
c© 2015 Nisha Somnath

ON COMPUTING A LIVENESS ENFORCING SUPERVISORY POLICY
FOR A CLASS OF GENERAL PETRI NETS

BY

NISHA SOMNATH

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Industrial Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2015

Urbana, Illinois

Doctoral Committee:

Associate Professor Ramavarapu Sreenivas, Chair, Director of Research
Associate Professor Carolyn Beck
Associate Professor Dusan Stipanovic
Professor Petros G. Voulgaris

ABSTRACT

Discrete-Event/Discrete-State (DEDS) Systems are prone to livelocks. Once

a system enters a livelocked-state, there is at least one activity of the mod-

eled system that cannot be executed from all subsequent states of the system.

This phenomenon is common to many operating systems where some pro-

cess enters into a state of suspended animation for perpetuity, and the user

is left with no other option than to terminate the process, or reboot the

machine. This thesis is about computing Liveness Enforcing Supervisory

Policies (LESPs) for Petri net (PN) models of DEDS systems. The existence

of an LESP for general PNs is not even semi-decidable.

This thesis identifies two classes of PNs F and H for which the existence

of a LESP is decidable. It also describes an object-oriented implementation

of a procedure for the synthesis of the minimally-restrictive LESP for any

instance from these classes. The minimally-restrictive LESP prevents the

occurrence of events in a DEDS system only when it is absolutely necessary.

A suite of methods, based on refinement/abstraction concepts, is developed

to reduce the complexity of LESP-synthesis. This involves the synthesis of

a LESP for a simplified-version of a complex PN structure, which is subse-

quently refined to serve as a LESP for the original complex PN.

Two PNs are in a simulation relationship if their behaviors are “similar” in

a formal sense. The thesis concludes with a result that shows that the above

mentioned procedure can be generalized to PNs in simulation relationships.

That is, a LESP for a PN can be modified to serve as a LESP for another

PN that is “similar.” The implementation of this theoretical observation is

suggested as a topic for future work.

ii

I dedicate this thesis to my family: Mom, Dad, Pratyush and Ammuma

iii

ACKNOWLEDGMENTS

I am extremely grateful to my advisor Professor Ramavarapu Sreenivas for

giving me the opportunity to work on this research. Without his constant

support and guidance this thesis would not have been possible. It was a

real privilege to be his student and words alone cannot express my gratitude

towards him.

This work would not have been possible if it were not for the constant

encouragement and support from my family. I thank my mom for her in-

credible patience and my dad for never losing his faith in me. I may have

been a source for some of their stress and worry and this thesis would not

have been accomplished without their endless sacrifices.

I would like to acknowldege my wonderful friends Maria Jones, Spurti Akki

and Deepika Sreedhar. They stood by me through some trying times and

never let me give up.

iv

TABLE OF CONTENTS

LIST OF FIGURES . vi

CHAPTER 1 INTRODUCTION . 1

CHAPTER 2 A REVIEW OF PETRI NETS 5
2.1 Notations, definitions and other preliminary observations . . . 5

CHAPTER 3 MARKING-BASED SUPERVISORY CONTROL
OF PNS . 13
3.1 Supervisory Policies for Liveness Enforcement 13

CHAPTER 4 RECENT THEORETICAL RESULTS AND OB-
SERVATIONS ON LESP-SYNTHESIS 22
4.1 F class PNs [1] . 22
4.2 H class PNs [2] . 28
4.3 On the role of Choice/Non-Choice Transitions in Supervi-

sory Control of PNs . 30
4.4 LESPs for Petri Nets that are Similar [3] 32

CHAPTER 5 LESP-SYNTHESIS ALGORITHM AND OBJECT-
ORIENTED IMPLEMENTATION 38

CHAPTER 6 REDUCTION RULES AND OBJECT ORIENTED
IMPLEMENTATION OF REDUCTION ALGORITHM 42
6.1 Reduction Rules . 42
6.2 Implementation of Reduction Techniques 47
6.3 Deducing Minimal Elements of the Original PN 59
6.4 Examples . 66

CHAPTER 7 CONCLUSIONS AND FUTURE WORK 94

REFERENCES . 97

v

LIST OF FIGURES

1.1 Livelocked Mozilla Firefox. 2
1.2 Error Reporting System used by Windows. 3

2.1 A general FCPN structure N1 = (Π1, T1,Φ1,Γ1). 8
2.2 A general FCPN structure N2 = (Π2, T2,Φ2,Γ2). 8
2.3 The procedure for the construction of the Reachability Tree

of a PN N(m0), where N = (Π, T,Φ,Γ). 10
2.4 A PN N3(m0

3) that is not bounded and not live (cf. section
V.C, [4]). 11

2.5 Coverability graph for the PN N3(m0
3) in 2.4. It can be

seen that the transition t1 is not fired even once. 11
2.6 A PN N4(m0

4) with infinitely large set of markings 12
2.7 Finite coverability graph for N4(m0

4) of figure 2.6 with in-
finitely large set of markings 12

3.1 The procedure for testing the existence of an LESP for
a PN N(m0), where N = (Π, T,Φ,Γ), assuming ∆(N) is
right-closed. 17

3.2 An FCPN N5(m0
5) where N5 = (Π5, T5,Φ5,Γ5). 18

3.3 The output file generated by the software described in ref-
erence [5] for the FCPN shown in figure 3.2. 18

4.1 General FCPN structure N6 23
4.2 General FCPN structure N7 24
4.3 General FCPN structure N8 25
4.4 The minimally-restrictive LESP that ensures all reachable

markings of the plant FCPN PN N6(m0
6) are in the right-

closed set ∆(N6) identified by the minimal elements {(2 0)T , (0 3)T}.
This policy is a minimally restrictive LESP for any m0

6 ∈
∆(N6). There is no LESP for N6(m0

6) if m0
6 /∈ ∆(N6). 27

4.5 The minimally restrictive LESP for the general plant PN
N7(m0

7). This LESP ensures the markings reachable under
its supervision from any m0

7 ∈ ∆(N7) remain within the
right-closed set ∆(N7), where min(∆(N7)) = {(0 0 1 0)T ,
(2 0 0 0)T , (1 0 0 1)T , (0 2 0 0)T , (0 0 0 2)T}. 28

vi

4.6 (a) The PN structure N6 is a member ofH as it is an FCPN
structure. (b) The PN structure N7 is also a member of H.
The non-choice transition t5 is controllable (uncontrollable)
in N6 (N7). 32

4.7 If P̂ is a policy that permits the firing of t̂6 if and only
if ((m̂1 + m̂2 + m̂3 + m̂4 + m̂6 + m̂7) ≥ 2); and, permits
the firing of t̂1(= α(t0)) at every marking in β−1(m) if and

only if P permits the firing of t0 at marking m, then N̂(m̂0)

under P̂ simulates N(m0) under P . From Theorem 4.4.2
we infer that the policy P is an LESP for N(m0) if and
only if every transition in α(T) = {t̂1, t̂8, t̂9, t̂10, t̂11, t̂12, t̂13}
is live under P̂ in N̂ . 36

5.1 Class Diagram. 39
5.2 N7(m0

7) . 39
5.3 Input file for N7(m0

7). The first line shows that there
are four places and six transitions in the PN structure.
This is followed by the (4 × 6) IN and OUT matrices,
which accounts for the eight lines that follow the first line.
The penultimate line identifies the initial marking m0

7 that
places two tokens in place p1, and the last line identifies the
controllable (uncontrollable) transitions with a 1(0). Since
this line is all zeros, but for the fifth position, it follows
that the only controllable transition in this structure is t5. . . 40

5.4 The output file generated from the input file of Figure 5.3 . . 41

6.1 Rule #1 . 44
6.2 Rule #2 . 46
6.3 Rule #3 . 47
6.4 Class Diagram for Reduction Techniques 48
6.5 Class structure of MarkingVector 48
6.6 Class structure - variables of class Reduction 54
6.7 Class structure - methods of class Reduction 56
6.8 Flowchart of Reduc() method 56
6.9 Flowchart of reduction path() method 56
6.10 Flowchart of reduction matrix() method 57
6.11 Flowchart of reduction matrix t() method 57
6.12 Flowchart of member functions of class Reduction 58
6.13 Class Diagram for Deducing Minimal Elements 60
6.14 Class structure of PetriNet . 62
6.15 Class structure of Minele . 63
6.16 Flow of Implementation . 67
6.17 Example-1 . 68
6.18 Input file for Example-1 . 68

vii

6.19 Output for Reduction part of the algorithm for Example-1 . . 69
6.20 Reduced Example-1 . 69
6.21 Minimal Elements of the Reduced net for Example-1 70
6.22 Deducing minimal elements for Example-1 70
6.23 Example-2 . 71
6.24 Input file for Example-2 . 71
6.25 Output for Reduction part of the algorithm for Example-2 . . 71
6.26 Reduced Example-2 . 72
6.27 Minimal Elements of the Reduced net for Example-2 72
6.28 Deducing minimal elements for Example-2 73
6.29 Example-3 . 73
6.30 Input file for Example-3 . 74
6.31 Output for Reduction part of the algorithm for Example-3 . . 74
6.32 Reduced Example-3 . 75
6.33 Minimal Elements of the Reduced net for Example-3 75
6.34 Deducing minimal elements for Example-3 76
6.35 PN-9 (cf. [5]). 77
6.36 Input file for PN-9 (cf. [5]). 77
6.37 Output for Reduction part of the algorithm for PN-9 (cf. [5]). 78
6.38 Reduced PN-9 (cf. [5]). 79
6.39 Minimal Elements of the Reduced net for PN-9 (cf. [5]). . . . 80
6.40 Deducing minimal elements for PN-9 (cf. [5]). 81
6.41 PN-13 (cf. [5]). 82
6.42 Input file for PN-13 (cf. [5]). 82
6.43 Output for Reduction part of the algorithm for PN-13 (cf. [5]). 83
6.44 Reduced PN-13 (cf. [5]). 84
6.45 Minimal Elements of the Reduced net PN-13 (cf. [5]). 85
6.46 Deducing minimal elements for PN-13 (cf. [5]). 86
6.47 PN-11 (cf. [5]). 87
6.48 Input file for PN-11 (cf. [5]). 87
6.49 Output for Reduction part of the algorithm for PN-11 (cf. [5]). 88
6.50 Reduced PN-11 (cf. [5]). 89
6.51 Minimal Elements of the Reduced net for PN-11 (cf. [5]). . . . 90
6.52 Deducing minimal elements for PN-11 (cf. [5]). 91
6.53 Example-5 . 93

7.1 A PN N10(m0
10) with (a) an event-based LESP (that is not

minimally restrictive), and (b) A static-map based LESP
that is minimally restrictive. 96

viii

CHAPTER 1

INTRODUCTION

Every windows user is familiar with the screen-shot as shown in Figure 1.1.

In this scenario Mozilla Firefox is an unresponsive program that remains in

a state of suspended animation for perpetuity. This task is livelocked. The

only recourse is to terminate the unresponsive program using Windows Task

Manager or to reboot the system. This step is followed by sending an error

report to the developers which is used to generate next-generation of fixes

through a service like Windows update (cf. figure 1.2). Clear understanding

of the concept of livelock-avoidance could help avoid such instances.

Forced-shutdown could be a major concern in critical software applications

such as health care and avionics. A livelocked application in these areas could

have disastrous consequences. Restarting a livelocked task after forcibly ter-

minating it could have dire implications in service systems, where complex

service-level-agreements (SLAs) between the service-provider and the clients

can result in large compensations owed to a client that is terminated prej-

udicially in the middle of service. Livelock-avoidance in these systems are

clearly a pressing issue, and based on the frequent occurrences of instances

like what is shown in figure 1.1, we can say with confidence that to date there

is no cogent theory for livelock avoidance.

It is important to work on design principles for livelock-avoidance where

some tasks could enter into a state of suspended animation as mentioned

above. Currently, these systems are over-designed and scheduled inefficiently

which leads to higher costs in Discrete-Event/Discrete-State (DEDS) sys-

tems. Our research focuses on implementation of a supervisory policy for the

avoidance of livelocks in Petri nets (PN) models of DEDS systems. In this

paradigm, a DEDS system is modeled as a PN, where all activities that can

occur at a discrete-state are permitted to occur in the PN model. The PN

model is not live, if it can enter into a livelocked state where some activities

can never proceed to completion. The objective is to synthesize a supervi-

1

Figure 1.1: Livelocked Mozilla Firefox.

sory policy that determines the set of events that are to be prevented from

occurring at each discrete state of the DEDS system such that the resulting

supervised PN is live. This is a liveness enforcing supervisory policy (LESP)

for the DEDS system.

In the most general setting, the supervisory policy cannot prevent the oc-

currence of certain events of the DEDS system. For instance, a failure-event,

or an event that is an exigency, cannot be prevented from occurring. These

external, uncontrollable events are beyond the control of the supervisory pol-

icy. The synthesis procedure for an LESP has to hedge against the pernicious

influences of these external events in the general setting. An LESP P is said

to be minimally restrictive if the fact that it prevents the occurrence of an

event at a discrete state implies that all other LESPs will also prevent the

occurrence of the same event at that discrete state. The existence of an

LESP for a PN model of a DEDS system implies the existence of a unique,

minimally restrictive LESP.

There are necessary and sufficient conditions for the existence of an LESP

for an arbitrary PN model of a DEDS system. Unfortunately, testing the

existence of a LESP for DEDS systems that are modeled by arbitrary PN

models is undecidable. In fact, neither the existence, nor the non-existence

2

Figure 1.2: Error Reporting System used by Windows.

of a LESP for an arbitrary PN model is even semi-decidable. This means

any heuristic procedure for the synthesis of an LESP for arbitrary PN models

will hang indefinitely for at least one instance where there is an LESP, and

another instance for which there is no LESP. Consequently, we need to re-

strict attention to specific classes of PN models for DEDS systems for which

the existence (and synthesis) of a LESP is decidable. If every activity of

the DEDS system can be prevented from occurring by the LESP (i.e. there

are no uncontrollable events), or if the PN model that represents the DEDS

system is an Ordinary Free Choice PN, there is a synthesis procedure for the

minimally restrictive LESP. The relevant details are presented in subsequent

chapters.

This thesis covers the identification of two classes of general PN structures,

F andH described in (cf. chapter 4) , for which the existence (and synthesis)

of a LESP is decidable (cf. [1, 2]). This is shown by establishing the property

that for any PN structure N that belongs to these classes, the existence of

a LESP when N is initialized with the marking (i.e. state) m0 implies the

existence of a LESP when N is initialized with any (term-wise) larger initial

marking.

The software described in reference [5] can be used to synthesize the min-

imally restrictive LESP for any member of the classes of PNs that meet the

monotonicity property referred to in (cf. chapter 3) . We have encountered

examples where the software of reference [5] takes an unusually long time to

compute the minimally restrictive LESP for specific problem instances. We

use reduction methods described in (cf. chapter 6) to reduce the computa-

tional time for deducing LESP for PNs. The object- oriented implementa-

3

tion of these techniques is described in (cf. sections 6.1, 6.2 and 6.3). We

use illutrative examples to prove the utility of various results that have been

obtained. These examples are interspersed in the subsequent chapters of this

thesis.

4

CHAPTER 2

A REVIEW OF PETRI NETS

In this chapter we formally define PN concepts that are pertinent to the

development of the results in this thesis. A detailed treatment can be found

in Murata’s review article [4], or Peterson’s book [6].

2.1 Notations, definitions and other preliminary

observations

The set of non-negative (positive) integers is denoted by N (N+). The

cardinality of a set A is represented as card(A). A Petri net structure N =

(Π, T,Φ,Γ) is an ordered 4-tuple, where Π = {p1, . . . , pn} is a set of n places,

T = {t1, . . . , tm} is a collection of m transitions, Φ ⊆ (Π× T) ∪ (T ×Π) is a

set of arcs, and Γ : Φ→ N+ is the weight associated with each arc.

In graphical representation of PNs places (resp. transitions) are repre-

sented by circles (resp. boxes), and each member of φ ∈ Φ is denoted by a

directed arc. If φ = (p, t) (resp. (t, p)) the arc is directed from p (resp. t)

to t (resp. p). The initial marking is represented by an appropriate integer,

m0(p), within each place p ∈ Π. The weight of an arc is represented by an

integer that is placed alongside the arc. If an arc has a unitary weight, it is

not represented in its graphical representation.

The set of all finite-length strings of transitions is represented by T ∗. For

a string of transitions σ ∈ T ∗, we use x(σ) to denote the Parikh vector of σ.

That is, the i-th entry, xi(σ), corresponds to the number of occurrences of

transition ti in σ.

If all arcs of a PN are unitary, it is said to be an ordinary PN, otherwise

it is a general PN. The initial marking of a PN structure N is a function

m0 : Π→ N , which identifies the number of tokens in each place. A marking

m : Π → N is sometimes represented by an integer-valued vector m ∈ N n,

5

where the i-th component mi represents the token load (m(pi)) of the i-

th place. The function- and vector-interpretation of the marking is used

interchangeably. A Petri net (PN), N(m0), is a PN structure N together

with its initial marking m0.

Let •x := {y | (y, x) ∈ Φ} and x• := {y | (x, y) ∈ Φ}. If ∀p ∈ •t,mi(p) ≥
Γ((p, t)) for some t ∈ T and some marking mi, then t ∈ T is said to be

enabled at marking mi. The set of enabled transitions at marking mi is

denoted by the symbol Te(N,m
i). An enabled transition t ∈ Te(N,m

i)

can fire, which changes the marking mi to mi+1 according to mi+1(p) =

mi(p)− Γ(p, t) + Γ(t, p).

A string of transitions σ = t1 · · · tk, where tj ∈ T (j ∈ {1, . . . , k}) is said to

be a valid firing string starting from the marking mi, if, (1) the transition

t1 ∈ Te(N,m
i), and (2) for j ∈ {1, . . . , k − 1} the firing of the transition

tj produces a marking mi+j and tj+1 ∈ Te(N,m
i+j) is enabled. If mi+k

results from the firing of σ ∈ T ∗ starting from the initial marking mi, we

represent it symbolically as mi σ→ mi+k. Given an initial marking m0 the

set of reachable markings for m0 denoted by <(N,m0), is defined as the set

of markings generated by all valid firing strings starting with marking m0 in

the PN N . A PN N(m0) is said to be live if

∀t ∈ T,∀mi ∈ <(N,m0),∃mj ∈ <(N,mi) such that t ∈ Te(N,mj).

In the context of a marking being represented as nonnegative integer-

valued vector, it is useful to define input matrix IN and output matrix OUT

as two m× n matrices, where

INi,j =

{
1 if pi ∈• tj
0 otherwise

OUTi,j =

{
1 if pi ∈ t•j
0 otherwise

The incidence matrix C of the PN N is an n × m matrix, where C =

OUT − IN. If x(σ) is an m-dimensional vector whose k-th component

corresponds to the number of occurrences of tk in a valid string σ ∈ T ∗, and

if mi σ→mi+j, then mi+j = mi + Cx(σ).

A set of markings M ⊆ N n is said to be right-closed [7] if ((m1 ∈ M) ∧

6

(m2 ≥ m1) ⇒ (m2 ∈ M)), and is uniquely defined by its finite set of

minimal-elements.

A collection of places P ⊆ Π is said to be a siphon (resp. trap) if (•P) ⊆
(P •) (resp. (P •) ⊆ (•P)), where (•P) :=

⋃
p∈P (•p) and (P •) :=

⋃
p∈P (p•).

A trap (resp. siphon) P , is said to be minimal if 6 ∃P̃ ⊂ P , such that

(P̃ •) ⊆ (•P̃) (resp. (•P̃) ⊆ (P̃ •)).

A PN structure N = (Π, T,Φ,Γ) is Free-Choice (FC) if ∀p ∈ Π, (card(p•) >

1⇒ •(p•) = {p}), where card(•) denotes the cardinality of the set argument.

A PN N(m0) where N is FC, is a Free-Choice Petri net (FCPN). In other

words, a PN structure is Free-Choice if and only if an arc from a place to a

transition is either the unique output arc from that place, or, is the unique

input arc to the transition. Commoner’s Liveness Theorem (cf. chapter 4,

[8]; [9]) states an ordinary FCPN N(m0) is live if and only if every minimal

siphon in N contains a minimal trap that has a non-empty token load at the

initial marking m0.

Testing the liveness of an ordinary FCPN is NP -hard. Under appropriate

conditions, an ordinary FCPN that violates Commoner’s Liveness Theorem

can be made live by supervision. If an ordinary FCPN N(m0) is live for an

initial marking m0, the ordinary FCPN N(m̂0) is also live for any m̂0 ≥m0.

That is, the class of ordinary FCPNs exhibit liveness monotonicity.

The liveness monotonicity property, and Commoner’s Liveness Theorem,

are not satisfied by general FCPNs. As an illustration consider the FCPN

structure N1 = (Π1, T1,Φ1,Γ1) shown in figure 2.1. Since Γ1((p5, t6)) = 2,

N1 is a general FCPN. N1 has no traps. Since, •Π1 ⊂ Π•1, N1 has a siphon

that contains no traps. Prima facie, this general FCPN violates Commoner’s

Liveness Theorem. However, N1(m0
1) is live if and only if the sum of tokens

assigned to all places by the initial marking m0
1 is an odd number. Neither

does N1 posses the property of liveness monotonicity that is true of ordinary

FCPNs.

A PN structure N = (Π, T,Φ,Γ) is said to be a Simple Petri Net (SPN)

if and only if

∀t ∈ T, card({p ∈• t | card(p•) > 1}) ≤ 1.

The family of FCPN structures is strictly contained in the family of SPN

structures. Barkaoui et al. [10] present a sufficient condition for the liveness

7

p1

p2 p3
p4

t1

t2

t3
t4

t5 t6

2p5

Figure 2.1: A general FCPN structure N1 = (Π1, T1,Φ1,Γ1).

of a general SPN N(m0). They note that if all siphons P ⊆ Π of the SPN

N(m0) satisfy the requirement ∀m ∈ <(N,m0),∃p ∈ P such that m(p) is

greater than or equal to the largest weight among the arcs that originate from

p, then N(m0) is live. This sufficient condition is not necessary for liveness.

Since the class of SPN structure strictly includes the class of general FCPNs,

the general FCPN structure N2 = (Π2, T2,Φ2,Γ2) shown in figure 2.2 is also

an SPN, and Π2 is a siphon (and a trap). N2(m0
2) is live for any m0

2 6= 0.

Consequently, N2(m0
2) is live for m0

2 = (1 0 0 0 0)T , but ∀p ∈ Π2, m0
2(p) is

strictly less than the largest weight among all arcs that originate from p.

p1
p2

p3 p4

p5

t1

t2t3

t4 t5 t6

2

Figure 2.2: A general FCPN structure N2 = (Π2, T2,Φ2,Γ2).

These examples illustrate that (1) Liveness Monotonicity and Commoner’s

Liveness Theorem are inapplicable to the class of general FCPNs, and (2)

the sufficient condition of Barkaoui et al. [10] are not necessary for liveness

of general FCPNs.

We present an important analytical tool for PNs in the following subsec-

tion, which can be automatically generated by software tools described in

subsequent chapters, additionally this construction plays a crucial role in

8

several theoretical results in the literature and in this thesis.

2.1.1 Coverability graph

Reachability/Coverability graph consists of all possible markings that can be

reached when the transitions in a net are fired. When the transitions from

an initial marking m0 are fired it gives rise to new markings. From these

new markings further markings are reached as transitions are enabled. This

leads to a tree structure that could be infinitely large. The procedure listed

below can be interpreted as a finite-characterization of this tree structure,

which is known as the reachability tree (cf. section 4.2.1, [6]). The vertex

set of this tree is V , and each vertex v ∈ V has an (extended) marking of

the PN, µ(v), associated with it. An extended marking can be thought of

as markings where some places can have infinite tokens. The symbol ω is

used to represent the presence of infinite tokens. Each edge of this tree has

a transition associated with it. The tree is constructed using the procedure

of figure 2.3.

If the duplicate nodes are merged with the parent node in a reachability

graph, we get the coverability graph. A PN is unbounded if and only if there

are ω symbols in its coverability graph. The coverability graph is finite for

any PN.

Figure 2.4 represents a PN N3(m0
3) that is not bounded and not live. The

reason N3(m0
3) is not bounded is because the number of tokens in p1 can

grow without bound with repeated firings of t3t2t4. This can also be inferred

from the fact that there is at least one vertex v of the coverability graph

in Figure 2.5 where µ(v) assigns the ω-symbol to place p1. This PN is not

live since the transition t1 is not fired even once. In general, liveness (resp.

boundedness) cannot (resp. can) be inferred from the coverability graph of

a PN.

9

1: The root vertex is v0. V ← {v0}, and µ(v0) = m0.
2: for vi ∈ V do
3: if µ(vi) is identical to µ(vj) for some vj ∈ V then
4: vi has no children, and is marked as the duplicate of vj .
5: end if
6: if no transition is enabled under the marking µ(vi) then
7: vi has no children, and is marked as a terminal vertex.
8: end if
9: if vi is not a duplicate-vertex then

10: for tj that is enabled under µ(vi) do
11: Create a new vertex vk. V ← V ∪ {vk}.
12: Create a new directed edge starting from vi and ending at vk. Label

this edge with the transition tj .
13: if The number of tokens in p is ω under µ(vi), for some p ∈ Π then
14: The number of tokens in p is ω under µ(vk) too.
15: else
16: The number of tokens in p under µ(vk) is what results when tj is

fired under µ(vk)
17: end if
18: if (∃vq ∈ V on the directed path from v0 to vk such that µ(vq) ≤ µ(vk))

then
19: for (p ∈ Π) do
20: if p has fewer tokens under µ(vq) than under µ(vk) then
21: The number of tokens in p is ω under µ(vk).
22: end if
23: end for
24: end if
25: end for
26: end if
27: end for

Figure 2.3: The procedure for the construction of the Reachability Tree of a
PN N(m0), where N = (Π, T,Φ,Γ).

10

Draft of December 4, 2011 at 13 : 31
P2

T3

P3 P1

T1

T2

P4
T4

Figure 1.2: A petri net that is not bounded and not live (cf. section V.C,
[2]) .

If the duplicate nodes are merged with the parent node in a reachability

graph, we get the coverability graph. A petri net is unbounded if and

only if there are ω symbols in its coverability graph. The coverability

graph is finite for any petri net. Figure 1.2 represents a petri net that

is not bounded and not live. The reason the net is not bounded is

because the number of tokens are not finite for all reachable markings.

This can be seen from the coverability graph in Figure 1.3. The net is

not live since the transition t1 is not fired even once.

The reachable set of markings can be infinitely large. The petri net in

Figure 1.4 has an infinite set of marking for the initial marking of (1 0

0 0). t5 is a controllable transition. When transition t4 is fired places p2

and p3 can have infinite number of tokens. However Figure 1.5 shows

that the reachability graph of this petri net is finite.

3. Free choice petri net - A petri net, where every arc from a place to a

transition is either the unique output arc from that place or it is the

unique input arc to that transition [6]. A non free choice petri net can

be converted to a free choice petri net by adding an extra place and

transition to it. An example of non free choice petri net can be seen

6

Figure 2.4: A PN N3(m0
3) that is not bounded and not live (cf. section

V.C, [4]).

Draft of December 4, 2011 at 13 : 31

0 1 0 0

1 0 1 0

t3

1 0 0 1

t2

W 1 0 0

t4

W 0 1 0

t3

W 0 0 1

t2

t4

Figure 1.3: Reachability graph for the petri net in Figure 1.2 . It can be
seen that even though the graph that the transition t1 is never fired

in Figure 1.6. The transition t3 has two input arcs to it. This net can

be converted into a free choice petri net by converting the arc from p2

to t3 into an additional place p5 and an additional transition t5. The

converted free choice petri net is shown in Figure 1.7. However, this

conversion might not be permitted in all cases for practical reasons.

Commoner’s Liveness Theorem- Commoner’s live theorem states that

a free choice petri net is live if and only if every siphon contains a

marked trap at the initial marking. Any free choice net that does not

contain a trap will not be live no matter how the transitions are fired.

Figure 1.8 is an example of a free choice petri net that is both a siphon

and a trap. The sets {p1, p3}, {p2, p3}, {p1, p2.p3} form both siphons

and traps. Consider the set P = {p1, p3} the input transitions to these

places are •P = {t1, t2} and the output transitions are P • = {t1, t2}.
Since •P ⊆ P • this set forms a siphon, and since P • ⊆• P this set

forms a trap. Similarly the sets {p2, p3}, {p1, p2, p3} are both siphons

and traps. Hence in the presence of a token these parts of the petri net

at initialization guarantees liveness. However, Figure 1.9 is an example

of a petri net where all siphons do not contain a trap. In this petri

net the sets {p1, p2, p3, p4}, {p1, p2, p4, p5}, {p1, p2, p3, p4, p5} are siphons

7

Figure 2.5: Coverability graph for the PN N3(m0
3) in 2.4. It can be seen

that the transition t1 is not fired even once.

To reiterate, while the reachable set of markings of a PN can be infinitely

large, its coverability graph is always finite. The PN N4(m0
4) in Figure 2.6

has an infinite set of markings that can be reached from the initial marking

of (1 0 0 0)T . From its finite coverability graph, shown in Figure 2.7, we can

infer that the token load of every place in this PN can grow without bound.

It should be noted that the number of vertices in the coverability graph

of a PN can be prohibitively large. Oftentimes, this is the reason behind

the ineffectiveness of coverability graph based methods in the analysis of

PNs. However, coverability graphs can be very effective in establishing novel

decidability results. Alternately, any effective method for reducing the size of

the coverability graph, while retaining features that are pertinent to a specific

problem, can improve the viability of coverability graph based methods for

the analysis of PNs.

11

Draft of December 4, 2011 at 13 : 31

P1

P2 P3

P4

T1

T2
T3

T4 T5

Figure 1.4: A petri net with infinitely large reachable set of markings [3].

however, they do not contain any traps. Hence at some point this petri

net will cease to be live.

4. Right closed set - A set of markings Ω is right-closed if m1 ∈ Ω⇒m2 ∈
Ω for all m2 ≥ m1. That is, if a marking is in the set, then all larger

markings are also in the set. Right-closed sets are uniquely defined by

its finite set of minimal elements. For controllable petri nets, a supervi-

sory policy that enforces livelock freedom (if it exists) is characterized

by an appropriately selected right-closed set [3]. The policy prevents

the occurrence of any transition at a marking if its firing will result in

a new marking that is not in the right-closed set. For Figure 1.4 the set

of minimal elements are {(0 0 0 1), (0 0 1 0), (0 1 0 0), (1 0 0 0)}. The

supervisory policy of this petri net would prevent the firing of the tran-

sition t5 at the marking (0 0 0 1). This is because the firing t5 at (0 0 0 1)

would result in the marking (0 0 0 0), which is not in the right-closed set

defined by the minimal elements {(0 0 0 1), (0 0 1 0), (0 1 0 0), (1 0 0 0)}.

8

Figure 2.6: A PN N4(m0
4) with infinitely large set of markingsDraft of December 4, 2011 at 13 : 31

1 0 0 0

0 1 1 0

t1

0 0 1 1

t2

0 1 0 1

t3

0 0 0 2

t3

1 0 W 0

t4

0 0 1 0

t5

1 0 0 W

t4

0 0 0 1

t5

0 W W W

t1

W 0 0 W

t4t5

t5t2 t3

W W W W

t4

t3 t4 t5t1 t2

t1

t4 t5

t4

0 0 0 0

t5

0 1 W 0

t1

W 0 W W

t3

t3

0 0 W 1

t2

t4

0 0 W W

t30 0 W 0

t5

t3 t5

t4

t1

t3 t4 t5

t3

t3

t2

1 W 0 0

t4

0 1 0 0

t5

0 W 1 0

t1

W W 0 W

t2

t2

0 W 0 1

t3

t4

0 W 0 W

t2 0 W 0 0

t5

t2 t5

t4

t1

t2 t4 t5

t2

t2

Figure 1.5: Finite reachability graph of the petri net with infinitely large
reachable set of markings [3] .

P1

T1 T2

P2

T3
P4P3

T4

Figure 1.6: An example of a non free choice petri net where transition t3
has two input arcs (cf. section V.C, [2]) .

9

Figure 2.7: Finite coverability graph for N4(m0
4) of figure 2.6 with infinitely

large set of markings

12

CHAPTER 3

MARKING-BASED SUPERVISORY
CONTROL OF PNS

In this chapter we present the paradigm of supervisory control of PNs, and

review the results that are relevant to the topics covered in this thesis.

3.1 Supervisory Policies for Liveness Enforcement

This paradigm of marking-based supervisory control assumes a subset of con-

trollable transitions, denoted by Tc ⊆ T , can be prevented from firing by an

external agent called the supervisor. The set of uncontrollable transitions,

denoted by Tu ⊆ T , is given by Tu = T − Tc. The controllable (resp. un-

controllable) transitions are represented as filled (resp. unfilled) boxes in

graphical representation of PNs.

A supervisory policy P : N n × T → {0, 1}, is a function that returns a 0

or 1 for each transition and each reachable marking. The supervisory policy

P permits the firing of transition tj at marking mi, only if P(mi, tj) = 1.

A policy P is marking monotone if ∀ti ∈ T,∀m2 ≥ m1, (P(m1, ti) = 1) ⇒
(P(m2, ti) = 1).

If tj ∈ Te(N,mi) for some marking mi, we say the transition tj is state-

enabled at mi. If P(mi, tj) = 1, we say the transition tj is control-enabled at

mi. A transition has to be state- and control-enabled before it can fire. The

fact that uncontrollable transitions cannot be prevented from firing by the su-

pervisory policy is captured by the requirement that ∀mi ∈ N n,P(mi, tj) =

1, if tj ∈ Tu. This is implicitly assumed of any supervisory policy in this

paper.

A string of transitions σ = t1 · · · tk, where tj ∈ T (j ∈ {1, . . . , k}) is

said to be a valid firing string starting from the marking mi, if, (1) t1 ∈
Te(N,m

i),P(mi, t1) = 1, and (2) for j ∈ {1, . . . , k−1} the firing of the transi-

tion tj produces a marking mi+j and tj+1 ∈ Te(N,mi+j) and P(mi+j, tj+1) =

13

1.

The set of reachable markings under the supervision of P in N from the

initial marking m0 is denoted by <(N,m0,P). We use the symbol <(N,m0)

to denote the set of reachable markings when the PN N(m0) is unsuper-

vised, or when the supervisory policy P is a trivial policy that permits every

transition at all markings (as would be the case when T = Tu, for instance).

If mi σ→ mj, for some σ ∈ T ∗, we have mj = mi + Cx(σ), where C is

the incidence matrix of N , and x(σ) is the Parikh mapping of σ. We say

mi is potentially reachable from m0 if ∃y ∈ Nm that satisfies the equation

Cy = (mi−m0). If mi is not potentially reachable from m0, we can conclude

that mi /∈ <(N,m0,P) for any P .

For a marking monotone supervisory policy P , the construction procedure

for the coverability graph of a PN (cf. section 2.1.1) can be extended to

accommodate the supervisory policy P , which results in the coverability

graph G(N(m0,P)) (cf. figure 1, [11]). We use the symbol v1
σ→ v2 to denote

the path labeled by σ ∈ T ∗ from vertex v1 to vertex v2 in G(N(m0,P)).

A transition tk is live under the supervision of P if ∀mi ∈ <(N,m0,P),

∃mj ∈ <(N,mi,P) such that tk ∈ Te(N,mj) and P(mj, tk) = 1.

A policy P is a liveness enforcing supervisory policy (LESP) for N(m0) if all

transitions in N(m0) are live under P . The policy P is said to be minimally

restrictive if for every LESP P̂ : N n × T → {0, 1} for N(m0), the following

condition holds

∀mi ∈ N n, ∀t ∈ T,P(mi, t) ≥ P̂(mi, t).

The existence of an LESP for an arbitrary PN is undecidable (cf. Corollary

5.2, [12]). Additionally, neither the existence nor the non-existence of an

LESP for an arbitrary PN is semi-decidable (cf. Theorems 3.1 and 3.2, [11]).

Therefore, any heuristic procedure that attempts to find an LESP for an

arbitrary PN will hang indefinitely for at least one instance where there is

an LESP, and another instance for which there is no LESP.

If there is an LESP for some N(m0), then there is a unique minimally

restrictive LESP for PN N(m0) (cf. theorem 6.1, [12]). The minimally

restrictive LESP can be synthesized for:

14

1. The class of arbitrary PNs where T = Tc, that is, all transitions in the

PN are controllable (cf. Corollary 5.1, [12]);

2. The class of Ordinary FCPNs (cf. Theorem 5.16, [11]);

3. The class of general FCPNs denoted by F , which strictly includes the

class of ordinary FCPNs (Theorem 3.5, [1]);

4. The class of ordinary PNs denoted by G, which also strictly includes the

class of ordinary FCPNs, but is incomparable to the class F referred

to above (cf. Theorem 3.5, [13]); and,

5. The class of general PNs denoted by H, which strictly includes classes

G and F introduced earlier (cf. Section 3, [2]).

The minimally restrictive LESP, when it exists for any instance of these

classes, is marking monotone.

The set of initial markings, ∆(N), for which there is a supervisory policy

that enforces liveness for a PN structure N , is defined as

∆(N) = {m0 | ∃ an liveness enforcing supervisory policy for N(m0)}.

For any PN structure N that belongs to the five classes identified above,

the set ∆(N) is right-closed, and is characterized by its minimal elements

min(∆(N)),

A set of markingsM⊆ N n is said to be control-invariant with respect to

a partially controlled PN structure N = (Π, T,Φ,Γ), if M = Γ(M), where

Γ(M) = {mi ∈ N n | ∃σ ∈ T ∗u ,∃mj ∈ M, such that mj σ→ mi}. Note,

M⊆ Γ(M) in general. Alternately, ifM is control-invariant with respect to

N , mi ∈ M, mi σ→ mj in N , and mj /∈ M, then there must be at least one

controllable transition in the firing string σ ∈ T ∗. There is a procedure to

test the control-invariance of a right-closed set of markings M with respect

to a PN structure N (cf. Lemma 5.10, [11]). If M does not pass this test,

then it is possible to find the largest subset of M that is control invariant

with respect to N .

The set ∆(N) is control invariant with respect to the PN structure N .

That is, if m1 ∈ ∆(N), tu ∈ Te(N,m
1) ∩ Tu and m1 tu→ m2 in N , then

m2 ∈ ∆(N). Alternately, only the firing of a controllable transition at a

marking in ∆(N) can result in a new marking that is not in ∆(N).

15

Suppose m0 ∈ ∆(N), then the supervisory policy that control-disables

any (controllable) transition at a marking in ∆(N) if its firing would result

in a new marking that is not in ∆(N), is the minimally restrictive LESP

for N(m0). This lends itself to an effective procedure for the synthesis of a

minimally restrictive LESP when it exists, which is elaborated below.

Suppose, (1) N is a PN structure where ∆(N) is known to be right-closed,

(2) Ψ is a right-closed set of markings that is control invariant with respect

to N , (3) PΨ is a supervisory policy that control-disables any (controllable)

transition at a marking in Ψ if its firing would result in a new marking

that is not in Ψ, and (4) m0 ∈ Ψ, we can construct the coverability graph,

G(N(m0),PΨ), of N(m0) under the supervision of PΨ, along the same lines

as the coverability graph of a PN (cf. section 4.2.1, [6]). The policy PΨ

enforces liveness in N(m0) if and only if

1. m0 ∈ Ψ, and

2. (Path-requirement) there is a vertex v, and a closed-path v
σ→ v in

G(N(mi),PΨ) (σ ∈ T ∗), for each mi ∈ min(Ψ) where

(a) all transitions appear at least once in σ (i.e. x(σ) ≥ 1), and

(b) the net-change in the token-load in each place after the firing of

σ is non-negative (i.e. Cx(σ) ≥ 0).

The above test can be represented as a feasibility problem for an appropri-

ately posed instance of an Integer Linear Program (ILP) on the coverability

graph G(N(m0),PΨ) (cf. appendix, [12]).

The algorithm for the synthesis of a liveness enforcing supervisory policy

for a PN structure N that belongs to a class where ∆(N) is known to be

right-closed essentially involves a search for a right-closed set of markings Ψ

that is control invariant with respect to N , where each member of min(Ψ)

meets the path-requirement on its coverability graph described above. This

is done in an iterative manner starting with an initial set

Ψ0 = {m0 | ∃ an LESP for N(m0) if all transitions in N are controllable}

which is known to be right-closed (cf. corollary 5.1, [12]; equation 3, [11]). If

Ψ is the largest subset that meets the aforementioned requirements, and m0 ∈

16

Ψ, then the minimal elements, min(Ψ), effectively represent the minimally

restrictive LESP for the PN N(m0).

The LESP synthesis procedure is described in figure 3.1.

1: if m0 /∈ Ψi then
2: The procedure terminates with the conclusion that there is no LESP

for N(m0).
3: else if m0 ∈ Ψi, and Ψi is not control invariant with respect to N then
4: Ψi is replaced by its largest control invariant subset, Ψi+1 where Ψi+1 ⊂

Ψi. Following this, the process is repeated with Ψi ← Ψi+1 (i.e. go to
step 1).

5: else
6: Each minimal element of the control invariant, right-closed set Ψi is

tested for the path-requirement on its coverability graph described
above.

7: if If all minimal elements satisfy this requirement then
8: The members of min(Ψi) are presented as a description of the LESP

for N(m0).
9: else

10: Each minimal element mi that fails the requirement is “elevated”
by card(Π)-many unit-vectors as follows

mi ← {mi + 1i | i ∈ {1, 2, . . . , card(Π)}}

where 1i is the i-th unit-vector. That is, the above process re-
places the minimal element mi with card(Π)-many minimal ele-
ments, which in turn defines a right-closed set Ψi+1 ⊂ Ψi.

11: Ψi ← Ψi+1, and go to step 1.
12: end if
13: end if

Figure 3.1: The procedure for testing the existence of an LESP for a PN
N(m0), where N = (Π, T,Φ,Γ), assuming ∆(N) is right-closed.

This procedure forms the corpus of the algorithm used to synthesize the

minimally restrictive liveness enforcing supervisory policy for N(m0), when it

exists, for a structure N for which it is known that ∆(N) is right-closed. This

procedure has been implemented in C/C++ on Mac (Windows) platforms

using the Xcode (Visual Studio 2012) complier [14, 15, 16].

17

3.1.1 LESP Synthesis via an Illustrative Example

The FCPN N5(m0
5) shown in figure 3.2 is used to illustrate the LESP synthe-

sis procedure of figure 3.1 of the previous subsection. The output generated

by the software of reference [5] is shown in figure 3.3.

p1 p2

p3

p6

p4 p5

p7 p8

p9

t1 t2

t3 t4

t5 t6

t7 t8

t9 t10

t11

Figure 3.2: An FCPN N5(m0
5) where N5 = (Π5, T5,Φ5,Γ5).

pn5.res Tue Nov 26 04:30:44 2013 1
 Input File = "pn5"

 Incidence Matrix :

 T 1 2 3 4 5 6 7 8 9 10 11
 P
 1 -1 . -1 1
 2 1 -1 . -1
 3 . . 1 . -1
 4 . . 1 . . -1
 5 . . . 1 . -1
 6 1 . -1 -1 . . .
 7 1 . . -1 . .
 8 1 . . . -1 .
 9 1 1 1 -1

 Initial Marking : (1 0 0 0 0 0 0 0 0)

 There is an LESP for this (fully controlled) PN

 Minimal Elements of the fully controlled Net
 --

 1: (1 0 0 0 0 0 0 0 0)
 2: (0 0 1 0 0 0 0 0 0)
 3: (0 0 0 0 0 1 0 0 0)
 4: (0 0 0 0 0 0 1 0 0)
 5: (0 0 0 0 0 0 0 1 0)
 6: (0 0 0 0 0 0 0 0 1)
 7: (0 0 0 1 1 0 0 0 0)
 8: (0 1 0 1 0 0 0 0 0)

 List of Controllable Transitions

 t1 t2 t3 t4 t8

 (Final) Minimal Elements of the control-invariant set

 1: (1 0 0 0 0 0 0 0 0)
 2: (0 0 0 0 0 0 1 0 0)
 3: (0 0 0 0 0 0 0 1 0)
 4: (0 0 0 0 0 0 0 0 1)
 5: (0 0 0 1 1 0 0 0 0)
 6: (0 1 0 1 0 0 0 0 0)

The loop-test failed for the minimal_element: (1 0 0 0 0 0 0 0 0)

The loop-test failed for the minimal_element: (0 0 0 0 0 0 1 0 0)

The loop-test failed for the minimal_element: (0 0 0 0 0 0 0 1 0)

The loop-test failed for the minimal_element: (0 0 0 0 0 0 0 0 1)

 (Final) Minimal Elements of the control-invariant set

 1: (0 0 0 1 1 0 0 0 0)
 2: (0 1 0 1 0 0 0 0 0)
 3: (2 0 0 0 0 0 0 0 0)
 4: (1 1 0 0 0 0 0 0 0)
 5: (1 0 1 0 0 0 0 0 0)

 6: (1 0 0 1 0 0 0 0 0)
 7: (1 0 0 0 1 0 0 0 0)
 8: (1 0 0 0 0 1 0 0 0)
 9: (1 0 0 0 0 0 1 0 0)
 10: (1 0 0 0 0 0 0 1 0)
 11: (1 0 0 0 0 0 0 0 1)
 12: (1 0 0 0 0 0 1 0 0)
 13: (0 1 0 0 0 0 1 0 0)
 14: (0 0 1 0 0 0 1 0 0)
 15: (0 0 0 1 0 0 1 0 0)
 16: (0 0 0 0 1 0 1 0 0)
 17: (0 0 0 0 0 1 1 0 0)
 18: (0 0 0 0 0 0 2 0 0)
 19: (0 0 0 0 0 0 1 1 0)
 20: (0 0 0 0 0 0 1 0 1)
 21: (1 0 0 0 0 0 0 1 0)
 22: (0 1 0 0 0 0 0 1 0)
 23: (0 0 1 0 0 0 0 1 0)
 24: (0 0 0 1 0 0 0 1 0)
 25: (0 0 0 0 1 0 0 1 0)
 26: (0 0 0 0 0 1 0 1 0)
 27: (0 0 0 0 0 0 1 1 0)
 28: (0 0 0 0 0 0 0 2 0)
 29: (0 0 0 0 0 0 0 1 1)
 30: (1 0 0 0 0 0 0 0 1)
 31: (0 1 0 0 0 0 0 0 1)
 32: (0 0 1 0 0 0 0 0 1)
 33: (0 0 0 1 0 0 0 0 1)
 34: (0 0 0 0 1 0 0 0 1)
 35: (0 0 0 0 0 1 0 0 1)
 36: (0 0 0 0 0 0 1 0 1)
 37: (0 0 0 0 0 0 0 1 1)
 38: (0 0 0 0 0 0 0 0 2)

 (Final) Minimal Elements of the control-invariant set

 1: (0 0 0 1 1 0 0 0 0)
 2: (0 1 0 1 0 0 0 0 0)
 3: (2 0 0 0 0 0 0 0 0)
 4: (1 1 0 0 0 0 0 0 0)
 5: (1 0 0 1 0 0 0 0 0)
 6: (1 0 0 0 1 0 0 0 0)
 7: (1 0 0 0 0 0 1 0 0)
 8: (1 0 0 0 0 0 0 1 0)
 9: (1 0 0 0 0 0 0 0 1)
 10: (0 1 0 0 0 0 1 0 0)
 11: (0 0 0 1 0 0 1 0 0)
 12: (0 0 0 0 1 0 1 0 0)
 13: (0 0 0 0 0 0 2 0 0)
 14: (0 0 0 0 0 0 1 1 0)
 15: (0 0 0 0 0 0 1 0 1)
 16: (0 1 0 0 0 0 0 1 0)
 17: (0 0 0 1 0 0 0 1 0)
 18: (0 0 0 0 1 0 0 1 0)
 19: (0 0 0 0 0 0 0 2 0)
 20: (0 0 0 0 0 0 0 1 1)
 21: (0 1 0 0 0 0 0 0 1)
 22: (0 0 0 1 0 0 0 0 1)
 23: (0 0 0 0 1 0 0 0 1)
 24: (0 0 0 0 0 0 0 0 2)

 This is An LESP

Figure 3.3: The output file generated by the software described in reference
[5] for the FCPN shown in figure 3.2.

The iteration starts with Ψ0, the largest controllable, right-closed subset of

the set of initial markings for which there is an LESP for the fully-controlled

18

version of N5. In the context of this example, eight minimal elements identify

the right-closed of initial markings for which there is an LESP for the fully-

controllable version of N5 shown in figure ??. The second and third among

this list of eight minimal elements are not control invariant as t5, t7 ∈ Tu and

(0 0 1 0 0 0 0 0 0)T
t5→ (0 0 0 1 0 0 0 0 0)T

t7→ (0 0 0 0 0 0 0 0 0)T . The

largest controllable subset of this right-closed set is Ψ0, which is identified by

the six minimal elements shown immediately afterwards in the same figure.

That is, min(Ψ0) are the six vectors listed below.

1 : (1 0 0 0 0 0 0 0 0)T

2 : (0 0 0 0 0 0 1 0 0)T

3 : (0 0 0 0 0 0 0 1 0)T

4 : (0 0 0 0 0 0 0 0 1)T

5 : (0 0 0 1 1 0 0 0 0)T

6 : (0 1 0 1 0 0 0 0 0)T ,

and m0
3 ∈ Ψ0.

Each of these six minimal elements are tested for the path-requirement on

its coverability graph in line 6 of the procedure. Four minimal elements,

(1 0 0 0 0 0 0 0 0)T , (0 0 0 0 0 0 1 0 0)T , (0 0 0 0 0 0 0 1 0)T , and (0 0 0 0 0 0 0 0 1)T ,

fail this test. The path-requirement is violated for the first minimal element

(1 0 0 0 0 0 0 0 0)T ∈ min(Ψ0), as Te(N5, (1 0 0 0 0 0 0 0 0)T) = {t1, t3}(⊆ Tc).

But,

(1 0 0 0 0 0 0 0 0)T
t1→ (0 1 0 0 0 0 0 0 0)T ,

and

(1 0 0 0 0 0 0 0 0)T
t3→ (0 0 1 1 0 0 0 0 0)T .

Since, (0 1 0 0 0 0 0 0 0)T , (0 0 1 1 0 0 0 0 0)T /∈ Ψ0, the supervisory policy

PΨ0 would disable these transitions at the marking (1 0 0 0 0 0 0 0 0)T ,

which effectively creates a policy-induced deadlock state. The requirement

is violated for the second, third and fourth minimal elements

(0 0 0 0 0 0 1 0 0)T , (0 0 0 0 0 0 0 1 0)T , (0 0 0 0 0 0 0 0 1)T ∈ min(Ψ0),

19

as the marking (1 0 0 0 0 0 0 0 0)T is inevitably reached after the firing of

an appropriate set of transitions. Specifically,

(0 0 0 0 0 0 1 0 0)T
t9t11−→ (1 0 0 0 0 0 0 0 0)T ,

(0 0 0 0 0 0 0 1 0)T
t10t11−→ (1 0 0 0 0 0 0 0 0)T , and

(0 0 0 0 0 0 0 0 1)T
t11−→ (1 0 0 0 0 0 0 0 0)T .

Since the marking (1 0 0 0 0 0 0 0 0)T failed the path-requirement, it follows

that these three marking would fail the requirement, as well.

The four minimal elements, that failed the path-requirement, are elevated

by nine unit vectors, and the largest controllable, right-closed set of this newly

constructed set is identified by the twenty-four minimal elements shown in fig-

ure 3.3, which identifies the next iterate Ψ1. Each of these twenty-four mini-

mal elements pass the loop-test referred to earlier, implying that ∆(N5) = Ψ1.

This is effectively identifies the minimally restrictive LESP for N5(m0
3).

3.1.2 Review of Relevant Prior Work

We present a brief review of results that are pertinent to the approach used

in this paper. Giua [17] introduced monitors into supervisory control of

PNs. Monitors are external places added to an existing PN structure whose

token load at any instant indicates the amount of a particular resource that

is available for consumption. Moody and Antsaklis [18] used monitors to

enforce liveness in certain classes of PNs, this work was extended by Iordache

and Antsaklis [19] to include a sufficient condition for the existence of policies

that enforce liveness in a class of PNs called Asymmetric Choice Petri nets.

Reveliotis et al. used the theory of regions to identify policies that enforce

liveness in Resource Allocation Systems [20]. Ghaffari, Rezg and Xie [21] also

used the theory of regions to obtain a minimally restrictive supervisory policy

that enforces liveness for a class of PNs. Liu et al. [22] characterized the set

of live initial markings of a class of general PN structures known as WS3PR,

which was used to construct monitors that enforce liveness in a class of

WS3PR. Marchetti and Munier-Kordon [23] presented a sufficient condition

for liveness, that can be tested in polynomial time, for a class of general

PNs known as Unitary Weighted Event Graphs. Basile et al. [24] presented

20

sufficient conditions for minimally-restrictive, closed-loop liveness of a class of

Marked Graph PNs supervised by monitors that enforce Generalized Mutual

Exclusion Constraints (GMECs).

21

CHAPTER 4

RECENT THEORETICAL RESULTS AND
OBSERVATIONS ON LESP-SYNTHESIS

In this chapter we present a review of the theoretical results in references

[1, 2]. Some of the results in these references are about identifying families of

PN structures for which the ∆(N)-set is right-closed. These results increase

the purview of the software tool described in reference [5]. That is, this

software tool can be used, with no modifications, to any instance of each

of these classes. This chapter also highlights other theoretical results that

improve the running-time of the software tool.

4.1 F class PNs [1]

The right-closed nature of the ∆(N)-set is crucial to deciding the existence

of a LESP for a PN N(m0). That is, if there is a LESP for an initial marking

then there is a liveness enforcing supervisory policy for the same PN structure

for any larger initial marking. This property is established by construction.

The ∆(N)-set for a general PN is not necessarily right-closed. Consider

the PN structure N1 in Figure 2.1. All the transitions of this PN structure

are uncontrollable and the arc (p5, t6) has weight 2. There is an LESP for

N1(m0
1) if and only if it is live, and N1(m0

1) is live if and only if the sum of

the tokens assigned to the places by m0
1 is odd. Therefore, ∆(N1) is the set

of initial markings whose sum is an odd number. This set of initial markings

is not a right-closed set.

In reference [1] we identified a class F , of general FCPN structures, for

which the set of initial markings that enforce liveness is right-closed. Con-

sequently, the existence of supervisory policy in F class nets is decidable.

The class of Ordinary FCPNs is strictly contained in the F class. In a broad

sense, the results of reference [11] stated originally in the context of Ordinary

FCPNs, apply with appropriate modifications, to the class F , as well. This

22

would mean that the software of reference [5] can be used for any instance

of F .

Each member of F is identified by the following property –

if a place has multiple output transitions, at least one of which is

uncontrollable, then the weight(s) associated with the arc(s) that

originate from the place at hand, to each uncontrollable transi-

tion, must be the smallest of all outgoing arc weights from the

place.

More specifically, a general PN structure N = (Π, T,Φ,Γ) is said to belong

to the class F if,

1. N is an FCPN structure, and

2. ∀p ∈ Π,

((p•∩Tu 6= ∅)∧(card(p•) > 1))⇒
(
∀tu ∈ p• ∩ Tu,Γ(p, tu) = min

t∈p•
Γ((p, t))

)
.

Consider Figure 4.1, the PN N6 has two outgoing arcs from p2 with weight

2 each. The uncontrollable transition has the smallest outgoing arc weight

as a result of which this PN belongs to F class. The supervisory policy

that enforces liveness in N6 is the right-closed set with minimal elements

{(2 0)T , (0 2)T}. The minimally restrictive supervisory policy that enforces

liveness prevents the firing of transition t3 at a marking, if the new marking

that would result from its firing is not in the right-closed set with minimal

elements {(2 0)T , (0 2)T}.
p1

p2

t1
t2

t3

2

2 2

23

Figure 4.1: General FCPN structure N6

The general FCPN structure N7 in Figure 4.2 and N8 in Figure 4.3 belong

to F class.

23

2

p1

p2 p3
p4

t1

t2

t3
t4

t5 t6

2p5

(a) General FCPN
structure N1

p1

p2

t1
t2

t3

2

2 2

23

(b) General
FCPN structure
N2

p1

p2

t1 t2

t3

2

2

2

2

3

p3 p4

t4

t6

t5

3
2

(c) General FCPN struc-
ture N3

p1

p2
p3

p4 p5

t1 t2

t3
t4 t5 t6

t7

2

(d) General FCPN
structure N4

p1
p2

p3 p4

p5

t1

t2t3

t4 t5 t6

2

(e) General FCPN
structure N5

Fig. 1. (a) The set of initial markings for which there is a supervisory
policy that enforces liveness in N1 is not right-closed. This is because N1
is live for any initial marking such that the sum of the tokens assigned
to all places at initialization is an odd number. This general FCPN is not
a member of the class F as t6 is an uncontrollable transition, and the
weight associated with the arc (p5, t6) is not the smallest of the weights
associated with arcs originating from p5. (b) The set of initial markings
for which there is a supervisory policy that enforces liveness for N2 is the
right-closed set of markings that are greater than or equal to one of the
two minimal elements in the set {(2 0)T , (0 2)T }. This general FCPN is a
member of the class F . (c) This general FCPN structure is from figure 2c
in reference [6]. The right-closed set of initial markings for which there is a
supervisory policy that enforces liveness is defined by the minimal elements
{(0 0 1 0)T , (2 0 0 0)T , (1 0 0 1)T , (0 2 0 0)T , (0 0 0 2)T }. N3 is a member of
the class F . (d) The general FCPN structure N4 belongs to the class F . The
weight associated with the arc from place p1 to the uncontrollable transition
t2 (controllable transition t1) is unity (two). Therefore, N4 belongs to the
class F . The control-invariant, right-closed set of initial markings for which
there is a supervisory policy that enforces liveness is defined by the minimal
elements {(1 0 0 0 0)T , (0 0 0 1 1)T }. (e) The general FCPN structure N5 is
not a member of the class F . The weight associated with the arc from p2 to
the uncontrollable transition t2 is not the smallest of the weights associated
with arcs originating from p2.

supervisory policy that enforces liveness prevents the firing
of transition t3 at a marking, if the new marking that would
result from its firing is not in the right-closed set with minimal
elements {(2 0)T , (0 2)T }. Since the set of initial markings is
control-invariant, the marking that would result from the firing
of uncontrollable transitions t1 and t2 from any marking in this
right-closed set is guaranteed to remain in the right-closed set
of markings.

The general FCPN structure N3 shown in figure 1(c) (cf. fig-
ure 2c, [6]) also belongs to the class F , as every outgoing arc
from place p1 or p2 has a weight of two. There is a liveness-
enforcing policy for any initial marking of this structure that
belongs to the right-closed set whose minimal elements are
{(0 0 1 0)T , (2 0 0 0)T , (1 0 0 1)T , (0 2 0 0)T , (0 0 0 2)T }. The
minimally restrictive supervisory policy that enforces liveness
will disable the controllable transition t5 at a marking if its
firing would result in a new marking that is not in this right-
closed set. As with the previous example the right-closed set of

initial markings is control-invariant. That is, only the firing of
the controllable transition t5 could possibly result in a marking
that is not in the aforementioned right-closed set.

The set of initial markings for which there is a supervisory
policy that enforces liveness in the general FCPN structure
N4 shown in figure 1(d) is defined by the minimal elements
{(1 0 0 0 0)T , (0 0 0 1 1)T }. N4 belongs to the class F as the
outgoing arcs from p3 to uncontrollable transitions t5 and t6
have a weight of unity; and the weight of the outgoing arc
from p1 to the uncontrollable transition t2 is the smallest of
all weights associated with arcs that originate from p1.

We suggest explorations of other classes of general FCPNs
where the set of initial markings for which there is a liveness-
enforcing supervisory policy is right-closed, as a future re-
search direction. For instance, the general FCPN structure N5
shown in figure 1(e) does not belong to the class F . This
is because there are two outgoing arcs originating from p2
that terminate on an uncontrollable transitions. Of these, the
arc weight associated with (p2, t2) is not the smallest of all
outgoing arc weights from p2. That said, this general FCPN
is live for any non-zero initial marking – that is, the set of
initial markings for which there is a supervisory policy that
enforces liveness in this general FCPN is indeed right-closed.

We also note that in all examples from the class F , if there is
a liveness enforcing supervisory policy, then there is a marking
monotone supervisory policy that enforces liveness. That is, if
a controllable transition is permitted to fire at a marking, then
it is permitted to fire at any larger marking.

The remainder of the paper presents the theoretical under-
pinnings behind the observations regarding the right-closure
of the set of initial markings for which there is a liveness
enforcing supervisory policy for an arbitrary member of F ,
along with a proof of the claim that the existence of a
liveness-enforcing supervisory policy for any member of F
is decidable. Section II presents the notations and definitions
that are used in the remainder of the paper. This section also
reviews the relevant results in the literature. The main results
are presented in section III, where it is shown that the proof
of similar claims made for ordinary FCPNs in reference [4]
apply mutatis mutandis to the class F . We conclude with some
suggested directions for future research in section IV.

II. Notations and Definitions and Some Preliminary
Observations

We use N (N+) to denote the set of non-negative (positive)
integers. A Petri net structure N = (⇧,T,�,�) is an ordered
4-tuple, where ⇧ = {p1, . . . , pn} is a set of n places, T =
{t1, . . . , tm} is a collection of m transitions, � ✓ (⇧⇥T)[(T⇥⇧)
is a set of arcs, and � : �! N+ is the weight associated with
each arc. The initial marking function (or the initial marking)
of a PN structure N is a function m0 : ⇧! N , which identifies
the number of tokens in each place. We will use the term Petri
net (PN) to denote a PN structure along with its initial marking
m0, and is denoted by the symbol N(m0).

A marking m : ⇧ ! N is sometimes represented by an
integer-valued vector m 2 Nn, where the i-th component mi

represents the token load (m(pi)) of the i-th place. Extending

Figure 4.2: General FCPN structure N7

N7 belongs to F as every outgoing arc from place p1 or p2 has a weight

of two. There is a liveness enforcing policy for any initial marking of this

structure that belongs to the right-closed set whose minimal elements are

{(0 0 1 0)T , (2 0 0 0)T , (1 0 0 1)T , (0 2 0 0)T , (0 0 0 2)T}. The minimally restric-

tive supervisory policy that enforces liveness will disable the controllable

transition t5 at a marking if its firing would result in a new marking that is

not in this right-closed set.

N8 belongs to the class F as the outgoing arcs from p3 to uncontrollable

transitions t5 and t6 have a weight of unity; and the weight of the outgoing

arc from p1 to the uncontrollable transition t2 is the smallest of all weights

associated with arcs that originate from p1. There is a liveness enforcing

policy for any initial marking of this structure that belongs to the right-

closed set whose minimal elements are {(1 0 0 0 0)T , (0 0 0 1 1)T}.
The following result, which parallels lemma 5.1 in reference [11], notes that

if N ∈ F , and if a few extra uncontrollable transitions were to fire in N(m̂0)

compared to N(m0) where m̂0 ≥m0, then it is always possible to extend the

firing strings in N(m0) and N(m̂0) in such a way the Parikh vectors of the

extended firing strings are identical, provided there is an LESP for N(m0).

Lemma 4.1.1. Let P : N n × T → {0, 1} be an LESP for a general FCPN

N(m0), where N = (Π, T,Φ,Γ), T = Tc∪Tu, and N ∈ F . Suppose m0 σ→mi

under the supervision of P in N , and m̂0 σ̂→ m̂j in the absence of any super-

vision in N for some m̂0 ≥ m0. Further, let us suppose that the number of

24

p
1

p
2

p
3

p
4 p

5

t
1

t
2

t
3

t
4

t
5 t

6

t
7

Figure 4.3: General FCPN structure N8

occurrences of each controllable transition in σ̂ and σ are identical; however,

the string σ̂ has a few more uncontrollable transitions than the string σ. That

is, {tj ∈ T | x(σ̂)j > x(σ)j} ⊆ Tu. Then ∃σ̃1, σ̃2 ∈ T ∗, such that

1. m̂j σ̃1→ m̂k in N in the absence of any supervision,

2. mi σ̃2→ml under the supervision of P in N , and

3. x(σ̂σ̃1) = x(σσ̃2) (⇒ m̂k ≥ml).

That is, m0 σσ̃2→ ml under the supervision of P, and m̂0 σ̂σ̃1→ m̂k in the absence

of any supervision in N . If m̂0 ≥m0 and x(σσ̃2) = x(σ̂σ̃1), then m̂k ≥ml.

Proof. Since P enforces liveness in N(m0), we can pick a string σ1 ∈ T ∗ such

that

1. mi σ1→mi+1 under P in N ,

2. ∀σ1 ∈ pr(σ1) − {σ1}, if mi σ1→ m , then Te(N,m) ∩ {tj ∈ T | x(σ̂)j >

x(σ)j} = ∅, where pr(•) is the prefix-set of the string argument, and

3. {tj ∈ T | x(σ̂)j > x(σ)j} ∩ Te(N,mi+1) 6= ∅.

That is, none of the transitions in the set {tj ∈ T | x(σ̂)j > x(σ)j} ⊆ Tu

are state-enabled (and trivially control-enabled) following the firing of any

proper prefix of the firing string σ1. Additionally, at least one member of the

25

set {tj ∈ T | x(σ̂)j > x(σ)j} is state-enabled (and trivially control-enabled)

at the marking mi+1 that results from the firing of the string σ1 at mi.

It follows that m̂j σ1→ m̂j+1 in the absence of any supervision in N , which

can be established by contradiction. Suppose σ1 = t1 · · · titi+1 · · · , and

m̂j t1···ti−→ m̂j+2, but ti+1 /∈ Te(N, m̂
j+2). This must be due to the reduc-

tion in the number of tokens in an input place of ti+1, as a result of the firing

of some transition tu ∈ {tj ∈ T | x(σ̂)j > x(σ)j}(⊆ Tu). Since N is an

FCPN structure, transitions tu and ti+1 must share a unique input place (i.e.
•tu ∩• ti+1 = {p} for some p ∈ Π). Since N ∈ F , whenever p has sufficient

tokens to state-enable ti+1, it follows that tu is also state-enabled at the same

marking. This contradicts the second of three conditions required of σ1.

If tu ∈ {tj ∈ T | x(σ̂)j > x(σ)j} ∩ Te(N,mi+1), then m0 σσ1→ mi+1 tu→ mi+2

under P in N . As noted above, m̂0 σ̂σ1→ m̂j+1 in the absence of any supervision

in N . Additionally, {tj ∈ T | x(σ̂σ1)j > x(σσ1tu)j} ⊂ {tj ∈ T | x(σ̂)j >

x(σ)j}. The claim is established by replacing σ with σσ1tu, and σ̂ with σ̂σ1

in the above argument as often as necessary. Since the cardinality of the

set {tj ∈ T | x(σ̂)j > x(σ)j} decreases with each repetition, the process is

guaranteed to terminate, which establishes the result.

Following reference [11], we construct a supervisory policy P̂ : N card(Π) ×
T → {0, 1} from the supervisory policy P for N(m0) as follows –

1. ∀t ∈ T, P̂(m̂0, t) = P(m0, t).

2. Suppose m̂0 σ̂→ m̂j in N under the supervision of P̂ ,

(a) ∀ti ∈ Tu, P̂(m̂j, ti) = 1.

(b) ∀ti ∈ Tc, (P̂(m̂j, ti) = 1)⇔
i. ti ∈ Te(N, m̂j), and

ii. ∃σ ∈ T ∗, such that

A. m0 σ→mk under the supervision of P in N ,

B. ∀k ∈ {1, 2, . . . ,m},x(σ̂ti)k ≥ x(σ)k, and

C. {tj ∈ T | x(σ̂ti)j > x(σ)j} ⊆ Tu.

That is, the policy P̂ control-enables a controllable transition at a marking

only if its firing is essential to achieving condition 3 articulated in the state-

ment of lemma 4.1.1. Consequently, the supervisory policy P̂ is an LESP for

26

N(m̂0) (cf. proof of lemma 5.4, [11]), which in turn leads to the following

result, which parallels theorem 5.6 of reference [11].

Theorem 4.1.2. Let N ∈ F , where N = (Π, T,Φ,Γ) is a general FCPN

structure, then the set ∆(N) is right-closed.

Consequently, the software described in references [14, 15, 16, 5] can be

used to compute the minimal element of ∆(N) for any N ∈ F . This in turn

describes the minimally restrictive LESP for N(m0) for any m0 ∈ ∆(N).

As an illustration, the minimally restrictive LESP for N6(m0
6) for any m0

6 ∈
∆(N6), where N6 is the PN structure of figure 4.1, is shown in figure 4.4.

Similarly, figure 4.5 shows the minimally restrictive LESP for N7(m0
7), where

N7 is the PN structure of figure 4.2, and m0
7 ∈ ∆(N7). Likewise, the min-

imally restrictive LESP for N8(m0
8), where N8 is the PN structure of figure

4.3, and m0
8 ∈ ∆(N8)), permits the firing of t1 only when there is at least

one token in places p4 and p5, or there are at least two tokens in p1.

Permit t3 if the marking that would result
from its firing is greater than or equal to
(2 0)T or (0 3)T

Supervisory Policy

p1

p2

t1
t2

t3

Plant

O
bservations: Token distribution in

all places
Co

nt
ro

l:
Pe

rm
it/

Di
sa

bl
e

t 3 a
s

pe
r

su
pe

rv
is

or
y

po
lic

y

2

3

3

3 3

Figure 4.4: The minimally-restrictive LESP that ensures all reachable
markings of the plant FCPN PN N6(m0

6) are in the right-closed set ∆(N6)
identified by the minimal elements {(2 0)T , (0 3)T}. This policy is a
minimally restrictive LESP for any m0

6 ∈ ∆(N6). There is no LESP for
N6(m0

6) if m0
6 /∈ ∆(N6).

The following section describes the class of PN structuresH, where F ⊂ H,

where the set ∆(N) is right-closed for any N ∈ H.

27

Permit t5 if the marking that would result
from its firing is greater than or equal to
(0 0 1 0)T, or (2 0 0 0)T, or (1 0 0 1)T, or
(0 2 0 0)T, or (0 0 0 2)TSupervisory Policy

O
bservations: Token distribution in

all places
Co

nt
ro

l:
Pe

rm
it/

Di
sa

bl
e

t 5 a
s

pe
r

su
pe

rv
is

or
y

po
lic

y
Plant

p1

p2

t1 t2

t3

2

2

2

2

3

p3 p4

t4

t6

t5

3
2

Figure 4.5: The minimally restrictive LESP for the general plant PN
N7(m0

7). This LESP ensures the markings reachable under its supervision
from any m0

7 ∈ ∆(N7) remain within the right-closed set ∆(N7), where
min(∆(N7))
= {(0 0 1 0)T , (2 0 0 0)T , (1 0 0 1)T , (0 2 0 0)T , (0 0 0 2)T}.

4.2 H class PNs [2]

H class PNs are an extension of F class PNs, that is F ⊂ H . The existence

of a liveness enforcing supervisory policy (LESP) for an instance of H class

PNs, initialized at a marking, is sufficient to infer the existence of an LESP

when the same instance is initialized at a larger marking. As a consequence,

the existence of an LESP for the PN that results when a member of this

family is initialized with a marking, is decidable. The class H ⊆ H̃, where

H̃ is defined in the following paragraphs.

Let, Ω(t) = {t̂ ∈ T |• t ∩• t̂ 6= ∅}, denote the set of transitions that

share a common input place with t ∈ T for a PN structure N = (Π, T,Φ,Γ).

Consequently, (t1 ∈ Ω(t2)) ⇒ (t2 ∈ Ω(t1)). Let H̃ denote a class of PN

structures where the following property is true:

∀m ∈ ∆(N),∀tu ∈ Tu, ∀t ∈ Ω(tu), (t ∈ Te(N,m))⇒ (tu ∈ Te(N,m)). (4.1)

That is, H̃ is a class of PN structures where, if a transition t is state-enabled,

28

then all uncontrollable transitions that share a common input place with t

are also state-enabled at any marking in ∆(N). When the proofs of Lemma

5.1, Observations 5.2, 5.3, 5.4, and Lemma 5.5 of reference [11] are applied

to the case when N ∈ H̃, we get the result shown below.

Theorem 4.2.1. ∆(N) is right-closed if N ∈ H̃

However, right-closure of ∆(N) does not necessarily imply membership

in H̃. ∆(N2) is right-closed for the general PN structure N2 in Figure 2.2.

∆(N2) is identified by the inequality(1 1 1 1 1)m ≥ 1, and m = (0 0 1 0)T ∈
∆(N2). t2 and t3 are uncontrollable transitions that have a common input

place. While t3 ∈ Te(N2,m), t2 /∈ Te(N2,m).

There is an LESP for the PN N(m0) if and only if m0 ∈ ∆(N), and the

existence of an LESP is undecidable for a general PN (cf. corollary 5.2, [12]).

This would mean that the set ∆(N) cannot be computed for an arbitrary

PN structure N . To overcome this limitation, we modify the requirement of

equation 6.1 as

∀m ∈ N n,∀tu ∈ Tu,∀t ∈ Ω(tu), (t ∈ Te(N,m))⇒ (tu ∈ Te(N,m)). (4.2)

This requirement defines a class of PNs, which we denote as H(⊆ H̃), and

from theorem 1, we conclude ∆(N) is right-closed for any N ∈ H.

The following result characterizes the class H.

Theorem 4.2.2. A PN structure N = (Π, T,Φ,Γ) belongs to the class H if

and only if ∀p ∈ Π,∀tu ∈ p• ∩ Tu,

(Γ(p, tu) = min
t∈p•

Γ(p, t)) ∧ (∀t ∈ Ω(tu),
• tu ⊆• t).

Proof. (If) Suppose, t ∈ Te(N,m) for m ∈ N n, and ∃tu ∈ Ω(t) ∩ Tu(⇒ t ∈
Ω(tu)). Since •tu ⊆ •t and ∀p ∈ •tu,Γ(p, tu) = mint∈p• Γ(p, t), it follows

that tu ∈ Te(N,m).

(Only If) We will show that the violation of requirement in the statement

of the theorem for a PN structure N would imply that N /∈ H.

Suppose ∃p ∈ Π,∃tu ∈ p• ∩ Tu such that either

1. Γ(p, tu) > mint∈p• Γ(p, t), or

2. ∃t ∈ Ω(tu),
•tu − •t 6= ∅.

29

In each of these cases we construct a marking m ∈ N n such that ∃t ∈
Ω(tu), t ∈ Te(N,m) and tu /∈ Te(N,m), which leads to the conclusion that

N /∈ H.

For the first-case, the marking m places exactly (mint∈p• Γ(p, t))-many

tokens in p, and sufficient tokens in the input places of any transition t̂ ∈
Ω(tu) such that Γ(p, t̂) = mint∈p• Γ(p, t) that will result in t̂ ∈ Te(N,m) and

tu /∈ Te(N,m).

Similarly, for the second-case, the marking m places sufficient tokens in

the input places of t such that t ∈ Te(N,m), while ensuring that the places in

(•tu − •t) remain empty. Consequently, t ∈ Te(N,m) and tu /∈ Te(N,m).

There is an O(n2m2) algorithm that decides if an arbitrary PN structure

belongs to the class H, where n = card(Π) and m = card(T). The right-

closure of ∆(N) for anyN ∈ H, along with the results in reference [11] implies

that the existence of an LESP for N(m0) is decidable. Furthermore, the

software package described in references [14, 15, 16, 5] can be used to compute

the minimally restrictive LESP for N(m0), when it exists. Additionally,

F ⊂ H and G ⊂ F .

4.3 On the role of Choice/Non-Choice Transitions in

Supervisory Control of PNs

A transition t ∈ T is said to be a choice-transition (non-choice transition)

if (•t)• 6= {t} ((•t)• = {t}). The minimally restrictive LESP for an ordinary

FCPN N(m0) does not control-disable a non-choice (controllable) transition

[25]. The following result shows that a similar observation holds for any

minimally restrictive LESP for N(m0) where N ∈ H.

Theorem 4.3.1. Suppose m0 ∈ ∆(N) for a PN N(m0), where N ∈ H, then

the minimally restrictive LESP for N(m0) does not disable any controllable

transition tc ∈ Tc that satisfies the requirement (•tc)• = {tc}

The proof of observation 3 in reference [25], originally stated in the context

of ordinary FCPNs, mutatis mutandis, serves as a proof of the above claim,

It is not repeated here in the interest of space. This observation does not

hold for general PN structures.

30

As a consequence of this observation, without loss of generality, we can

assume all non-choice transitions are uncontrollable, even when they are not.

This is critical to the execution of the software package described in references

[14, 15, 16, 5], which is illustrated by example. The PN structures N9 and N5

(cf. figure 3.2) shown in figure 4.6(a) and 4.6(b) are FCPN structures, and

consequently they belong to the class H. The only difference between them

is that the non-choice transition t5 is controllable (resp. uncontrollable) in

N9 (N5).

The sets ∆(N9) and ∆(N5) are identical, and are identified by the twenty-

four minimal elements shown in figure 3.3, which shows the output generated

by the above mentioned software for N7.

We turn our attention to the iteration scheme for N9 where t5 is left as

a controllable transition. The right-closed set of initial markings for which

there is an LESP for the fully-controlled version of N9 is identified by the

same set of eight minimal elements shown in the initial part of the output of

figure 3.3. The largest controllable subset of this set (Ψ0) is identified by the

six minimal elements of figure 3.3 along with the vector (0 0 1 0 0 0 0 0 0)T .

This extra minimal element is due to the fact that t5 is controllable in N9,

which fails the loop-test along with the four that failed the test in figure 3.3.

After the elevation by unit-vectors as described above, the next iterate Ψ1

has the twenty-four minimal elements shown in figure 3.3 together with eight

new elements

{(1 0 1 0 0 0 0 0 0)T , (0 1 1 0 0 0 0 0 0)T , (0 0 2 0 0 0 0 0 0)T ,

(0 0 1 1 0 0 0 0 0)T , (0 0 1 0 1 0 0 0 0)T , (0 0 1 0 0 0 1 0 0)T ,

(0 0 1 0 0 0 0 1 0)T , (0 0 1 0 0 0 0 0 1)T}.

That is, the minimal element (0 0 1 0 0 0 0 0 0)T of Ψ0 is replaced by these

eight elements, which defines Ψ1. These eight elements fail the loop-test,

and are replaced with more elevated vectors, and so on. The right-closed set

that is defined by this iteration scheme in the limit is the set ∆(N7) described

earlier. But, as a computation scheme this procedure will not terminate. This

issue is mitigated by ensuring that all controllable, non-choice transitions are

interpreted as being a part of the set of uncontrollable transitions.

As this example illustrates, the process of relabeling each non-choice transi-

tion as members of the set of uncontrollable transitions improves the running-

31

p1 p2

p3

p6

p4 p5

p7 p8

p9

t1 t2

t3 t4

t5 t6

t7 t8

t9 t10

t11

(a) N6 ∈ H

p1 p2

p3

p6

p4 p5

p7 p8

p9

t1 t2

t3 t4

t5 t6

t7 t8

t9 t10

t11

(b) N7 ∈ H

Figure 4.6: (a) The PN structure N6 is a member of H as it is an FCPN
structure. (b) The PN structure N7 is also a member of H. The non-choice
transition t5 is controllable (uncontrollable) in N6 (N7).

time of the software described in reference [5], which is described at length

in the next chapter.

The next section addresses the issue of synthesizing LESPs for a PN from

that of another PN that is “similar” to it.

4.4 LESPs for Petri Nets that are Similar [3]

In this section we review the results in reference [3]. The notion of simulation

was introduced in the PN literature to formalize the concept of “similarity”

among two PNs [26]. If a PN can simulate another PN, one could say that

they are similar in some sense. This concept is generalized to include con-

trolled PNs that are under the influence of a supervisory policy. We derive

a necessary and sufficient condition for the existence of LESPs in PNs in

a simulation relationship. The LESP for the simulated PN, along with the

results on this paper and additional observations can oftentimes provide the

LESP for the other PN.

We first extend Best’s definition of simulation [26] to controlled PNs. Let

N = (Π, T,Φ,Γ) and N̂ = (Π̂, T̂ , Φ̂, Γ̂) be two PN structures. Suppose

32

α : T → T̂ is an injection (i.e. every member of T has an image in T̂ ; but,

the converse is not necessarily true). This injective function can be extended

to include sets of transitions T1 ⊆ T as

α(T1) =
⋃
t∈T1

α(t).

With a slight abuse of notation, we extend the above function to strings of

transitions α : T ∗ → T̂ ∗ for σ ∈ T ∗ and t ∈ T , as

α(σt) = α(σ)α(t)

where α(ε) = ε, and ε is the empty-string. The inverse-function α−1 : T̂ ∗ →
T ∗ is defined for σ̂ ∈ T̂ ∗, t̂ ∈ T̂ , as

α−1(σ̂t̂) = α−1(σ̂), when t̂ /∈ α(T),

α−1(σ̂t̂) = α−1(σ̂)α−1(t̂), when t̂ ∈ α(T),

and α−1(ε) = ε.

Definition 4.4.1. Let N = (Π, T,Φ,Γ) and N̂ = (Π̂, T̂ , Φ̂, Γ̂) be two PN

structures, and α : T → T̂ be an injective function. Suppose N(m0) (resp.

N̂(m̂0)) is supervised by policy P : N card(Π)×T → {0, 1} (resp. P̂ : N card(Π̂)×
T̂ → {0, 1}).

We say that m̂0 under the supervision of P̂ simulates N(m0) under the

supervision of P if and only if there is a surjection β : N card(Π̂) → N card(Π)

such that:

1. m0 = β(m̂0),

2. Suppose m1 = β(m̂1), m̂1 ∈ <(N̂ , m̂0, P̂) and m1 ∈ <(N,m0,P), then

(a) whenever m1 t−→m2 in N under P, then ∃m̂2 ∈ β−1(m2),∃σ̂ ∈ T̂ ∗
such that m̂1 σ̂−→ m̂2 under P̂ in N̂ , and α−1(σ̂) = t.

(b) whenever m̂1 σ̂−→ m̂2 under P̂ in N̂ for some σ̂ ∈ T̂ ∗, then m1 α−1(σ̂)−−−−→
β(m̂2) under P in N .

As noted in reference [26], the fact that α : T → T̂ is an injective function

would mean that card(T̂) ≥ card(T). The transitions in α(T) simulate the

33

transitions in T , while the remaining transitions (i.e. the set T̂ − α(T)) are

to be viewed as an internal to N̂ .

A marking m̂ ∈ N card(Π̂) of N̂ represents the marking β(m̂) in N . There

could be many markings of N̂ can represent the a single marking of N .

But the surjective nature of β(•) guarantees that every marking of N is

represented by some marking of N̂ .

Item 1 of definition 4.4.1 requires that the initial marking of N̂ must repre-

sent the initial marking ofN . Item 2a requires that the firing of any transition

t in N under the supervision of P must be simulated by the firing of a string

of transitions in N̂ under the supervision of P̂ , while item 2b requires that

every firing string in N̂ under the supervision of P̂ has a corresponding firing

string under the mapping α−1(•) that is permitted under P in N .

We now state and prove the main result of this paper.

Theorem 4.4.2. Suppose N = (Π, T,Φ,Γ) and N̂ = (Π̂, T̂ , Φ̂, Γ̂) are two

PN structures, and α : T → T̂ is an injective function. Let N(m0) (resp.

N̂(m̂0)) be supervised by policy P : N card(Π) × T → {0, 1} (resp. P̂ :

N card(Π̂) × T̂ → {0, 1}), and N̂(m̂0) under the supervision of P̂ simulates

N(m0) under P with respect to α(•), then P is an LESP for N(m0) if and

only if ∀t̂ ∈ α(T), t̂ is live under P̂.

Proof. (Only If) Let P be an LESP for N(m0), and m̂0 σ̂1−→ m̂1 under P̂ in

N̂(m̂0). From item 1 of definition 4.4.1 we have m0 = β(m̂0). From item

2b, m0 α−1(σ̂1)−−−−→ β(m̂1) under P in N .

Since P is an LESP for N , ∀t ∈ T,∃σ2 ∈ T ∗,∃m2 ∈ N card(Π) such that

β(m̂1)
σ2−→ m2 in N under P , where t occurs once in σ2. From item 2a of

definition 4.4.1, ∃σ̂2 ∈ T̂ ∗, ∃m̂2 ∈ <(N̂ , m̂0, P̂) such that m̂1 σ̂2−→ m̂2 and α(t)

occurs in σ̂2. Therefore, all t̂ ∈ α(T) is live under P̂ in N̂(m̂0).

(If) Suppose, ∀t̂ ∈ α(T), t̂ is live in N̂ under P̂ . Let m0 σ1−→ m1 under

P in N , where σ1 = t1 · · · tm. From items 1 and 2a of definition 4.4.1,

∃σ̂1, . . . , σ̂m ∈ T̂ ∗ such that m̂0 σ̂1···σ̂m−−−−→ m̂1 in N̂ under the supervision of P̂ ,

and m1 = β(m̂1).

Since all transitions in α(T) are live under P̂ in N̂ , ∃σ̂2 ∈ T̂ ∗, ∃m̂2 ∈
N card(Π̂), such that m̂1 σ̂2−→ m̂2 in N̂ under P̂ , and α(t) occurs in σ̂2, for any

t ∈ T . By item 2b of definition 4.4.1, m1 α−1(σ̂2)−−−−→ m2 under P in N , where

m2 = β(m̂2) and t ∈ T occurs in α−1(σ̂2). Therefore, every transition in T

is live under the supervision of P in N(m0).

34

t ∈ T α(t) ∈ T̂
t0 t̂1
t1 t̂8
t2 t̂9
t3 t̂10

t4 t̂11

t5 t̂12

t6 t̂13

Table 4.1: The injective function α : T → T̂ for the PNs shown in figure
1.1(a) and 1.1(b).

The above result notes that the liveness of the transitions in the set T of

the PN N under P is equivalent to the liveness of the transitions α(T) in the

PN N̂ under P̂ . It is possible that some of the transitions in the set T̂ −α(T)

are not live under P̂ in N̂ . However, if N̂ has a structure that permits us

to infer the liveness of the set T̂ − α(T) from the liveness of α(T) ⊆ T̂ ,

then theorem 4.4.2 can be enhanced to a result that notes P is an LESP for

N(m0) if and only if P̂ is an LESP for N̂ .

Consider the PN structures N = (Π, T,Φ,Γ) and N̂ = (Π̂, T̂ , Φ̂, Γ̂) shown

in figure 1.1(a) and (b) respectively. The injective function α : T → T̂ is

defined in table 4.1.

The surjective function β : N 11 → N 5 for N and N̂ of figure 4.7(a) and

(b) is given by the function β(m) = (m1 m8 m9 m10 m11)T . The token

load in places p̂1, p̂8, p̂9, p̂10 and p̂11 correspond to the token load in places

p1, p2, p3, p4 and p5 respectively.

Let P̂ be any policy that permits the firing of t̂6 if and only if ((m̂1 +m̂2 +

m̂3 + m̂4 + m̂6 + m̂7) ≥ 2). Let us also suppose the P permits the firing

of t0 at marking m ∈ N 5 if and only if P̂ permits the firing of t̂1(= α(t0))

at all markings in β−1(m). Then, N̂(m̂0) under P̂ simulates N(m0) under

P . Consequently, by Theorem 4.4.2, P is an LESP for N(m0) if and only if

every transition in α(T) = {t̂1, t̂8, t̂9, t̂10, t̂11, t̂12, t̂13} is live under P̂ in N̂ .

From the structure of N̂ we can infer that the liveness of t̂1 implies the

liveness of the transitions in the set T̂ − α(T) = {t̂2, t̂3, t̂4, t̂5, t̂6, t̂7}. Conse-

quently, P is an LESP for N(m0) if and only if P̂ is an LESP for N̂(m̂0).

From method of references [27, 28], we know that the supervisory policy P

35

p
1

p
2

p
3

p
4 p

5

t
1

t
2

t
3

t
4

t
5

t
6

t
0

(a) N(m0)

p1

p2

p3
p4

p5

t13

t2

t3
t4

t5

t6

p8 p9

p6

p7

t7

p11
p10

t1

t12

t8

t10

t9 t11

^

^

^

^
^

^

^

^
^

^ ^

^

^
^

^

^

^

^

^

^
^

^

^

(b) N̂(m̂0)

Figure 4.7: If P̂ is a policy that permits the firing of t̂6 if and only if
((m̂1 + m̂2 + m̂3 + m̂4 + m̂6 + m̂7) ≥ 2); and, permits the firing of
t̂1(= α(t0)) at every marking in β−1(m) if and only if P permits the firing

of t0 at marking m, then N̂(m̂0) under P̂ simulates N(m0) under P . From
Theorem 4.4.2 we infer that the policy P is an LESP for N(m0) if and only

if every transition in α(T) = {t̂1, t̂8, t̂9, t̂10, t̂11, t̂12, t̂13} is live under P̂ in N̂ .

36

that permits the firing of t0 if and only if ((m1 ≥ 2)∨ (m4 ≥ 1)∧ (m5 ≥ 2))

is an LESP. As a consequence of the above observation, we can conclude

that the supervisory policy P̂ that permits the firing of t̂1 if and only if

((m̂1 ≥ 2) ∨ (m̂10 ≥ 1) ∧ (m̂11 ≥ 2)); and permits the firing of t̂6 if and only

if ((m̂1 + m̂2 + m̂3 + m̂4 + m̂6 + m̂7) ≥ 2) is an LESP for N̂(m0). That is,

the LESP for the larger PN N̂(m0) was synthesized from the LESP for the

smaller PN N(m0) with the help of the results in this paper.

The above observation used the structure of N̂ to conclude that the liveness

of the set of transitions α(T) under a supervisory policy implies the liveness

of the transitions in T̂−α(T) as well. We suggest the identification of general

conditions that are sufficient to make this inference on a wider class of PNs

as a future research topic.

37

CHAPTER 5

LESP-SYNTHESIS ALGORITHM AND
OBJECT-ORIENTED IMPLEMENTATION

The theoretical underpinnings of the procedure for the synthesis of the min-

imal elements of ∆(N) has been covered in earlier chapters. In this section

we review the implementation details of the procedure that computes the

members of min(∆(N)).

Reference [5] discusses the object-oriented implementation of the algo-

rithms to obtain LESP for the class of PNs for which the set of marking

∆(N), introduced earlier, is right-closed. The implementation was done in

C + + using Microsoft Visual C + + compiler as a command-line applica-

tion. The implementation primarily uses STL containers viz. std:vector, a

sequence container for object collections. To enhance the performance and

efficiency, the implementation also uses features like Boost C + + libraries.

Below are some illustrative examples.

Figure 5.1 shows the Object oriented representation of a minimally re-

strictive LESP. The implementation is done within four major classes called

PetriNet, NodeTable, MinimalElementsManager and MarkingVector that are

described in great detail in reference [5]. We refrain from presenting there

functionalities in this document in the interest of space.

The general FCPN structure N6 shown in Figure 4.1 is a member of class

F . Consequently, we know ∆(N6) is right-closed. Figure 5.2 shows the FCPN

structure of figure 4.5 initialized with two tokens in p1. We will refer to this

PN as N7(m0
7). The input file for N7(m0

7) is shown in Figure 5.3. Figure 5.4

shows the output generated by the software, which lists five minimal elements

of min(∆(N7)). The LESP that disables t5 at any marking in ∆(N7) if its

firing would result in a new marking that is not in ∆(N7), is the minimally

restrictive LESP for N7(m0
7) for any m0

7 ∈ ∆(N7).

On executing the algorithm to obtain the coverability graph for this net,

millions of nodes are generated and owing to the resource constraint of the

computing device this algorithm takes really long to run. With increase in

38

<<header>>
NodeTable.h - class NodeTable

<<header>>
NodeTable.h - class MarkingVector

<<class>>
PetriNet.cpp

<<class>>
MinimalElementsManager.cpp

<<header>>
PetriNet.h

<<header>>
MinimalElementsManager.h

<<class>>
NodeTable.cpp - class NodeTable

<<class>>
NodeTable.cpp - class MarkingVector

A Implements B

C “Has-a” D

E “Uses-a” F

A B

C D

E F

Friend

Figure 3.1: Class Diagram

a pointer to Class PetriNet. The three classes PetriNet, NodeTable, MinimalElementManager are marked

by a ‘Has-a’ relationship with MarkingVector and hence contain one or more objects of Marking vector. The

sections below give a detailed description and functionality of each of these classes.

3.2 Class MarkingVector

The marking vector mi corresponds to a set containing the number of tokens in each place at any given state

of the Petri net. The MarkingVector class is used to represent this set which forms the basic building block

of the algorithms used to obtain the LESP for the net. The public members of this class are place, a vector

(STL container) of integers that stores the token count. The class exposes overloaded methods for some

basic arithmetic operations of addition (+), subtraction (-) and multiplication (⇥) by a constant ! and set

comparison operations such as ==, �, � and ⌫. Every other class contains members which are objects of

the MarkingVector class. The method initialize() is used to assign unit vector markings 1j corresponding

to each place in the net. The figure 3.2 shows the structure of this class.

13

Figure 5.1: Class Diagram.

18 S. Chandrasekaran et al.

∆(N1) is right-closed. The input file for N1(m0
1) is shown in figure 6(b). Figure 7

shows the output generated by the software described in the previous section, which
lists the five minimal elements of min(∆(N1)). The LESP that disables t5 at any mark-
ing in ∆(N1) if its firing would result in a new marking that is not in ∆(N1), is the
minimally restrictive LESP for N(m0

1) for any m0
1 ∈ ∆(N1).

p1

p2

t1 t2

t3

2

2

2

2

3

p3 p4

t4

t6

t5

3
2

(a) N1(m0
1)

pn1 Thu Oct 31 13:15:02 2013 1
4 6
2 0 2 0 0 0
0 2 0 0 2 0
0 0 0 1 0 0
0 0 0 0 0 1
0 3 0 0 0 1
3 0 0 2 0 0
0 0 1 0 0 0
0 0 0 0 1 0
2 0 0 0
0 0 0 0 1 0

(b) Input
File

Fig. 6 (a) The general PN N1(m0
1), which is the PN from figure 2c of reference [13] (b) The input file for

N1(m0
1). The first line of this file indicates that there are n = 4 (m = 6) places (transitions). This is followed

by the n × m IN and n × m OUT matrices. The line following this, which has n entries, defines the initial
marking m0

1. This is followed by an m-long line that lists the controllable and uncontrollable transitions.
The controllable (uncontrollable) transitions are identified by a 1(0).

Figure 8(a) shows an ordinary FCPN N2(m0
2). When the software described in the

previous section is run on the input file shown in figure 8(b), we get the output shown
in figure 9. ∆(N2) has forty-one minimal elements. The LESP that disables transitions
t2 or t3 at any marking in ∆(N2) if firing any one of these transitions would result in a
new marking that is not in ∆(N2) is the minimally restrictive LESP for N(m0

2) for any
m0

2 ∈ ∆(N2).

7 Conclusion

Several automated manufacturing systems and service enterprise systems can be mod-
eled using one of the known classes of general Petri net (PN) structures for which the
existence of a liveness enforcing supervisory policy (LESP) when an instance is ini-
tialized at a marking implies the existence of an LESP when the same instance is
initialized with a larger marking. If there is an LESP for an instance, there is a unique
minimally restrictive LESP for the instance. If a transition is prevented from firing
by the minimally restrictive LESP at a marking, then every LESP should prevent the
firing of the transition at the same marking.

A set of markings is said to be right-closed, if membership of a marking in the
set implies every larger marking belongs to the set. The minimally restrictive LESP
for an instance, if it exists, is characterized by a right-closed set of markings. In this
paper, we described the object-oriented implementation of the procedure that com-
putes the finite set of minimal elements of this right-closed set when provided with
an appropriately constructed input. This was accomplished by the use of four major

Figure 5.2: N7(m0
7)

complexity of the system, i.e. with large number of places and transitions

the computations can become tedious resulting in large computational time.

Consequently, we worked on changing the structure of the code to reduce

the computational time. Some of the actions that were taken:

1. Executing the code without Boost C + + libraries

2. Incorporating the algorithm for coverability graph used in [11] in C

We implemented the code without using Boost C + + libraries, i.e. us-

ing iterators instead of BOOST FOREACH. We did not use unordered maps

and shared pointers instead the node table was declared as a vector. The

39

18 S. Chandrasekaran et al.

∆(N1) is right-closed. The input file for N1(m0
1) is shown in figure 6(b). Figure 7

shows the output generated by the software described in the previous section, which
lists the five minimal elements of min(∆(N1)). The LESP that disables t5 at any mark-
ing in ∆(N1) if its firing would result in a new marking that is not in ∆(N1), is the
minimally restrictive LESP for N(m0

1) for any m0
1 ∈ ∆(N1).

p1

p2

t1 t2

t3

2

2

2

2

3

p3 p4

t4

t6

t5

3
2

(a) N1(m0
1)

pn1 Thu Oct 31 13:15:02 2013 1
4 6
2 0 2 0 0 0
0 2 0 0 2 0
0 0 0 1 0 0
0 0 0 0 0 1
0 3 0 0 0 1
3 0 0 2 0 0
0 0 1 0 0 0
0 0 0 0 1 0
2 0 0 0
0 0 0 0 1 0

(b) Input
File

Fig. 6 (a) The general PN N1(m0
1), which is the PN from figure 2c of reference [13] (b) The input file for

N1(m0
1). The first line of this file indicates that there are n = 4 (m = 6) places (transitions). This is followed

by the n × m IN and n × m OUT matrices. The line following this, which has n entries, defines the initial
marking m0

1. This is followed by an m-long line that lists the controllable and uncontrollable transitions.
The controllable (uncontrollable) transitions are identified by a 1(0).

Figure 8(a) shows an ordinary FCPN N2(m0
2). When the software described in the

previous section is run on the input file shown in figure 8(b), we get the output shown
in figure 9. ∆(N2) has forty-one minimal elements. The LESP that disables transitions
t2 or t3 at any marking in ∆(N2) if firing any one of these transitions would result in a
new marking that is not in ∆(N2) is the minimally restrictive LESP for N(m0

2) for any
m0

2 ∈ ∆(N2).

7 Conclusion

Several automated manufacturing systems and service enterprise systems can be mod-
eled using one of the known classes of general Petri net (PN) structures for which the
existence of a liveness enforcing supervisory policy (LESP) when an instance is ini-
tialized at a marking implies the existence of an LESP when the same instance is
initialized with a larger marking. If there is an LESP for an instance, there is a unique
minimally restrictive LESP for the instance. If a transition is prevented from firing
by the minimally restrictive LESP at a marking, then every LESP should prevent the
firing of the transition at the same marking.

A set of markings is said to be right-closed, if membership of a marking in the
set implies every larger marking belongs to the set. The minimally restrictive LESP
for an instance, if it exists, is characterized by a right-closed set of markings. In this
paper, we described the object-oriented implementation of the procedure that com-
putes the finite set of minimal elements of this right-closed set when provided with
an appropriately constructed input. This was accomplished by the use of four major

Figure 5.3: Input file for N7(m0
7). The first line shows that there are four

places and six transitions in the PN structure. This is followed by the
(4× 6) IN and OUT matrices, which accounts for the eight lines that
follow the first line. The penultimate line identifies the initial marking m0

7

that places two tokens in place p1, and the last line identifies the
controllable (uncontrollable) transitions with a 1(0). Since this line is all
zeros, but for the fifth position, it follows that the only controllable
transition in this structure is t5.

computational time using this implementation is about the same as the com-

putational time using Boost libraries. To validate this result we implemented

several examples. When N3 was executed without Boost libraries it took 0.26

seconds which is about the same as using Boost libraries. However, for PNs

with complex coverability graph with millions of nodes this implementation

takes longer than the implementation using Boost libraries. Hence, PN N8

shown in Figure ?? takes a lot longer without the libraries than it would us-

ing them. On further investigation we found that the function processNode()

in the class NodeTable.cpp takes up a major chunk of the computation time.

processNode(), a recursive method is the primary method of NodeTable

class which in turn invokes the other member functions to compute the ver-

tex and edge parameters of the reachability graph. This method is initial-

ized with the initial marking m0. Each vertex together with all its con-

necting edges forms a node in the NodeTable and is characterized by the

members fromNode, marking, byTransition, enabledTransitions, nodeType, con-

current, conflicting, duplicateNode and index ([5]).

To reduce the computation time taken to calculate the coverability graph

as a next step we decided to incorporate the algorithm for coverability graph

in C. For this we had to change the processNode() and incorporate the

algorithm in C under this method. processNode() calls ClassifyNode(),

40

Title Suppressed Due to Excessive Length 19
pn1.res Thu Oct 31 13:27:35 2013 1
 Input File = "pn1"

 Incidence Matrix :

 T 1 2 3 4 5 6
 P
 1 -2 3 -2 . . 1
 2 3 -2 . 2 -2 .
 3 . . 1 -1 . .
 4 1 -1

 Initial Marking : (2 0 0 0)

 There is an LESP for this (fully controlled) PN

 Minimal Elements of the fully controlled Net
 --

 1: (0 0 1 0)
 2: (1 0 0 1)
 3: (0 0 0 2)
 4: (0 2 0 0)
 5: (2 0 0 0)

 List of Controllable Transitions

 t5

 (Final) Minimal Elements of the control-invariant set

 1: (0 0 1 0)
 2: (1 0 0 1)
 3: (0 0 0 2)
 4: (0 2 0 0)
 5: (2 0 0 0)

 This is An LESP

Elapsed Time : 0.029148 secs

Fig. 7 The output file generated from the input file of figure 6(b). This instance took 0.03 seconds on a 1.7
Ghz Intel Core i5 MacBook Air running OS X 10.9 with 4GB of memory.

p1

p2

t1

t2

t3

p3

p4

t4

t6

t5

p5

p8

p6 p7

p9

t7 t8

t9t10

(a) N1(m0
1)

pn2 Thu Oct 31 13:37:33 2013 1
9 10
1 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 1 0
0 0 0 0 0 0 1 1 0 0
2 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0

(b) Input File

Fig. 8 (a) The (unbounded) ordinary FCPN N2(m0
2), and its input file, which is shown in figure (b). The

format of the input file can be inferred from the description of figure 6(b).

Figure 5.4: The output file generated from the input file of Figure 5.3

isNodeDuplicate(), firetransition() and findOmegaPlaces() . ClassifyNode()

further calls identifyEnabledTransitions(), doTransitionsOverlap() and areEn-

abledTransitionsConcurrent() . Thus, changing the method processNode()

would require a complete change in the structure of NodeTable.cpp.

Class NodeTable and PetriNet are tightly coupled with each other and hence

are declared as friends of each other, allowing both the classes to access each

others private members. PetriNet contains objects of NodeTable and hence is

marked by a “Has-a” relationship while NodeTable holds a pointer to Class

PetriNet ([5]). Consequently , changing processNode() would require a change

in the entire structure of the existing code. This process was hence stalled and

we began to look at reduction/abstraction techniques to reduce computation

time. This is described, after a fashion, in the next chapter.

41

CHAPTER 6

REDUCTION RULES AND OBJECT
ORIENTED IMPLEMENTATION OF

REDUCTION ALGORITHM

This chapter discusses the reduction rules and the object-oriented imple-

mentation of the reduction algorithm. The reduction rules simplify the PN

structure. The minimally restrictive LESP for the reduced PN can be com-

puted using the existing software [14]. This is followed by an abstraction

step that yield the LESP for the original PN model. The limitation of this

technique is that while the technique guarantees a LESP for the original

PN model the LESP might not necessarily be minimally restrictive. The

object-oriented implementation uses similar structure and some of the vari-

ables used in reference [14] under the assumption that an integration to the

existing code in the future would be faster. The implementation has been

done in C++ using Mac OS Xcode version 4.2.1 as a command line appli-

cation. This implementation primarily uses STL Containers viz. std:vector ,

a sequence container representing arrays that can change in size. There are

two main parts to this implementation

• The first part takes the original PN as an input. Using reduction

techniques the PN is reduced. The output of this code is the incidence

matrix of the reduced PN.

• The second code works on the minimal elements of the reduced PN.

The minimal elements of the original PN is deduced using this code.

The final result is not always minimally restrictive.

6.1 Reduction Rules

This section describes the rules that are used to simplify the PN model. We

use three techniques to compute the reduced PN. The argument behind these

techniques and the conditions under which they are applicable are discussed

in this section.

42

6.1.1 Rule 1

Rule 1 is pictorially depicted in Figure 6.1. It is imperative that, in the

original PN,

p•a ∩ Tu − {tm} = ∅.

That is, none of the output transitions to pa (with the exception of tm,

possibly) are uncontrollable.

A path pa
w1→ tm

w2→ pb
w3→ tn in the original PN is simplified as p̃a

w1w3
w2→ tn.

The resulting reduced PN and the original PN have behavioral similarity (cf.

section 4.4). The argument for this rule is that - a single firing of tn in the

original PN will take away w3 tokens from pb. If tm has to fire some m-many

times to place w3 tokens in pb, then m× w2 = w3 ⇒ w3

w2
= m . The m-many

firings of tm will take away (m × w1)-many tokens from pa. Since m = w3

w2
,

it follows that m-many firings of tm will take away w1w3

w2
tokens from pa for

each single firing of tn. Therefore, a single firing of tn in the reduced PN

structure will result in w3w1

w2
number of tokens being removed from p̃a. The

rule is applied provided the following two conditions are satisfied:

1. The number of incoming and outgoing arcs to tm and pb is equal to

one.

2. w3

w2
is an integer. This can be deduced from the argument above where

we proved that for m many firing of tm , w3

w2
= m.

Once the reduced PN is computed using this rule we need to deduce the

minimal elements of the original PN from the reduced PN. That is, we need

to figure out how to distribute b tokens in p̃a in the reduced PN to the original

PN. If to begin with, say there are b tokens in pa and zero tokens in pb and

k firings of tm results in p tokens in pa and q tokens in pb. This would mean

that (b−p) tokens from pa were removed by the firing process from pa. Each

firing of tm will take away w1 tokens from pa and place w2 tokens in pb.

Repeated applicaiton of this process has now resulted in q tokens in pb. This

would mean that

q =
b− p
w1

w2 ⇒
w1

w2

q = b− p⇒ b = p+
w1

w2

q.

Hence, in order to deduce the minimal elements for the original PN we

look for all possible integer solutions for the equation,

43

b = p+
w1

w2

q (6.1)

pa

pb

tm

tn

w1

w2

w3

w1w3/w2

pa

tn

∼

b

p

q

Figure 6.1: Rule #1

6.1.2 Rule 2

Rule 2 is pictorially depicted in Figure 6.2. A path ta
w1→ pm

w2→ tb
w3→ pn in

the original PN is simplified as ta

w1w3
w2→ p̃n. The resulting reduced PN and the

original PN have behavioral similarity (cf. section 4.4). The argument for this

rule is that -a single firing of ta in the original PN will place w1 tokens in pm.

If tb has to fire m times to empty pm, it follows that m×w2 = w1 ⇒ m = w1

w2
.

The process of m-many firings of tb will place m×w3 tokens in pn. Therefore,

single firing of ta in the reduced PN will place (w1w3

w2
)-many tokens in p̃n. The

rule is applied provided the following two conditions are satisfied:

1. The number of incoming and outgoing arcs to pm and tb is equal to

one.

2. w1

w2
is an integer. This can be deduced from the argument above where

we proved that if m many firings of tb empties out pm , w1

w2
= m.

Once the reduced PN is computed using this rule we need to deduce the

minimal elements of the original PN from the reduced PN. That is, we need

to figure out how to distribute a tokens in p̃n in the reduced PN to the

original PN. If there are x tokens in pm and y tokens in pn. Each firing of tb

44

in the original PN takes w2 tokens out of pm and places w3 tokens in pn. If

we wait for tb to fire k number of times such that pm is empty and we end

up with a-many tokens in pn. This would mean that

x

w2

w3 + y = a

Hence, in order to deduce the minimal elements for the original PN we

look for all possible integer solutions for the equation,

a = y +
w3

w2

x (6.2)

This assumes that having x tokens in pm will make tb fire as often as

necessary, till is emptied. This is the same as saying that x ≥ w2. Hence if

one of the solutions for 6.2 yields an x value that is less than w2, then we

replace that value of x with w2.

The argument behind this is that if x < w2, then tb cannot fire even once.

However, if we were to permit tb to fire “fractionally” (i.e. x
w2

- th of a single

firing of tb) , we would place the “ appropriate- fraction-of w3 -many-tokens”

(i.e. x
w2
w3 - many tokens) in pn, which will

1. empty pm and

2. place a tokens in pn

Replacing x with w2 in such cases will place more than a tokens in pn

which would work too. Thus, while computing all possible integer solutions

for x and y we take the following into consideration:

if x is not equal to 0,x = max(x,w2). (6.3)

This step would be unnecessary if the weights of the PN are unitary.

6.1.3 Rule 3

Rule 3 is pictorially depicted in Figure 6.3. This rule is referred to as merg-

ing in this document. The argument provided below is for generic weights.

However, in the object-oriented implementation for this particular rule the

implementation is for unit weights. If the LESP software presented a mini-

mal element for the reduced PN that assigns a-many tokens to p̃n, then we

45

ta

tb

pm

pn

w1

w2
w3

w1w3/w2

y

x
a

ta

pn
∼

Figure 6.2: Rule #2

need to figure out how to distribute the a-many tokens back to the original

PN. The claim is that we need to find all possible integer solutions to the

equation,

a = z +
w2

w1

x+
w4

w3

y (6.4)

The condition under which this rule can be used is:

1. w1

w3
has to be an integer, and

2. w2

w4
has to be an integer.

The reduction rule says each firing of ta in the reduced PN will place

(w1w5

w3
+ w2w6

w4
)-many (i.e. integer-many) tokens in p̃n. A single firing of ta

in the original PN will place w1-many (respectively w2-many) tokens in p1

(respectively p2). If tb (respectively tc) fires m-many times (respectively n-

many times) to empty p1 (respectively p2), we have m = w1

w3
(respectively

n = w2

w4
), and the net tokens that would be deposited in pn would be (m ×

w5 + n× w6) which squares with the reduction rule.

In the present implementation, this rule is applied only for PNs with uni-

tary weights. Consequently, the steps outlined in equation 6.3 are not needed

currently. However, a parallel to equation 6.3 should be used when this is

rule is applied to general PNs.

46

ta

tb

pn

w1 w2

w3
(w1w5/w3)+(w2w6/w4)x

a

ta

pn
∼

z

y
w4

w5 w6
tc

Figure 6.3: Rule #3

6.2 Implementation of Reduction Techniques

This section describes the object-oriented implementation of the reduction

techniques. The input to this implementation is the incidence matrix of the

original PN. The implementation uses reduction techniques to reduce the PN

and the output is the incidence matrix of this reduced PN.

6.2.1 Class Definitions and Diagram

There are two main classes in this implementation Reduction and Mark-

ingVector. Reduction.h is the header file that contains the declaration for the

Reduction class and its variables and functions. Reduction.h also includes the

header file Marking.h. Class Reduction has one or more objects of the Class

MarkingVector and hence is marked by a “Has-a” relationship with Mark-

ingVector. Class Reduction implements the reduction algorithm. Marking.h

contains the declaration for the MarkingVector class and its variables and

functions. The Figure 6.4 below shows a diagram of the class. The classes

and the functions are described in detail in the sections that follow.

6.2.2 Class MarkingVector

The original implementation of the MarkingVector class [14] is retained in

this implementation. The MarkingVector class forms the basic building block

of the algorithms used to obtain the LESP for a net. The input for computing

47

 <<class>>
 Reduction.cpp

 <<class>>
 Marking.cpp

 <<header>>
Reduction.h- class Reduction

 <<header>>
Marking.h- class MarkingVector

A B

A "Has-a" B

C D

C Implements D

Figure 6.4: Class Diagram for Reduction Techniques

an LESP of the net is an incidence matrix which in the original implementa-

tion is defined as a std::vector of pointers to objects of type MarkingVector.

Thus, the MarkingVector class is the same as the original implementation to

provide access to simpler mathematical operations along with the intention

of integrating the reduction implementation to the original in the future.

The marking vector mi represents the number of tokens in each place at any

give state of the net. This class contains a public variable place which is a

vector of integers that stores the token count. The method initialize() and

other overloaded methods are retained like in the original implementation to

provide basic arithmetic operations of multiplication (×), addition (+) and

subtraction (−) and comparison operations such as < , ≤, == and ≥ on

MarkingVector objects. The Figure 6.5 shows the structure of this class.

Figure 6.5: Class structure of MarkingVector

48

6.2.3 Class Reduction

The Reduction class implements the reduction algorithm to compute the

reduced net from the given PN. Every input PN is worked on iteratively to

find a path that can be reduced. With every iteration one reduced path and

the corresponding inputs for the reduced net are computed. This continues

until no reduced path can be found. The final result is then stored in a file

and printed. The Reduction class uses objects of the MarkingVector and has

methods that solve for the reduced net.

Variables and Initialization

This section describes the variables used in the class and their type and

purpose in the implementation.

We begin with variables that were used in the original implementation

[14]. To solve for LESP for any PN, the inputs that need to be provided by

the user are number of places m, number of transitions n, the input matrix

(IN), the output matrix (OUT) and the initial marking m0. In the original

implementation these are stored in the members noOfPlaces, noOfTransitions,

inputWeightsToTransition, outputWeightsFromTransition and initialMarking re-

spectively. For a Controlled PetriNet, there is an additional input which

corresponds to the transitions that are controllable. The input is given as

a switch with 1 and 0 denoting controllable transitions and uncontrollable

transitions respectively.

In this implementation, in addition to these members additional global

variables noOfPlaces global, noOfTransitions global, inputWeightsToTransition global

and OutputWeightsFromTransition global are provided. The “ global” vari-

ables are initialized and store m, n, input matrix and output matrix. The

non-“ global” variables are set to the same values as the global variables ini-

tially but are subject to change in member functions of the class. With every

newly computed PN the variables noOfPlaces, noOfTransitions, inputWeight-

sToTransition, outputWeightsFromTransition and initialMarking are updated

accordingly.

noOfPlaces, noOfTransitions, noOfPlaces global and noOfTransitions global

are integer members. initialMarking is of type MarkingVector. The members

inputWeightsToTransition, outputWeightsFromTransition, inputWeightsToTran-

49

sition global and OutputWeightsFromTransition global are defined as std::vector

of pointers to objects of type MarkingVector.

To compute the reduced net the algorithm first identifies the places and

the transtions within the net that could potentially be removed and then

identifies a path to reduce the PetriNet. The members places reduced and

places reduced global are defined as std::vector of integers. The value 1 is

assigned to the std::vector corresponding to the place that satisfies the con-

dition to be removed or reduced. The concept of “ global” and non-“ global”

variable is as mentioned earlier in this section. A transition that is identi-

fied as a transition that could potentially be reduced or removed is stored

by assigning the value 1 to the std::vector, transitions reduced and transi-

tions reduced global. The members placestobereduced and transitionstobere-

duced are integer counters that increment every time a value 1 is assigned to

places reduced and transitions reduced respectively. These counters are reset

during every iteration i.e for every reduced PN. The final output is written

into the resultFile.

Table 6.1: Description of variables used in class Reduction

Name Type Description

incidenceMatrix vector < MarkingVector∗ > Represents the

Incidence Ma-

trix C that is

used to char-

acterize any

PetriNet.

initialMarking MarkingVector Stores the initial

marking m0 of a

PetriNet

inputWeightsToTransition vector<MarkingVector∗ > Represents the

input matrix

of the current

PetriNet at any

given step.

50

Table 6.1 (cont.)

inputWeightsToTransition global vector<MarkingVector∗ > Represents the

input matrix

of the original

PetriNet.

noOfPlaces int Represents the

number of places

of the current

PetriNet at any

given step.

noOfPlaces global int Represents the

number of places

for the original

PetriNet pro-

vided by the

user.

noOfTransitions int Represents the

number of tran-

sitions of the

current PetriNet

at any given

step.

noOfTransitions global int Represents the

number of tran-

sitions for the

original PetriNet

provided by the

user.

outputWeightsToTransition vector<MarkingVector∗ > Represents the

output matrix

of the current

PetriNet at any

given step.

51

Table 6.1 (cont.)

outputWeightsToTransition global vector<MarkingVector∗ > Represents

the output of

the original

PetriNet.

place i int Represents one

of the vari-

ables passed

to the function

that computes

the path for

reduction .

place reduced vector <int> Assigns the

value 1 cor-

responding to

a place that

satisfies the

condition to

be removed.

This vector is

cleared after

every reduced

net is computed

.

place reduced global vector <int> Assigns the

value 1 cor-

responding to

a place that

satisfies the

condition to be

removed for the

original PetriNet

52

Table 6.1 (cont.)

placestobereduced int Increments ev-

erytime a value

1 is assigned to

places reduced.

transition j int Represents one

of the vari-

ables passed

to the function

that computes

the path for

reduction .

transitions reduced vector <int> Assigns the

value 1 cor-

responding to

a transition

that satisfies

the condition

to be removed.

This vector is

cleared after

every reduced

net is computed

.

transitions reduced global vector <int> Assigns the

value 1 cor-

responding to

a transition

that satisfies

the condition

to be removed

for the original

PetriNet

53

Table 6.1 (cont.)

transitionstobereduced int Increments

everytime a

value 1 is

assigned to tran-

sitions reduced.

Figure 6.6: Class structure - variables of class Reduction

Methods and Implementations

This section describes the member functions of the Reduction class and their

implementation. The Figure 6.7 and Table 6.2 shows the list and the de-

scription of the member functions of this class

We begin with functions that were used in the original implementation [14].

The loadInputData() method initializes IN, OUT, m0, Tu and computes the

incidence matrix C of the net. Two print methods printInputsToConsole() and

54

printControllableTransitions() have been included with overloads for std:out for

printing the inputs to the code.

The reduced input matrix IN and output matrix OUT are computed in

primarily three modules.

1. Identifying the places and the transitions that can be removed.

2. Identifying the path pa→tm→pb→tn or ta→pm→tb→pn where every

place and transition were identified in the above procedure.

3. Computing the reduced input and output matrix following the elimi-

nation of the identified path.

The member functions that correspond to each of these procedures are

Reduc(), reduction path() and reduction matrix() or reduction matrix t() re-

spectively.

The member function Reduc() is used to compute the places and the tran-

sitions that can be eliminated. If there is exactly one arc from and to a

place, then that place is identified as a place that can be reduced or elimi-

nated and the value 1 is assigned to the corresponding place in the std::vector

places reduced. In a similar manner the value 1 is assigned to the corre-

sponding transition in the std::vector transitions reduced provided there is

exactly one arc to and from the transition. Following these computations

the member functions pathstobereduced() and reduction path() are invoked.

The std::vector, places reduced and transitions reduced are cleared at the start

of the Reduc() function since with every call of this function every reduced

PN is treated as a new net. The code flow for this procedure is represented

by Figure 6.8.

To compute if there is a path pa→tm→pb→tn or ta→pm→tb→pn that can

be eliminated the function pathstobereduced() is defined. For every place

pb identified in function Reduc() that can be eliminated we look for a path

pa→tm→pb→tn such that the std::vector places reduced has the value 1 cor-

responding to pb and the std::vector transitions reduced has the value 1 corre-

sponding to tm. A similar procedure is followed for every transition tb iden-

tified in the function Reduc(). This function also computes if two transitions

can be merged and is invoked only once for the input PN. All the possible

paths that can be reduced for an input PN are identified and printed in the

console.

55

Figure 6.7: Class structure - methods of class Reduction

 Reduc()

pathstobereduced() reduction_path()

Figure 6.8: Flowchart of Reduc() method

The member function reduction path() is similar to pathstobereduced() ex-

cept that once a path pa→tm→pb→tn is identified it invokes the function re-

duction matrix() and the function reduction matrix t() for a path ta→pm→tb→pn.

This function is called iteratively until there is no path that can be reduced.

The code flow for this procedure is represented by Figure 6.9.

 reduction_path()

reduction_matrix() reduction_matrix_t()

If Pa→tm→Pb If ta→Pm→tb

Figure 6.9: Flowchart of reduction path() method

The functions reduction matrix() and reduction matrix t() compute the new

input and output matrix for a path that can be reduced. The algorithm to

compute the new input and output matrix is as illustrated:

56

• For path pa
w1→ tm

w2→ pb
w3→ tn the reduced path is computed as p̃a

w1w3
w2→ tn

• For path ta
w1→ pm

w2→ tb
w3→ pn the reduced path is computed as ta

w1w3
w2→ p̃n

Following the identification of a path pa→tm→pb→tn in reduction path(),

the function reduction matrix() is called with parameters pa and tm. This

function implements the algorithm above to modify noOfPlaces, noOfTransi-

tions, inputWeightsToTransition, outputWeightsFromTransition and initialMark-

ing. The modified matrices and values are printed on the console accordingly.

Subsequently the member function Reduc() is invoked where the variables are

reset and the current reduced PN repeats all the above procedures. This con-

tinues iteratively until there exists no path that can be reduced.

The variables noOfPlaces, noOfTransitions, inputWeightsToTransition, out-

putWeightsFromTransition and initialMarking are modified only if w1 ∗ w3 is

divisible by w2. If the above condition is not satisfied the function reduc-

tion path() is invoked. The intention is to look for a new path and repeat the

steps again. The code flow for this procedure is represented by Figure 6.10.

The function reduction matrix t() is similar to the function reduction matrix()

and is implemented following the identification of a path ta→pm→tb→pn.

The code flow for this procedure is represented by Figure 6.11.

 reduction_matrix()

 Reduc() reduction_path()

If (W1 * W3) is
divisible by W2

If (W1 * W3) is not
divisible by W2

Figure 6.10: Flowchart of reduction matrix() method

 reduction_matrix_t()

 Reduc() reduction_path()

If (W1 * W3) is
divisible by W2

If (W1 * W3) is not
divisible by W2

Figure 6.11: Flowchart of reduction matrix t() method

57

The Figure 6.12 represents the flowchart for member functions of class

Reduction.

 Reduc()

pathstobereduced()

reduction_path()

If Pa→tm→Pb If ta→Pm→tb

reduction_matrix() reduction_matrix_t

If (W1 * W3) is
divisible by W2

else

If (W1 * W3) is
divisible by W2

else

Figure 6.12: Flowchart of member functions of class Reduction

Table 6.2: Method definitions of class Reduction

Name Description Parameter Returntype

loadInputData() Assigns the PN’s

inputs to the corre-

sponding members.

char ∗ : input

file name

void

printControllableTransitions()Print method to

write the set of con-

trollable transitions

to the console.

void void

printInputsToConsole() Print method to

write the inputs to

the console.

void void

Reduc() Compute the

places and transi-

tions that can be

eliminated

int noOf-

Places, int

noOfTransi-

tions

void

58

Table 6.2 (cont.)

pathstobereduced() Prints the paths

that can be reduced

and the transitions

that can be merged

for the original net.

int place0, int

transition0

void

reduction path() Invokes the appro-

priate functions

reduction matrix or

reduction matrix t

and determines if

the PN cannot be

reduced further

int place, int

transition

void

reduction matrix() Computes the new

input and output

matrix

int place, int

transition

void

reduction matrix t() Computes the new

input and output

matrix

int place, int

transition

void

PrintOutputtoFile() Prints the final val-

ues on an output

file.

char ∗ : out-

put file name

void

6.3 Deducing Minimal Elements of the Original PN

This section describes the object-oriented implementation for deducing the

minimal elements of the original PN. The input to this implementation is

the incidence matrix of the original PN and the minimal elements of the

reduced PN. In addition, the input to this implementation also consists of

user defined inputs listing the places and transitions of the original PN that

have been merged and removed. This implementation deduces the minimal

elements of the original PN.

59

6.3.1 Class Definitions and Diagram

There are three main classes in this implementation PetriNet, Minele and

MarkingVector. PetriNet.h is the header file that contains the declaration for

the PetriNet class and its variables and functions. PetriNet.h also includes

the header file Markingvector.h. Class PetriNet has one or more objects of

the Class MarkingVector and hence is marked by a “Has-a” relationship with

MarkingVector. Class PetriNet characterizes the input PN. Minele.h is the

header file that contains the declaration for the Minele class and its variables

and functions. Minele.h also includes the header files Markingvector.h and

PetriNet.h. Class Minele has one or more objects of the Class MarkingVector

and the Class PetriNet and hence is marked by a “Has-a” relationship with

MarkingVector and PetriNet. Class PetriNet and Class Minele are tightly

coupled with each other and are declared as friends of each other, allowing

both the classes to access each others private variables.

Marking.h contains the declaration for the MarkingVector class and its vari-

ables and functions. The Figure 6.13 below shows a diagram of the class.

The classes and the functions are described in detail in the sections that

follow.

 <<class>>
 PetriNet.cpp

 <<class>>
 MarkingVector.cpp

 <<header>>
PetriNet.h- class PetriNet

 <<header>>
MarkingVector.h- class MarkingVector

A B
A "Has-a" B

C D
C Implements D

 <<class>>
 Minele.cpp

 <<header>>
 Minele.h- class Minele

Friend

Figure 6.13: Class Diagram for Deducing Minimal Elements

60

6.3.2 Class MarkingVector

The original implementation of the MarkingVector class [5] is retained in this

implementation. For description on this class refer to section 6.2.2.

6.3.3 Class PetriNet

Class PetriNet characterizes the input PN. To solve for LESP for any PN,

the inputs that need to be provided by the user are number of places m,

number of transitions n, the input matrix (IN), the output matrix (OUT)

and the initial marking m0. In the original implementation these are stored

in the members noOfPlaces, noOfTransitions, inputWeightsToTransition, out-

putWeightsFromTransition and initialMarking respectively. For a Controlled

PetriNet, there is an additional input which corresponds to the transitions

that are controllable. The input is given as a switch with 1 and 0 denoting

controllable transitions and uncontrollable transitions respectively.

The members inputWeightsToTransition and outputWeightsFromTransition

are defined as std::vector of pointers to objects of type MarkingVector. The

member incidenceMatrix represents the Incidence Matrix C that character-

izes a PN. incidenceMatrix is defined as std::vector of pointers to objects of

type MarkingVector. The loadInputData() method initializes IN, OUT, m0,

Tu and computes the incidence matrix C of the net. Two print methods

printInputsToConsole() and printControllableTransitions() have been included

with overloads for std:out for printing the inputs to the code. The Figure

6.14 shows the structure of this class.

6.3.4 Class Minele

The Minele class implements the algorithm to deduce the minimal elements

of the original PN from the minimal elements of the reduced PN. Class

PetriNet and Class Minele are tightly coupled with each other and are de-

clared as friends of each other, allowing both the classes to access each others

private variables. Hence, member variables of PetriNet such as inputWeight-

sToTransition and outputWeightsFromTransition can be accessed from Minele.

To deduce the minimal elements of the original PN, the inputs that need

to be provided are minimal elements of the reduced PN and the number of

61

Figure 6.14: Class structure of PetriNet

places in the reduced PN. These are represented by minimal elements and

noOfplace reduced respectively. Additionally, the input file for the original

PN and a list of places that have been removed from the original PN are

required inputs. The input file for the original PN is characterized in Class

PetriNet. The global variable Placesremoved is a std:: vector that stores the

places that have been reduced in the original PN. The members finalmine-

les and finalmineles global are defined as std::vector of pointers to objects of

type MarkingVector. The member variable finalmineles is subject to changes

through the code and is used to compute the final minimal elements of the

original PN. The member variable finalmineles global is assigned to omit the

duplicates generated by finalmineles and stores all the final minimal elements

of the original PN.

The member function loadInputData 1() initializes the set of minimal ele-

ments of the reduced PN. Two print methods printInputs1() and printInputs2()

have been included for printing the output of the code. printInputs2() has an

additional segment to omit all the duplicates while printing the final result.

The minimal elements of the original PN are deduced using the mem-

ber function Deducing for Reduction(). This function invokes Addingzeros()

which loads the value 0 to the corresponding places that have been removed.

62

This method is in fact one integer solution to equation 6.1 or equation 6.2

whichever is being solved. Addingzeros() uses the input parameter Placesre-

moved which consists of the places that have been removed from the original

PN and loads the value 0 corresponding to these places in the set of minimal

elements obtained for the reduced PN. The member printInputs1() is invoked

within this member function to print the set of minimal elements obtained

by this method. Following the user-input for the rule that is followed the

function Deducing Rule 1() or Deducing Rule 2() is invoked appropriately. If

the input for places merged is anything other than the value 1 the method

Merge() is invoked. Deducing Rule 1() uses 6.1 to alter std::vector finalmineles

while Deducing Rule 2() and Merge() use 6.2 and 6.4 respectively to change

std::vector finalmineles. All possible integer solutions are computed within

each of these methods following which the member printInputs2() is invoked

to print the minimal elements obtained in each of these methods. The Figure

6.15 shows the structure of this class and Table 6.3 shows the list and the

description of the member functions of this class while Table 6.4 describes

the variables of this class.

Figure 6.15: Class structure of Minele

63

Table 6.3: Method definitions of class Minele

Name Description Parameter Returntype

loadInputData 1() Initializes the set of

minimal elements for

the reduced PN.

char ∗ : input

file name

void

printInputs1() Print method to write

the output to the con-

sole.

void void

printInputs2() Print method to write

the output to the con-

sole by omitting the

duplicates.

void void

Addingzeros() Loads the value 0

to the corresponding

places that have been

removed.

vector<int>

Placesre-

moved, const

PetriNet

void

Deducing for Reduction() Invokes appropriate

function for Rule 1, 2

or 3

vector<int>

Rulefollowed,

vector<int>

Places-

removed,

vector<int>

Transition-

sremoved,

vector<int>

Places-

merged, const

PetriNet

void

64

Table 6.3 (cont.)

Deducing Rule 1() Uses equation 6.1 to

compute all possible

integer solutions

int

T removed,

int

P removed,

vector<int>

Placesre-

moved, const

PetriNet

void

Deducing Rule 2() Uses equation 6.2 to

compute all possible

integer solutions

int

T removed,

int

P removed,

vector<int>

Placesre-

moved, const

PetriNet

void

Merge() Uses equation 6.4 to

compute all possible

integer solutions

int Merged-

place1, int

Merged-

place2, const

PetriNet

void

Table 6.4: Description of variables used in class Minele

Name Type Description

finalmineles vector<MarkingVector∗ > Represents the minimal el-

ements of the original PN

and is subject to changes

through the code.

finalmineles global vector<MarkingVector∗ > Used to omit all the dupli-

cate members.

noOfplace reduced int Represents the number

of places of the reduced

PetriNet.

65

Table 6.4 (cont.)

P removed int Represents the place that

has been removed that is

used in the current compu-

tation step.

T removed int Represents the transition

that has been removed that

is used in the current com-

putation step.

6.4 Examples

This section gives some illustrations of the implemented reduction algorithm,

the input and the output files that are generated. The input file format for

the reduction algorithm implementation is consistent with [14] (cf. figure

5.3).

The ouput file has the same format as the input file and is the saved with

an extension a.txt to the input file name. This file is used to deduce the

LESP for the reduced PN. The final minimal elements obtained is saved in

a file with an extension output.txt to the input file name.

The implementation to deduce minimal elements for the original PN re-

quires two input files:

1. The input file used in the reduction algorithm implementation - the

incidence matrix of the original PN

2. The file with the extension output.txt - the final minimal elements of

the reduced PN

In addition, this implementation also has user-defined inputs

• The list of places that have been removed from the original net - integer

values only

• The list of transitions that have been removed from the original net -

integer values only

66

• The places in the original PN that have been merged to obtain the

reduced PN - integer values only

• The rule followed to reduced the PN - enter value 1 for rule 1 or 2 for

rule 2

• The integer value for the total number of places of the reduced PN

The code uses the value −1 to disable or exit the user-input, that is, after

listing all the places that have been removed from the original PN in order

to move to the list of transitions the user has to type −1. The flow of the

implementation is illustrated in the Figure 6.40.

Reduction Algorithm Implementation
 Input File : Input File Name.txt
Output File : Input File Name_a.txt

Deducing LESP for the reduced PN
Input File : Input File Name_a.txt
Output File: Input File Name_output.txt

Deducing LESP for original PN
Input File : Input File Name.txt +
 Input File Name_output.txt

Figure 6.16: Flow of Implementation

67

6.4.1 Illustrations

P1

P2

P3

P4

t3

t4

t1 t2

t5

t6

2

3

3

2

2

3

3

2

2

Figure 6.17: Example-1

4 6
2 0 2 0 0 0
0 0 0 3 0 0
0 2 0 0 2 0
0 0 0 0 0 1
0 3 0 0 0 1
0 0 3 0 0 0
3 0 0 2 0 0
0 0 0 0 1 0
2 0 0 0
0 0 0 0 1 0

Figure 6.18: Input file for Example-1

68

./reduction_finalversion 1c_new.txt
 Initial Marking : (2 0 0 0)
Inputs :
 T 1 2 3 4 5 6
 P
 1 2 . 2 . . .
 2 . . . 3 . .
 3 . 2 . . 2 .
 4 1

Outputs :
 T 1 2 3 4 5 6
 P
 1 . 3 . . . 1
 2 . . 3 . . .
 3 3 . . 2 . .
 4 1 .

Tansition T3and place P2can be removed
Place P2and transition T4can be removed
Place P4and transition T6can be removed

new initial Marking(2 0 0)
new Input :
 T 1 2 3 4 5
 P
 1 2 . 2 . .
 2 . 2 . 2 .
 3 1

new Output :
 T 1 2 3 4 5
 P
 1 . 3 . . 1
 2 3 . 2 . .
 3 . . . 1 .

new initial Marking(2 0)
new Input :
 T 1 2 3 4
 P
 1 2 . 2 .
 2 . 2 . 2

new Output :
 T 1 2 3 4
 P
 1 . 3 . 1
 2 3 . 2 .

Figure 6.19: Output for Reduction part of the algorithm for Example-1

P1

P2

t3
t1 t2 t4

2
2

3

2
3 2 2

Figure 6.20: Reduced Example-1

69

./PN_minele 1c_new.txt_a.txt

 Incidence Matrix :

 T 1 2 3 4
 P
 1 -2 3 -2 1
 2 3 -2 2 -2

 Initial Marking : (2 0)

 There is an LESP for this (fully controlled) PN

 Minimal Elements of the fully controlled Net
 --

 1: (0 2)
 2: (2 0)

 List of Controllable Transitions

 t4

 (Final) Minimal Elements of the control-invariant set

 1: (0 2)
 2: (2 0)

checking if fine
 This is An LESP

Elapsed Time : 5.278 secs
Nishas-MacBook-Pro:Debug nishasomnath$ Figure 6.21: Minimal Elements of the Reduced net for Example-1

./reduction_deducingminele 1c_new.txt 1c_output.txt
places removed:
2
4
-1
transitions removed in the same order:
4
6
-1
places merged:
-1
Rule followed in same order: - Enter 1 for Rule 1 or 2 for Rule 2:
2
2
-1
Number of places for reduced net:
2
no of reduced places 2
open file name: 1c_output.txt
(0 2)

(2 0)

 Initial Marking : (2 0 0 0)

Inputs :
 T 1 2 3 4 5 6
 P
 1 2 . 2 . . .
 2 . . . 3 . .
 3 . 2 . . 2 .
 4 1

Outputs :
 T 1 2 3 4 5 6
 P
 1 . 3 . . . 1
 2 . . 3 . . .
 3 3 . . 2 . .
 4 1 .

Controllable transitions(0 0 0 0 1 0)

number of places 4
new final elements:
(0 0 2 0)

(2 0 0 0)

(0 3 0 0)

(0 0 0 2)

(1 0 0 1)

Figure 6.22: Deducing minimal elements for Example-1

70

P1

t1
4

P2

t2

2

4

P3

t3 t4

Figure 6.23: Example-2

3 4
1 0 0 0
0 2 0 0
0 0 2 1
0 0 1 0
4 0 0 0
0 4 0 0
1 0 0
0 0 0 1

Figure 6.24: Input file for Example-2

./reduction_finalversion Example_2.txt
 Initial Marking : (1 0 0)
Inputs :
 T 1 2 3 4
 P
 1 1 . . .
 2 . 2 . .
 3 . . 2 1

Outputs :
 T 1 2 3 4
 P
 1 . . 1 .
 2 4 . . .
 3 . 4 . .

Tansition T1and place P2can be removed
Place P2and transition T2can be removed

new initial Marking(1 0)
new Input :
 T 1 2 3
 P
 1 1 . .
 2 . 2 1

new Output :
 T 1 2 3
 P
 1 . 1 .
 2 8 . .

Figure 6.25: Output for Reduction part of the algorithm for Example-2

71

P1

t1

P2

t2

2

8

t3

Figure 6.26: Reduced Example-2

./PN_minele Example_2.txt_a.txt

 Incidence Matrix :

 T 1 2 3
 P
 1 -1 1 .
 2 8 -2 -1

 Initial Marking : (1 0)

 There is an LESP for this (fully controlled) PN

 Minimal Elements of the fully controlled Net
 --

 1: (1 0)
 2: (0 2)

 List of Controllable Transitions

 t3

 (Final) Minimal Elements of the control-invariant set

 1: (1 0)
 2: (0 2)

checking if fine
 This is An LESP

Figure 6.27: Minimal Elements of the Reduced net for Example-2

72

./reduction_deducingminele Example_2.txt Example_2_output.txt
places removed:
2
-1
transitions removed in the same order:
2
-1
places merged:
-1
Rule followed in same order: - Enter 1 for Rule 1 or 2 for Rule 2:
2
-1
Number of places for reduced net:
2
no of reduced places 2
open file name: Example_2_output.txt
(0 2)

(1 0)

 Initial Marking : (1 0 0)

Inputs :
 T 1 2 3 4
 P
 1 1 . . .
 2 . 2 . .
 3 . . 2 1

Outputs :
 T 1 2 3 4
 P
 1 . . 1 .
 2 4 . . .
 3 . 4 . .

Controllable transitions(0 0 0 1)

number of places 3
new final elements:
(0 0 2)

(1 0 0)

(0 2 0)

Figure 6.28: Deducing minimal elements for Example-2

P1

t1

P2

t2

t3 P3

t4 t5 t6

P4 P5

t7

2

3

3

2

6 6

Figure 6.29: Example-3

73

5 7
1 1 0 0 0 0 0
0 0 1 2 0 0 0
0 0 0 0 3 1 0
0 0 0 0 0 0 6
0 0 0 0 0 0 6
0 1 0 0 0 0 1
1 1 0 0 0 0 1
0 1 1 0 0 0 0
0 0 0 3 0 0 0
0 0 0 0 2 0 0
1 0 0 0 0
1 0 0 0 0 1 0

Figure 6.30: Input file for Example-3

./reduction_finalversion wtnew5.txt
 Initial Marking : (1 0 0 0 0)
Inputs :
 T 1 2 3 4 5 6 7
 P
 1 1 1
 2 . . 1 2 . . .
 3 3 1 .
 4 6
 5 6

Outputs :
 T 1 2 3 4 5 6 7
 P
 1 . 1 1
 2 1 1 1
 3 . 1 1
 4 . . . 3 . . .
 5 2 . .
Tansition T4and place P4can be removed
Tansition T5and place P5can be removed

new initial Marking(1 0 0 0)
new Input :
 T 1 2 3 4 5 6
 P
 1 1 1
 2 . . 1 . . 4
 3 . . . 3 1 .
 4 6

new Output :
 T 1 2 3 4 5 6
 P
 1 . 1 . . . 1
 2 1 1 . . . 1
 3 . 1 1 . . .
 4 . . . 2 . .

new initial Marking(1 0 0)
new Input :
 T 1 2 3 4 5
 P
 1 1 1 . . .
 2 . . 1 . 4
 3 . . . 1 9

new Output :
 T 1 2 3 4 5
 P
 1 . 1 . . 1
 2 1 1 . . 1
 3 . 1 1 . .

Figure 6.31: Output for Reduction part of the algorithm for Example-3

74

P1

t1

P2

t2

t3 P3

t4t5
4

9

Figure 6.32: Reduced Example-3

./PN_minele wtnew5.txt_a.txt

 Incidence Matrix :

 T 1 2 3 4 5
 P
 1 -1 *S . . 1
 2 1 1 -1 . -3
 3 . 1 1 -1 -9

 Initial Marking : (1 0 0)

 There is an LESP for this (fully controlled) PN

 Minimal Elements of the fully controlled Net
 --

 1: (1 0 0)
 2: (0 5 8)
 3: (0 4 9)
 4: (0 6 7)
 5: (0 7 6)
 6: (0 8 5)
 7: (0 9 4)
 8: (0 10 3)
 9: (0 11 2)
 10: (0 12 1)
 11: (0 13 0)

 List of Controllable Transitions

 t1 t4

 (Final) Minimal Elements of the control-invariant set

 1: (1 0 0)

checking if fine
 This is An LESP

Figure 6.33: Minimal Elements of the Reduced net for Example-3

75

./reduction_deducingminele wtnew5.txt wtnew5_output.txt
places removed:
4
5
-1
transitions removed in the same order:
4
5
-1
places merged:
-1
Rule followed in same order: - Enter 1 for Rule 1 or 2 for Rule 2:
1
1
-1
Number of places for reduced net:
3
no of reduced places 3
open file name: wtnew5_output.txt
(1 0 0)

 Initial Marking : (1 0 0 0 0)

Inputs :
 T 1 2 3 4 5 6 7
 P
 1 1 1
 2 . . 1 2 . . .
 3 3 1 .
 4 6
 5 6

Outputs :
 T 1 2 3 4 5 6 7
 P
 1 . 1 1
 2 1 1 1
 3 . 1 1
 4 . . . 3 . . .
 5 2 . .

Controllable transitions(1 0 0 0 0 1 0)

number of places 5
new final elements:
(1 0 0 0 0)

Figure 6.34: Deducing minimal elements for Example-3

76

p1

p3
p4 p5

p6 p7 p8

p9

p2

t7

t6

t4

t5

t1
t2

t8

t9 t10

t11

t3

(a) PN-9

pn9 Wed Dec 12 00:17:27 2012 1

9 11
1 0 1 0 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 1 1 0
1 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 1 0 0 0

(b) Input file for PN-9

Figure 4.9: Petri net 9

46

Figure 6.35: PN-9 (cf. [5]).

p1

p3
p4 p5

p6 p7 p8

p9

p2

t7

t6

t4

t5

t1
t2

t8

t9 t10

t11

t3

(a) PN-9

pn9 Wed Dec 12 00:17:27 2012 1

9 11
1 0 1 0 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 1 1 0
1 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 1 0 0 0

(b) Input file for PN-9

Figure 4.9: Petri net 9

46

Figure 6.36: Input file for PN-9 (cf. [5]).

77

./reduction_finalversion pn9.txt
 Initial Marking : (1 0 0 0 0 0 0 0 0)
Inputs :
 T 1 2 3 4 5 6 7 8 9 10 11
 P
 1 1 . 1
 2 . 1 . 1
 3 1
 4 1
 5 1
 6 1 1 . . .
 7 1 . .
 8 1 .
 9 1

Outputs :
 T 1 2 3 4 5 6 7 8 9 10 11
 P
 1 1
 2 1
 3 . . 1
 4 . . 1
 5 . . . 1
 6 1
 7 1
 8 1
 9 1 1 1 .

Place P3and transition T5can be removed
Place P7and transition T9can be removed
Place P8and transition T10can be removed
transitions to place9 can be merged

new initial Marking(1 0 0 0 0 0 0 0)
new Input :
 T 1 2 3 4 5 6 7 8 9 10
 P
 1 1 . 1
 2 . 1 . 1
 3 1
 4 1
 5 1 1 . . .
 6 1 . .
 7 1 .
 8 1

new Output :
 T 1 2 3 4 5 6 7 8 9 10
 P
 1 1
 2 1
 3 . . 1
 4 . . . 1
 5 . . 1
 6 1
 7 1
 8 1 1 2 .

new initial Marking(1 0 0 0 0 0 0)
new Input :
 T 1 2 3 4 5 6 7 8 9
 P
 1 1 . 1
 2 . 1 . 1
 3 1
 4 1
 5 1 1 . .
 6 1 .
 7 1

new Output :
 T 1 2 3 4 5 6 7 8 9
 P
 1 1
 2 1
 3 . . 1
 4 . . . 1
 5 . . 1
 6 1
 7 1 . 1 2 .

new initial Marking(1 0 0 0 0 0)
new Input :
 T 1 2 3 4 5 6 7 8
 P
 1 1 . 1
 2 . 1 . 1
 3 1 . . .
 4 1 . . .
 5 1 1 .
 6 1

new Output :
 T 1 2 3 4 5 6 7 8
 P
 1 1
 2 1
 3 . . 1
 4 . . . 1
 5 . . 1
 6 2 . 1 .

Figure 6.37: Output for Reduction part of the algorithm for PN-9 (cf. [5]).

78

P1 t1

P5
P3

t3

t6
t7

t5

P6

t8

P2 t2

t4

P4

2

Figure 6.38: Reduced PN-9 (cf. [5]).

79

 ./PN_minele pn9.txt_a.txt

 Incidence Matrix :

 T 1 2 3 4 5 6 7 8
 P
 1 -1 . -1 1
 2 1 -1 . -1
 3 . . 1 . -1 . . .
 4 . . . 1 -1 . . .
 5 . . 1 . . -1 -1 .
 6 2 . 1 -1

 Initial Marking : (1 0 0 0 0 0)

 There is an LESP for this (fully controlled) PN

 Minimal Elements of the fully controlled Net
 --

 1: (1 0 0 0 0 0)
 2: (0 0 0 0 1 0)
 3: (0 0 0 0 0 1)
 4: (0 0 1 1 0 0)
 5: (0 1 1 0 0 0)

 List of Controllable Transitions

 t1 t2 t3 t4 t7

 (Final) Minimal Elements of the control-invariant set

 1: (1 0 0 0 0 0)
 2: (0 0 0 0 0 1)
 3: (0 0 1 1 0 0)
 4: (0 1 1 0 0 0)

checking if fine
The loop-test failed for the minimal_element: (1 0 0 0 0 0)

The loop-test failed for the minimal_element: (0 0 0 0 0 1)

 (Final) Minimal Elements of the control-invariant set

 1: (0 0 1 1 0 0)
 2: (0 1 1 0 0 0)
 3: (2 0 0 0 0 0)
 4: (1 1 0 0 0 0)
 5: (1 0 1 0 0 0)
 6: (1 0 0 1 0 0)
 7: (1 0 0 0 1 0)
 8: (1 0 0 0 0 1)
 9: (1 0 0 0 0 1)
 10: (0 1 0 0 0 1)
 11: (0 0 1 0 0 1)
 12: (0 0 0 1 0 1)
 13: (0 0 0 0 1 1)
 14: (0 0 0 0 0 2)

 (Final) Minimal Elements of the control-invariant set

 1: (0 0 1 1 0 0)
 2: (0 1 1 0 0 0)
 3: (2 0 0 0 0 0)
 4: (1 1 0 0 0 0)
 5: (1 0 1 0 0 0)
 6: (1 0 0 1 0 0)
 7: (1 0 0 0 0 1)
 8: (0 1 0 0 0 1)
 9: (0 0 1 0 0 1)
 10: (0 0 0 1 0 1)
 11: (0 0 0 0 0 2)

checking if fine
 This is An LESP

Figure 6.39: Minimal Elements of the Reduced net for PN-9 (cf. [5]).

80

./reduction_deducingminele pn9.txt pn9_output.txt
places removed:
3
7
8
-1
transitions removed in the same order:
5
9
10
-1
places merged:
7
8
-1
Rule followed in same order: - Enter 1 for Rule 1 or 2 for Rule 2:
2
2
2
-1
Number of places for reduced net:
6
no of reduced places 6
open file name: pn9_output.txt
(0 0 1 1 0 0)

(0 1 1 0 0 0)

(2 0 0 0 0 0)

(1 1 0 0 0 0)

(1 0 1 0 0 0)

(1 0 0 1 0 0)

(1 0 0 0 0 1)

(0 1 0 0 0 1)

(0 0 1 0 0 1)

(0 0 0 1 0 1)

(0 0 0 0 0 2)

 Initial Marking : (1 0 0 0 0 0 0 0 0)

Inputs :
 T 1 2 3 4 5 6 7 8 9 10 11
 P
 1 1 . 1
 2 . 1 . 1
 3 1
 4 1
 5 1
 6 1 1 . . .
 7 1 . .
 8 1 .
 9 1

Outputs :
 T 1 2 3 4 5 6 7 8 9 10 11
 P
 1 1
 2 1
 3 . . 1
 4 . . 1
 5 . . . 1
 6 1
 7 1
 8 1
 9 1 1 1 .

Controllable transitions(1 1 1 1 0 0 0 1 0 0 0)

number of places 9
new final elements:
(0 0 0 1 1 0 0 0 0)

(0 1 0 1 0 0 0 0 0)

(2 0 0 0 0 0 0 0 0)

(1 1 0 0 0 0 0 0 0)

(1 0 0 1 0 0 0 0 0)

(1 0 0 0 1 0 0 0 0)

(1 0 0 0 0 0 0 0 1)

(0 1 0 0 0 0 0 0 1)

(0 0 0 1 0 0 0 0 1)

(0 0 0 0 1 0 0 0 1)

(0 0 0 0 0 0 0 0 2)

(1 0 0 0 0 0 1 0 0)

(0 1 0 0 0 0 1 0 0)

(0 0 0 1 0 0 1 0 0)

(0 0 0 0 1 0 1 0 0)

(0 0 0 0 0 0 2 0 0)

(0 0 0 0 0 0 1 0 1)

(1 0 0 0 0 0 0 1 0)

(0 1 0 0 0 0 0 1 0)

(0 0 0 1 0 0 0 1 0)

(0 0 0 0 1 0 0 1 0)

(0 0 0 0 0 0 0 2 0)

(0 0 0 0 0 0 0 1 1)

(0 0 0 0 0 0 1 1 0)

Figure 6.40: Deducing minimal elements for PN-9 (cf. [5]).

81

P1

t1

P2 t2
P3

t4

t3

P4 t5 P5 P6 P7

t6
t7 t8

P8

t10

P9

t9

Figure 6.41: PN-13 (cf. [5]).

9 10
1 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 1
0 0 0 0 0 0 1 1 0 0
2 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0

Figure 6.42: Input file for PN-13 (cf. [5]).

82

./reduction_finalversion PN-13.txt
 Initial Marking : (2 0 0 0 0 0 0 0 0)
Inputs :
 T 1 2 3 4 5 6 7 8 9 10
 P
 1 1
 2 . 1 1
 3 . . . 1
 4 1 1
 5 1
 6 1 . . .
 7 1 . .
 8 1
 9 1 .

Outputs :
 T 1 2 3 4 5 6 7 8 9 10
 P
 1 1
 2 1
 3 . 1
 4 . . 1
 5 1
 6 . . . 1
 7 . . . 1
 8 1 . . . 1
 9 1 1 . .

Tansition T2and place P3can be removed
Place P6and transition T7can be removed
Place P7and transition T8can be removed
transitions to place9 can be merged

new initial Marking(2 0 0 0 0 0 0 0)
new Input :
 T 1 2 3 4 5 6 7 8 9
 P
 1 1
 2 . 1 1
 3 . . . 1 1
 4 1
 5 1 . . .
 6 1 . .
 7 1
 8 1 .

new Output :
 T 1 2 3 4 5 6 7 8 9
 P
 1 1
 2 1
 3 . 1
 4 . . . 1
 5 . . 1
 6 . . 1
 7 1 . . . 1
 8 1 2 . .

new initial Marking(2 0 0 0 0 0 0)
new Input :
 T 1 2 3 4 5 6 7 8
 P
 1 1
 2 . 1 1
 3 . . . 1 1 . . .
 4 1 . . .
 5 1 . .
 6 1
 7 1 .

new Output :
 T 1 2 3 4 5 6 7 8
 P
 1 1
 2 1
 3 . 1
 4 . . . 1
 5 . . 1
 6 1 . . 1
 7 . . 1 . . 2 . .

new initial Marking(2 0 0 0 0 0)
new Input :
 T 1 2 3 4 5 6 7
 P
 1 1
 2 . 1 1
 3 . . . 1 1 . .
 4 1 . .
 5 1
 6 1 .

new Output :
 T 1 2 3 4 5 6 7
 P
 1 1
 2 1
 3 . 1
 4 . . . 1 . . .
 5 1 . 1
 6 . . 2

Figure 6.43: Output for Reduction part of the algorithm for PN-13 (cf. [5]).

83

P1

t1

P2

t3

t2

P3 t4 P4

t5

P5

t7

P6

t6

2

Figure 6.44: Reduced PN-13 (cf. [5]).

84

./PN_minele PN-13.txt_a.txt

 Incidence Matrix :

 T 1 2 3 4 5 6 7
 P
 1 -1 1
 2 1 -1 -1
 3 . 1 . -1 -1 . .
 4 . . . 1 -1 . .
 5 1 . *S
 6 . . 2 . . -1 .

 Initial Marking : (2 0 0 0 0 0)

 There is an LESP for this (fully controlled) PN

 Minimal Elements of the fully controlled Net
 --

 1: (0 0 0 0 1 0)
 2: (1 0 0 1 0 0)
 3: (0 1 0 1 0 0)
 4: (0 0 1 1 0 0)
 5: (1 0 1 0 0 0)
 6: (0 1 1 0 0 0)
 7: (0 0 2 0 0 0)
 8: (1 1 0 0 0 0)
 9: (0 2 0 0 0 0)
 10: (2 0 0 0 0 0)

 List of Controllable Transitions

 t4

 (Final) Minimal Elements of the control-invariant set

 1: (0 0 0 0 1 0)
 2: (0 0 1 1 0 0)
 3: (0 0 2 0 0 0)

checking if fine
 This is An LESP

Figure 6.45: Minimal Elements of the Reduced net PN-13 (cf. [5]).

85

./reduction_deducingminele PN-13.txt PN-13_output.txt
places removed:
3
6
7
-1
transitions removed in the same order:
2
7
8
-1
places merged:
6
7
-1
Rule followed in same order: - Enter 1 for Rule 1 or 2 for Rule 2:
1
2
2
-1
Number of places for reduced net:
6
no of reduced places 6
open file name: PN-13_output.txt
(0 0 0 0 1 0)

(0 0 1 1 0 0)

(0 0 2 0 0 0)

 Initial Marking : (2 0 0 0 0 0 0 0 0)

Inputs :
 T 1 2 3 4 5 6 7 8 9 10
 P
 1 1
 2 . 1 1
 3 . . . 1
 4 1 1
 5 1
 6 1 . . .
 7 1 . .
 8 1
 9 1 .

Outputs :
 T 1 2 3 4 5 6 7 8 9 10
 P
 1 1
 2 1
 3 . 1
 4 . . 1
 5 1
 6 . . . 1
 7 . . . 1
 8 1 . . . 1
 9 1 1 . .

Controllable transitions(0 0 0 0 1 0 0 0 0 0)

number of places 9
new final elements:
(0 0 0 0 0 0 0 1 0)

(0 0 0 1 1 0 0 0 0)

(0 0 0 2 0 0 0 0 0)

Figure 6.46: Deducing minimal elements for PN-13 (cf. [5]).

86

P1

t1

P2 t2
P3

t4
t3

P4 t5 P5 P6 P7

t6
t7 t8

P8

t10

P9

t9

Figure 6.47: PN-11 (cf. [5]).

9 10
1 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 1 0
0 0 0 0 0 0 1 1 0 0
2 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0

Figure 6.48: Input file for PN-11 (cf. [5]).

87

./reduction_finalversion pn11
 Initial Marking : (2 0 0 0 0 0 0 0 0)
Inputs :
 T 1 2 3 4 5 6 7 8 9 10
 P
 1 1
 2 . 1 1
 3 . . . 1
 4 1 1
 5 . . . 1
 6 1 . . .
 7 1 . .
 8 1
 9 1 .

Outputs :
 T 1 2 3 4 5 6 7 8 9 10
 P
 1 1
 2 1
 3 . 1
 4 . . 1
 5 1
 6 . . . 1
 7 . . . 1
 8 1 . . 1 .
 9 1 1 . .

Place P6and transition T7can be removed
Place P7and transition T8can be removed
transitions to place9 can be merged

new initial Marking(2 0 0 0 0 0 0 0)
new Input :
 T 1 2 3 4 5 6 7 8 9
 P
 1 1
 2 . 1 1
 3 . . . 1
 4 1 1 . . .
 5 . . . 1
 6 1 . .
 7 1
 8 1 .

new Output :
 T 1 2 3 4 5 6 7 8 9
 P
 1 1
 2 1
 3 . 1
 4 . . 1
 5 1
 6 . . . 1
 7 1 . 1 .
 8 . . . 1 . . 2 . .

new initial Marking(2 0 0 0 0 0 0)
new Input :
 T 1 2 3 4 5 6 7 8
 P
 1 1
 2 . 1 1
 3 . . . 1
 4 1 1 . .
 5 . . . 1
 6 1
 7 1 .

new Output :
 T 1 2 3 4 5 6 7 8
 P
 1 1
 2 1
 3 . 1
 4 . . 1
 5 1 . . .
 6 1 1 .
 7 . . . 2

Figure 6.49: Output for Reduction part of the algorithm for PN-11 (cf. [5]).

88

P1

t1

P2

t2

t3

P4 t5 P5

t6

P6

t7

P3

t4 P7

t8

2

Figure 6.50: Reduced PN-11 (cf. [5]).

89

./PN_minele pn11_a.txt

Incidence Matrix :

 T 1 2 3 4 5 6 7 8
 P
 1 -1 1
 2 1 -1 -1
 3 . 1 . -1
 4 . . 1 . -1 -1 . .
 5 . . . -1 1 . . .
 6 1 1 -1
 7 . . . 2 . . -1 .

 Initial Marking : (2 0 0 0 0 0 0)

 There is an LESP for this (fully controlled) PN

 Minimal Elements of the fully controlled Net
 --

 1: (1 0 0 0 0 0 1)
 2: (0 1 0 0 0 0 1)
 3: (0 0 1 0 0 0 1)
 4: (0 0 0 1 0 0 1)
 5: (0 0 0 0 1 0 1)
 6: (0 0 0 0 0 1 1)
 7: (0 0 0 0 0 0 2)
 8: (1 0 0 0 0 1 0)
 9: (0 1 0 0 0 1 0)
 10: (0 0 1 0 0 1 0)
 11: (0 0 0 1 0 1 0)
 12: (0 0 0 0 1 1 0)
 13: (0 0 0 0 0 2 0)
 14: (1 0 0 0 1 0 0)
 15: (0 1 0 0 1 0 0)
 16: (0 0 1 0 1 0 0)
 17: (0 0 0 1 1 0 0)
 18: (1 0 0 1 0 0 0)
 19: (0 1 0 1 0 0 0)
 20: (0 0 1 1 0 0 0)
 21: (0 0 0 2 0 0 0)
 22: (1 0 1 0 0 0 0)
 23: (0 1 1 0 0 0 0)
 24: (1 1 0 0 0 0 0)
 25: (0 2 0 0 0 0 0)
 26: (2 0 0 0 0 0 0)

 List of Controllable Transitions

 t2 t3

 (Final) Minimal Elements of the control-invariant set

 1: (1 0 0 0 0 0 1)
 2: (0 1 0 0 0 0 1)
 3: (0 0 1 0 0 0 1)
 4: (0 0 0 1 0 0 1)
 5: (0 0 0 0 1 0 1)
 6: (0 0 0 0 0 1 1)
 7: (0 0 0 0 0 0 2)
 8: (1 0 0 0 0 1 0)
 9: (0 1 0 0 0 1 0)
 10: (0 0 1 0 0 1 0)
 11: (0 0 0 1 0 1 0)
 12: (0 0 0 0 1 1 0)
 13: (0 0 0 0 0 2 0)
 14: (1 0 0 0 1 0 0)
 15: (0 1 0 0 1 0 0)
 16: (0 0 1 0 1 0 0)
 17: (1 0 0 1 0 0 0)
 18: (0 1 0 1 0 0 0)
 19: (0 0 1 1 0 0 0)
 20: (1 0 1 0 0 0 0)
 21: (0 1 1 0 0 0 0)
 22: (1 1 0 0 0 0 0)
 23: (0 2 0 0 0 0 0)
 24: (2 0 0 0 0 0 0)

checking if fine
 This is An LESP

Figure 6.51: Minimal Elements of the Reduced net for PN-11 (cf. [5]).

90

./reduction_deducingminele pn11 pn11_output.txt
places removed:
6
7
-1
transitions removed in the same order:
7
8
-1
places merged:
6
7
-1
Rule followed in same order: - Enter 1 for Rule 1 or 2 for Rule 2:
2
2
-1
Number of places for reduced net:
7
no of reduced places 7
open file name: pn11_output.txt
(1 0 0 0 0 0 1)

(0 1 0 0 0 0 1)

(0 0 1 0 0 0 1)

(0 0 0 1 0 0 1)

(0 0 0 0 1 0 1)

(0 0 0 0 0 1 1)

(0 0 0 0 0 0 2)

(1 0 0 0 0 1 0)

(0 1 0 0 0 1 0)

(0 0 1 0 0 1 0)

(0 0 0 1 0 1 0)

(0 0 0 0 1 1 0)

(0 0 0 0 0 2 0)

(1 0 0 0 1 0 0)

(0 1 0 0 1 0 0)

(0 0 1 0 1 0 0)

(1 0 0 1 0 0 0)

(0 1 0 1 0 0 0)

(0 0 1 1 0 0 0)

(1 0 1 0 0 0 0)

(0 1 1 0 0 0 0)

(1 1 0 0 0 0 0)

(0 2 0 0 0 0 0)

(2 0 0 0 0 0 0)

 Initial Marking : (2 0 0 0 0 0 0 0 0)

Inputs :
 T 1 2 3 4 5 6 7 8 9 10
 P
 1 1
 2 . 1 1
 3 . . . 1
 4 1 1
 5 . . . 1
 6 1 . . .
 7 1 . .
 8 1
 9 1 .

Outputs :
 T 1 2 3 4 5 6 7 8 9 10
 P
 1 1
 2 1
 3 . 1
 4 . . 1
 5 1
 6 . . . 1
 7 . . . 1
 8 1 . . 1 .
 9 1 1 . .

Controllable transitions(0 1 1 0 0 0 0 0 0 0)

number of places 9
new final elements:
(1 0 0 0 0 0 0 0 1)

(0 1 0 0 0 0 0 0 1)

(0 0 1 0 0 0 0 0 1)

(0 0 0 1 0 0 0 0 1)

(0 0 0 0 1 0 0 0 1)

(0 0 0 0 0 0 0 1 1)

(0 0 0 0 0 0 0 0 2)

(1 0 0 0 0 0 0 1 0)

(0 1 0 0 0 0 0 1 0)

(0 0 1 0 0 0 0 1 0)

(0 0 0 1 0 0 0 1 0)

(0 0 0 0 1 0 0 1 0)

(0 0 0 0 0 0 0 2 0)

(1 0 0 0 1 0 0 0 0)

(0 1 0 0 1 0 0 0 0)

(0 0 1 0 1 0 0 0 0)

(1 0 0 1 0 0 0 0 0)

(0 1 0 1 0 0 0 0 0)

(0 0 1 1 0 0 0 0 0)

(1 0 1 0 0 0 0 0 0)

(0 1 1 0 0 0 0 0 0)

(1 1 0 0 0 0 0 0 0)

(0 2 0 0 0 0 0 0 0)

(2 0 0 0 0 0 0 0 0)

(1 0 0 0 0 1 0 0 0)

(0 1 0 0 0 1 0 0 0)

(0 0 1 0 0 1 0 0 0)

(0 0 0 1 0 1 0 0 0)

(0 0 0 0 1 1 0 0 0)

(0 0 0 0 0 1 0 1 0)

(0 0 0 0 0 2 0 0 0)

(0 0 0 0 0 1 0 0 1)

(1 0 0 0 0 0 1 0 0)

(0 1 0 0 0 0 1 0 0)

(0 0 1 0 0 0 1 0 0)

(0 0 0 1 0 0 1 0 0)

(0 0 0 0 1 0 1 0 0)

(0 0 0 0 0 0 1 1 0)

(0 0 0 0 0 0 2 0 0)

(0 0 0 0 0 0 1 0 1)

(0 0 0 0 0 1 1 0 0)

Figure 6.52: Deducing minimal elements for PN-11 (cf. [5]).

91

6.4.2 Discussion

The example Figure 6.35 takes unusually long time to compute the LESP

using the existing software [5]. The computational time can be reduced

considerably using the reduction techniques in this chapter. The illustrations

show that the minimally restrictive LESP can be deduced for this example

using the reduction techniques as seen in Figure6.40.

One important observation to note while using these reduction techniques

is that the resulting LESP need not always be minimally restrictive. This is

illustrated using Example-3 Figure 6.29. The minimally restrictive LESP for

this PN would yield a right-closed set with minimal elements {(1 0 0 0 0)T ,

(0 0 0 6 6)T , (0 0 3 6 4)T , (0 0 6 6 2)T , (0 0 9 6 0)T}. However, once the PN is sim-

plified the minimally restrictive LESP for the reduced PN Figure 6.32 has

only one minimal element {(1 0 0)T}. Using rule -1 and solving for Equa-

tion 6.1 the only possible solution would be {(1 0 0 0 0)T}. This is an LESP

although not minimally restrictive.

The minimal elements for a PN that has been reduced using reduction

technique 2 is computed using the Equation 6.2. It is important to note

that while computing all possible integer solutions for x and y we take the

following into consideration:

• if x is not equal to 0 , x = max(x,w2).

The importance of replacing x with w2 when x < w2 and x is not equal to

0 was discussed in the previous section. To demonstrate this further, let us

look at the example illustrated in Figure 6.53. The path t2
4→ p1

2→ t1
4→ p2

is replaced by t2
8→ p̃2

Here, w1 = 4, w2 = 2 and w3 = 4. The minimally restrictive LESP for the

reduced PN would be {(2)T}. Using Equation 6.2 we get,

2 = y +
4

2
x.

If we do not take the condition x = max(x,w2) when x 6= 0 into considera-

tion then, all possible integer solutions for (x, y) would yield (1, 0) and (2, 0)

as the minimal elements of the original PN. But (1, 0) cannot be a minimal

element since it does not enfore liveness. However, if we were to replace

x with max(x,w2) then for the solution (1, 0) the minimal element would

be (max(1, w2(= 2)), 0) = (2, 0). This has been incorporated in the object-

92

oriented implementation to compute the minimal elements of the original

PN.

P1

t1

P2

t2

2

4

2
4

2
t2

8

Figure 6.53: Example-5

To space limitations we have not included large examples in this thesis.

The largest PN model that the software described in this thesis was used

on was an unbounded PN with eleven places and fifteen transitions with

a coverability graph that had ≈ 107 vertices. The ∆(N)-set for this PN

had forty-one minimal elements that were computed in less than a second of

run-time on a Macbook Air.

The fact that the software described in this thesis can synthesize min-

imally restrictive LESPs for unbounded PNs is an important feature that

distinguishes the presented work from those that exist in the literature. As

per reference [29], the results in this thesis can serve serve as critical mile-

stones in the synthesis of asymptotically efficient LESP synthesis procedures

for large PN models.

93

CHAPTER 7

CONCLUSIONS AND FUTURE WORK

We identified two classes of general PN structures,F and H where the exis-

tence of LESP for an instance initialized at a marking is sufficient to con-

clude that there is an LESP when the same instance is initialized at a larger

marking (cf. sections 4.1 and 4.2). An object-oriented implementation of

an algorithm that computes the members of min(∆(N)) for any member of

the F and H classes of the PNs (cf. chapters 5). We identified examples

where the software of reference [5] takes an unusually long time to compute

the minimally restrictive LESP for specific problem instances. We developed

reduction techniques (cf. chapter 6) and other methods (cf. sections 4.3 and

4.4) to improve the performance of the software of reference [5]. Using sev-

eral illustrative examples that are interspersed in this thesis, we have shown

the utility of the various results obtained in course of this research.

The reduction techinques that have been developed reduce the computa-

tional time for computing LESP for PNs. However, the LESP deduced using

these techniques are not always minimally restrictive. We suggest investi-

gations into deducing minimally restrictive LESP for PNs using reduction

techniques as a direction of possible future research. The techniques that

have been developed exploit the property of similarilty between the reduced

PN and the original PN. This thesis covers three such reduction techniques.

However, other techniques could be investigated as another direction of fu-

ture research.

The object-oriented implementation of reduction techniques (cf. chapter

6) that were developed uses similar structure and some of the variables used

in [14] under the assumption that an integration to the existing code in

the future would be faster. However, all the steps involved in deducing the

minimal elements i.e. reducing the PN, computing the minimal elements of

the reduced PN and finally deducing the minimal elements of the original PN

have not yet been made transparent to the user. One possible direction for

94

future research would be to develop the software integrating the reduction

techniques in this thesis along with additional techniques with the exisiting

software to make the entire computation transparent to the user.

The contributions of this thesis is limited to the paradigm of marking-based

LESPs for PNs. There are other paradigms for liveness enforcement in PNs.

For instance, references [30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40] deal with

various aspects of event-based supervisory control of DEDS systems. We

suggest investigations into event-based LESPs for PN as a future research

topic.

Figure 7.1 shows two different LESPs for a PN N10(m0
10). Policy 1 uses an

event-based LESP. Policy 2 uses the ∆(N)-set based LESP. The ∆(N)-set

based LESP of Policy 2 is minimally-restrictive (cf. chapter 3 of this thesis).

Policy 1 is not minimally restrictive, as (1 0 0 0 0 0 0 0)T → (t2t4t7t8t9)2t1 →
(2 1 2 0 0 0 0 0)T under the supervision of Policy 1, and the firing of t1 is

prevented unnecessarily by this policy at marking (2 1 2 0 0 0 0 0)T .

To explicate the role of the event-based LESP of Policy 1, the supervisor

essentially ensures the language generated by N1(m0
1), when projected on the

alphabet-set {t1, t2} is a subset of the set identified by the regular-expression

(t2t
∗
2t1)∗. Since,

(t2t4t7t8t9)2t1 |{t1,t2} = t22t1(∈ (t2t
∗
2t1)∗) and

(t2t4t7t8t9)2t21 |{t1,t2} = t22t
2
1(/∈ (t2t

∗
2t1)∗),

Policy 1 does not permit the firing of the controllable transition t1 at the

marking (2 1 2 0 0 0 0 0)T , which is unnecessary, which is the reason why

this LESP is not the “best” LESP.

The implementation of LESPs (and other supervisory control policies)

are susceptible to sensor-failures. We suggest investigations into the fault-

tolerant implementations of LESPs, along the lines of references [41, 42], as

another direction of future research.

95

p1

p2

p3 p4

t1
t2

t3 t4

t5 t6 t7

p5 p6 p7

p8

t8

t9

Plant

C
on
tro
l:

Pe
rm

it
t 1 o

nl
y

at
 s

ta
te

 x
1

O
bservations: strings of occurrences

of t1 and t2 .

Supervisory Policy

t2

t1

x0 x1
t2

(a) Policy 1

p1

p2

p3 p4

t1
t2

t3 t4

t5 t6 t7

p5 p6 p7

p8

t8

t9

Plant

C
on

tro
l:

Pe
rm

it
t 1 a

s
pe

r S
up

er
vi

so
ry

Po

lic
y

O
bservations: C

urrent token-
distribution in all places.

Supervisory Policy

Permit t1 if and only if the marking that would
result after its firing is greater-than-or-equal to
one of the vectors in the set: {(1000 0000)T,
(0001 0000)T,(0000 0100)T,(0000 0010)T,
(0000 0001)T}

(b) Policy 2

Figure 7.1: A PN N10(m0
10) with (a) an event-based LESP (that is not

minimally restrictive), and (b) A static-map based LESP that is minimally
restrictive.

96

REFERENCES

[1] N. Somnath and R. Sreenivas, “On Deciding the Existence of a Liveness
Enforcing Supervisory Policy in a Class of Partially-Controlled General
Free-Choice Petri Nets,” IEEE Transactions on Automation Science and
Engineering, vol. 10, pp. 1157–1160, October 2013.

[2] E. Salimi, N. Somnath, and R. Sreenivas, “A Software Tool for Live-
Lock Avoidance in Systems Modeled Using a Class of Petri Nets,” In-
ternational Journal of Computer Science, Engineering and Applications
(IJCSEA), vol. 5, no. 2, pp. 1–13, April 2015.

[3] E. Salimi, N. Somnath, and R. Sreenivas, “On supervisory policies that
enforce liveness in controlled petri nets that are similar,” in Proceedings
of the 7th IEEE International Conference on Cybernetics and Intelligent
Systems (CIS) and the 7th IEEE International Conference on Robotics,
Automation and Mechatronics (RAM), Angkor Wat, Cambodia, July
2015.

[4] T. Murata, “Petri nets: Properties, analysis and applications,” Proceed-
ings of the IEEE, vol. 77, no. 4, pp. 541–580, 1989.

[5] S. Chandrasekaran, N. Somnath, and R. Sreenivas, “A Software Tool
for the Automatic Synthesis of Minimally Restrictive Liveness Enforc-
ing Supervisory Policies for a class of General Petri Nets,” Journal of
Intelligent Manufacturing, 2014, to appear (DOI 10.1007/s10845-014-
0888-5).

[6] J. Peterson, Petri Net Theory and the Modeling of Systems. Englewood
Cliffs, NJ: Prentice-Hall, 1981.

[7] R. Valk and M. Jantzen, “The residue of vector sets with applications
to decidability problems in Petri nets,” Acta Informatica, vol. 21, pp.
643–674, 1985.

[8] W. Reisig, Petri Nets. Berlin: Springer-Verlag, 1985.

[9] R. Sreenivas, “On Commoner’s liveness theorem and supervisory poli-
cies that enforce liveness in Free-choice Petri nets,” Systems & Control
Letters, vol. 31, pp. 41–48, 1997.

97

[10] K. Barkaoui and J. Pradat-Peyre, “On Liveness and Controlled Siphons
in Petri Nets,” vol. 1091, January 1996, Proc. the 17th International
Conference on Applications and Theory of Petri Nets, Osaka, Japan,
pages 57-72.

[11] R. Sreenivas, “On the existence of supervisory policies that enforce live-
ness in partially controlled free-choice petri nets,” IEEE Transactions
on Automatic Control, vol. 57, no. 2, pp. 435–449, February 2012.

[12] R. Sreenivas, “On the existence of supervisory policies that enforce
liveness in discrete-event dynamic systems modeled by controlled Petri
nets,” IEEE Transactions on Automatic Control, vol. 42, no. 7, pp. 928–
945, July 1997.

[13] R. Sreenivas, “On a Decidable Class of Partially Controlled Petri Nets
With Liveness Enforcing Supervisory Policies,” IEEE Transactions on
Systems, Man, and Cybernetics: Systems, vol. 43, no. 5, pp. 1256–1261,
August 2013.

[14] S. Chandrasekaran, “Object-oriented implementation of the minimally
restrictive liveness enforcing supervisory policy in a class of petri nets,”
M.S. thesis, University of Illinois at Urbana-Champaign, Industrial and
Enterprise Systems Engineering, December 2012.

[15] S. Chandrasekaran and R. Sreenivas, “A software tool for the synthe-
sis of supervisory policies that avoid livelocks in petri net models of
manufacturing- and service-systems,” in Proceedings of the XVI An-
nual International Conference of the Society of Operations Management
(SOM-12), New Delhi, India, December 2012.

[16] S. Chandrasekaran and R. Sreenivas, “On the automatic generation
of the minimally restrictive liveness enforcing supervisory policy for
manufacturing- and service-systems modeled by a class of general free
choice petri nets,” in Proceedings of the IEEE International Conference
on Networking, Sensing and Control (ICNSC-13), Paris, France, April
2013, session WeC01.3.

[17] A. Giua, “Petri nets as discrete event models for supervisory control,”
Ph.D. dissertation, ECSE Dept., Rensselaer Polytechnic Institute, Troy,
NY., 1992.

[18] J. Moody and P. Antsaklis, Supervisory Control of Discrete Event Sys-
tems using Petri Nets. MA: Kluwer Academic Publishers, 1998.

[19] M. Iordache and P. Ansaklis, Supervisory control of Concurrent Systems:
A Petri net Structural Approach. MA: Kulwer Academic Publishers,
2006.

98

[20] S. Reveliotis, E. Roszkowska, and J. Choi, “Generalized algebraic dead-
lock avoidance policies for sequential Resource Allocation Systems,”
IEEE Transactions on Automatic Control, vol. 53, no. 7, pp. 2345–2350,
December 2007.

[21] A. Ghaffari, N. Rezg, and X. Xie, “Design of a Live and Maximally
Permissive Petri net Controller using the Theory of Regions,” IEEE
Transactions on Robotics and Automation, vol. 19, no. 1, pp. 137–142,
January 2003.

[22] D. Liu, Z. Li, and M. Zhou, “Liveness of an extended S3PR,” Auto-
matica, vol. 46, pp. 1008–1018, 2010, also, Erratum to “Liveness of an
extended S3PR”, Automatica, 48, (2012), 1003-1004.

[23] O. Marchetti and A. Munier-Kordon, “A sufficient condition for the
liveness of weighted event graphs,” European Journal of Operations Re-
search, vol. 197, pp. 532–540, 2009.

[24] F. Basile, L. Recalde, P. Chiacchio, and M. Silva, “Closed-loop Live
Marked Graphs under Generalized Mutual Exclusion Constraint En-
forcement,” Discrete Event Dynamic Systems, vol. 19, no. 1, pp. 1–30,
2009.

[25] R. Sreenivas, “Some observations on supervisory policies that enforce
liveness in partially controlled Free Choice Petri nets,” Mathematics
and Computers in Simulation, vol. 70, pp. 266–274, 2006.

[26] E. Best, Lecture Notes in Computer Science. Springer-Verlag, 1987,
vol. 254, ch. Structure Theory of Petri Nets: The Free Choice Hiatus.

[27] V. Deverakonda and R. Sreenivas, “On a sufficient information structure
for supervisory policies that enforce liveness in a class of general petri
nets,” IEEE Transactions on Automatic Control, vol. 60, no. 7, pp.
1915–1921, July 2015.

[28] E. Salimi, N. Somnath, and R. Sreenivas, “A tutorial on the synthe-
sis of the maximally permissive liveness enforcing supervisory policy in
discrete-event/discrete-state systems modeled by a class of general petri
nets,” in Proceedings of the Indian Control Conference (ICC-15), Jan-
uary 2015, I.I.T. Madras.

[29] R. Sreenivas, “On asymptotically efficient solutions for a class of su-
pervisory control problems,” IEEE Transactions on Automatic Control,
vol. 41, no. 12, pp. 1736–1750, December 1996.

[30] P. Ramadge and W. Wonham, “The control of Discrete Event Systems,”
Proceedings of the IEEE, vol. 77, no. 1, pp. 81–98, January 1989.

99

[31] P. Ramadge and W. Wonham, “Supervisory control of a class of discrete
event systems,” SIAM Journal of Control and Optimization, vol. 25,
no. 1, pp. 206–230, January 1987.

[32] W. Wonham and P. Ramadge, “On the supremal controllable sublan-
guage of a given language,” SIAM Journal of Conrol and Optimization,
vol. 25, no. 3, pp. 637–659, May 1987.

[33] R. Sreenivas, “Towards a system theory for interconnected condi-
tion/event systems,” Ph.D. dissertation, Carnegie Mellon University,
1990.

[34] R. Sreenivas, “An application of independent, increasing, free-choice
petri nets to the synthesis of policies that enforce liveness in arbitrary
petri nets,” Automatica, vol. 34, no. 12, pp. 1613–1615, December 1998.

[35] R. Sreenivas, “On supervisory policies that enforce liveness in in a
class of completely controlled petri nets obtained via refinement,” IEEE
Transactions on Automatic Control, vol. 44, no. 1, pp. 173–177, January
1999.

[36] R. Sreenivas, “On supervisory policies that enforce liveness in completely
controlled petri nets with directed cut-places and cut-transitions,” IEEE
Transactions on Automatic Control, vol. 44, no. 6, pp. 1221–1225, June
1999.

[37] R. Sreenivas and B. Krogh, “On condition/event systems with discrete
state realizations,” Discrete Event Dynamic Systems: Theory and Ap-
plications, vol. 1, pp. 209–236, 1991.

[38] R. Sreenivas, “A note on deciding the controllability of a language K
with respect to a language L,” IEEE Trans. on Automatic Control,
vol. 38, no. 4, April 1993.

[39] R. Sreenivas, “On a weaker notion of controllability of a language K with
respect to a language L,” IEEE Trans. on Automatic Control, vol. 38,
no. 9, September 1993.

[40] R. Sreenivas, “On minimal representations of petri net languages,” IEEE
Transactions on Automatic Control, vol. 51, no. 5, pp. 799–804, May
2006.

[41] L. Li, C. Hadjicostis, and R. S. Sreenivas, “Designs of bisimilar petri
net controllers with fault tolerance capabilities,” IEEE Transactions on
Systems, Man and Cybernetics – Part A: Systems and Humans, vol. 38,
no. 1, pp. 207–217, January 2008.

100

[42] L. Li, C. Hadjicostis, and R. S. Sreenivas, “Fault detection and identi-
fication in petri net controllers,” in Proceedings of the 43rd IEEE Con-
ference on Decision and Control (CDC), Bahamas, December 2004, pp.
5248–5253.

101

