalleled certainly in peak position minimizing uncertainties in lattice parameters 

and other refinable parameters. 

A disadvantage of this geometry arises from sample absorption, which necessitates the use of 

very thin samples (less than 0.4 mm in diameter). The mass attenuation coefficient describes the 

penetration and energy deposition by photons. Ignoring photoelectric absorption edges, it is 

generally understood that the smaller the wavelength the better the penetration of the photons, 

and as such, the better the quality of the collected diffraction pattern.[17] However, smaller 

samples are desired over larger ones as the temperature distribution in the sample is more 

uniform when heated with the quadrupole lamp furnace. 

1.6 Analysis of Data – the Rietveld Method 

Hugo Rietveld was a Dutch crystallographer who contributed the single most important 

quantitative analysis method in the field of crystallography. The aptly named Rietveld method, is 

a quantitative comparison between a structural model and a diffraction pattern. Though 

originally developed by Rietveld for the analysis of neutron powder diffraction data, it can be 

applied to X-ray diffraction data and more.[18,19] 

The way that the Rietveld method works is by comparing a profile fitting model with 

experimental data. First a theoretical diffraction pattern is constructed from a model using the 

formula for the integrated intensity for each peak 

𝐼 = 𝑆|𝐹|2𝑇𝑀𝐿𝑃𝐴 

where,  

S is the scale factor 
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F the structure factor = ∑ 𝑓𝑛𝑒2𝜋𝑖(ℎ𝑥𝑛+𝑘𝑦𝑛+𝑙𝑧𝑛)𝑛
0  

T the temperature factor  = 𝑒
[−2𝐵(sin

𝜃

𝜆
)

2
]
 

 where, 𝐵 = 8𝜋2〈𝑢〉2 

  where, u is the root-mean square of thermal displacement  

M the multiplicity 

LP the Lorentz-Polarization factor =
(1+cos 2𝜃2)

(sin 2𝜃2 cos 𝜃)
[cos 2𝜃2] 

P the preferred orientation function[20] = [𝑝1
2 cos 𝛼2 + (

1

𝑝1
) sin 𝛼2]

−
3

2
 

and A the absorption. 

Each point constructed from the model is compared to the experimental data by performing a 

least squares analysis which is given by  

𝑅 = ∑ 𝑤𝑖[𝑦(𝑜𝑏𝑠)𝑖 − 𝑦(𝑐𝑎𝑙𝑐)𝑖]
2

𝑁

𝑖=1

 

where, y(obs) is the measured intensity at a point, y(calc) the intensity predicted from the 

integrated intensity formula, and w the statistical weighting.[21] If the difference between the 

predicted model and the data is large over all points in a pattern, a change is made to the model 

(change in lattice parameter, occupancy, peak shape [Gaussian, Lorentzian, and their 

combinations], etc) and the analysis is performed again. Once the model is minimized and 

converges, the process concludes.[22] Since the process takes into account all of the structural 
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information in a model, diffractometer setup and sample conditions, it is very robust in providing 

accurate results.[23-25] 

The R value comes in many different forms to express different numerical 

representations.[21,26] 

𝑅𝑝𝑟𝑜𝑓𝑖𝑙𝑒 =
∑ |𝑦(𝑜𝑏𝑠)𝑖 − 𝑦(𝑐𝑎𝑙𝑐)𝑖|𝑖

∑ 𝑦(𝑜𝑏𝑠)𝑖𝑖
 

𝑅𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑−𝑝𝑟𝑜𝑓𝑖𝑙𝑒 = [
∑ 𝑤𝑖|𝑦(𝑜𝑏𝑠)𝑖 − 𝑦(𝑐𝑎𝑙𝑐)𝑖|

2
𝑖

∑ 𝑤𝑖𝑦(𝑜𝑏𝑠)2
𝑖𝑖

]

1
2

 

𝑅𝐵𝑟𝑎𝑔𝑔 =
∑ |𝐼(𝑜𝑏𝑠)𝑖 − 𝐼(𝑐𝑎𝑙𝑐)𝑖|𝑖

∑ 𝐼(𝑜𝑏𝑠)𝑖𝑖
 

𝑅𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 = [
(𝑁 − 𝑃)

∑ 𝑤𝑖𝑦(𝑜𝑏𝑠)2
𝑖𝑖
]

1
2

 

where, N and P are the number of observations and parameters, respectively. 

Another common statistical measure is the goodness-of-fit, χ2. This is given by 

𝜒2 = [
𝑅𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑−𝑝𝑟𝑜𝑓𝑖𝑙𝑒

𝑅𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑
]

2

 

Low values of R and χ2 (reduced χ2 in the program GSAS), if properly refined, are desired and 

indicate a good structural model based on the data. 

Several different computer programs exist to perform Rietveld refinements. In this study the 

General Structure Analysis System (GSAS) and EXPGUI programs were employed for 

this.[27,28] For a more detailed description of the Rietveld method please consult Rietveld Made 
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Easy by Taylor.[22] An example fit using EXPGUI and GSAS is provided in Figure 9 for 

Y2TiO5 at room temperature with relevant statistical information. 

 

Figure 9. Rietveld fit using EXPGUI and GSAS for Y2TiO5 at room temperature. Rp, fitted = 

0.0837, Rp, -bknd = 0.1123, and χ2 = 27.64. 

 

1.7 Thermal Expansion in General 

Traditionally the coefficient of thermal expansion is represented by a polynomial equation 

describing the change in lattice parameter as a function a temperature along each 

crystallographic axis. Largely due to the fact that thermal expansion is a second-rank symmetric 

tensor relating strain to temperature, it is becoming increasing popular to describe the thermal 

expansion of a material in terms of the matrix notation given here: 
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𝑑𝜀𝑖𝑗 = [

𝛼11 𝛼12 𝛼13

𝛼21 𝛼22 𝛼23

𝛼31 𝛼32 𝛼33

] 𝑑𝑇 

At any time the number of matrix components can be reduced to six independent parameters due 

to the inversion symmetry of thermal expansion. These six components can then be further 

simplified depending on the crystallographic symmetry of the cell. For lower symmetry crystal 

systems it would be necessary to have six or five components of the thermal expansion tensor for 

triclinic and monoclinic cells, respectively. Higher symmetry cells such as cubic can be fully 

simplified to a single component. In crystal systems with orthonormal axes (i.e. cubic, tetragonal, 

orthorhombic) the thermal expansion calculation can become quite trivial as the thermal 

expansion tensor components match their respective crystallographic directions (i.e. αa = α11). 

For lower symmetry cells or cells with non-orthonormal axes (i.e. hexagonal, trigonal, 

monoclinic, triclinic), the calculation can become more complex. The reduced thermal expansion 

tensors for an orthorhombic and hexagonal cell are given below. For a more detailed description 

of thermal expansion, please refer to Thermal Expansion of Solids by Taylor.[29] 

𝑑𝜀𝑖𝑗 = [

𝛼11

𝛼22

𝛼33

] 𝑑𝑇             𝑑𝜀𝑖𝑗 = [

𝛼11

𝛼11

𝛼33

] 𝑑𝑇 

The program CTEAS can be used to calculate the coefficient of thermal expansion tensor from 

high temperature X-ray diffraction data sets. Based on each hkl reflection and corresponding d-

spacing, CTEAS will perform a least-squares polynomial fit as a function of temperature. The 

expansion information from each reflection is then recombined and evaluated to fully describe 

the thermal expansion behavior in a more complete manner, as opposed to conventional methods 

adopted to calculate thermal expansion.[30,31] 
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1.8 Diffusional Phase Transformations in General 

Generally, phase transformations can be divided into three categories; diffusion-dependent with 

no change in composition or number of phases present (e.g. melting, recrystallization, etc), 

diffusion-dependent with a change in composition or number of phases present (e.g. eutectoidal), 

or diffusionless (e.g. displacive, martensitic). Diffusionless transformations do not break and 

remake bonds, having low activation energies and can take place on a short time scale. 

Diffusional transformations on the other hand require the breaking and remaking of bonds, have 

larger activation energies, and the transformation process can be sluggish. 

Frequently, diffusional phase transformations can be described using a simple nucleation, 

growth, and impingement model. The new phase can nucleate either randomly (homogeneously) 

or at defects and grain boundaries (heterogeneously). When there is a sufficient amount of 

energy such that a supercritical particle size is reached, the formation of the new phase can 

occur.[32] The classical theory of nucleation describes the kinetics using the Gibbs free energy 

of nucleus formation, ΔG*, which depends on the chemical Gibbs free energy per unit volume, 

the interfacial energy per unit area, and the misfit strain energy per unit volume in the Arrhenius 

relationship given below, 

𝑁(𝑇(𝑡)) = 𝐶𝜔𝑒
(−

∆𝐺∗(𝑇(𝑡))+𝑄𝑁

𝑅𝑇(𝑡)
)
 

where, R is the gas constant, T the temperature, C the number of suitable nucleation sites, ω the 

characteristic frequency factor, and QN the activation energy:[33]  

After the onset of nucleation, growth of the formed particles occurs. There are two main modes 

for growth; volume diffusion controlled (where long range compositional changes take place) 
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and interfacial controlled (where growth determines the immediate area of interface).[32,33] The 

equation for both models is described by the following,  

𝑌(𝜏, 𝑡) = 𝑔 (∫ 𝑣𝑑𝑡
𝑡

𝜏

)

𝑑
𝑚

 

Where, m=1 for interfacial controlled growth and m=2 for volume diffusional growth, and d is 

the dimensionality of the growth. 

Finally, after reaching a sufficient size, the particles grow large enough to impinge on each other, 

slowing the rate of transformation of the new phase. As a function of time, the fraction of phase 

transformed can be plotted. Figure 10 shows a schematic curve which describes this type of 

phase transformation behavior of nucleation, growth, and impingement. 

 

Figure 10. Schematic growth curve for a product region[34] 
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A simplification of this process was described by the Johnson-Mehl-Avrami-Kolmogorov 

theory, also known as the JMAK theory.[35-38] The JMAK equation can be written as 

𝐹(𝑡) = 1 − 𝑒𝑥𝑝[−𝑘𝑡𝑛] 

Where, t is time, F(t) is the fraction transformed, n relates to the growth mechanism,  and k is a 

rate constant which is derived from the Arrhenius relationship.  

This simplification is based on the following assumptions regarding the phase transformation 

behavior; infinite system size, uniform but random nucleation, growth ends at impingement, 

spherical particles form, and an interfacial controlled growth mechanism.[39] Although most 

transformations do not meet the above criteria, the JMAK equation nonetheless can still be 

applied in many scenarios, and useful information can be inferred.  

The kinetics of a transformation can be determined via isothermal and/or isochronal experiments 

which measure the fractional phase evolution with time. By linearizing the data using the natural 

log and fitting to the JMAK equation, one can simply back calculate the values for k and n. 

Taking the value for k at multiple isothermal temperatures it is then possible to fit the data to the 

Arrhenius equation to calculate the rate constant and activation energy of the transformation. The 

value of n can shed light on the type of nucleation and growth which occurred, see Table 

1.[34,40,41] 

Table 1. Generalized meaning of the Avrami exponent n 

Type of Nucleation n 

Random 3D growth 3 

Distribution of nucleation site non-random, 1 and 2D  

surface 3 

edge 2 

point 1 
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1.9 Objectives and Scope of Research 

The goal of this research is to shed light on the phase transformation behavior in the rare-earth 

titanate system. This was achieved by correlating the thermal expansion behavior, and 

mechanisms behind such behavior, between two separate and dissimilar crystallographic phases 

(orthorhombic and hexagonal). In addition, the kinetics of the transformation was evaluated and 

the key kinetic parameters were determined. The main questions originally posed were: 

1. Is the orthorhombic to hexagonal transformation first- or second-order? Does is proceed 

by a reconstructive or displacive mechanism? 

2. What unit cell volume changes and/or shape changes accompany the transformations?  

3. What is the thermal expansion in the hexagonal phase and how does it relate to the 

orthorhombic phase from a continuum mechanics perspective? How does this also relate 

to the heat capacity? 

4. What is the lattice correspondence between the orthorhombic and hexagonal phases? 

5. What is the underlying mechanism of transformation between the orthorhombic and 

hexagonal phases? Can we use our experimental setup to answer this question? 

6. What are the kinetics in the transformation between the orthorhombic and hexagonal 

phases? 

At a much higher level, this work is the foundation for future research which may involve the 

determination of a relationship between two phases which undergo a reconstructive 

transformation from a crystallographic perspective using the thermal expansion behavior. 

Furthermore, this work describes a new method for the analysis of kinetic parameters for a phase 

transformation which occurs at high temperatures using a thermal image furnace. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 The Rare-Earth Titanates (Ln2TiO5) 

2.1.1 Introduction 

A typical Ln2O3 -TiO2 phase diagram is seen in Figure 11 in the example of La2O3 - TiO2. Phase 

transformations have been reported in the 1:1 and 1:2 systems for some of the compositions. No 

transformations have been as yet reported in the 2:3 compounds. 

 

Figure 11. Taken from the NIST Phase Equilibria Diagrams for Ceramists, Vol.XI (1995). 
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The rare earth titanates have many desirable properties, which make them ideal candidates in 

several engineering applications. Their high mechanical strength, thermal stability, and robust 

chemical resistance make them well suited for applications in high temperature environments 

where structural reliability is critical. For example, boron carbide and boron steels have been 

popular choices for control rod assemblies in fast breeder nuclear reactors due to their many 

desirable properties.[42,43] Unfortunately, radiation damage caused by (n, α)-reactions with 10B 

isotopes results in the formation of helium, causing swelling to occur and cracks to nucleate and 

grow, resulting in decreased operational lifespans.[44-46] In an effort to find a suitable 

replacement, engineers have turned to Dy2TiO5 and Gd2TiO5, taking advantage of the large 

neutron absorption cross-sections of the rare-earth cations, good mechanical properties, 

resistance to chemical attack, simple fabrication, and a low degree of swelling under neutron 

radiation.[47] 

In addition to their high temperature mechanical properties, several of the rare-earth titanates 

also exhibit special electrical, magnetic, and optical properties. In a study by van Dover, it was 

demonstrated that a material with a large dielectric constant, k, could be formed by incorporating 

TiO2 or Ti into thin films of rare-earth oxides.[48] Having a high electric breakdown field, a low 

interface trap density, and a small hysteresis and frequency dispersion, Nd2TiO5 was studied as 

an ideal candidate for ion-sensitive field-effect transistors (ISFET). ISFETs are commonly used 

as microsensors and feature low cost, ease of miniaturization, and low output impedance.[49,50] 

Many of the desirable properties of the rare-earth titanates are phase dependent (i.e. the cubic 

phase performs best under neutron radiation). Much of the existing work on this materials system 



23 

 

has been done ex situ via quenching of samples from high temperatures. Although this method is 

useful, it sometimes fails to capture the true structural behavior at high temperatures. 

2.1.2 Polymorphism in the Ln2TiO5 System 

The rare-earth titanates undergo several polymorphic phase transformations as a function of 

temperature and size of the rare-earth cation.[51,52] Studies on quenched samples indicate that 

these compounds exist in the orthorhombic phase for Ln = La-Dy and Y and in a cubic phase for 

Ln = Ho-Lu. In addition, in certain cases, a metastable cubic phase exists at room temperature 

before transforming into the equilibrium orthorhombic phase at higher temperatures for Dy2TiO5 

and Y2TiO5 which can only be attained via powder synthesis using sol-gel or related 

techniques.[51,53-60] 

Several studies in the late 70’s and early 80’s by Petrova, Shamrai, Shcherbakova, Sukhanova, 

Shepelev, Tiedemann, and Müller-Buschbaum on quenched samples outlined a general phase 

diagram showing the relationship between phase, temperature, and cation size (Figure 12). 

[51,53,55,56,61-63] Equivalently, the temperatures of transformation are listed in Table 2. As 

described by Figure 12 and Table 2, as cation size decreases, the melting temperature increases. 

Conversely, as cation size decreases the onset temperature of transition between the 

orthorhombic and hexagonal phase decreases. 
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Figure 12. Phase diagram for the rare-earth titanates depicting relevant phases found at varying 

temperatures as a function of rare-earth cation size. L = liquid, O = orthorhombic, H = 

hexagonal, C = cubic[51] 
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Table 2. Transition Temperatures of the Rare-earth Titanates on Heating.[51]  

 

Ln2TiO5 Melting Temp 

°C 

Transition Temp °C 

orthorhombic to hexagonal 

Transition Temp °C  

hexagonal to cubic 

La 1710   

Pr 1725   

Nd 1730   

Sm 1765   

Eu 1780 1750  

Gd 1790 1700  

Tb 1850 1520 1700 

Dy 1875 1370 1680 

Ho 1910 1310 1400 

Y 1960 1300 1380 

Er 2010   

Yb 2080   

Lu 2100   

Sc 2075   

 

Since these studies have taken place, a fair amount of work has been done to better characterize 

the transition temperatures and phases. The cubic phase was once thought to be the pyrochlore 

structure, related to the geometrically frustrated, magnetic spin ice Dy2Ti2O7, and has since been 

found to be a disordered fluorite structure, one-eighth in size.[64-66] Similar work has also been 

carried out to solve the hexagonal structure from quenched samples.[56,58-60] A summary of 

these and other relevant structures can be found in Table 3 and Figure 13.[58,59] 

Table 3. Crystallographic Information for the Rare-earth Titanate Phases 

 

Phase Space Group Lattice Parameters Z 

Orthorhombic 𝑃𝑛𝑎𝑚 (62) 

a = 10.361 Å 

b = 11.229 Å 

c = 3.716 Å 

4 

Hexagonal 𝑃63/𝑚𝑚𝑐 (194) 
a = 3.632 Å 

c = 11.969 Å 
2 

Cubic (fluorite) 𝐹𝑚3̅𝑚 (225) a = 5.168 Å 4 

Cubic (pyrochlore) 𝐹𝑑3̅𝑚 (227) a = 10.337 Å 8 
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Figure 13(a) Crystallographic structure of the 

orthorhombic phase for Dy2TiO5. Dy = solid 

black, Ti = solid gray, O = striped 

Figure 13 (b) Crystallographic structure of the 

hexagonal phase for Dy2TiO5. Dy/Ti = solid, 

O = striped 

 

 

Figure 13(c) Crystallographic structure of the 

fluorite phase for Dy2TiO5. Dy/Ti = solid, O = 

striped 

Figure 13(d) Crystallographic structure of the 

pyrochlore phase for Dy2TiO5. Dy/Ti = solid, 

O = striped 
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2.2 The Rare-Earth Di-Titanates (Ln2Ti2O7) 

Though not the focus of this work, the rare-earth di-titanates are worth mentioning to 

contextualize this study as well as provide background information for future work in this 

system.  

The rare-earth di-titanates are typically stabilized in the pyrochlore structure for the smaller rare-

earth cations (R = Eu-Lu).[67] Dy2Ti2O7 and Ho2Ti2O7 have been well studied for their 

interesting low temperature frustrated magnetic properties. Both are prototypical examples of 

spin-ice materials which is a substance that does not have a single minimal energy state, having 

spin degrees of freedom which prevent it from completely freezing.[68] Magnetricity, the ability 

of a magnetic charge to behave in the same manner as the more familiar electric charge, is the 

theoretical basis behind recent efforts to show that a magnetic monopole can exist in a material. 

Studying the spin-ice nature of Dy2Ti2O7, allowed scientists for the first time to prove the 

existence of a monopole existing inside of a structure.[69] 

Although a significant amount of research has focused on the spin-ice nature of the pyrochlore 

structures, very little is known about the larger rare-earth cation di-titanates (R = La-Sm) which 

form a monoclinic structure at room temperature.[67] The monoclinic structure is isomorphic 

with Ca2Nb2O7 and forms a layered perovskite.[70,71] An orthorhombic modification of this 

system appears at temperatures above 800°C and is related to the monoclinic structure using the 

series of maximal subgroup relationships. Table 4 outlines the crystallographic information for 

the rare-earth di-titanates at room temperature and Figure 14 depicts the structures. 

Similar to the polymorphic phase transformations in the rare-earth mono-titanates, little is known 

about the mechanisms and kinetics of transformation.  
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Table 4. Cell Parameters for the Rare-earth Di-Titanate Structures.[67] 

Ln2Ti2O7 a (Å) b (Å) c (Å) β (°) Space Group Structure Z 

La-Sm 7.80 5.546 13.011 98.6 𝑃21 Monoclinic 4 

La-Sm 7.692 5.501 25.457 90 𝑃𝑛21𝑎 Orthorhombic 8 

Eu-Lu 10.211 - - 90 𝐹𝑑3̅𝑚 Cubic 8 

 

 

 

Figure 14(a) Crystallographic structure of 

the monoclinic phase for Dy2Ti2O7 projected 

down the c-axis. Dy = solid black, Ti = solid 

gray, O = striped 

Figure 14(b) Crystallographic structure of the 

orthorhombic  phase for Dy2Ti2O7 projected 

down the c-axis. Dy = solid black, Ti = solid 

gray, O = striped 

 

Figure 14(c) Crystallographic structure of the pyrochlore phase for Dy2Ti2O7 projected down 

the c-axis.  Dy = solid black, Ti = solid gray, O = striped 
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CHAPTER 3 

SAMPLE SYNTHESIS 

3.1 Powder Synthesis 

Two different methods were employed to produce oxide powders in the Ln2TiO5 system: the 

inorganic-organic steric entrapment technique and the conventional solid-state route.  

The resulting powder from both methods were examined by X-ray diffraction (XRD) with a 

Siemens D5000 diffractometer (Bruker AXS Inc., Madison, WI) using CuKα radiation (λ=1.5418 

Å, 40 kV, 30 mA). XRD patterns were acquired in reflection geometry between 5°and 65° 2θ at a 

scanning speed of 0.5 °/min and a step size of 0.02°. The orthorhombic crystalline phase was 

identified using the International Center for Diffraction Data PDF-4+ database (ICDD v. 2014, 

International Center for Diffraction Data, Newton Square, PA) accessed through program Jade 

9.4.1 (Materials Data Inc., Livermore, CA). Powders produced from both methods were found to 

be very phase pure. 

 

3.1.1 The Inorganic-Organic Steric Entrapment Method 

This method, developed in the Kriven research group, has been used to form numerous (>50) 

compounds to date with high phase purity and small particle sizes.[72-101] The general process 

of the inorganic-organic steric entrapment method is outlined in Figure 15. At a fundamental 

level, the dissolved ions, usually nitrate salts, are surrounded by the steric entrapper, PVA or EG, 

to bring them into close proximity, illustrated in Figure 16. The solvent, either deionized water or 

ethanol, is evaporated, leaving behind a fluffy gel. This gel is then dried at 200 °C for 2 hours 

and calcined to produce the desired phase (approximately 1200 °C for the formation of the 
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orthorhombic phase [La-Y], and lower for the cubic phase [Dy-Lu]). An example process for 

powder synthesis using the inorganic-organic steric entrapment method is provided below in 

Figure 15 for Dy2TiO5.  

Stoichiometric amounts of dysprosium nitrate (99.9%, Sigma-Aldrich, St Louis, MO) and 

titanium (IV) isopropoxide (99.995%, Alfa Aesar, Ward Hill, MA) were combined in a 5 wt% 

ethylene glycol / isopropanol solution which was left to stir overnight. The isopropanol was then 

evaporated using a hot plate, producing a gel that was subsequently dried in a furnace at 200 °C 

for 2 hours. The dried gel was crushed using a mortar and pestle and then calcined at 1200 °C for 

10 hours. 

 

Figure 15. Schematic illustration of powder synthesis via the inorganic-organic steric 

entrapment method for the Ln2TiO5 system. 
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Figure 16. Proposed mechanism of the inorganic-organic steric entrapment method. The 

PVA/EG polymer surround constituent ions spatially confining them and separating them from 

others. TTIP is titanium isopropoxide. 

 

3.1.2 Conventional Solid-State Reaction Method 

The second and more commonly used method is calcination via the solid-state technique. This 

process is illustrated in Figure 17 and simply relies on the stoichiometric mixing and heating of 

the base oxides (Ln2O3 and TiO2). 

 

Figure 17. Illustration of the conventional method of powder synthesis via the solid-state 

process. 
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3.2 Sample Preparation 

Each type of experiment described in this document required extensive processing of the 

synthesized powder in order to prepare samples for characterization. Listed below are the three 

main experiments and a description of the sample preparation for each.   

3.2.1 Thermal Expansion Experiments 

The custom nature of the experimental setup (see Chapter 4), also necessitated the need for a 

sample which was also custom. Samples for thermal expansion experiments need to be in 

powder form. This was desired to prevent/minimize any effects from strain in the sample which 

may arise from grain boundary impingement with nearby grains which complicated the analysis 

of thermal expansion from crystallographic parameters. In order to suspend the powder inside the 

quadrupole lamp furnace, whilst also positioning it in the X-ray beam path, the sample was 

mounted in the configuration schematically described in Figure 18. The powder was first mixed 

with approximately 5-10 wt. % platinum powder, sieved using a 325-mesh sieve (45 μm), and 

then “scooped” in a thin sapphire capillary. Packing of the powder in the capillary was critical. 

The powder must be able to freely roll when spinning; preventing particle interaction while 

ensuring minimal packing density which improved the resulting diffraction pattern (this was due 

to absorption from the sample caused by the use of heavy elements i.e. lanthanides). The powder 

was then secured in place, prevented from rolling out of the sapphire capillary, using smaller 

alumina capillary plugs. These plugs allowed air to enter and escape which helped minimize 

pressure build-up. The smaller sapphire capillary was then placed in a longer alumina rod and 

secured in place with zirconia paste. Finally, platinum paste was brushed on the sapphire 

capillary on either side of the powder which ended up in the beam path to help evenly distribute 

heat across the sample. 
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The resulting sample was then placed in a brass stub and inserted into the goniometer head on 

the diffractometer. The quadrupole lamp furnace was then centered over the sample. 

 

Figure 18. Design of the method to suspend powders in the center of the diffractometer and the 

quadrupole lamp furnace. 

 

3.2.2 Phase Transformation Experiments via X-ray Diffraction 

The sample preparation for the phase transformation experiments was very similar to that of the 

thermal expansion experiments with slight modification. Since it was only necessary to track the 

evolution of the largest hexagonal diffraction peak the sample need not be in powder form. 

Instead, a sintered rod of the material was secured in a longer alumina rod using zirconia paste 

with bands of platinum paste brushed directly onto the sample as depicted in Figure 19. The 

diameter of the rod could be tailored, minimizing the effect of absorption from both the sample 

and sapphire capillary.  
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Figure 19. Design of the method to suspend sintered rods in the center of the diffractometer 

and the quadrupole lamp furnace. 

 

3.2.3 Phase Transformation Experiments via Differential Scanning Calorimetry 

Two different sample types were employed to characterize the phase transformation behavior via 

Differential Scanning Calorimetry (DSC). The first sample types were in powder form to ensure 

that microstrain effects were minimized. The second sample types used were sintered pellets, 

reverted back to the orthorhombic phase, and annealed to grown the grain size. There was no 

difference observed between the two sample types with regard to the transformation temperature 

and behavior, though the sintered pellets had a “cleaner” signal with respect to the powder 

samples, which is not too surprising. All of the DSC experiments were carried out with a Netzsch 

STA 409 CD simultaneous thermal analyzer (Netzsch Instruments, Selb, Germany). A picture of 

the instrument is provided in Figure 32 in Chapter 4.5. 
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CHAPTER 4 

EXPERIMENTAL SETUP 

4.1 Beamline Configuration 

4.1.1 The National Synchrotron Light Source 

The National Synchrotron Light Source (NSLS) is located at Brookhaven National Laboratory in 

Upton, NY. Although recently decommissioned and replaced by NSLS-II, all of the experiments 

in this study were performed at NSLS. 

The NSLS is a source of synchrotron radiation, see Chapter 1.5. First commissioned in 1982, 

NSLS consisted of 65 experimental beamlines on two synchrotron storage rings producing light 

in the X-ray, ultraviolet, and infrared range. The characteristic energy of operation of NSLS was 

2.8 GeV with a ring circumference of 170 m. A picture of the NSLS is provided in Figure 20. 

 

Figure 20. Aerial view of the National Synchrotron Light Source at Brookhaven National 

Laboratory in Upton, NY. 
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Beamline X14-A was used for all of the experiments carried out at the NSLS. X14-A was 

equipped with a double Si monochromator and a single focusing mirror. The quadrupole lamp 

furnace would be located at the center of a Huber diffractometer. Diffracted X-ray radiation was 

collected with a Si strip position sensitive detector located 1432 mm away from the center of the 

diffractometer. The detector could record a range of approximately 2.5° 2θ while stationary and 

up to 45° 2θ when moving (limited by the opening of the furnace). The X-ray beam was focused 

to 0.75 X 0.5 mm onto the sample. A schematic representation of the beamline setup at X14-A is 

provided in Figure 21.  

 

Figure 21. Schematic representation of the beamline setup at the National Synchrotron Light 

Source. 

 

4.1.2 The Advanced Photon Source 

The Advanced Photon Source (APS) is located at Argonne National Laboratory in Lemont, IL.  

The APS is a source of synchrotron radiation, see Chapter 1.5. First commissioned in 1995, the 

APS currently has 35 sectors, with each sector typically having more than one experimental 

beamline. Additional sectors and beamlines are currently under construction. The APS mostly 

produces light in the X-ray range on a single synchrotron storage ring. The characteristic energy 
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of operation of APS was 7.0 GeV with a ring circumference of 1104 m. A picture of the APS is 

provided in Figure 22. 

 

Figure 22. Aerial view of the Advanced Photon Source at Argonne National Laboratory in 

Lemont, IL. 

 

Two separate beamlines were used at the APS for this study, 33BM-C and 11BM-B. Most of the 

work was carried out at 33BM-C which will be described here. The setup of 33BM-C is very 

similar to that of X14-A at NSLS. 33BM-C is equipped with a double Si monochromator and a 

single focusing mirror. The quadrupole lamp furnace would be located at the center of a Huber 

diffractometer. Diffracted X-ray radiation was collected with a Pilatus 100k detector located 

approximately 1040 mm away from the center of the diffractometer. The detector could record a 

range of approximately 4° 2θ while stationary and up to 45° 2θ when moving (limited by the 
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opening of the furnace). The X-ray beam was focused to 0.5 X 0.5 mm onto the sample. A 

schematic representation of the beamline setup at 33BM-C is provided in Figure 23. 

 

 

Figure 23. Schematic representation of the beamline setup at the Advanced Photon Source. 

 

4.2 Spallation Neutron Source 

The Spallation Neutron Source (SNS) is located at Oak Ridge National Laboratory in Oak Ridge, 

TN. One experiment was conducted at the powder diffractometer at beamline BL-11A 

(POWGEN) for the thermal expansion of Nd2TO5 in air using an ILL furnace. If all detector 

banks are used, five in total, data can be collected to 150° 2θ, Figure 24 shows the detector setup. 

The sample to detector distance can be varied between 2.5-4.5 m depending on resolution needs. 

A picture of the SNS is provided in Figure 25. 
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Figure 24. The neutron detector banks at POWGEN located at the Spallation Neutron Source 

at Oak Ridge National Laboratory in Oak Ridge, TN. 

 

Figure 25. Aerial view of the Spallation Neutron Source at Oak Ridge National Laboratory in 

Oak Ridge, TN. 
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4.3 The Quadrupole Lamp Furnace 

Thermal-image furnaces have been a method for heating samples for many decades and have 

been employed in conjunction with X-ray diffraction for in situ measurement of samples at high 

temperature. Stecura, in 1968, was one of the first researchers to use a thermal-image furnace for 

high temperature X-ray diffraction.[102]  In this setup two 1.52 m diameter parabolic mirrors 

focused the light from a carbon arc onto a sample. The sample could reach temperatures in 

excess of 2800 °C, but was limited to 1700 °C as thermal stability was an issue. Later designs for 

thermal-image furnaces included one by Wantanabe.[103] Wantanabe’s design is similar to float 

zone techniques to synthesize single crystals, wherein a sample is placed at the intersection of 

two parabolic halogen lamps coated with a layer of gold. This design also incorporated a small 

linear slit for the diffracted radiation to escape without having to interact with the enclosure 

improving the quality of the collected pattern. Temperatures were recorded up to 1700 °C in air 

using a thermocouple inserted into the “hot zone”. Wantanabe’s design is reproduced in Figure 

26. 
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Figure 26. Wantanabe’s design of a thermal image furnace paired with an X-ray diffractometer 

representing one of the first experimental setups to record diffraction patterns at temperature in 

situ. 

 

A compact furnace was conceptualized at Ludwig Maximilians University in Munich, Germany. 

This furnace used two commercially available halogen IR-reflector lamps to heat the sample up 

to a maximum temperature of 1500 °C.[104] The ability of this furnace to reach intermediate to 

high temperatures, in conjunction with its small size and ability to be easily customized to a 

diffractometer, was recognized by Kriven while on sabbatical leave in 1997. A new furnace was 

envisioned with four halogen lamps, allowing for temperatures up to 2000 °C in air to be 

achieved which is necessary for studies of refractory and high temperature materials. The result 

of this work is the quadrupole lamp furnace. 



42 

 

The quadrupole lamp furnace consists of four IR halogen lamps (OSRAM Xenophot HLX64635, 

15 V, 150 W). These lamps emit light in the range of 500-2500 nm with a maximum intensity at 

800 nm. The light from the lamps is reflected off a gold-coated, parabolic reflector. The focal 

point of each lamp is located 19 mm away from the edge mirror in free space. All four lamps are 

positioned in such a way so that the real images of the lamp filaments converge to a single spot. 

Since the filaments themselves have a linear dimension, the convergence spot is shaped more 

like a disc, termed the “hot zone”.[105] The position of the lamps is depicted in Figure 27. 

 

Figure 27. Orientation relationship of the halogen lamps in the quadrupole lamp furnace. At 

the intersection of the real images of the lamp filaments is an area termed the “hot zone”. 

 

The lamps are housed in a rotated square brass holder and are connected in series to a 

proportional-integral-derivative (PID) controller (Omega Engineering, Inc) as seen in Figure 28. 
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The temperature distribution in the hot zone was measured using a B-type thermocouple and are 

provided in Figure 29.[105] The temperature variation over a disc 4 X 4 mm was less than 20 °C. 

High temperature X-ray diffraction patterns were collected to measure the thermal expansion of 

standard materials (CeO2, MgO, and Pt) for comparison with literature values and were found to 

be in good agreement (+/- 3%), see Figure 30.[105] 

 

Figure 28. The quadrupole lamp furnace mounted at the beamline 33BM-C at the Advanced 

Photon Source. 
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Figure 29. The temperature distribution in the “hot zone” of the quadrupole lamp furnace.[105] 

  

Figure 30. Thermal expansion values calculated for MgO and CeO2. This information was 

used to validate the method used to determine the temperature of the sample when heated 

using the quadrupole lamp furnace. 
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4.4 Temperature Calibration 

Although the thermocouple placed above the sample can give a rough approximation of the 

temperature, it is unable to accurately describe the temperature of the sample well enough for 

analysis. This difference can sometimes be up to 200 °C different from the actual temperature, 

particularly in the intermediate range, as illustrated in Figure 31. Little can be done to minimize 

this effect by changing the setup of the furnace.   

 

Figure 31. The real temperature of the sample plotted against the set temperature. Black line 

indicates when the set temperature is equal to the measured temperature. Generally, the real 

temperature of the sample is significantly higher than the set temperature, particularly in the 

lower temperature range. 
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In order to determine the temperature of the sample, platinum is mixed with the powder (or 

painted on the surface in the case of the sintered rods) in a 90:10 weight ratio. Platinum is used 

because it affords several advantages; 1) platinum is unlikely to react with the sample, 2) 

platinum will evenly distribute heat throughout the sample, and 3) platinum acts as a temperature 

standard. Using the well-known thermal expansion behavior of platinum, it is possible to 

calculate the temperature. Assuming the platinum powder is in thermal equilibrium with the 

sample, the temperature of the sample can be readily determined. The error in the calculation of 

the temperature of the sample in the hot zone was found to be approximately 4-6 °C, sufficient 

for thermal expansion characterization. 

4.5 Differential Scanning Calorimetry  

Based on the similar and complementary technique of differential thermal analysis (DTA), 

differential scanning calorimetry (DSC) was first developed by Watson in 1964 while working 

for Perkin-Elmer (Norwalk, CT).[106] DTA and DSC both measure the temperature of a sample 

under heating/cooling. Unlike DTA, the signal from a DSC can be converted into a heat-flux 

differential allowing for the determination of the heat of fusion/crystallization. DSC can be used 

for many different applications, most notably though, DSC is primarily used for the observation 

of transformations (melting/solidification, crystallization, and glass transitions). In certain 

situations, under isochronal and isothermal conditions, DSC may also be useful in the 

determination of kinetic parameters of phase transformations. 

In this study, a Netzsch STA 409 CD simultaneous thermal analyzer (Netzsch Instruments, Selb, 

Germany), Figure 32, was used to determine the temperature of transformation and key kinetic 

parameters which define the time-temperature dependencies of the transformation. 
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Figure 32. The Netzsch STA 409 CD simultaneous thermal analyzer located in the Kriven 

research facilities used to make differential scanning calorimetry measurements. 

4.6 Dilatometry 

A dilatometer can be used to measure the change in volume of a material as a function of 

temperature. Dilatometry can be used to determine the onset of sintering in ceramics, 

linear/volume thermal expansion, and monitor phase transformations (glass transition 

temperatures, transformations with a change in volume, and kinetics). 

The experiments in this study were performed with a Netzsch DIL 402 E dilatometer (Netzsch 

Instruments, Selb, Germany). The synthesized powder was pressed into a bar having dimensions 

of 25 x 6 x 6 mm and sintered. A background measurement was performed with a sapphire 

standard to remove the expansion of the instrument from the sample measurement.  
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CHAPTER 5 

THERMAL EXPANSION IN THE RARE-EARTH TITANATES 

5.1 Thermal Expansion in the Low Temperature Cubic Phase 

The thermal expansion behavior in the cubic phase was determined for Lu2TiO5, Er2TiO5, 

Ho2TiO5, Y2TiO5, and Dy2TiO5 using X-ray diffraction to monitor the crystallographic changes 

in the structure as a function of temperature in air. Results will be presented in order of 

increasing rare-earth cation ion size (Lu, Er, Ho, Y, and Dy). 

5.1.1 Results  

Lu2TiO5 

As described in Chapter 4, powder of Lu2TiO5 was mounted in a sapphire capillary and placed in 

the center of the quadrupole lamp furnace in alignment with the incident synchrotron X-ray 

radiation. An X-ray diffraction pattern was collected at each temperature from room temperature 

up to approximately 1600 °C in air. Using the programs GSAS and EXPGUI, the X-ray 

diffraction patterns were refined using the Rietveld method and the values for the lattice 

parameters, hkl, and corresponding d-spacings were extracted from the refined data. The lattice 

parameters as a function of temperature are plotted in Figure 33 and are listed in Table 5. 
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Figure 33. The lattice parameter measured via in situ X-ray diffraction for Lu2TiO5 in the 

cubic phase in air. Error bars lie within the symbols.  

 

Table 5. The lattice parameter and volume of Lu2TiO5 in the 

cubic phase as a function of the measured temperature. 

Temperature (°C) (±6) a (Å) Volume (Å3) 

26.5 5.07724(2) 130.88 

309 5.08991(2) 131.86 

461 5.09686(2) 132.40 

588 5.10314(2) 132.89 

698 5.10868(2) 133.32 

796 5.11369(2) 133.72 

882 5.11837(2) 134.09 

968 5.12295(2) 134.45 

1041 5.12708(2) 134.77 

1119 5.13188(2) 135.15 

1205 5.13793(2) 135.63 

1304 5.14544(2) 136.22 

1439 5.15620(2) 137.08 

1588 5.16925(2) 138.12 
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In addition to the determination of the lattice parameters, a CTEAS analysis was performed on 

the hkl listings and corresponding d-spacings as a function of temperature using a second-order 

polynomial fit. The results of the CTEAS analysis of the appropriate temperature range are listed 

in Table 6. 

Table 6. The component of the thermal 

expansion tensor for Lu2TiO5 as a 

function of extrapolated temperature. 

Temperature 

(°C) 

α11 (x 10-6/°C) Error 

25 6.51 0.51 

50 6.66 0.49 

75 6.81 0.48 

100 6.95 0.46 

125 7.10 0.44 

150 7.25 0.43 

175 7.40 0.41 

200 7.55 0.40 

225 7.69 0.38 

250 7.84 0.37 

275 7.99 0.36 

300 8.14 0.34 

325 8.29 0.33 

350 8.43 0.32 

375 8.58 0.31 

400 8.73 0.30 

425 8.88 0.29 

450 9.02 0.28 

475 9.17 0.27 

500 9.32 0.26 

525 9.47 0.25 

550 9.62 0.25 

575 9.76 0.24 

600 9.91 0.23 

625 10.06 0.23 

650 10.21 0.22 

675 10.36 0.22 

700 10.50 0.22 

725 10.65 0.21 

750 10.80 0.21 

775 10.95 0.21 

800 11.09 0.20 

825 11.24 0.20 

850 11.39 0.20 

875 11.54 0.20 

900 11.69 0.20 

925 11.83 0.20 

950 11.98 0.20 

975 12.13 0.21 

1000 12.28 0.21 

1025 12.42 0.21 

1050 12.57 0.22 

1075 12.72 0.22 

1100 12.87 0.22 

1125 13.02 0.23 

1150 13.16 0.23 

1175 13.31 0.24 

1200 13.46 0.25 

1225 13.61 0.25 

1250 13.75 0.26 

1275 13.90 0.27 

1300 14.05 0.28 

1325 14.20 0.29 

1350 14.35 0.30 

1375 14.49 0.31 

1400 14.64 0.32 

1425 14.79 0.33 

1450 14.94 0.34 

1475 15.09 0.36 

1500 15.23 0.37 

1525 15.38 0.38 

1550 15.53 0.40 

1575 15.68 0.41 
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The two-dimensional representation of the three-dimensional quadric surface looking down the 

[100] direction is presented in Figure 34. 

 

Figure 34. The two-dimensional projection of the three-dimensional representation of thermal 

expansion along the [100] for Lu2TiO5 in 25 °C steps from room temperature (inner circle) to 

1575 °C (outer circle). Low temperature indicated with the color blue changing to red with 

increasing temperature. 
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Er2TiO5 

As described in Chapter 4, powder of Er2TiO5 was mounted in a sapphire capillary and placed in 

the center of the quadrupole lamp furnace in alignment with the incident synchrotron X-ray 

radiation. An X-ray diffraction pattern was collected at each temperature from room temperature 

up to approximately 1275 °C in air. Using the programs GSAS and EXPGUI, the X-ray 

diffraction patterns were refined using the Rietveld method and the values for the lattice 

parameters, hkl, and corresponding d-spacings were extracted from the refined data. The lattice 

parameters as a function of temperature are plotted in Figure 35 and are listed in Table 7. 

 

 

Figure 35. The lattice parameter measured via in situ X-ray diffraction for Er2TiO5 in the cubic 

phase in air. Error bars lie within the symbols. 
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Table 7. The lattice parameter and volume of Er2TiO5 in the 

cubic phase as a function of the measured temperature. 

Temperature (°C) (±6) a (Å) Volume (Å3) 

29.9 5.12351(6) 134.49 

281 5.13390(6) 135.31 

426 5.13984(5) 135.78 

543 5.14581(6) 136.25 

655 5.15142(6) 136.70 

747 5.15661(6) 137.11 

831 5.16127(6) 137.48 

912 5.16569(6) 137.84 

984 5.17007(6) 138.19 

1021 5.17255(6) 138.39 

1065 5.17533(6) 138.61 

1097 5.17847(6) 138.86 

1133 5.18168(6) 139.12 

1175 5.18499(6) 139.39 

1212 5.18812(4) 139.64 

1249 5.19161(4) 139.92 

1281 5.19640(3) 140.31 

 

In addition to the determination of the lattice parameters, a CTEAS analysis was performed on 

the hkl listings and corresponding d-spacings as a function of temperature using a second-order 

polynomial fit. The results of the CTEAS analysis of the appropriate temperature range are listed 

in Table 8. 
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Table 8. The component of the thermal 

expansion tensor for Er2TiO5 as a function 

of extrapolated temperature. 

Temperature 

(°C) 

α11 (x 10-6/°C) Error 

25 5.48 0.54 

50 5.69 0.52 

75 5.89 0.50 

100 6.10 0.48 

125 6.31 0.46 

150 6.51 0.44 

175 6.72 0.43 

200 6.93 0.41 

225 7.13 0.39 

250 7.34 0.38 

275 7.55 0.36 

300 7.75 0.35 

325 7.96 0.34 

350 8.17 0.32 

375 8.37 0.31 

400 8.58 0.30 

425 8.78 0.29 

450 8.99 0.28 

475 9.20 0.27 

500 9.40 0.26 

525 9.61 0.25 

550 9.81 0.24 

575 10.02 0.24 

600 10.23 0.23 

625 10.43 0.22 

650 10.64 0.22 

675 10.84 0.21 

700 11.05 0.21 

725 11.26 0.20 

750 11.46 0.20 

775 11.67 0.20 

800 11.87 0.20 

825 12.08 0.20 

850 12.29 0.19 

875 12.49 0.19 

900 12.70 0.20 

925 12.90 0.20 

950 13.11 0.20 

975 13.31 0.20 

1000 13.52 0.20 

1025 13.72 0.21 

1050 13.93 0.21 

1075 14.14 0.22 

1100 14.34 0.22 

1125 14.55 0.23 

1150 14.76 0.24 

1175 14.96 0.24 

1200 15.17 0.25 

1225 15.37 0.26 

1250 15.58 0.27 

1275 15.79 0.28 
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The two-dimensional representation of the three-dimensional quadric surface looking down the 

[100] direction is presented in Figure 36. 

 

Figure 36. The two-dimensional projection of the three-dimensional representation of thermal 

expansion along the [100] for Er2TiO5 in 25 °C steps from room temperature (inner circle) to 

1275 °C (outer circle). Low temperature indicated with the color blue changing to red with 

increasing temperature. 
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Ho2TiO5 

As described in Chapter 4, powder of Ho2TiO5 was mounted in a sapphire capillary and placed in 

the center of the quadrupole lamp furnace in alignment with the incident synchrotron X-ray 

radiation. An X-ray diffraction pattern was collected at each temperature from room temperature 

up to approximately 1300 °C in air. Using the programs GSAS and EXPGUI, the X-ray 

diffraction patterns were refined using the Rietveld method and the values for the lattice 

parameters, hkl, and corresponding d-spacings were extracted from the refined data. The lattice 

parameters as a function of temperature are plotted in Figure 37 and are listed in Table 9. 

 

Figure 37. The lattice parameter measured via in situ X-ray diffraction for Ho2TiO5 in the 

cubic phase in air. Error bars lie within the symbols. 
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Table 9. The lattice parameter and volume of Ho2TiO5 in the 

cubic phase as a function of the measured temperature. 

Temperature (°C) (±6) a (Å) Volume (Å3) 

26.5 5.16103(6) 137.47 

287 5.17168(6) 138.32 

436 5.17799(7) 138.82 

564 5.18388(6) 139.30 

679 5.19002(6) 139.79 

784 5.19580(6) 140.26 

878 5.20102(6) 140.69 

892 5.20201(6) 140.77 

925 5.20381(6) 140.91 

940 5.20468(6) 140.98 

959 5.20581(6) 141.07 

977 5.20700(5) 141.17 

1010 5.20955(5) 141.38 

1028 5.21091(5) 141.49 

1047 5.21244(4) 141.61 

1069 5.21405(4) 141.75 

1088 5.21545(4) 141.86 

1109 5.21676(4) 141.97 

1122 5.21760(4) 142.04 

1142 5.21904(4) 142.15 

1161 5.22037(4) 142.26 

1185 5.22204(4) 142.40 

1211 5.22397(4) 142.56 

1239 5.22616(5) 142.74 

1268 5.22871(6) 142.94 

1301 5.23335(1) 143.33 

 

In addition to the determination of the lattice parameters, a CTEAS analysis was performed on 

the hkl listings and corresponding d-spacings as a function of temperature using a second-order 

polynomial fit. The results of the CTEAS analysis of the appropriate temperature range are listed 

in Table 10. 

 



58 

 

Table 10. The component of the thermal 

expansion tensor for Ho2TiO5 as a 

function of extrapolated temperature. 

Temperature 

(°C) 

α11 (x 10-6/°C) Error 

25 5.85 0.37 

50 6.04 0.36 

75 6.22 0.34 

100 6.40 0.33 

125 6.59 0.32 

150 6.77 0.31 

175 6.95 0.29 

200 7.13 0.28 

225 7.32 0.27 

250 7.50 0.26 

275 7.68 0.25 

300 7.87 0.24 

325 8.05 0.23 

350 8.23 0.23 

375 8.41 0.22 

400 8.60 0.21 

425 8.78 0.20 

450 8.96 0.20 

475 9.15 0.19 

500 9.33 0.18 

525 9.51 0.18 

550 9.69 0.17 

575 9.88 0.17 

600 10.06 0.16 

625 10.24 0.16 

650 10.42 0.16 

675 10.61 0.15 

700 10.79 0.15 

725 10.97 0.15 

750 11.16 0.15 

775 11.34 0.15 

800 11.52 0.15 

825 11.70 0.15 

850 11.89 0.15 

875 12.07 0.15 

900 12.25 0.15 

925 12.44 0.15 

950 12.62 0.15 

975 12.80 0.15 

1000 12.98 0.16 

1025 13.17 0.16 

1050 13.35 0.16 

1075 13.53 0.17 

1100 13.71 0.17 

1125 13.90 0.18 

1150 14.08 0.18 

1175 14.26 0.19 

1200 14.45 0.19 

1225 14.63 0.20 

1250 14.81 0.21 

1275 14.99 0.21 

1300 15.18 0.22 
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The two-dimensional representation of the three-dimensional quadric surface looking down the 

[100] direction is presented in Figure 38. 

 

Figure 38. The two-dimensional projection of the three-dimensional representation of thermal 

expansion along the [100] for Ho2TiO5 in 25 °C steps from room temperature (inner circle) to 

1300 °C (outer circle). Low temperature indicated with the color blue changing to red with 

increasing temperature. 
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Y2TiO5 

As described in Chapter 4, powder of Y2TiO5 in the cubic phase (Y2TiO5 can exist in both the 

cubic and orthorhombic phase at room temperature) was mounted in a sapphire capillary and 

placed in the center of the quadrupole lamp furnace in alignment with the incident synchrotron 

X-ray radiation. An X-ray diffraction pattern was collected at each temperature from room 

temperature up to approximately 1275 °C in air. Using the programs GSAS and EXPGUI, the X-

ray diffraction patterns were refined using the Rietveld method and the values for the lattice 

parameters, hkl, and corresponding d-spacings were extracted from the refined data. The lattice 

parameters as a function of temperature are plotted in Figure 39 and are listed in Table 11. 

 

Figure 39. The lattice parameter measured via in situ X-ray diffraction for Y2TiO5 in the cubic 

phase in air. Error bars lie within the symbols. 
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Table 11. The lattice parameter and volume of Y2TiO5 in the 

cubic phase as a function of the measured temperature. 

Temperature (°C) (±6) a (Å) Volume (Å3) 

29.9 5.14488(3) 136.18 

309 5.15713(5) 137.15 

452 5.16304(3) 137.63 

579 5.16913(3) 138.11 

684 5.17479(3) 138.57 

781 5.17982(3) 138.97 

862 5.18445(3) 139.34 

938 5.18877(3) 139.69 

955 5.18976(3) 139.77 

968 5.19083(3) 139.86 

970 5.19078(3) 139.86 

986 5.19174(3) 139.93 

1002 5.19280(3) 140.02 

1006 5.19306(3) 140.04 

1016 5.19387(3) 140.11 

1029 5.19497(3) 140.20 

1040 5.19538(3) 140.23 

1044 5.19614(3) 140.29 

1060 5.19739(3) 140.39 

1075 5.19781(3) 140.43 

1091 5.20009(3) 140.61 

1106 5.20151(3) 140.73 

1109 5.20054(3) 140.65 

1137 5.20433(3) 140.95 

1143 5.20341(2) 140.88 

1154 5.20566(2) 141.06 

1170 5.20703(2) 141.17 

1177 5.20644(3) 141.13 

1213 5.20916(3) 141.35 

1250 5.21219(3) 141.59 

1289 5.21553(3) 141.87 
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In addition to the determination of the lattice parameters, a CTEAS analysis was performed on 

the hkl listings and corresponding d-spacings as a function of temperature using a second-order 

polynomial fit. The results of the CTEAS analysis of the appropriate temperature range are listed 

in Table 12. 

Table 12. The component of the thermal 

expansion tensor for Y2TiO5 as a function 

of extrapolated temperature. 

Temperature 

(°C) 

α11 (x 10-6/°C) Error 

25 5.98 0.39 

50 6.16 0.38 

75 6.35 0.36 

100 6.53 0.35 

125 6.71 0.33 

150 6.89 0.32 

175 7.08 0.31 

200 7.26 0.29 

225 7.44 0.28 

250 7.62 0.27 

275 7.80 0.26 

300 7.98 0.25 

325 8.16 0.24 

350 8.34 0.23 

375 8.53 0.22 

400 8.71 0.21 

425 8.89 0.20 

450 9.07 0.19 

475 9.25 0.19 

500 9.43 0.18 

525 9.61 0.17 

550 9.79 0.17 

575 9.97 0.16 

600 10.15 0.16 

625 10.33 0.15 

650 10.51 0.15 

675 10.69 0.14 

700 10.87 0.14 

725 11.05 0.14 

750 11.23 0.13 

775 11.41 0.13 

800 11.59 0.13 

825 11.76 0.13 

850 11.94 0.13 

875 12.12 0.13 

900 12.30 0.13 

925 12.48 0.13 

950 12.66 0.13 

975 12.84 0.13 

1000 13.03 0.14 

1025 13.21 0.14 

1050 13.39 0.14 

1075 13.58 0.15 

1100 13.76 0.15 

1125 13.94 0.16 

1150 14.13 0.16 

1175 14.31 0.17 

1200 14.50 0.17 

1225 14.68 0.18 

1250 14.87 0.19 

1275 15.05 0.19 
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The two-dimensional representation of the three-dimensional quadric surface looking down the 

[100] direction is presented in Figure 40. 

 

Figure 40. The two-dimensional projection of the three-dimensional representation of thermal 

expansion along the [100] for Y2TiO5 in 25 °C steps from room temperature (inner circle) to 

1275 °C (outer circle). Low temperature indicated with the color blue changing to red with 

increasing temperature. 
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Dy2TiO5 

As described in Chapter 4, powder of Dy2TiO5 in the cubic phase (Dy2TiO5 can exist in both the 

cubic and orthorhombic phase at room temperature) was mounted in a sapphire capillary and 

placed in the center of the quadrupole lamp furnace in alignment with the incident synchrotron 

X-ray radiation. An X-ray diffraction pattern was collected at each temperature from room 

temperature up to approximately 1150 °C in air. Using the programs GSAS and EXPGUI, the X-

ray diffraction patterns were refined using the Rietveld method and the values for the lattice 

parameters, hkl, and corresponding d-spacings were extracted from the refined data. The lattice 

parameters as a function of temperature are plotted in Figure 41 and are listed in Table 13. 

 

 

Figure 41. The lattice parameter measured via in situ X-ray diffraction for Dy2TiO5 in the 

cubic phase in air. Error bars lie within the symbols. 
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Table 13. The lattice parameter and volume of Dy2TiO5 in the 

cubic phase as a function of the measured temperature. 

Temperature (°C) (±6) a (Å) Volume (Å3) 

29.9 5.15953(8) 137.35 

316 5.17235(8) 138.37 

463 5.17888(9) 138.90 

601 5.18581(8) 139.46 

723 5.19255(8) 140.00 

834 5.19868(9) 140.50 

929 5.2044(1) 140.96 

1024 5.21075(9) 141.48 

1103 5.2167(1) 141.97 

1138 5.21870(9) 142.13 

1166 5.2200(1) 142.23 

 

 

In addition to the determination of the lattice parameters, a CTEAS analysis was performed on 

the hkl listings and corresponding d-spacings as a function of temperature using a second-order 

polynomial fit. The results of the CTEAS analysis of the appropriate temperature range are listed 

in Table 14. 
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Table 14. The component of the thermal 

expansion tensor for Dy2TiO5 as a 

function of extrapolated temperature. 

Temperature 

(°C) 

α11 (x 10-6/°C) Error 

25 7.33 0.19 

50 7.46 0.18 

75 7.58 0.18 

100 7.71 0.17 

125 7.84 0.16 

150 7.97 0.16 

175 8.10 0.15 

200 8.23 0.15 

225 8.35 0.14 

250 8.48 0.14 

275 8.61 0.13 

300 8.74 0.13 

325 8.87 0.12 

350 9.00 0.12 

375 9.12 0.11 

400 9.25 0.11 

425 9.38 0.11 

450 9.51 0.10 

475 9.64 0.10 

500 9.77 0.10 

525 9.89 0.09 

550 10.02 0.09 

575 10.15 0.09 

600 10.28 0.09 

625 10.41 0.09 

650 10.54 0.09 

675 10.66 0.08 

700 10.79 0.08 

725 10.92 0.08 

750 11.05 0.08 

775 11.18 0.08 

800 11.31 0.08 

825 11.43 0.08 

850 11.56 0.08 

875 11.69 0.08 

900 11.82 0.09 

925 11.95 0.09 

950 12.08 0.09 

975 12.20 0.09 

1000 12.33 0.09 

1025 12.46 0.09 

1050 12.59 0.10 

1075 12.72 0.10 

1100 12.85 0.10 

1125 12.97 0.11 

1150 13.10 0.11 

1175 13.23 0.11 
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The two-dimensional representation of the three-dimensional quadric surface looking down the 

[100] direction is presented in Figure 42. 

 

Figure 42. The two-dimensional projection of the three-dimensional representation of thermal 

expansion along the [100] for Dy2TiO5 in 25 °C steps from room temperature (inner circle) to 

1175 °C (outer circle). Low temperature indicated with the color blue changing to red with 

increasing temperature. 
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5.1.2 Discussion and Mechanism of Thermal Expansion 

As described above, the change in lattice parameter and values for thermal expansion follow an 

expected trend for a cubic system. As temperature is increased the distance between two 

neighboring atoms is increased resulting in an overall expansion of the cell. 

Commonly, the thermal expansion of a cubic system is erroneously reported as a single value. 

This implies that the rate of expansion is constant over an entire temperature range which is 

almost never the case. Here we see a cell which is expanding at an increasing rate with 

temperature, as with most systems, which requires more than one value to describe. This is 

reflected in the data both provided above in Figures 33, 35, 37, 39, and 41, and in a combined 

form below in Figure 43. 

Unlike the orthorhombic phase, there is no trend to be found in the thermal expansion behavior 

with respect to the size of the rare-earth cation. Generally, the coefficient of thermal expansion 

starts at a relatively moderate value of 5-7 x10-6 and increases linearly for each material till 

reaching a value of approximately 15-16 x10-6. 
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The mechanism of thermal expansion in the cubic phase is relatively clear and simple. All of the 

atoms in the cubic phase are located at special positions. Each special position in the structure is 

fixed in its relative position in each cell meaning the x, y, and z coordinate of each atom does not 

change. Because of this, the mechanism of thermal expansion in the cubic phase is related to the 

interatomic distance between each of the ions. 

The Lennard-Jones potential describes the interatomic distance as a balance between attractive 

and repulsive forces, the equation for which is reproduced below[107] 

𝐸(𝑟) = 4𝜀 [(
𝜎

𝑟
)

12

− (
𝜎

𝑟
)

6

] 

where E is the intermolecular potential between the two atoms, ε the “well” depth, σ the potential 

when the distance between the atoms is zero, and r the separation. An illustration of this equation 

is provided in Figure 44. The potential “well” describes the distance where the repulsive forces 

are balanced by the attractive forces. If a material was cooled to 0 K, you would expect the atom 

to be at the bottom of this well (i.e. the minima of the curve). As energy is put into the system, in 

the form of thermal energy, the atom vibrates up the well, and the average distance between the 

two atoms increases as depicted in Figure 44. Since the shape of the well itself is not symmetric 

about its minima, the differential change in distance with temperature is not linear. As a result of 

this non-linearity, the change in lattice parameter observed as a function of temperature in this 

study is also non-linear. It should be noted that the Lennard-Jones potential was not used as a 

means to fit the thermal expansion data in the cubic phase, but only as a qualitative description of 

thermal expansion in general. This simple, yet sufficient, explanation of the nature of thermal 

expansion in cubic systems describes the underlying mechanism well. 
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Figure 44. The Lennard-Jones potential for a generalized system. As thermal energy is added 

to a system, the average distance between atoms is increased. 
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5.1.3 Conclusions 

The thermal expansion behavior of Lu2TiO5, Er2TiO5, Ho2TiO5, Y2TiO5, and Dy2TiO5 were 

evaluated. As a function of temperature the cubic phase expands at an increasing rate. This 

behavior is expected with an increase in thermal energy in the system as the distance between 

two atoms increases. This distance is related to the Lennard-Jones potential which describes the 

potential energy of bonding with the distance between two atoms. Since the well is not 

symmetric about its center, it is not expected that the increase in the expansion rate would be 

constant, and as such, agrees well with the observations made in this study. 
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5.2 Thermal Expansion in the Orthorhombic Phase 

The thermal expansion behavior in the orthorhombic phase was determined for Y2TiO5, 

Dy2TiO5, Gd2TiO5, Nd2TiO5, and La2TiO5 using X-ray diffraction to monitor the 

crystallographic changes in the structure as a function of temperature in air. Results will be 

presented in order of increasing rare-earth cation ion size (Y, Dy, Gd, Nd, and La). 

5.2.1 Results 

Y2TiO5 

As described in Chapter 4, powder of Y2TiO5 in the orthorhombic phase (where Y2TiO5 can exist 

in both the cubic and orthorhombic phase at room temperature) was mounted in a sapphire 

capillary and placed in the center of the quadrupole lamp furnace in alignment with the incident 

synchrotron X-ray radiation. An X-ray diffraction pattern was collected at each temperature from 

room temperature up to approximately 1400 °C in air. Using the programs GSAS and EXPGUI, 

the X-ray diffraction patterns were refined using the Rietveld method and the values for the 

lattice parameters, hkl, and corresponding d-spacings were extracted from the refined data. The 

lattice parameters as a function of temperature are plotted in Figures 45, 46, and 47 and are listed 

in Table 15. 
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Figure 45. The lattice parameter of the a-axis in orthorhombic Y2TiO5 as a function of 

temperature. Error bars lie within the symbols. 

 

Figure 46. The lattice parameter of the b-axis in orthorhombic Y2TiO5 as a function of 

temperature. Error bars lie within the symbols. 
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Figure 47. The lattice parameter of the c-axis in orthorhombic Y2TiO5 as a function of 

temperature. Error bars lie within the symbols. 

 

Table 15. The lattice parameters of Y2TiO5 in the orthorhombic phase 

as a function of the measured temperature. 

Temperature (°C) (±6) a (Å) b (Å) c (Å) 

29 10.31788(8) 3.69431(2) 11.22110(8) 

329 10.34200(8) 3.70756(2) 11.23322(7) 

486 10.35622(8) 3.71563(2) 11.23894(7) 

618 10.36899(8) 3.72305(2) 11.24239(7) 

731 10.38022(8) 3.72993(2) 11.24329(7) 

826 10.39063(8) 3.73619(2) 11.24147(7) 

909 10.40013(8) 3.74200(2) 11.23758(9) 

980 10.40855(8) 3.74707(3) 11.23233(9) 

1038 10.41635(7) 3.75114(2) 11.22730(7) 

1094 10.42392(8) 3.75501(2) 11.22214(7) 

1156 10.43248(8) 3.75922(2) 11.21587(7) 

1226 10.44231(8) 3.76364(2) 11.20906(7) 

1310 10.45554(9) 3.76893(2) 11.20157(7) 

1424 10.4678(5) 3.7743(1) 11.1883(4) 
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In addition to the determination of the lattice parameters, a CTEAS analysis was performed on 

the hkl listings and corresponding d-spacings as a function of temperature using a fourth-order 

polynomial fit. The results of the CTEAS analysis of the appropriate temperature range is 

depicted in Figure 48 and listed in Table 16. 

 

Figure 48. The coefficients of thermal expansion for Y2TiO5 in the orthorhombic phase as a 

function of temperature. Error bars lie within the symbols. 

 

 

 



77 

 

Table 16. The coefficients of thermal expansion for Y2TiO5 in the 

orthorhombic phase as a function of extrapolated temperature. 

Temperature (°C) α11 α22 α33 Error 

25 7.43 12.10 -0.33 0.17 

100 7.63 11.80 2.08 0.15 

200 7.91 11.90 4.04 0.14 

300 8.22 12.50 4.75 0.13 

400 8.58 13.50 4.42 0.12 

500 8.99 14.60 3.28 0.11 

600 9.46 15.80 1.54 0.10 

700 10.00 17.00 -0.57 0.09 

800 10.60 17.90 -2.83 0.09 

900 11.30 18.60 -5.03 0.08 

1000 12.10 18.80 -6.93 0.08 

1100 13.10 18.40 -8.34 0.09 

1200 14.10 17.30 -9.03 0.10 

1300 15.30 15.30 -8.78 0.14 

 

Dy2TiO5 

As described in Chapter 4, powder of Dy2TiO5 in the orthorhombic phase (where Dy2TiO5 can 

exist in both the cubic and orthorhombic phase at room temperature) was mounted in a sapphire 

capillary and placed in the center of the quadrupole lamp furnace in alignment with the incident 

synchrotron X-ray radiation. An X-ray diffraction pattern was collected at each temperature from 

room temperature up to approximately 1400 °C in air. Using the programs GSAS and EXPGUI, 

the X-ray diffraction patterns were refined using the Rietveld method and the values for the 

lattice parameters, hkl, and corresponding d-spacings were extracted from the refined data. The 

lattice parameters as a function of temperature are plotted in Figures 49, 50, and 51 and are listed 

in Table 17. 



78 

 

 

Figure 49. The lattice parameter of the a-axis in orthorhombic Dy2TiO5 as a function of 

temperature. Error bars lie within the symbols. 

 

Figure 50. The lattice parameter of the b-axis in orthorhombic Dy2TiO5 as a function of 

temperature. Error bars lie within the symbols. 
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Figure 51. The lattice parameter of the c-axis in orthorhombic Dy2TiO5 as a function of 

temperature. Error bars lie within the symbols. 

 

Table 17. The lattice parameters of Dy2TiO5 in the orthorhombic 

phase as a function of the measured temperature. 

Temperature (°C) (±6) a (Å) b (Å) c (Å) 

29 10.3663(1) 3.71667(4) 11.2388(1) 

304 10.3888(1) 3.72798(3) 11.2556(1) 

445 10.40253(9) 3.73509(3) 11.26210(9) 

571 10.41467(9) 3.74166(2) 11.26628(9) 

689 10.42652(8) 3.74830(2) 11.26799(9) 

792 10.43687(8) 3.75508(3) 11.2656(1) 

886 10.44768(8) 3.76121(2) 11.26174(8) 

973 10.45737(8) 3.76674(2) 11.25642(7) 

1049 10.46729(9) 3.77194(2) 11.24940(7) 

1121 10.47750(9) 3.77692(2) 11.24175(8) 

1189 10.4891(1) 3.78196(3) 11.23348(8) 

1254 10.5025(1) 3.78713(3) 11.22477(9) 

1350 10.5192(1) 3.79321(3) 11.21540(9) 
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In addition to the determination of the lattice parameters, a CTEAS analysis was performed on 

the hkl listings and corresponding d-spacings as a function of temperature using a fourth-order 

polynomial fit. The results of the CTEAS analysis of the appropriate temperature range is 

depicted in Figure 52 and listed in Table 18. 

 

Figure 52. The coefficients of thermal expansion for Dy2TiO5 in the orthorhombic phase as a 

function of temperature. Error bars lie within the symbols. 
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Table 18. The coefficients of thermal expansion for Dy2TiO5 in the 

orthorhombic phase as a function of extrapolated temperature. 

Temperature (°C) α11 α22 α33 Error 

25 6.99 10.20 3.25 0.32 

100 7.69 10.70 4.68 0.28 

200 8.35 11.40 5.61 0.25 

300 8.76 12.30 5.57 0.23 

400 9.02 13.30 4.74 0.21 

500 9.22 14.20 3.29 0.19 

600 9.45 15.20 1.37 0.18 

700 9.78 16.10 -0.85 0.17 

800 10.30 17.00 -3.18 0.15 

900 11.20 17.70 -5.48 0.14 

1000 12.40 18.30 -7.57 0.14 

1100 14.10 18.70 -9.29 0.15 

1200 16.40 18.80 -10.50 0.18 

1300 19.30 18.70 -10.90 0.23 

 

Gd2TiO5 

As described in Chapter 4, powder of Gd2TiO5 in the orthorhombic phase was mounted in a 

sapphire capillary and placed in the center of the quadrupole lamp furnace in alignment with the 

incident synchrotron X-ray radiation. An X-ray diffraction pattern was collected at each 

temperature from room temperature up to approximately 1550 °C in air. Using the programs 

GSAS and EXPGUI, the X-ray diffraction patterns were refined using the Rietveld method and 

the values for the lattice parameters, hkl, and corresponding d-spacings were extracted from the 

refined data. The lattice parameters as a function of temperature are plotted in Figures 53, 54, 

and 55 and are listed in Table 19. 
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Figure 53. The lattice parameter of the a-axis in orthorhombic Gd2TiO5 as a function of 

temperature. Error bars lie within the symbols. 

 

Figure 54. The lattice parameter of the b-axis in orthorhombic Gd2TiO5 as a function of 

temperature. Error bars lie within the symbols. 
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Figure 55. The lattice parameter of the c-axis in orthorhombic Gd2TiO5 as a function of 

temperature. Error bars lie within the symbols. 
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Table 19. The lattice parameters of Gd2TiO5 in the orthorhombic 

phase as a function of the measured temperature. 

Temperature (°C) (±6) a (Å) b (Å) c (Å) 

28 10.4812(1) 3.75776(6) 11.3105(1) 

220 10.4971(2) 3.76616(7) 11.3154(2) 

439 10.5183(1) 3.77853(6) 11.3172(2) 

548 10.5293(1) 3.78435(5) 11.3181(1) 

641 10.5389(2) 3.78961(7) 11.3176(2) 

738 10.5481(1) 3.79560(4) 11.3158(1) 

824 10.5554(1) 3.8006(4) 11.3129(1) 

896 10.5652(1) 3.80618(4) 11.3086(1) 

984 10.5747(1) 3.8113(3) 11.3045(1) 

1030 10.5794(1) 3.81380(3) 11.3019(1) 

1070 10.5839(1) 3.81601(3) 11.2997(1) 

1103 10.5886(1) 3.81846(3) 11.2964(1) 

1137 10.5945(1) 3.82106(3) 11.2926(1) 

1167 10.6005(1) 3.82416(3) 11.2884(1) 

1219 10.6085(1) 3.82752(4) 11.2832(1) 

1265 10.6167(1) 3.83115(4) 11.2776(1) 

1324 10.6270(2) 3.83549(6) 11.2722(1) 

1384 10.6389(3) 3.84043(9) 11.2661(2) 

1432 10.6501(5) 3.8451(1) 11.2601(3) 

1487 10.6639(7) 3.85025(1) 11.2537(5) 

 

 

In addition to the determination of the lattice parameters, a CTEAS analysis was performed on 

the hkl listings and corresponding d-spacings as a function of temperature using a fourth-order 

polynomial fit. The results of the CTEAS analysis of the appropriate temperature range is 

depicted in Figure 56 and listed in Table 20. 
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Figure 56. The coefficients of thermal expansion for Gd2TiO5 in the orthorhombic phase as a 

function of temperature. Error bars lie within the symbols. 
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Table 20. The coefficients of thermal expansion for Gd2TiO5 in the 

orthorhombic phase as a function of extrapolated temperature. 

Temperature (°C) α11 α22 α33 Error 

25 10.60 14.90 0.84 2.81 

100 9.46 13.60 1.36 2.34 

200 8.39 12.60 1.64 1.92 

300 7.79 12.30 1.53 1.65 

400 7.60 12.50 1.06 1.49 

500 7.79 13.10 0.30 1.38 

600 8.33 14.10 -0.70 1.30 

700 9.15 15.30 -1.88 1.22 

800 10.20 16.60 -3.20 1.14 

900 11.50 17.90 -4.60 1.06 

1000 12.90 19.10 -6.02 0.98 

1100 14.50 20.10 -7.42 0.94 

1200 16.20 20.80 -8.73 0.98 

1300 17.90 21.00 -9.91 1.14 

1400 19.60 20.70 -10.90 1.49 

1500 21.30 19.70 -11.60 2.09 

 

Nd2TiO5 

As described in Chapter 4, powder of Nd2TiO5 in the orthorhombic phase was mounted in a 

sapphire capillary and placed in the center of the quadrupole lamp furnace in alignment with the 

incident synchrotron X-ray radiation. An X-ray diffraction pattern was collected at each 

temperature from room temperature up to approximately 1600 °C in air. Using the programs 

GSAS and EXPGUI, the X-ray diffraction patterns were refined using the Rietveld method and 

the values for the lattice parameters, hkl, and corresponding d-spacings were extracted from the 

refined data. The lattice parameters as a function of temperature are plotted in Figures 57, 58, 

and 59 and are listed in Table 21. 
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Figure 57. The lattice parameter of the a-axis in orthorhombic Nd2TiO5 as a function of 

temperature. Error bars lie within the symbols. 

 

Figure 58. The lattice parameter of the b-axis in orthorhombic Nd2TiO5 as a function of 

temperature. Error bars lie within the symbols. 
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Figure 59. The lattice parameter of the c-axis in orthorhombic Nd2TiO5 as a function of 

temperature. Error bars lie within the symbols. 
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Table 21. The lattice parameters of Nd2TiO5 in the orthorhombic 

phase as a function of the measured temperature. 

Temperature (°C) (±6) a (Å) b (Å) c (Å) 

27 10.7241(2) 3.84366(5) 11.3535(1) 

233 10.7419(1) 3.85457(5) 11.3543(1) 

362 10.7534(1) 3.86182(4) 11.3558(1) 

482 10.7638(1) 3.86924(4) 11.3547(1) 

604 10.7740(1) 3.87682(4) 11.3525(1) 

711 10.7836(1) 3.88409(4) 11.3491(1) 

813 10.7930(1) 3.89068(4) 11.3465(1) 

911 10.8025(1) 3.89653(3) 11.3444(1) 

996 10.8115(1) 3.90208(3) 11.34255(1) 

1072 10.8206(1) 3.90716(3) 11.34030(9) 

1114 10.8253(1) 3.90989(3) 11.33939(9) 

1151 10.8308(1) 3.91282(3) 11.3379(1) 

1191 10.8368(1) 3.91576(3) 11.3361(1) 

1227 10.8432(1) 3.91904(3) 11.3339(1) 

1263 10.8503(1) 3.92231(3) 11.3315(1) 

1303 10.8579(1) 3.92583(4) 11.32869(5) 

1335 10.8664(1) 3.92931(4) 11.3255(1) 

1371 10.8751(1) 3.93311(4) 11.3216(1) 

1406 10.8859(2) 3.93763(5) 11.31619(1) 

1449 10.8995(2) 3.94256(6) 11.3100(1) 

1493 10.9145(3) 3.94765(7) 11.3029(2) 

1535 10.9299(2) 3.95312(7) 11.2941(2) 

 

In addition to the determination of the lattice parameters, a CTEAS analysis was performed on 

the hkl listings and corresponding d-spacings as a function of temperature using a fourth-order 

polynomial fit. The results of the CTEAS analysis of the appropriate temperature range is 

depicted in Figure 60 and listed in Table 22. 
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Figure 60. The coefficients of thermal expansion for Nd2TiO5 in the orthorhombic phase as a 

function of temperature. Error bars lie within the symbols. 
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Table 22. The coefficients of thermal expansion for Nd2TiO5 in the 

orthorhombic phase as a function of extrapolated temperature. 

Temperature (°C) α11 α22 α33 Error 

25 6.24 11.00 4.41 0.29 

100 7.40 12.90 2.30 0.24 

200 8.28 14.60 0.31 0.19 

300 8.60 15.60 -0.92 0.17 

400 8.56 16.10 -1.57 0.16 

500 8.31 16.20 -1.79 0.15 

600 8.05 16.10 -1.75 0.15 

700 7.93 16.00 -1.62 0.14 

800 8.14 16.10 -1.54 0.13 

900 8.86 16.40 -1.70 0.12 

1000 10.30 17.20 -2.25 0.11 

1100 12.60 18.70 -3.35 0.10 

1200 15.90 21.00 -5.16 0.09 

1300 20.50 24.30 -7.84 0.10 

1400 26.50 28.90 -11.50 0.12 

1500 34.20 34.80 -16.40 0.17 

 

La2TiO5 

As described in Chapter 4, powder of La2TiO5 in the orthorhombic phase was mounted in a 

sapphire capillary and placed in the center of the quadrupole lamp furnace in alignment with the 

incident synchrotron X-ray radiation. An X-ray diffraction pattern was collected at each 

temperature from room temperature up to approximately 1400 °C in air. Using the programs 

GSAS and EXPGUI, the X-ray diffraction patterns were refined using the Rietveld method and 

the values for the lattice parameters, hkl, and corresponding d-spacings were extracted from the 

refined data. The lattice parameters as a function of temperature are plotted in Figures 61, 62, 

and 63 and are listed in Table 23. 
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Figure 61. The lattice parameter of the a-axis in orthorhombic La2TiO5 as a function of 

temperature. Error bars lie within the symbols. 

 

Figure 62. The lattice parameter of the b-axis in orthorhombic La2TiO5 as a function of 

temperature. Error bars lie within the symbols. 
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Figure 63. The lattice parameter of the c-axis in orthorhombic La2TiO5 as a function of 

temperature. Error bars lie within the symbols. 
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Table 23. The lattice parameters of La2TiO5 in the orthorhombic 

phase as a function of the measured temperature. 

Temperature (°C) (±6) a (Å) b (Å) c (Å) 

27 11.0019(2) 3.94031(5) 11.4082(1) 

225 11.0118(1) 3.95274(3) 11.4084(1) 

344 11.0174(1) 3.96119(4) 11.4076(1) 

453 11.0222(1) 3.96925(4) 11.4064(1) 

561 11.0280(1) 3.97709(3) 11.4048(1) 

662 11.0338(1) 3.98436(3) 11.4040(1) 

759 11.0401(1) 3.99091(4) 11.4044(1) 

848 11.0466(1) 3.99702(4) 11.4049(1) 

928 11.0531(1) 4.00247(4) 11.4051(1) 

997 11.0597(1) 4.00754(4) 11.4046(1) 

1029 11.0632(1) 4.01001(4) 11.4043(1) 

1064 11.0669(1) 4.01261(4) 11.4038(1) 

1098 11.0711(1) 4.01536(4) 11.4028(1) 

1134 11.0764(1) 4.01848(4) 11.4016(1) 

1171 11.0822(1) 4.02179(3) 11.40003(8) 

1210 11.0885(1) 4.02503(3) 11.39792(9) 

1252 11.0964(1) 4.02902(3) 11.39510(9) 

1293 11.1063(1) 4.03357(3) 11.3914(1) 

1328 11.1159(1) 4.03807(3) 11.3873(1) 

1361 11.1268(1) 4.04255(4) 11.3824(1) 

1398 11.1418(1) 4.04856(3) 11.3768(1) 

 

In addition to the determination of the lattice parameters, a CTEAS analysis was performed on 

the hkl listings and corresponding d-spacings as a function of temperature using a fourth-order 

polynomial fit. The results of the CTEAS analysis of the appropriate temperature range is 

depicted in Figure 64 and listed in Table 24. 
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Figure 64. The coefficients of thermal expansion for La2TiO5 in the orthorhombic phase as a 

function of temperature. Error bars lie within the symbols. 
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Table 24. The coefficients of thermal expansion for La2TiO5 in the 

orthorhombic phase as a function of extrapolated temperature. 

Temperature (°C) α11 α22 α33 Error 

25 1.85 12.30 2.39 0.34 

100 3.33 15.00 0.71 0.28 

200 4.51 17.30 -0.67 0.22 

300 5.05 18.50 -1.26 0.19 

400 5.19 18.80 -1.27 0.18 

500 5.12 18.50 -0.91 0.17 

600 5.08 17.90 -0.39 0.17 

700 5.24 17.30 0.10 0.16 

800 5.85 16.90 0.33 0.15 

900 7.12 17.10 0.12 0.13 

1000 9.26 18.20 -0.76 0.12 

1100 12.50 20.30 -2.50 0.12 

1200 17.10 24.00 -5.32 0.12 

1300 23.40 29.40 -9.41 0.15 

1400 31.50 37.00 -15.00 0.22 

 

5.2.2 Discussion and Mechanism of Thermal Expansion 

The general structure for the orthorhombic phase of Ln2TiO5 is depicted in Figure 13. Among the 

rare-earth titanates that crystallize in the orthorhombic phase at room temperature, La, Nd, Gd, 

Dy, and Y were chosen because they provide the full range of cation sizes in this phase. The 

lattice parameters for each sample as a function of temperature are plotted in the Figures above 

and listed in Tables 15, 17, 19, 21, and 23 and combined in Figure 65. 

As expected, the initial lattice parameters and volume follow a trend associated with the relative 

rare-earth cation size: smaller cations have cells with smaller lattice parameters and volumes, and 

larger cations have cells with larger lattice parameters and volumes. This information can be 

compared with the theoretical sizes of the rare-earth cations as published by Shannon and is in 

agreement. 
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Initially, the lattice parameters for each sample increased as a function of temperature. Upon 

continued heating, however, the lattice parameters for the c-axis reach a maximum and begins to 

decrease. This behavior was different from the findings in a similar study to characterize the 

thermal expansion behavior of Dy2TiO5 and Gd2TiO5, where a study that was carried out in an 

argon atmosphere.[47,108]  

In the argon study the thermal expansion along each of the primary crystallographic directions 

was both positive and increasing as a function of temperature. This would suggest that oxygen 

vacancies resulting from a lower oxygen partial pressure can have a significant impact on the 

thermal expansion behavior in this materials system. Depending on the intended operating 

conditions, this could result in undesirable thermophysical or mechanical behavior. The effect of 

oxygen vacancies on the thermal expansion warrants further exploration. 

A CTEAS analysis was performed for each sample in terms of a fourth-order polynomial fit of 

each hkl and corresponding d-spacing. For an orthorhombic crystal system only three 

components of the thermal expansion tensor were needed to describe the system, and the results 

of the calculation are presented in Table 25 and Figure 66. A clear relationship existed between 

the size of the rare-earth cation and the thermal expansion behavior. For example, α33 began as a 

relatively small number, but upon heating this value increased with temperature until it reached a 

maximum value, after which it contracted. The temperature at which the onset of contraction 

began was related to the rare-earth cation size. For rare-earth cations which had smaller radii (i.e. 

Y and Dy) this transition occurred at higher temperatures, and for larger rare-earth cations (i.e. 

La and Nd) it occurred at lower temperatures. This relationship is depicted in Figure 66(d). 

Overall, the thermal expansion behavior was similar across the lanthanide series and shifted by 

temperature in relation to the size of the rare-earth cation. 
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For comparison, the linear thermal expansion was measured for Nd2TiO5 and Dy2TiO5 by means 

of dilatometry. The results of this measurement, along with the average coefficient of thermal 

expansion calculated from the X-ray diffraction data, are provided in Figure 67. Generally, the 

linear thermal expansion behavior displays similar trends between measurements made via 

dilatometry versus those made through X-ray diffraction techniques. At first, both measurements 

showed an increase in the thermal expansion coefficient followed by a plateau of no change or a 

slight decrease in the thermal expansion coefficient. Then, at higher temperatures the coefficient 

of thermal expansion began to increase again. While the general behavior patterns observed 

through the two measurement techniques were similar, the values for the coefficient of thermal 

expansion were not. The difference in the overall value of the coefficient of thermal expansion 

could potentially be caused by strain and grain effects that may be present in a sintered sample 

but not in the relatively strain free powder samples. This strain was evident after a comparison of 

the room temperature lattice parameters was made via X-ray diffraction between the sintered and 

powder samples and was found to be up to 2.8% different. 
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Figure 67. A comparison of the linear thermal expansion measured via dilatometry versus X-

ray diffraction for orthorhombic Dy2TiO5 and Nd2TiO5. 

 

When interpreting the mechanism behind the thermal expansion behavior in the Ln2TiO5 system, 

it is best to start at the end result. Upon heating, Y2TiO5, Dy2TiO5, and Gd2TiO5 will transform 

from the orthorhombic phase to the hexagonal phase at approximately 1300 °C, 1370 °C, and 

1700 °C, respectively. This is to say that, as the size of the rare-earth cation increases, the 

transformation temperature also increases. In contrast, as the size of the rare-earth cation 

increases, the melting temperature decreases. In other words, although the orthorhombic forms of 

La-Eu did not transform into the hexagonal phase, it seems likely that they would have done so if 

they had not melted beforehand.  
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In both the hexagonal and orthorhombic phases the Ti cation is five-fold coordinated with 

surrounding oxygen atoms, forming a trigonal bipyramidal structure. In the hexagonal phase this 

structure is ideal, meaning the distances between the equatorial oxygen atoms and the central 

titanium atom are the same, as well as those between the central titanium atom and the axial 

oxygen atoms. The angles formed between the atoms are also ideal, where the angle formed 

between two oxygen atoms in the equatorial plane with the central titanium atom are all 120 °, 

and the angle between the axial oxygen atoms with the central atom at 180 °. The trigonal 

bipyramidal structure in the orthorhombic phase, on the other hand, is far from ideal and is 

highly distorted. In the orthorhombic phase the O1, O4, and O5 atoms form the triangular base of 

the trigonal bipyramidal structure, with the O3 atoms found in the axial positions. For clarity, 

Figure 68 describes this distortion for both the orthorhombic and the hexagonal phase. Due to the 

symmetry constraints of the space group, all of the atoms are found to reside in either a 0.25 or 

0.75 y-position. Though the O1, O4, O5, and Ti atoms reside in the same plane, their movements 

are not restricted in the other two directions. They must, however, maintain an average angle 

between them of 120 °.  
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Figure 68. Trigonal bipyramidal structure at (a) room temperature, (b) 1310 °C, and (c) for the 

hexagonal phase. 

 

At room temperature, there is a considerable amount of strain on the trigonal bipyramidal 

structure, and the struggle to become less distorted is the driving mechanism behind the 

interesting expansion behavior in the c-axis. The O1and O5 anions are unequally bonded to the 

Y and Ti cations on one side, thereby manifesting a larger than expected angle between the O1-

Ti and O5-Ti bonds with respect to the others in the equatorial plane as described in Figure 69 

(a-b). In addition, the two O3 anions that make up the axial direction are also attracted to one 

side of the Ti cation to be nearer to the Y cation to negate charge effects. As the temperature is 

increased, the overall volume of the cell increases as well, lengthening bonds and allowing more 

and more free movement of the atoms. Relative to the a-axis, the O3 and O1 atoms would like to 

switch positions but are prevented from doing so as the energy barrier for two negatively charged 

anions to slide past one another is too large. Once the overall volume of the cell is sufficiently 

large enough, however, the O3 and O1 atoms quickly slide past each other and relax the 

structure. This behavior is exemplified in Figure 69(a), where a noticeable shift in bond lengths 
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and angles occurs after the transition of the c-axis from expanding to contracting for Y2TiO5. 

Since neutron diffraction is more sensitive to oxygen atoms, a similar analysis was performed on 

Nd2TiO5. Similar to Y2TiO5, Nd2TiO5 also showed a significant structural change in bond 

lengths before and after the expanding/contracting transition in the c-axis. This data is illustrated 

in Figure 69(b).These same phenomena are seen across the lanthanide series; as cation size 

decreases so do the initial volume, and consequently the temperature where sufficient space is 

available for a shift of the O3 and O1 atoms to occur is pushed higher.  

Additional analysis of the thermal expansion behavior further points to a shift from an 

orthorhombic cell to a hexagonal one. In an orthorhombic cell, the components of the thermal 

expansion tensor (α11, α22, and α33) are independent of each other. Upon heating, two of the 

components, α11 and α22, begin to converge to a similar number as described in Table 25. This 

convergence of two of the components is indicative of the orthorhombic to hexagonal phase 

transformation because only two independent components of the thermal expansion tensor are 

needed to describe the hexagonal system, α11 and α33 as α11 = α22. This change is further 

illustrated in Figure 70, which shows the thermal expansion quadric surface at room temperature 

and near the transition for Y2TiO5. The donut shape in the xy-plane is a result of having 

equivalent values for α11 and α22, which is typical for hexagonal systems. 
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Figure 69(a). Bond lengths and angles as a function of temperature for Y2TiO5 collected using 

X-ray diffraction. Error bars are smaller than data points. 

 
Figure 69(b). Bond lengths and angles as a function of temperature for Nd2TiO5 collected 

using neutron diffraction. Error bars are smaller than data points. 
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5.2.3 Conclusions 

The characterization of the thermal expansion in this materials system and comparison with 

studies performed in different atmospheric conditions is important for their use as engineered 

materials with applications in high temperature environments. It is evident that the atmosphere in 

which these experiments were carried out can have a significant impact on the observed thermal 

expansion behavior.  

Unlike similar studies conducted in an argon atmosphere, the thermal expansion was found to 

have a very different behavior for the c-axis in which the lattice parameter increased until 

reaching a maximum, and then subsequently decreased as a function of temperature. This 

phenomenon was attributed to the inclination of this crystal system to become more hexagonal-

like before the actual transformation took place or the material melted. The driving mechanism 

behind this was ascribed to a highly strained trigonal bipyramidal structure in the cell wanting to 

become more ideal, as is the case in the hexagonal phase. This shift from a strained to an ideal 

structure was hindered by nearby atoms preventing free atomic movement by repulsion between 

cations trying to pass each other. As the volume of the cell expanded the barrier for atoms in the 

trigonal bipyramidal structure to slide past nearby atoms was decreased and the structure could 

be relaxed. This was supported by a trend with the relative size of the rare-earth cation. Rare-

earth cations having a relatively larger size, resulting in a larger cell volume, exhibited a major 

shift in the relaxation of the trigonal bipyramidal structure at a lower temperature as opposed to 

cells with smaller rare-earth cations. 
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5.3 Thermal Expansion in the Hexagonal Phase 

5.3.1 Results  

Dy2TiO5 

As described in Chapter 4, powder of Dy2TiO5 was mounted in a sapphire capillary and placed in 

the center of the quadrupole lamp furnace in alignment with the incident synchrotron X-ray 

radiation. An X-ray diffraction pattern was collected at each temperature step from 1425 °C up to 

approximately 1650 °C in air. Using the programs GSAS and EXPGUI, the X-ray diffraction 

patterns were refined using the Rietveld method and the values for the lattice parameters, hkl, 

and corresponding d-spacings were extracted from the refined data. The lattice parameters as a 

function of temperature are plotted in Figures 71 and 72 and listed in Table 26. 

 
Figure 71. The lattice parameter for the a-axis of hexagonal Dy2TiO5 in the hexagonal phase as 

a function of temperature. 
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Figure 72. The lattice parameter for the c-axis of hexagonal Dy2TiO5 in the hexagonal phase as 

a function of temperature. 

 

Table 26. The lattice parameters and volume for Dy2TiO5 in the 

hexagonal phase as a function of the measured temperature. 

Temperature (°C)(±6) a (Å) c (Å) Volume (Å3) 

1429 3.69484(2) 12.0512(1) 142.479 

1445 3.69602(2) 12.0522(1) 142.583 

1462 3.69728(2) 12.0530(1) 142.689 

1478 3.69855(2) 12.0537(1) 142.794 

1510 3.70109(2) 12.0547(1) 143.004 

1528 3.70244(2) 12.0553(1) 143.115 

1544 3.70375(2) 12.0556(1) 143.220 

1560 3.70506(2) 12.0562(1) 143.328 

1577 3.70644(2) 12.0565(1) 143.438 

1594 3.70783(2) 12.0570(1) 143.5526 

1612 3.70926(2) 12.0573(1) 143.6671 

1630 3.71084(2) 12.0571(1) 143.7873 

1649 3.71222(2) 12.0540(1) 143.8576 
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In addition to the determination of the lattice parameters, a CTEAS analysis was performed on 

the hkl listings and corresponding d-spacings as a function of temperature using a second-order 

polynomial fit. The results of the CTEAS analysis of the appropriate temperature range is 

depicted in Figure 73 and listed in Table 27. 

 

Figure 73. The coefficients of thermal expansion for Dy2TiO5 in the hexagonal phase as a 

function of temperature. 
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Table 27. The coefficients of thermal expansion for Dy2TiO5 in the 

hexagonal phase as a function of extrapolated temperature. 

Temperature (°C) α11 α22 Error 

1425 20.38 4.13 188.68 

1450 20.64 3.74 345.88 

1475 20.90 3.36 188.64 

1500 21.17 2.97 188.62 

1525 21.43 2.59 4146.72 

1550 21.69 2.21 4146.24 

1575 21.96 1.82 0.03 

1600 22.22 1.44 9119.55 

1625 22.49 1.05 439.28 

 

5.3.2 Discussion and Mechanism of Thermal Expansion 

All of the atoms present in the hexagonal phase are found on special positions. Each atom, with 

the exception of the O1 anion on the 4f Wyckoff position, is fixed at its relative location in the 

cell. The 4f Wyckoff position is fixed in x and y at 1/3 and 2/3, respectively, but is free to change 

in z. As a function of temperature, the overall cell expands in each direction, but as indicated by 

the decreasing thermal expansion value for α33, it is increasing at a decreasing rate. The overall 

expansion of the cell is related to the increase in interatomic distance with temperature which is 

related to the Lennard-Jones potential described in Chapter 5.1.2. The rate of decrease is caused 

by the movement of the O1 anion towards the Ti cation at the center of the trigonal bipyramidal 

structure centered on the 2c Wyckoff position. The combination of an increase in the overall cell 

with a minor contraction caused by the movement of the O1 anion towards the Ti cation results 

in a decreased expansion rate along the c-direction. This behavior is illustrated in Figure 74. 
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Figure 74. An illustration of the mechanism of thermal expansion in the hexagonal phase. The 

dark blue atoms are Dy, the light blue Ti, and the red atoms are the oxygen anions. Yellow 

arrows indicate relative movement of cell and atoms. 
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5.3.3 Conclusions 

The lattice parameters in the hexagonal phase increase as a function of temperature. Although 

there is an increase in the lattice parameters, the analysis of the thermal expansion coefficients 

reveals that the hexagonal cell is expanding at a decreasing rate along the c-axis. The expansion 

along the a- and b-axes is related to an increase in interatomic spacing between atoms, which is 

expected with an increase in thermal energy. The decreasing rate along the c-axis is attributed to 

a single oxygen atom which may move in its relative atomic position with regard to the overall 

cell. This oxygen atom moves towards the Ti cation at the center of the trigonal bipyramidal 

structure which “pulls” both ends of the c-axis towards the center of the cell adding a retarding 

effect to the expansion of the c-axis, and thus, resulting in a decrease in the value of α33. 
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CHAPTER 6 

THE RELATIONSHIP BETWEEN THE ORTHORHOMBIC AND 

HEXAGONAL PHASES 

6.1 The Relationship between the Orthorhombic and Hexagonal Phase 

6.1.1 Results and Discussion 

In order to better understand the relationship between the orthorhombic and hexagonal phases it 

may be worthwhile to inspect the thermal expansion behavior for clues. 

Among the three members of the Ln2TiO5 family which can be found in the hexagonal phase at 

higher temperatures (Gd2TiO5, Dy2TiO5, and Y2TiO5), Dy2TiO5 was chosen for this investigation 

as it provided the largest temperature range in which the hexagonal phase can be observed 

(1380-1680 °C). The lattice parameters and volume of Dy2TiO5 as a function of the measured 

temperature are provided in Table 28 for both the orthorhombic and hexagonal phases. As 

previously described, the lattice parameters all initially increase in the orthorhombic phase till 

approximately 663 °C where the c-axis begins to contract. The lattice parameters in the 

hexagonal phase both increase with an increase in temperature and continue to do so until its 

transition to the high temperature cubic phase. 

A CTEAS analysis was performed in terms of a second-order polynomial fit of each hkl and 

corresponding d-spacing for the hexagonal phase. As previously described, the hexagonal crystal 

system only requires two components of the thermal expansion tensor to be fully described (α11 

and α22). The results of the calculation for the thermal expansion tensor for the hexagonal phase 

are presented in Table 29 and illustrated in Figure 75 and 76 with thermal expansion coefficient 

values for the orthorhombic phase. 
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Figure 75. The combined coefficients of thermal expansion for the a- and b-axes in both the 

orthorhombic and hexagonal phases as a function of temperature in Dy2TiO5. 

 
Figure 76. The coefficient of thermal expansion for the c-axis in both the orthorhombic and 

hexagonal phases as a function of temperature in Dy2TiO5. 
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 Table 28. Lattice parameters and volume as a function of the measured 

temperature. 

Dy2TiO5 

Temperature (°C) a (Å) b (Å) c (Å) V (Å3) 

O
rt

h
o
rh

o
m

b
ic

 

29 10.3663(1) 3.71667(4) 11.2388(1) 433.013 

304 10.3888(1) 3.72798(3) 11.2556(1) 435.923 

445 10.40253(9) 3.73509(3) 11.26210(9) 437.581 

571 10.41467(9) 3.74166(2) 11.26628(9) 439.026 

689 10.42652(8) 3.74830(2) 11.26799(9) 440.373 

792 10.43687(8) 3.75508(3) 11.2656(1) 441.515 

886 10.44768(8) 3.76121(2) 11.26174(8) 442.541 

973 10.45737(8) 3.76674(2) 11.25642(7) 443.393 

1049 10.46729(9) 3.77194(2) 11.24940(7) 444.149 

1121 10.47750(9) 3.77692(2) 11.24175(8) 444.866 

1189 10.4891(1) 3.78196(3) 11.23348(8) 445.629 

1254 10.5025(1) 3.78713(3) 11.22477(9) 446.458 

1350 10.5192(1) 3.79321(3) 11.21540(9) 447.515 

H
ex

ag
o
n
al

 

1429 3.69484(2) 3.69484(2) 12.0512(1) 142.480 

1445 3.69602(2) 3.69602(2) 12.0522(1) 142.583 

1462 3.69728(2) 3.69728(2) 12.0530(1) 142.689 

1478 3.69855(2) 3.69855(2) 12.0537(1) 142.795 

1510 3.70109(2) 3.70109(2) 12.0547(1) 143.004 

1528 3.70244(2) 3.70244(2) 12.0553(1) 143.116 

1544 3.70375(2) 3.70375(2) 12.0556(1) 143.221 

1560 3.70506(2) 3.70506(2) 12.0562(1) 143.329 

1577 3.70644(2) 3.70644(2) 12.0565(1) 143.439 

1594 3.70783(2) 3.70783(2) 12.0570(1) 143.553 

1612 3.70926(2) 3.70926(2) 12.0573(1) 143.667 

1630 3.71084(2) 3.71084(2) 12.0571(1) 143.787 
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 Table 29. Coefficient of thermal expansion (CTE) tensor 

values for the orthorhombic and hexagonal phases as a 

function of the extrapolated temperature. 

Dy2TiO5 

 α11 α22 α33 

Temperature (°C) (x 10-6) 
O

rt
h
o
rh

o
m

b
ic

 
25 6.99 10.20 3.25 

100 7.69 10.70 4.68 

200 8.35 11.40 5.61 

300 8.76 12.30 5.57 

400 9.02 13.30 4.74 

500 9.22 14.20 3.29 

600 9.45 15.20 1.37 

700 9.78 16.10 -0.85 

800 10.30 17.00 -3.18 

900 11.20 17.70 -5.48 

1000 12.40 18.30 -7.57 

1100 14.10 18.70 -9.29 

1200 16.40 18.80 -10.50 

1300 19.30 18.70 -10.90 

H
ex

ag
o
n
al

 

1425 20.38 20.38 4.13 

1450 20.64 20.64 3.74 

1475 20.90 20.90 3.36 

1500 21.17 21.17 2.97 

1525 21.43 21.43 2.59 

1550 21.69 21.69 2.21 

1575 21.96 21.96 1.82 

1600 22.22 22.22 1.44 

1625 22.49 22.49 1.05 

 

There is no symmetry based group-subgroup relationship between the orthorhombic (Pnma) and 

the hexagonal (P63/mmc) phases. The transformation between the two is first-order and 

reconstructive in nature. This is confirmed by the presence of latent heat observed via DSC and 

by a fundamental comparison between the two crystallographic structures and symmetries.  

Since the transformation is reconstructive, it is not possible to track the atomic movement of 

atoms as the transformation progresses due to the inherent lack of long range order. This makes 

the development of a crystallographic relationship between the two phases difficult. It is possible 
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to develop potential candidate pathways by finding similarities between the two structures just 

before and immediately after the transformation, but meaningless without supporting correlated 

experimental evidence. 

As observed in several different systems with displacive transformations, the thermal expansion 

behavior, particularly around the transformation temperature, can provided insight into the 

crystallographic relationship between two phases.[31,109] Little information is found in the 

literature which employs thermal expansion in the same manner for reconstructive-type 

transformations (ones which involve the breaking and reforming of bonds coupled with 

diffusion). Logically though, in cases where few or minor changes would need to be made in the 

position of certain atoms to change one structure into another, it would be reasonable to correlate 

thermal expansion to a particular structural change. For example, a smooth transition in thermal 

expansion from one phase to another may suggest a close structural relationship between two 

phases along the corresponding axes. Conversely, a significant change in thermal expansion, 

such as a discontinuity, may suggest a significant change in structure along a different set of 

axes. This is not to say that a thermal expansion analysis in two different phases is a definitive 

indicator of how a reconstructive transformation may progress, but can be one piece of a puzzle, 

when looking at other evidence, to make a structural connection between two phases. 

Figures 75 and 76 illustrate the change in the thermal expansion behavior in both the 

orthorhombic and hexagonal phases as a function of the extrapolated temperature. As described 

by Figure 75, α11 and α22 of the orthorhombic phase have different values at room temperature, 

approximately 6 and 10 x 10-6 /°C, respectively. Upon heating, α11 and α22 converge to a similar 

value of 18 x 10-6 /°C just before the transition from orthorhombic to hexagonal phase. Just after 

the transformation, in the hexagonal phase, α11 is approximately 20 x 10-6 /°C. It is apparent that 
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α11 and α22 of the orthorhombic phase and α11 of the hexagonal phase are potentially related 

when observing trends in the thermal expansion behavior, and consequently, the a- and b-axes of 

the orthorhombic phase and a-axis of the hexagonal are potentially related. 

In comparison, the thermal expansion behavior in the c-axis, described by α33, is illustrated in 

Figure 76 and listed in Table 29. The initial value of α33 in the orthorhombic phase is 3.25 x 10-6 

/°C. As previously described in Chapter 5, this value initially increases with temperature. At 

approximately 663 °C, the c-axis of Dy2TiO5 will begin to contract and continue to do so before 

the orthorhombic to hexagonal transformation. Just before the transformation the value of α33 in 

the orthorhombic phase is -10.9 x 10-6 /°C, and just after in the hexagonal phase it is 4.13 x 10-6 

/°C. Such a significant change, in the form of a discontinuity, in the coefficient of thermal 

expansion may be related to a significant structural change along the c-axis in the orthorhombic 

phase before the transformation to the hexagonal phase. 

To further illustrate this behavior, Figure 77 shows the three-dimensional representation in 

Dy2TiO5 of thermal expansion as a quadric surface. Figure 77(a) and 77(b) show the thermal 

expansion in the orthorhombic phase, and Figure 77(c) for the hexagonal. The change in shape 

between Figure 77(a) and 77(b), as described in Chapter 5, is indicative of a shift in thermal 

expansion from an orthorhombic to hexagonal cell (the same general “donut” shape indicates the 

coefficients α11 and α22 are equal). Again, a significant change between Figures 77(b) and 77(c) 

is exhibited in the α33 direction, corresponding to the c-axis switching from a relatively large 

negative number to a smaller positive one (so small that it is hidden inside of the “donut” shape). 
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An additional clue which can aid in the analysis of this reconstructive transformation is how the 

volume changes between the two phases. Figure 78 plots the volume of both the orthorhombic 

and hexagonal cells as a function of temperature and is normalized by the number of formula 

units in each cell. In the region of coexistence, the hexagonal cell is found to be approximately 

6.07% larger as compared to the orthorhombic cell, a relatively large value change compared to 

other transforming ceramic systems. 

 

Figure 78. The normalized molar volume of the orthorhombic and hexagonal phases around 

the transformation temperature with its associated volume change. 

 

Looking for a hexagonal cell, in the orthorhombic structure, which has similar lattice parameters, 

position of atoms, angle between atoms, and polyhedron, combined with knowledge related to 



123 

 

the lattice correspondence developed from the thermal expansion analysis and information on the 

volume change, it is only possible to find one potential solution. Figure 79 illustrates the closest 

approximation of the hexagonal unit which can be found in the orthorhombic cell just before its 

transformation. 
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Figure 79. The proposed relationship between the orthorhombic and hexagonal phases in 

Dy2TiO5. Oxygen anions removed for simplification. 
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This proposed hexagonal cell in the orthorhombic setting (hence referred to as the proposed cell) 

has several defining features which make this a promising candidate. Along the a- and b-axes of 

the proposed cell, similar lengths in lattice parameter are observed which correlate well with the 

hexagonal phase just after the transformation, 3.769 Å and 3.793 Å for a and b, respectively, in 

the proposed cell, and 3.695 Å in the hexagonal. In addition, the proposed angle γ of 120.215°, is 

very close to the constraint of 120° in a hexagonal cell. Along the c-axis this difference is larger, 

the proposed cell having a lattice parameter of 11.215 Å and the hexagonal cell just after the 

phase transformation having a lattice parameter of 12.051 Å. Furthermore, an α angle of 63.373° 

is very different from the 90° needed for a hexagonal cell. The β angle is 90° in both the 

proposed and hexagonal cells. 

Moreover, from the experimentally determined volumetric information, the proposed cell should 

not only have a similar volume to the hexagonal cell but should also represent a significant 

positive expansion of the orthorhombic cell. The proposed cell has a volume of 118.4 Å3. The 

hexagonal cell in the orthorhombic setting, if ideal (a and b are equal and γ = 120°), would have 

a volume of 137.9 Å3. The difference between the two is approximately 16%, a reasonable value 

in comparison to the expected expansion of 6.07% determined experimentally, considering the 

positive nature of both and the overall diffusion and relaxation of atoms which still must occur. 

Considering the above, paired with information regarding the thermal expansion behavior and 

volume expansion, the proposed cell is a reasonable choice. To summarize, the “continuity” of 

α11 and α22 between the orthorhombic and hexagonal phases suggests only minor changes would 

need to occur along the a- and b-axes. Very similar lattice parameters are observed along these 

same directions in both the proposed and hexagonal cell. In addition, α33 has a large discontinuity 

between the orthorhombic and hexagonal cells suggesting a significant change in structure. 
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Along the c-axis a large difference in lattice parameters is observed between the proposed and 

hexagonal cells in agreement to what is expected. Finally, the volume change between the 

proposed cell and that of the ideal cell must be a large positive number to be consistent with 

experimental observations. The proposed cell meets this requirement.  

6.1.2 Conclusion  

There is no group-subgroup relationship between the orthorhombic and hexagonal phases 

making the development of a structural relationship difficult. Utilizing information regarding the 

thermal expansion behavior, structural form (i.e. lattice parameters, angles, polyhedra, etc.), and 

volume it is possible to develop a candidate relationship between the two dissimilar phases. This 

candidate, the proposed hexagonal cell in the orthorhombic setting, is illustrated in Figure 79, 

and is the best approximation with regard to experimental evidence and logical associations.  
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CHAPTER 7 

PHASE TRANSFORMATION KINETICS BETWEEN THE 

ORTHORHOMBIC AND HEXAGONAL PHASES 

7.1 Phase Transformations Kinetics  

7.1.1 Results and Discussion  

Differential scanning calorimetry (DSC) has been a popular method for the study of phase 

transformation kinetics. Chapter 4 describes the process by which DSC works. Two experimental 

methods may be employed to collect relevant data, these being isochronal (constant heating rate) 

and isothermal (constant temperature) experiments. The latent heat evolved during a phase 

transformation generally is measured as a symmetric Gaussian peak. By determining the partial 

area underneath the curve as a function of time, with the appropriately applied background 

function, it is possible to describe the fraction of phase transformed with increasing time or 

temperature. The fraction of phase transformed between the orthorhombic and hexagonal phases 

during isochronal experiments under different heating conditions is provided in Figure 80 below. 

The sigmoidal shape of the curve is typical for these types of experiments. 

The relationship observed in the data is relatively straightforward. The completion of the phase 

transformation occurs at lower temperatures for experiments with slower heating rates. Although 

the heating rate is slow, it spends more time above the transformation temperature with minimal 

rate increases, which shifts the curve to lower temperatures. 
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Figure 80. The fraction of the orthorhombic phase transformed to hexagonal at different 

heating rate for an isochronal experiment. 

 

Although the data is “textbook”, there are several problems which arise during the analysis of the 

data. A simple Kissinger analysis of the data, wherein the slope of the line multiplied by 

Boltzmann’s constant which best fits the data points, can reveal the activation energy for the 

transformation. Figure 81 illustrates this analysis method.  



129 

 

 

Figure 81. A Kissinger analysis of isochronal data to determine the activation energy of 

transformation. 

 

The calculated activation energy from the analysis is 5060.9 kJ/mol. Most activation energies for 

reconstructive transformations in ceramic system fall between 50-800 kJ/mol. In comparison the 

activation energy found using DSC is far above an expected value by an order of magnitude. 

Baumann, Leineweber, and Mittenmeijer discuss the failure of this method in describing the 

kinetic behavior in a transforming system from the standpoint of the driving force, particularly at 

high temperatures.[110] Just above the transformation the driving force for nucleation is weak. 

This is attributed to the critical particle size of the new phase which must exist for it to be stable 
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and grow uninhibited (not transform back to its original phase). This concept is described in 

Figure 82. With minimal overheating, it is difficult to nucleate a new phase due to this factor, 

particularly when the transformation process is complex, as is the case for the orthorhombic to 

hexagonal transformation in Dy2TiO5.  In order to solve this this problem a significant amount of 

overheating should be used to avoid the driving force issue. Baumann provides two examples in 

which a phase transformation was probed, the first around the transition temperature and the 

other far away. After applying a Kissinger analysis on the data near the transformation 

temperature the activation energy was found to be 12600 kJ/mol, a nonsensical value, see Figure 

82. When performing the same experiment further away from the transformation temperature the 

activation energy was found to be 161 kJ/mol, a much more reasonable value, see Figure 84. 

 

Figure 82. Free energy and radius of particle describing a critical size needed in order for a 

nucleated particle to be stabilized in the new phase and begin to grow.[111] 
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Figure 83. A Kissinger analysis performed on data from a transforming sample near the 

temperature of transformation. 

 

Figure 84. A Kissinger analysis performed on data from a transforming sample far the 

temperature of transformation. 
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Isoconversional analysis, pioneered by Vyazovkin, can be used to further illustrate the problem 

with the driving force.[112-116] The Isoconversional method is a model-free technique used to 

analyze the change in activation energy as a function of the fraction of the phase transformed 

with time. A flat line as a function of fraction transformed would suggest the activation energy 

for nucleation is equal to that of growth. An increasing line suggests that growth is more difficult 

than nucleation, and a decreasing line suggesting nucleation is more difficult than growth. This 

method was applied to the same data on Dy2TiO5 using DSC for both isothermal and isochronal 

data, the result of which is provided in Figures 85 and 86. Although both the isothermal and 

isochronal data result in different values for the activation energy (also nonsensical), the trend in 

slope is the same. Since both lines decrease as a function of temperature it suggests that the 

nucleation event is the limiting factor in the transformation, supporting the result from the 

Kissinger analysis. 

 

Figure 85. Isoconversional analysis performed on isothermal data from Dy2TiO5 using DSC to 

calculate the effective activation energy as a function of phase fraction transformed. 
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Figure 86. Isoconversional analysis performed on isochronal data from Dy2TiO5 using DSC to 

calculate the effective activation energy as a function of phase fraction transformed. 

 

As Baumann describes, the best way to avoid the problem with the driving force is to overheat 

the sample. By overheating, sufficient energy is provided that the barrier to forming a particle of 

sufficient size is no longer a factor. Unfortunately, the DSC experimental setup in the Kriven 

research lab is not able to overheat to the degree needed in a short enough time to achieve this. 

Instead, the quadrupole lamp furnace, which has a very high rate of heating (several hundred 

degrees per second), can be used to overheat the sample in a short time frame. 

Kinetic experiments also require the quick collection of diffraction patterns in order to have 

sufficient time resolution in the data. The Pilatus 100k detector mounted at the beamline at the 

Advanced Photon Source can cover a range of approximately 4° 2θ and can be refreshed at a rate 

of 1000 Hz. Though the refresh rate on the detector is large, enough intensity must be collected 
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from the sample that the time resolution of the experiment is on the order of seconds (sufficient 

for this study). 

Raw images collected from a sample transforming from the orthorhombic to hexagonal phase as 

a function of time from the Pilatus 100k detector are provided in Figure 87. Figure 87 depicts the 

partial rings associated with a powder sample. As a function of time the main partial rings 

associated with the orthorhombic phase decrease in intensity while the partial rings belonging to 

the hexagonal phase increase. As observed in the images of Figure 87, it would seem that a slight 

amount of texturing may be occurring in the sample during the phase transformation process 

(seen as an unequal distribution of intensity along a powder diffraction ring). A relationship 

between the amount of texturing for a particular plane and the way in which the transformation 

progresses could be potentially made, but would require the observation of the total ring. For 

future work, this experiment could potentially be redone at beamline 17BM at the Advanced 

Photon Source which is equipped with a detector able to collect the entire powder ring. 

Summation of each powder ring, along the same value of Q, results in a traditional 1D diffraction 

pattern. Each pattern can be stacked as a function of time, the result of which is illustrated in 

Figure 88. Figure 88 depicts the main peaks of the orthorhombic phase decreasing in intensity 

with time and peaks associated with the hexagonal phase increasing. Another way to visualize 

these data, as a 2D contour plot, is provided in Figure 89. 
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t = 0 s 

 

t = 180 s 

 

t = 600 s 

 

t = 840 s 

Figure 87. The raw images collected by the Pilatus 100k detector during an isothermal 

experiment. From top to bottom is increasing time. 
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In order to fit each independent isothermal experiment globally, the data were combined into a 

single set and imported into OriginPro 9.1. A custom, non-linear equation was implemented to fit 

these data based of the functional form of the Avrami equation reproduced below. 

𝐹 = 1 − 𝑒𝑥𝑝 [− [𝑘0 ∗ 𝑒𝑥𝑝 (−
𝐸𝑎

𝑘𝐽
𝑚𝑜𝑙

𝑘𝑏𝑇
)] ∗ 𝑡𝑛 ] 

Where, F is the fraction of the initial phase transformed into the new phase, k0, the rate constant, 

Ea, the activation energy, and n, the Avrami constant (dimensional growth parameter). The 

thermal energy was set for each isotherm to its value of kbT, while k0, Ea, and n were allowed to 

globally fit by minimization. Initial parameters were set which centered on reasonable values, 

but bounds were set to a wide range to allow a significant amount of freedom. Initial fitting was 

performed using the OriginPro simplex function. A simplex function is an optimization 

technique which uses a response surface in n-dimensional space to find a minimum. After an 

initial minimum was found, a least-squares function was used to further minimize differences 

from the observed data to those of the model. The least-squares fitting was performed until 

convergence. Figure 90 plots each isothermal experiment for a phase fraction transformed as a 

function of time along with the globally fit curve for each individual data set. 
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Figure 90. The fraction of the orthorhombic phase transformed to hexagonal in Dy2TiO5 at 

different temperatures as a function of time for an isothermal experiment. 

 

The globally fit Avrami equation to the data is given below for all temperatures and time. 

𝐹 = 1 − 𝑒𝑥𝑝 [− [125.6 ∗ 𝑒𝑥𝑝 (−
149

𝑘𝐽
𝑚𝑜𝑙

𝑘𝑏𝑇
)] ∗ 𝑡2.01 ] 

Ea = 149 ± 4 kJ/mol 

k0 = 126.6 ± 35.6 s-n 

n = 2.01 ± 0.07 
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Several interesting observations may be made based on the data and fitted curves. First, unlike 

the previous Kissinger and isconversional analysis, the value determined here for the activation 

energy is 149 kJ/mol. Not only is this value a much more reasonable approximation for the 

activation energy, it is also on par with activation energies found in other transforming ceramic 

systems (50-800 kJ/mol). It should be noted that the activation energy for the Avrami equation is 

an “effective” activation energy, meaning it is the combination of two separate events having 

their own associated activation energies, these being nucleation and growth. 

Additionally, the value of the Avrami exponent is very close to 2. If all of the assumptions 

involving the simplification to the Avrami equation are valid, then the Avrami exponent 

represents the dimensional manner in which the particles of the new phase grow (1 for a line, 2 

for a disc, and 3 for a sphere). A value of 2 would indicate that after nucleation, the growth of the 

phase progresses two-dimensionally. This behavior is very interesting, particularly when 

correlated with the crystallographic phase relationship developed in Chapter 6. It was previously 

found that only minor structural changes would be necessary along the a- and b-axes as opposed 

to the c-axis. Since the transformation is less hindered in two directions out of the three, an 

Avrami growth exponent of two is consistent with previous experimental data. 

7.1.2 Conclusions  

X-ray diffraction was employed to monitor the transformation between the orthorhombic and 

hexagonal phases as a function of time and temperature. Several isothermal data sets were 

collected and fit globally to a simplified kinetic model to determine the effective activation 

energy of the transformation, the nature of particle growth, and rate constant. Overall, the 

Avrami model fit well with the data but exhibited slight deviations for several isothermal data 
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sets. This may be attributed to the use of an over simplified model which may not capture the 

true transformation behavior. 

7.2 Comparison with Similar X-ray Diffraction Experiments to Investigate Transformation 

Kinetics  

Direct comparison between this research and similar experiments in literature can be difficult as 

every experiment has large variability in setup, analysis, and materials investigated. Observations 

relating to the quality of the data collected and certainty in fitted parameters will be discussed in 

the context of new method development for the determination of transformation kinetics at high 

temperature. 

7.2.1 Advantages of Described Methods 

There are several advantages in characterizing the transformation kinetics using the method 

described in this dissertation (pairing of a thermal image furnace, X-ray synchrotron radiation, 

and state-of-the-art detectors). 

1. Synchrotron radiation sources, as described in Chapter 1, have a significantly higher 

photon flux when compared with traditional sources (X-ray tubes). This allows for the 

collection of data in a short amount of time which is critical for improved time resolution. 

2. The wavelength, by means of a monochromator, from synchrotron radiation can be 

varied. Different materials absorb X-rays differently. The ability to adjust the wavelength 

is important to avoid such complications. 

3. The X-ray detector (Pilatus 100k) can simultaneously measure a relatively large range of 

2θ with a high refresh rate. This allows for the observation of several diffraction peaks 
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simultaneously which minimizes errors associate with fitting of individual peaks 

(preferred orientation and phase fraction transformed). 

4. The Quadrupole Lamp Furnace’s ability to reach approximately 2000 °C in air. Platinum 

heating strips can only reach temperatures around 1600 °C. 

5. Stability at temperature using the Quadrupole Lamp Furnace. 

6. Internal standard for temperature determination as opposed to external calibration. The 

thermal mass of the material being investigated does not affect the determination of the 

temperature allowing for greater consistency between samples and accuracy in 

temperature determination. 

7. Statistical distribution of crystallite orientations in transmission geometry. Preferred 

orientation is not present allowing for improved determination of phase fraction 

transformed. Also, allows for potential mechanism of transformation to be elucidated. 

7.2.2 Comparisons with Similar Work 

Two main comparisons will be made with respect to similar research. First, whether or not the 

calculated value for activation energy for the orthorhombic to hexagonal transformation in 

Dy2TiO5 is reasonable compared with other reconstructive transforming ceramic systems. 

Second, a comparison between the quality of data collected and the Avrami fit in this work 

compared with similar studies which result in the calculation of activation energy will be made.  

Range of Activation Energies for Transformations in Ceramic Systems 

In order to contextualize this work it is important to draw comparison with other research in the 

open literature. As discussed previously in this chapter, measurements made using thermal 

analysis methods such as DSC result in dubious values for activation energy. Table 30 provides 
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several examples of activation energies determined using the Avrami equation on data collected 

by ex situ and in situ X-ray diffraction experiments. 

Table 30. Activation energies for reconstructive transformations in other ceramic systems.  

Transforming 

System 

Fit Activation 

Energy 

(kJ/mol) 

Error 

(kJ/mol) 

Comments Reference 

quartz-cristobalite 193 73 particle size relationship 

with activation energy 

(small particles), 

combined in situ ex situ 

Pagliari[117] 

quartz-cristobalite 181 78 particle size relationship 

with activation energy 

(intermediate particles), 

combined in situ ex situ 

Pagliari[117] 

quartz-cristobalite 234 191 particle size relationship 

with activation energy 

(large particles), combined 

in situ ex situ 

Pagliari[117] 

quartz-cristobalite 555 24 seeding effect on 

transformation, ex situ 

Breneman[118

] 

quartz-coesite 163 23 pressure and temperature, 

synchrotron radiation, 

EDS detector 

Perrillat [119] 

geopolymer 

crystallization 

31.5 6 crystallization from 

amorphous phase 

Provis [120] 

geopolymer 

crystallization 

36.4 2 crystallization from 

amorphous phase, zeolite 

Gualtieri [121] 

titania 210 40 crystallization kinetics of 

mesoporous titania films, 

surface nucleation 

mechanism 

Kirsch [122] 

titania 140 30 crystallization kinetics of 

mesoporous titania films, 

nanoscale restructuring  

Kirsch [122] 

UO2 46 - oxidation of uranium 

metal 

Zhang [123]  

cristobalite 

crystallization 

674 53 crystallization from 

amorphous powder 

Bae [124] 
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Generally, the range in values for the activation energy for other transforming systems as 

described by Table 30 is approximately 30-675 kJ/mol with an average value of 177 kJ/mol. 

With respect to other activation energies in ceramics, the value determined in this study for the 

activation energy between the orthorhombic and hexagonal phases of 149 kJ/mol is reasonable 

and tends towards the average. In addition, the value determined in this work, when compared 

with other literature values, has a much smaller error in certainty (± 4 kJ/mol). The smaller value 

in the error is likely due to better time resolution and/or improved fitting techniques. This will be 

discussed in more detail in the next section. 

It should be noted when surveying the literature for reasonable values for activation energies that 

the potential for these data to suffer from the same pitfall of erroneously high activation energies 

exists. Therefore, the activation energies listed in Table 30 should be regarded as the potential 

upper limit of the real activation energy. 

Comparison of Data Collected and Avrami Fit to Similar Works 

Compared with the quality of data collected in other studies, and the method used to fit to the 

Avrami equation, the data in this study is of much higher quality. As described in Chapter 7.2.1, 

the combined used of synchrotron X-ray radiation with advanced detectors allows for an increase 

in the number of data points collected over similar time periods compared with other studies 

which rely on conventional X-ray sources and detectors. To illustrate this, Figures 91-93 

reproduce the data collected in other research published in the literature which employed these 

conventional methods. 
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Figure 91. Linearized in situ data of phase fraction transformed with respect to time for three 

separate isothermal holds (quartz to cristobalite). Data collected with Philips X’ Pert 

diffractometer equipped with an Anton-Paar heating chamber (HTK 16 MSW) and a Pt 

heating strip. 4 min collection time for each point.[117] 

 
Figure 92. Ex situ data of phase fraction transformed after thermal annealing at various 

temperatures with respect to time (amorphous silica to cristobalite). Data collected with 

Rigaku Rotaflex.[118] 
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Figure 93. Ex situ data of phase fraction transformed after thermal annealing at various 

temperatures with respect to time (amorphous silica to cristobalite). Data collected with 

Rigaku MiniFlex.[124] 

 

The lack of data is obvious from inspection of Figures 91-93. The feasibility in collecting more 

data is likely not justified or possible for experimental techniques used in the collection of these 

data (taken with conventional laboratory equipment). For example, Figure 91 depicts the 

linearized data fit to the Avrami equation for the transition between quartz and cristobalite in 

situ. While this study collected many more data points as compared to the depicted ex situ work 

in Figures 92 and 93, it lacks the time resolution towards the beginning of the transformation as 

each data point represents 4 minutes of time. As discussed later in this chapter, time resolution 

towards the beginning of the transformation is far more valuable than data at the end, and as 

such, may have a significant impact on the analysis and calculation of the effective activation 

energy.  
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Comparisons with other work which employed the use of synchrotron radiation can also be 

made. Figures 94-100 show the raw data collected, and/or analysis of these data, for experiments 

using synchrotron radiation.  

 
Figure 94. In situ data of phase fraction transformed during isothermal/isobaric hold with 

respect to time (quartz to coesite). Data collected at DW11 Laboratoire pour l’Utilisation du 

Rayonnement Electromagnetique using an energy dispersive detector.[119] 
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Figure 95. In situ data of phase fraction transformed during isothermal hold with respect to 

time (amorphous geopolymer to crystalline). Data collected at X17C at NSLS using an energy 

dispersive detector.[120] 

 
Figure 96. Analysis of in situ data of phase fraction transformed of various isothermal 

temperatures with respect to time (amorphous geopolymer to crystalline). Data collected at 

X17C at NSLS using an energy dispersive detector.[120] 



149 

 

 
Figure 97. In situ data of phase fraction transformed during isothermal hold with respect to 

time (crystallization of amorphous geopolymer). Data collected at X7B at NSLS using a 

translating image plate system.[121] 

 
Figure 98. Analysis of in situ data of phase fraction transformed of various isothermal 

temperatures with respect to time (crystallization of amorphous geopolymer). Data collected at 

X7B at NSLS using a translating image plate system.[121] 
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Figure 99. In situ data of phase fraction transformed during isothermal hold with respect to 

time (crystallization of amorphous titania). Data collected at 6-2 at the Stanford Synchrotron 

Radiation Laboratory using a CCD camera with 60-90 sec exposure times.[122] 

 
Figure 100. Analysis of in situ data of phase fraction transformed of various isothermal 

temperatures with respect to time (crystallization of amorphous titania). A) high angle B) low 

angle data. Data collected at 6-2 at the Stanford Synchrotron Radiation Laboratory using a 

CCD camera with 60-90 sec exposure times.[122] 
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While the data in the figures above are of much higher quality, relative to data collected via 

conventional means, it suffers from several similar drawbacks. The first is the lack of time 

resolution (on the order of minutes). Although the number of photons used in the collection of 

these data was significantly higher, the use of energy dispersive detectors and image plates in the 

experiments conducted by Perrillat, Provis, and Gualtieri significantly limited any potential 

benefit of increased time resolution. The use of a CCD camera in the Kirsch experiment may 

have been capable of increasing the time resolution, but the exposure time was set between 60 

and 90 seconds (i.e. 4 to 6 times longer than the exposure time in this work). 

In addition, the method of fitting of some of these data to the Avrami equation and subsequent 

analysis is antiquated. The linearization of the data using logarithms to fit to a simple line for 

individual isothermal data sets and averaging of the information is not only cumbersome to do, 

but also subject to error from averaging between data sets with differing amount of points. More 

advanced fitting with the aid of computer programs can avoid such problems. 

7.2.3 Future Method Development 

Other than major changes to the experimental setup (furnaces, sources, and detectors), the 

simplest modification that can be made with the most impact falls in the realm of automation. 

Currently every measurement is performed manually.  A researcher must physically be present 

throughout the experiment and manually start each measurement (the push of a button at 10-20 

second time intervals). As discussed later in this chapter, one factor which can result in a better 

fit of the Avrami equation to the data is time resolution. The current detector, the Pilatus 100k, 

has a refresh rate of 10,000 frames/second. Though this is the theoretical maximum of the 

number of data points which can be acquired, it is not practical. The refresh rate, which for the 

purposes here is equivalent to the exposure time, must be balanced with the quality of the pattern 
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collected, where more time would result in a better diffraction pattern. Under current conditions, 

this balance is approximately 1 to 2 seconds, a 10 to 20X improvement in resolution. With 

respect to the current manual method to collect these data, a 1 second exposure time is not 

practical, and as such, automation in the process would be required. This can be achieved 

through simple scripting in the form of a macro which can be run in SPEC and EPICS 

programing language which control beamline functions. 

In addition to improved time resolution with automation, data analysis can become more 

streamlined with the use of batch processing of data. A full Rietveld refinement is not necessary 

to determine the ratio between two different phases, although desired. This can be achieved using 

relative peak intensities or areas. If there is an increase in time resolution in data collection by 

10X, then there will be 10X the data to process, thus necessitating the use of batch processing. 

This can be accomplished by means of several different commercial programs on the market 

today.  

7.2.4 Conclusions 

With respect to other research which study phase transformation kinetics using X-ray diffraction, 

the method described in this work has several significant comparative advantages. These include 

increased photon flux by using synchrotron radiation, a furnace which can quickly overheat a 

sample to avoid complications with nucleation, and a detector which can collect excellent data in 

a relatively short amount of time. When combined, these improve the time resolution of the data 

which has a significant impact on the determination of the effective activation energy for a 

reconstructive transformation.  
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Relative to other work in the literature, a value of 149 kJ/mol for the activation energy required 

for the transformation between the orthorhombic and hexagonal phase in Dy2TiO5 is very 

reasonable. Additionally, the method used to collect the data in this work is a significant 

improvement to conventional methods both in time and in the quality of data collected.  

In conclusion, the method described here is an excellent and accurate way to determine the 

activation energy for a reconstructive transformation, particularly those which occur on relatively 

shorter time scales. 

7.3 Improving the Kinetic Model 

For an initial experiment using the quadrupole lamp furnace to investigate the kinetic parameters 

of the transformation between the orthorhombic and hexagonal phases in Dy2TiO5, the global 

Avrami equation fit to the data is excellent. Slight deviations between the fit and the data is to be 

expected, but for several of the isothermal data the deviation can be quite significant. For 

example, the fit of the isothermal data for 1441 and 1470 °C are good, but the fits for 1460, 

1491, and 1553 °C have much larger deviations as observed in Figure 90. This deviation is 

indicative of either poor experimental conditions or a poor model. Assuming the experiment was 

properly performed, the implications of a poor model will be discussed.  

As described in Chapter 1, the Avrami model assumes several things about the transformation 

and the material system in general. The Avrami model assumes an infinitely sized system, 

uniform but random nucleation, that impingement ends growth, that spherical particles form, and 

that growth is interfacially controlled. The assumptions of infinitely sized system and that growth 

ends at impingement are likely to be valid for this experiment. The size of the region probed by 

the X-ray beam is relatively small compared to the size of the sample. In addition, the slowing 
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rate of transformation as a function of time, paired with the observed conversion of the 

orthorhombic to hexagonal phase via XRD, suggests that growth of the particles was inhibited by 

interaction with other particles of the same phase. 

7.3.1 Sensitivity Analysis with Time 

A sensitivity analysis was performed on the Avrami equation by determining the differential 

change in the result when a particular variable was adjusted. This analysis was performed in two 

different time regimes. The first time regime was one in which less than 50% of the phase had 

transformed and the other where more than 50% had transformed. This analysis would then be 

able to show the sensitivity of a particular variable within a particular time regime. 

Figures 101-103 describe the sensitivity in the activation energy, rate constant, and Avrami 

exponent in the two different time regimes. 

 
Figure 101. The differential change in the overall fitting result with a differential change in 

activation energy in two separate time regimes. 
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Figure 102. The differential change in the overall fitting result with a differential change in the 

rate constant in two separate time regimes. 

 
Figure 103. The differential change in the overall fitting result with a differential change in the 

Avrami exponent in two separate time regimes. 



156 

 

From Figures 101-103 two main relationships are apparent. First, that the activation energy has 

the largest impact on the result, followed by the Avrami exponent and rate constant. Second, 

uncertainties in the data at lower time intervals have the largest impact on the overall result. The 

implications of these findings will be discussed in the discussion section. 

7.3.2 Sensitivity Analysis with Temperature 

Uncertainty in the ability to determine the temperature of the set of data collected during an 

isothermal experiment may have an effect on the overall fit. A sensitivity analysis was performed 

which investigated this effect. The uncertainty in the temperature in this range was 

approximately ± 6 °C. This parameter was used as a static change in the input while the 

activation energy, rate constant, and Avrami exponent were differentially changed. The results of 

the sensitivity analysis are provided in Figures 104-106. 

 
Figure 104. The differential change in the overall fitting result with a differential change in 

activation energy between two different temperatures. 
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Figure 105. The differential change in the overall fitting result with a differential change in the 

rate constant between two different temperatures. 

 
Figure 106. The differential change in the overall fitting result with a differential change in the 

Avrami exponent between two different temperatures. 
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Overall, as indicated by the results of the sensitivity analysis, the result of an uncertain 

temperature determination from the data has very little effect on the overall fitting result. This 

will be discussed in more detail in the discussion section. 

7.3.3 Sensitivity with Variable Type 

Relative to each other, the parameters used for the global fitting routine were also subjected to a 

sensitivity analysis. The results of this analysis are provided in Figure 107. 

 

Figure 107. The relative differential change in the overall fitting result with a differential 

change in activation energy, rate constant, and Avrami exponent. 
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It is clear from the data that a 1% change in the activation energy affects the overall function 

more severely as opposed to the Avrami exponent and rate constant. The implications of this will 

be discussed in a later section. 

7.3.4 Analysis of Data 

Each individual isothermal data set can be independently fit to the Avrami equation to determine 

its activation energy, rate constant, and Avrami exponent. The results of this independent fitting 

are provided in Figure 108 and the equation variables of each are listed in Table 31. The results 

of this analysis are discussed in the next section. 

 
Figure 108(a). Individual fit the Avrami equation for isothermal data collected at 1441 °C for 

Dy2TiO5. 
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Figure 108(b). Individual fit the Avrami equation for isothermal data collected at 1460 °C for 

Dy2TiO5. 

 
Figure 108(c).  Individual fit the Avrami equation for isothermal data collected at 1470 °C for 

Dy2TiO5. 
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Figure 108(d).  Individual fit the Avrami equation for isothermal data collected at 1491 °C for 

Dy2TiO5. 

 
Figure 108(e).  Individual fit the Avrami equation for isothermal data collected at 1553 °C for 

Dy2TiO5. 
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Table 31. Parameters calculated from the 

individual fits of the isothermal data. 

Temp (°C) Ea (kJ/mol) k0 (1/sn) n 

1441 142.2 73.88 1.81 

1460 125.18 112.85 1.86 

1470 140.64 71.51 1.93 

1491 134.5 51.08 2.48 

1553 140.14 66.47 2.72 
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7.3.5 Discussion 

There are several important findings when interpreting the results of the sensitivity analysis.  

First, in the temperature range the experiment is carried out, the uncertainly in the ability to 

determine the temperature from the refined lattice constant of platinum has a negligible effect on 

the results of the fitting. This finding supports the assumption that experimental errors have only 

a minor impact on the overall result. 

Second, time resolution plays a major role when it comes to accurately fitting the data. It was 

observed that data in the time regime lower than 50% conversion of the new phase differentially 

have a much larger impact on the overall ability to determine the equation parameters accurately. 

This finding suggests that more data points should be collected at the beginning of the 

transformation process relative to those near the end of the transformation to decrease 

uncertainty. 

Third, as expected from the functional form of the Avrami equation, the uncertainty in the ability 

to determine the overall activation energy has the most impact on the overall fit. Since the 

activation energy is part of an exponential function, inside of another exponential, this makes 

sense. Additionally, the Avrami constant, which describes the overall growth mechanism during 

transformation has the second largest impact followed by the rate constant. 

Finally, when fitting each isothermal data set independently, connections may be made with the 

overall parameter trends across the series. With the exception of 1460 °C, which seems to be an 

outlier, the general value for the activation energy and rate constant seem to be the same across 

the various temperatures. On the other hand, the Avrami exponent seems to become larger with 

an increase in temperature, a 50% increase in value compared with a 5% increase between the 
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extremes of the activation energy and a 43% change with the rate constant. This monotonic 

increase as described by Table 31 and Figure 109 of the Avrami exponent is expected. With an 

increase in temperature, the barrier to growth in the third dimension should decrease, thus a shift 

from an Avrami exponent of two to three is makes sense. 

Although a differential change in the activation energy has a larger impact on the overall fit, a 

crude comparison will reveal that when combined with its uncertainty it has the least impact on 

the overall fit, while the Avrami exponent and rate constant are potential sources of greater 

uncertainty.  

These data can be re-fitted assuming the data from 1460 °C is an outlier. The new fit is provided 

in Figure 110 and the equation listed below. 
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Figure 110. The fraction of the orthorhombic phase transformed to hexagonal in Dy2TiO5 at 

different temperatures as a function of time for an isothermal experiment with the 1460 °C 

data set removed. 

 

𝐹 = 1 − 𝑒𝑥𝑝 [− [103.9 ∗ 𝑒𝑥𝑝 (−
146

𝑘𝐽
𝑚𝑜𝑙

𝑘𝑏𝑇
)] ∗ 𝑡2.06 ] 

Ea = 146 ± 4 kJ/mol 

k0 = 103.9 ± 30.3 s-n 

n = 2.06 ± 0.08 
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Although the new fit is an improvement over the previous one, it still suffers from many of the 

same problems. An overall investigation into the sensitivity of the model reveals that particular 

assumptions made about the rate constant and Avrami exponent can be improved upon. 

There are three main simplifications in the Avrami model which are potential sources of 

uncertainty. The largest of these are the assumptions that the Avrami exponent and rate constant 

are not temperature/time dependent, and that nucleation and growth can be combined into a 

single term (assuming nucleation and growth are a combined event). Mittemeijer details this 

problem in several of his papers, most notably in the one referenced here.[33] Significantly more 

advanced fitting algorithms may be employed to deconvolute these assumptions which can lead 

to a better understanding of the phase transformation itself and provide a better fit. This equation 

can potentially include the influence of homogeneous and heterogeneous nucleation, weighed 

Avrami nucleation, the difference between interfacial and diffusion controlled growth, and the 

separation of activation energies associated with nucleation and growth. This equation is 

reproduced below. 

𝐹 = 1 − 𝑒𝑥𝑝 [− [𝑘0 ∗ 𝑒𝑥𝑝 (−
𝑄

𝑘𝐽
𝑚𝑜𝑙

𝑘𝑏𝑇
)] ∗ 𝑡𝑛 ] 

Which is broken down into the modular components provided here for isothermal and isochronal 

experiments,  
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where, d is the dimensionality of the growth (d = 1, 2, or 3), m the growth parameter (m = 1 or 2 

for interfacial or diffusion controlled growth, respectively), r2/r1 which is equal to the extended 

volume which is Vc/Vs (the ratio between pure continuous nucleation and site saturation) which 

has its own dependence on the number of sites per unit volume of nuclei formed, N,  Q the 

effective activation energy which has contributions from both nucleation and growth with 

different functional dependencies, g the particle geometry factor, and v0 the interface growth 

velocity. 

Obviously, a fitting approach which has more than 10 different interrelated variable functions is 

not appropriate in the given circumstances. With an increased number of variables a better fit 

would be expected, but meaningless without additional information regarding the nature of the 

transformation. 

7.3.6 Proposed Experiments 

The equation described in the previous section can be trimmed down to a more manageable and 

meaningful size when particular variables become known. Under the current experimental 

conditions using X-ray diffraction to monitor the phase transformation behavior, it is not possible 

to determine the nature of nucleation, a major variable limitation in the Mittemeijer equation. 

The simplest way to determine this would be to directly observe the transformation. This can be 

achieved by hot stage transmission electron microscopy or by hot stage optical microscopy in 

situ. The resources to carry out this work are available both in the Kriven research lab and in the 

Materials Research Laboratory. By employing these characterization techniques it may be 

possible to observe whether nuclei are formed randomly or preferentially at pores, grain 

boundaries, or other defects (the difference between homogenous and heterogeneous nucleation). 

Also, the number of nucleation sites can be monitored for a given volume. In addition, it may be 
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possible to observe the dimensionality of growth which would provide valuable insight. With 

this information many of the variables in the equation become known, such as N, d, and m, and 

the fitting much simpler. 

7.3.7 Conclusions 

As a first approximation of the transformation kinetics, the Avrami model seems to be sufficient 

and as described in Chapter 7.2, reasonable. It is apparent that some of the assumptions which 

are imbedded in this model are not correct. Unfortunately, more advanced modeling requires 

knowledge on the nature of the transformation and X-ray diffraction is not sufficient in providing 

this information. It is proposed that transmission electron microscopy and/or optical microscopy 

are employed in situ to directly observe the transformation process, allowing for the 

simplification in fitting of a more complex model. 
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CHAPTER 8 

SUGGESTIONS FOR FUTURE WORK 

8.1 Suggestions for Future Work 

8.1.1 The Rare-Earth Di-Titanates 

The rare-earth titanates can be found in two different compounds, the mono-titanates and di-

titanates, Ln2TiO5 and Ln2Ti2O7, respectively. This work focused on the thermal expansion 

behavior and kinetics of the transformation between the orthorhombic and hexagonal phases in 

the mono-titanates. It has been reported that La2Ti2O7 and Nd2Ti2O7, found in the di-titanates, 

transformation from a low temperature monoclinic phase to a high temperature orthorhombic 

phase in a displacive manner but this has not yet been verified. In addition, the rare-earth di-

titanates from Sm to Lu are found in a cubic pyrochlore phase at room temperature. This cubic 

phase has been studied as the prototypical example of a magnetically frustrated material known 

as a spin-ice. Much work has been done in the low temperature regime for spin-ice materials but 

none at higher temperatures. Other researchers are interested in this phase as a potential thermal 

barrier coating material. To fully understand the entirety of this material system, research needs 

to be performed on the di-titanates to complement this work. 

8.1.2 Research into Other Reconstructive Systems 

This work proposed a new way to investigate the phase transformation behavior between two 

phases that have no group-subgroup relationship (reconstructive transformations) from the 

perspective of the thermal expansion behavior and structural changes as a function of 

temperature. In order to validate this perspective it is necessary to find other examples where this 

same method can be applied.  Both the rare-earth mono-silicates and Ta2O5 undergo a 
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reconstructive transformation and may be excellent materials for such investigations. SiO2 also 

undergoes several reconstructive transformations and may be beneficial to study to draw 

comparisons to other work in the literature. 

8.1.3 Improving the Kinetic Model 

As discussed extensively in Chapter 7, the Avrami model may be too simple to describe the 

phase transformation kinetics between the orthorhombic and hexagonal phases in the rare-earth 

titanate system (and many other systems as well). More advanced modeling requires much more 

background information on the nature of the transformation itself before proper application of 

more advanced models can be made.  In situ observation of the transformation using hot stage 

transmission electron microscopy as well as hot stage optical microscopy may shed light on the 

nucleation and growth behavior during transformation and can simplify the process when fitting 

with a more advanced model. 
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