
c© 2015 Saeidreza Shifteh Far

A FLEXIBLE FINE-GRAINED ADAPTIVE FRAMEWORK FOR PARALLEL MOBILE
HYBRID CLOUD APPLICATIONS

BY

SAEIDREZA SHIFTEH FAR

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2015

Urbana, Illinois

Doctoral Committee:

Professor Gul Agha, Chair
Professor Tarek F. Abdelzaher
Professor Nitin Vaidya
Professor Carlos A. Varela, Rensselaer Polytechnic Institute

ABSTRACT

Mobile devices have become ubiquitous and provide ever richer content and functionality.

At the same time, applications are also becoming more complex and require ever increasing

amount of computational power and energy. With cloud computing providing unlimited elas-

tic on-demand resources, supporting mobile devices with cloud allows overcoming limitations

of mobile devices. This is generally known as Mobile Cloud Computing (MCC) and can

be achieved through code offloading that selects computationally or data intensive parts of

an application, outsources them to more-resourceful spaces and brings back the final results.

While code offloading has been widely studied in the past within the context of distributed

systems and grid computing, applying it to current mobile applications requires significant

amount of manual changes to existing application codes. An alternative is to outsource the

entire application process or the whole virtual machine in which the application is running.

This solution assumes running the same code on a more-resourceful system is more efficient,

but it is coarse-grained and requires significant amount of data to be transferred. Further-

more, requirements and expectations from mobile applications vary considerably by different

users using wide range of mobile devices in various environmental conditions. This diver-

sity in requirements and expectations creates wide range of target offloading goals, ranging

from maximizing application performance to minimizing mobile energy consumption. The

increased dynamicity and complexity of mobile cloud applications requires open systems that

interact with the environment while addressing application-specific constraints, user expecta-

tions and hardware limitations.

Our goal is to facilitate mobile cloud application development by masking all the com-

plexity of mobile-to-cloud code offloading without requiring application developers to rewrite

their code or perform additional manual work. Our focus is on separating the application

logic, to be developed by programmers, from the application component configuration and

distribution, to be adjusted transparently and dynamically at run-time. Our framework is

fine-grained, supporting mobile application configuration and distribution at the granularity

of individual components; it is flexible, allowing organizations, application developers, or

end-users easily adjust target offloading goal or define policy-driven restrictions on offload-

ii

ing budget, execution quality, or privacy and move around of components without modifying

the existing application codes; and it is adaptive, addressing the dynamicity in run-time con-

ditions and end-user contexts. It further supports component distribution in a hybrid cloud

environment consisting of multiple public and private cloud spaces. Finally, it provides a

new code offloading model that supports fully parallel program execution, where application

components located at mobile device and multiple cloud spaces are executed independently but

concurrently.

The proposed solution can be divided into three main parts: First, a light-weight monitoring

system, called Monitor, to capture dynamic environmental parameters and end-user context,

profile application resource usage and communications, as well as monitoring availability

and performance of cloud resources. Profiling energy consumption per specific application

components is primary of importance and requires design and development of a fine-grained

automatic energy consumption model, as most mobile devices do not provide any tool for

direct measurement of consumed energy and different applications with arbitrary number of

components might be running at any time. Second, we design and implement two independent

performance-based and energy-based models to enable transparent automatic configuration

and distribution of application code and data components that address specific organization,

application, and end-user requirements. These models leverage dynamic information from

the Monitor on run-time parameters, energy and resource usage of different components, and

application characteristics to optimize application performance or mobile energy consump-

tion with respect to a predefined policy. Finally, we design and develop a proof-of-concept

framework called IMCM, Illinois Mobile Cloud Management, that embodies the described

components to enable fine-grained adaptive application component configuration and distri-

bution, while providing flexibility in terms of adjusting desired target optimization goal or

defining additional policy-driven constraints on offloading budget, quality of service per re-

source, and privacy. Evaluations are carried out using a suite of benchmark applications,

including computationally-intensive, I/O-intensive, communication-intensive and combined

multi-purpose applications. Compared to sequential execution on a mobile device, these em-

pirical benchmarks using IMCM framework result in speedups or energy-savings factor of

over 50 times.

iii

ACKNOWLEDGMENTS

I would like to express deepest gratitude to my advisor Dr. Gul Agha for his full support, ex-

pert guidance, understanding and encouragement thorughout my study and research. With-

out his incredible patience and timely wisdom and counsel, my thesis work would have been

a frustrating and overwhelming pursuit. His advice on both research as well as on my career

have been priceless. In addition, I express my appreciation to Dr. Tarek F. Abdelzaher, Dr.

Nitin Vaidya, and Dr. Carlos A. Varela for having served on my committee. They made

my defense an enjoyable moment and their thoughtful questions and comments were valued

greatly.

A very special thanks goes out to Dr. Kirill Mechitov for helping me with my academic

research during my graduate years at University of Illinois. I would also like to thank Mary

Beth Kelley from academic office of computer science department for all her help, support

and patience. In addition, a special thank you to Dr. Frank Boukamp who gave me the

opportunity to join graduate program of University of Illinois in the first place.

Thanks also to my fellow graduate students at the Open Systems Laboratory (OSL) at

Computer Science department of University of Illinois, especially Parya Moinzadeh, Minas

Charalambides, Peter Dinges, and Donna Coleman.

Special thanks go to my numerous friends who helped me throughout this academic explo-

ration, especially Dr. Mani Golparvar-Fard, Bita Vaezian, Hamid Tabdili, Dr. Arash Tajik,

and Dr. Omid Fatemieh, who supported and encouraged me to strive towards my goal. I

am very happy that, in many cases, my friendships with you have extended well beyond our

shared time in Champaign.

I would also like to thank to my family. Words cannot express how grateful I am to my

parents for all the sacrifices that they made on my behalf. Their love provided my inspiration

and was my driving force. I owe them everything and wish I could show them just how much

I love and appreciate them. At the end, I would like to express appreciation to my beloved

wife and best friend, Sara Khosravinasr, without whose love, encouragement and support, I

would not have finished this thesis.

Thank you all for being part of my journey. I will always be grateful for your support.

iv

TABLE OF CONTENTS

LIST OF TABLES . viii

LIST OF FIGURES . ix

LIST OF ALGORITHMS . xi

CHAPTER 1 INTRODUCTION . 1
1.1 Thesis Statement . 4
1.2 Contributions . 5
1.3 Organization . 7

CHAPTER 2 RELATED WORK . 9
2.1 Code Offloading and Mobile-Cloud Computing 9
2.2 Mobile Device Energy Measurement and Power Model Generation 13
2.3 Privacy and Access Control in Cloud Computing Environment 16

CHAPTER 3 ARCHITECTURE OVERVIEW . 21
3.1 System Representation . 22

3.1.1 Cloud Model . 22
3.1.2 Mobile-cloud Application Model . 23
3.1.3 Mobile Hybrid Cloud Application Entities 24

3.2 IMCM: Illinois Mobile Cloud Management Middleware Framework 25
3.3 Evaluation . 27

3.3.1 Experimental Setup . 27
3.3.2 Program Corpus . 28
3.3.3 Implementation . 30
3.3.4 Effectiveness of IMCM in automatic detection of application run-

time parameters and offloading appropriate components 31
3.3.5 Performance overhead of IMCM . 32

CHAPTER 4 A DECISION-MAKING MODEL FOR PERFORMANCE-BASED
CODE OFFLOADING OF FULLY-PARALLEL MOBILE HYBRID CLOUD
APPLICATIONS . 34
4.1 Offloading Decision for Sequential Applications to Single Remote Server . . . 34

4.1.1 Code Offloading Decision Ignoring the Offloading Process Overhead . 34

v

4.1.2 Code Offloading Decision Including Offloading Process Overhead . . . 36
4.1.3 Code Offloading Decision for Large Applications 37

4.2 Code offloading and Parallelism . 39
4.3 Performance-based Offloading Decision Model for Parallel Applications to

Hybrid Cloud Environment . 42
4.4 Experimental Results . 46

4.4.1 Effect of run-time parameters on mobile-cloud offloading decision . . 46
4.4.2 Effect of application type on mobile-cloud offloading decision 47
4.4.3 Effect of problem size (amount of work) on mobile-cloud offloading . 48
4.4.4 Comparison of Sequential Local Application Execution versus Par-

allel Local and Remote Execution . 49

CHAPTER 5 A DECISION-MAKING MODEL FOR ENERGY-BASED CODE
OFFLOADING . 55
5.1 Offloading Decision for Sequential Applications to Single Remote Server . . . 55

5.1.1 Energy-based Offloading Decision Model for Sequential Applica-
tions Ignoring Offloading Process Overhead 55

5.2 Energy-based Offloading Decision Model for Sequential Applications In-
cluding Offloading Process Overhead . 56

5.3 Energy-based Offloading Decision Model for Parallel Applications to Hy-
brid Cloud Environment . 57

5.4 Experimental Results . 61
5.4.1 Effect of application type on mobile-cloud offloading decision 61
5.4.2 Effect of problem size (amount of work) on energy-based mobile-

cloud offloading . 61
5.4.3 Effect of application parallelism degree on energy-based mobile-

cloud offloading . 61

CHAPTER 6 MONITORING APPLICATION COMPONENT ENERGY CON-
SUMPTION . 65
6.1 Energy Consumption of Applications . 65

6.1.1 Development of the Energy Estimation Model 66
6.1.2 Calibration of the Energy Estimation Model 68
6.1.3 Experimental Result . 71

6.2 Fine-grained Energy Consumption of Application Components 72

CHAPTER 7 FLEXIBLE POLICY-DRIVEN RESTRICTIONS FOR PRIVACY,
BUDGET LIMITATION, AND EXECUTION QUALITY OF MOBILE HY-
BRID CLOUD APPLICATIONS . 75
7.1 Defining Privacy for Mobile Hybrid Cloud Applications 75

7.1.1 Design of the Authorization System 76
7.1.2 Mobile Hybrid Cloud Authorization Grammar 78
7.1.3 Grouping, Selection, and Binding . 80
7.1.4 Policy Description . 81
7.1.5 Policy Evaluation . 82

vi

7.1.6 Implementation of the Policy-based Authorization System 84
7.1.7 An Example . 86

7.2 Defining Execution Quality for Different Components at Various Locations . 97
7.3 Defining Offloading Budget Limitations for Different Cloud Resources 100

CHAPTER 8 CONCLUSION AND FUTURE WORK 113
8.1 Summary . 113
8.2 Limitations and Future Work . 115

REFERENCES . 117

vii

LIST OF TABLES

2.1 A comparison of Mobile-Cloud systems. 12

3.1 Specifications of the used equipment for evaluation 28
3.2 Benchmark applications used to evaluate our framework. 29
3.3 Benchmark application main characteristics showing dominant behavior of the application. 29

4.1 Speedup resulting from offloading . 35
4.2 Components of a large mobile application and their interactions with each other 38
4.3 Notations used in parallel offloading model . 43
4.4 Average bandwidth of different mobile technologies 47

5.1 Energy saving ratio resulting from offloading . 56

6.1 Power estimation model for different mobile hardware components 74

7.1 Definition of authorization-related entities . 79
7.2 Definition of authorization entity grouping, selection, and binding 81
7.3 Definition of authorization rules and their enforcement ordering 82
7.4 Private cloud policy defined as part of the hard policy file 107
7.5 Public cloud policy defined as part of the hard policy file 108
7.6 End-user application policy defined as part of the hard policy file 109
7.7 End-user soft policy for users without specific privacy concerns 110
7.8 End-user soft policy for privacy-concerned users . 111
7.9 End-user soft policy for extremely cautious users with utmost privacy concerns 112

viii

LIST OF FIGURES

3.1 Actor model of computation . 25
3.2 Cost of VM migration in a local network. 26
3.3 Overhead of SALSA actor creation. 31
3.4 Overhead of SALSA actor migration. 31
3.5 Speedup of local, remote, and elasticity manager 32
3.6 Elasticity manager overhead . 33

4.1 A mobile Application represented as a graph before partitioning. 50
4.2 A mobile Application represented as a graph after partitioning. 51
4.3 Speedup for NQueen problem . 51
4.4 Effect of Image Quality on Speedup for Face Detection algorithm 52
4.5 Offloading decision for optimizing application performance. 52
4.6 N-Queen problem with different amount of work. 53
4.7 Effect of amount of work on speedup . 53
4.8 Speedup different problem size . 54
4.9 Remote vs. local+remote execution . 54

5.1 Energy usage with different amount of work 62
5.2 Energy saving ratio with different amount of work 62
5.3 Speedup for different amount of work . 63
5.4 Energy usage for local and remote execution 63
5.5 Energy saving ratio for local and remote execution 64
5.6 Parallelism and speedup for local and remote execution 64

6.1 Trend of remaining battery charge and battery voltage changes over time . . 69
6.2 Trend of battery voltage and AndroidSalsa consumed Energy changes ver-

sus remaining battery charge . 70
6.3 Required steps to calibrate the energy estimation model 71
6.4 Energy profiling per application results . 72
6.5 Estimated and measured powers . 73
6.6 Estimated and measured energy . 73

7.1 Policy schema tree . 86
7.2 Part of policy schema definition as XML schema design file (xsd) 87
7.3 Actor entity attributes tree . 88

ix

7.4 Actor entity attributes definition as XML schema design file (xsd) 89
7.5 Modules involved in image processing application 90
7.6 Modules involved in image processing application 91
7.7 Internal structure and organization of databases within the private and

public cloud spaces . 92
7.8 The structure of the private cloud space consisting of 2 ActorSystems 93
7.9 Structure of the public cloud space. 94
7.10 Application for users without specific privacy concerns 95
7.11 Application for privacy-concerned users . 96
7.12 Application for extremely cautious users . 97
7.13 Local and remote execution of Image processing with different fixed qualities. 98
7.14 Code offloading with fixed quality of service for all locations and limited

offloading budget rate. 99
7.15 Code offloading with variable quality of service for different locations and

limited offloading budget rate. 100
7.16 Code offloading with unlimited offloading budget. 101
7.17 Code offloading with a fixed total offloading budget. 102
7.18 Code offloading with a limited offloading budget rate. 103
7.19 Code offloading with unlimited offloading budget in a Hybrid Cloud. 104
7.20 Code offloading with fixed total offloading budget in a Hybrid Cloud. 105
7.21 Code offloading with fixed offloading budget rate in a Hybrid Cloud. 106

x

LIST OF ALGORITHMS

Pseudo-code for rule evaluation algorithm 85

xi

CHAPTER 1

INTRODUCTION

Mobile devices are ubiquitous these days, but they are still constrained by their limited

resources. Compared to laptops and desktops, mobile devices typically have slower hard-

ware, more restricted network access, and limited access to energy. These limitations have

created an increasing gap between the demand for more complex applications and the avail-

ability of required hardware resources[1]. Cloud computing has the potential to provide an

efficient solution to overcome mobile device constraints and to address the ever-increasing

complexity of the modern applications. Not surprisingly, it is the new computing paradigm,

serving as the center of data storage and processing for many enterprises. Cloud computing

provides elastic on-demand access to virtually unlimited resources at an affordable price.

Having access to elastic resources allows weaker devices run more-demanding applications

by outsourcing storage or computation needs to cloud spaces. To achieve this, certain parts

of mobile application have to be selected, sent to remote cloud spaces, executed, and the

results brought back to the mobile device. This process is known as code offloading and has

been widely studied in the past within the context of distributed systems and grid computing

(e.g. [2, 3, 4]). Current practical solutions for providing the code offloading capability for

mobile cloud applications rely on two main approaches:

1. Hard-coding the offloading decisions as part of the developed program

2. Using full process or virtual machine (VM) migration to make an exact copy of the

running application within the cloud space

Hard-coding offloading decisions has the advantage that the offloading may be fine-grained,

well-tuned, and potentially self-adapting based on run-time parameters, but such hard-

coding requires programmers to rewrite their existing mobile application code in an off-

loadable mobile-cloud compatible format. Thus, hard-coding places a significant burden on

application developers and requires continuous maintenance, as mobile applications evolve

over time. In most cases, hard-coding makes the already complex programs even more

complex and requires significant structural changes for existing applications. On the other

1

hand, VM migration approach is based on the assumption that running the same code on a

faster machine improves the overall application performance. VM or process migration has

the advantage of not creating additional work for developers but is highly coarse-grained.

However, virtual machines are large components and moving them around is very expensive

even when performed within a local area network (LAN) [5]. These limitations highlight the

need for a transparent fine-grained solution that minimizes the required manual changes to

applications and prevents creation of additional work for programmers.

Mobile applications are used by a wide range of users with different expectations, on

mobile devices with different hardware capabilities, and under diverse environmental condi-

tions. In addition to adapting an initial target offloading goal during execution, additional

policy-based constraints may be needed to enforce privacy and restrict migration of compo-

nents, limit bandwidth or energy use, or improve quality of service. As a result, application

component distribution between mobile device and cloud resources must be flexible to satisfy

different required restrictions and expectations at different times, and adaptive to address

dynamic run-time environmental changes. This requires open systems that interact with

the environment while addressing application constraints, user expectations, and hardware

limitations. Current mobile application designs have been following one of the following two

popular architectures [6, 7, 8, 9, 10, 11]

1. Offline model, also known as fat-client, that results in native applications where all

parts of the mobile application are installed and executed locally on the phone. Even

if remote data is required, local application periodically gets those data from remote

servers and stores it locally on the phone. A good example is a stand-alone mobile

game that is installed locally on the phone and works without requiring any further

external data or resources.

2. Client-Server model, also known as thin-client, that results in current web applications

where the mobile device provides only the minimum interface to connect to a remote

service. A good example is using mobile browser to connect to Facebook remote

services.

The need for a flexible fine-grained adaptive solution requires a new mobile application

model that lies between these two architectures, i.e. that enables components running on

and migrating between mobile device and cloud spaces. Despite some theoretical support

for opportunistic parallelism, existing code offloading solutions pause local mobile execution

while waiting for offloaded code result leading to semi-sequential application execution [12,

13, 14]. With modern mobile devices benefit from fast powerful multi-core processors, new

offloading solutions should also support fully-parallel application execution.

2

Security and privacy issues also raise when outsourcing part of an application to external

machines. Cloud has traditionally been used as a closed trusted environment but public

cloud resources are owned and operated by third party companies. Public clouds raise addi-

tional privacy concerns when used for storing confidential or sensitive parts of applications.

A private cloud space owned by an individual enterprise allows keeping the enterprise’s confi-

dential or sensitive algorithms and user data within private secure in-house servers. Different

users and organizations have different regulations and expectations in terms of the privacy of

their data. As a result, cloud computing architectures have moved from a model that solely

relies on public cloud spaces to a hybrid cloud model combining both public and private cloud

spaces. Individual application users may even have further concerns about the privacy of

their data. This requires a multi-level policy-driven approach in terms of defining additional

required restrictions, governing allowable actions and migration of application components

between mobile device and different cloud spaces.

The goal of this thesis is to bridge the gap between mobile application development,

cloud computing and dynamic adaptive code offloading while satisfying both application

and end-user requirements. Our main design objective is to help mobile cloud application

programmers focus on developing their application logic without worrying about compo-

nent distribution; Instead, component distribution would be performed transparently and

dynamically at run-time. We propose a framework that masks all the complexity of mobile

application code offloading to multiple cloud spaces. Our goal is to separate the applica-

tion logic - to be developed in future by programmers - from the application component

configuration and distribution - to be performed transparently and dynamically at run-time

by a cloud management framework. Modeling mobile-cloud application as a composition

of self-contained autonomous actor components, the thesis describes such a framework as

fine-grained, supporting application configuration and distribution at the granularity of indi-

vidual components; transparent, masking the underlying complexity of mobile-to-cloud code

offloading; flexible, allowing end-user or application developers easily adjust target offloading

goal or redefine constraints governing offloading budget, execution quality, or privacy and

migration of components without modifying the existing application code; and adaptive,

addressing the dynamicity in run-time conditions and end-user contexts. The framework

further supports component distribution in a hybrid cloud environment consisting of multi-

ple public and private cloud spaces. Finally, the framework provides a new code offloading

model that supports fully parallel program execution, where application components located

at mobile device and different cloud spaces are executed independently but concurrently.

We call our proposed framework Illinois Mobile Cloud Management framework, or IMCM.

IMCM provides a light-weight monitoring system to capture dynamic environmental param-

3

eters and end-user context, profile application resource usage and communications, as well

as monitoring availability and performance of cloud resources. Direct automatic profiling

of energy consumption of a specific target application and its components is of primary

importance. Note that mobile devices do not provide any tool for direct measurement of

energy consumed by an application when different applications with arbitrary number of

components may be running at any time. Thus, supporting automatic profiling of energy

consumption requires design and development of a fine-grained automatic energy consump-

tion model. IMCM also provides two independent performance-based and energy-based

models to enable transparent automatic configuration and distribution of application code

and data components that address specific end-user and application requirements. These

models receive dynamic information from a monitoring module which measures run-time pa-

rameters, energy and resource usage of different components, and application characteristics

in order to optimize application performance or mobile energy consumption. In contrast to

existing solutions that only support offloading to a single remove server and serial monotonic

application execution [12, 13, 14], IMCM supports a hybrid cloud environment, consisting of

multiple public and private cloud spaces, in addition to fully parallel application execution.

This results in significantly different component distribution plan based on a target offload-

ing goal and requires the design and development of independent offloading models for each

goal. IMCM provides required flexibility in terms of adjusting desired target optimization

goal at run-time. Such goals may include multi-level policy-based constraints restricting

privacy, offloading budget, and quality of service per resource.

IMCM performance is evaluated using a suite of benchmark applications including I/O-

intensive, computationally-intensive, communication-intensive and combined multi-purpose

applications. Evaluation benchmark applications are selected based on their main charac-

teristics in a way that different extreme application behaviors are covered. In addition, a

multi-behavior application is also considered that combines different possible behaviors and

represents many existing ordinary applications.

1.1 Thesis Statement

This research focuses on the problem of code offloading from a mobile device to a hybrid

cloud space in order to overcome the limitations of mobile devices. The ultimate goal is to

improve end-user experience by transparently adjusting the mobile application based on user

expectations and environmental parameters without creating additional work for application

developers. Among the main axis of our design goals are flexibility, fine-granularity, separa-

4

tion of concerns, and more importantly, adaptivity. Our proposed solution can be divided

into three parts: First, we design an adaptive fine-grained framework that allows automatic

distribution of application code and data components, addressing specific end-user and ap-

plication needs, while providing flexibility in terms of desired target optimization goal and

required additional policy-based restrictions on privacy, offloading budget, and quality of

service of resources. Second, we design and implement two independent performance-based

and energy-based models to find optimum component distribution plan based on dynamic

information from run-time parameters, energy and resource usage of different components,

and application characteristics. Finally, we design and implement a light-weight monitoring

system to capture dynamic environmental changes in end-user context, profile application

resource usage, energy consumption and communications, as well as monitoring availability

and performance of cloud resources. We summarize the thesis statement as follows:

Mobile cloud applications require restricted fine-grained adaptive and dynamic configura-

tion and distribution of code and data components. Such adaptation can be achieved by

online monitoring of user context, resources, and communications and solving constraints to

update component configuration and distribution.

1.2 Contributions

To summarize, this research has the following main contributions:

• We have designed a flexible fine-grained adaptive framework called IMCM, that uses

on-line monitoring, offloading decision-making models, and policy-driven constraints,

to enable dynamic application configuration and adaptive component distribution. In

our design, we follow principle of separation of concerns to separate development of

application logic, to be developed by future programmers, from application component

distribution plan and use the Actor model of computation to present code and data

components and their interactions. Actors are concurrent objects interacting via asyn-

chronous message passing. Our proposed framework provides a systematic method

to support dynamic application component configuration and distribution for mobile-

cloud applications based on run-time parameters and individual application require-

ments. Specifically, we design an approach using specification of application-defined

requirements and user-defined expectations. Application target goals are significantly

different and range from maximizing application performance to minimizing mobile en-

ergy consumption. We model each mobile application according to its dynamic target

5

goal and formulate the problem into an optimization problem. Every possible config-

uration of components that satisfy the requirements will be evaluated and the best

distribution plan that optimizes the dynamic application target goal is selected and

enforced. (Chapter 3).

• We have developed a component offloading decision-making model to maximize ap-

plication performance for fully-parallel mobile hybrid cloud applications. The model

is fine-grained and minimizes total execution time consisting of the time required to

execute the application code in addition to the time required to communicate and

exchange data. Fully parallel execution includes concurrent application execution on

multiple remote cloud locations in addition to simultaneous local mobile and remote

cloud execution. This requires combining the execution time of different components at

various locations with their communication time in order to find the best distribution

plan minimizing both. (Chapter 4).

• We have developed a component offloading decision-making model to minimize local

mobile energy consumption for fully-parallel mobile hybrid cloud applications. While

offloading to a single remote server and serial monotonic application execution results

in similar offloading plan for both target goals of optimizing for application perfor-

mance and mobile energy consumption, supporting hybrid cloud environment with

multiple public and private cloud spaces in addition to fully parallel application execu-

tion results in significantly different component distribution plan for different offloading

goals. This requires design and development of a very different offloading model. While

performance-based decision-making model emphasizes more on details of communica-

tion between different components, energy-based decision-making model relies more on

the effect of offloading on communications between mobile device and different cloud

spaces. (Chapter 5).

• We have designed and implemented a light-weight, on-line monitoring system to pro-

file run-time parameters, end-user context, application resource usage and communi-

cations, as well as availability and performance of mobile and cloud resources. We will

then use these profiled data to predict how application components will work in future

and how migration of different application components to different cloud resources will

affect mobile energy consumption or application performance. One of the main chal-

lenges of monitoring module is to profile energy consumption of a specific application

and for all its components, as most mobile devices do not provide any tool for direct

measurement of energy consumption and different applications with arbitrary number

6

of components might be running at any time. In order to do this, we developed an

automatic fine-grained energy consumption model to estimate consumed energy per

applications and per application components. (Chapter 6).

• We have developed the required grammar and enforcement mechanism to allow en-

terprises, developers or end-users to easily adjust target offloading goal at run-time

in addition to define required policy-based restrictions in terms of privacy, component

migration, communications, resource accesses, offloading budget, and quality of ser-

vice of resources. Privacy of data is a challenging issue especially when parts of the

application is outsourced. Many companies are using a hybrid cloud model in order

to keep the confidential or sensitive algorithms or user data within private secure in-

house servers. Our provided grammar allows enterprises, application developers, and

end users to define their required privacy authorization rules and adjust them during

execution. A light-weight action control and policy management system is designed

and implemented to interpret the defined policy rules and enforce them at run-time

at different levels. The grammar it easily extendable to include many other required

restriction. (Chapter 7).

1.3 Organization

The remaining of this thesis is organized as below:

In Chapter 2 we present a review of related work. Specifically, we overview previous work

in the areas of code offloading, mobile cloud computing, mobile energy model generation and

energy consumption profiling, in addition to privacy and access control in cloud computing.

In Chapter 3, we introduce our high level architecture and different used components. We

leverage the actor model of computation to represent application code or data components

and their interactions.

In Chapter 4, we review design and development of a performance-aware fine-grained

decision-making model for application component distribution between mobile device and

a hybrid cloud consisting of multiple private and public cloud spaces for a fully parallel

application execution. Similarly, Chapter 5, discusses details of an energy-aware mobile

hybrid cloud offloading decision-making model.

Chapter 6 discusses details of the light-weight on-line monitoring system. The goal of

the monitoring system is to provide the rest of the system with necessary information for

an efficient configuration in response to run-time, application and hardware changes. The

7

Monitor has three main goals. First, it should profile run-time parameters and end-user

context. Second, it should profile application resource usage in addition to individual ap-

plication’s components resource usage and communications. Third, it should profile energy

consumption per application component for which it requires an automatic energy estimation

model.

In Chapter 7, we discuss the flexibility of the system in defining policy-driven constraints

restricting privacy, offloading budget, and quality of service per resource. We, then, conclude

the thesis in Chapter 8 and discuss future directions.

8

CHAPTER 2

RELATED WORK

Mobile applications are typically constrained by mobile hardware limitations. Code offload-

ing allows outsourcing part of an application to more resourceful systems. Over time, code

offloading techniques have evolved and have become an efficient solution to overcome mobile

device limitations. However, there are several issues and concerns when offloading part of an

application to remote servers. These issues range from heterogeneity in hardware platforms

and varying environmental conditions to different user expectations and privacy issues re-

sulting from running code on third party machines. Below, we review existing systems and

solutions that aim to tackle these problems.

2.1 Code Offloading and Mobile-Cloud Computing

Code offloading refers to sending all or part of a computation to a more resourceful machine.

This is not a new idea and the popular client-server model has been doing this for a long time

where a thin client always sends computation to a server. It has also been used within grid

computing where processes were migrated within the same computing environment for the

purpose of load balancing between different machines [1, 15]. Prior to 2000, due to limita-

tions of available technologies, researches were mostly focused on discussing the feasibility of

offloading [16, 17, 1]. Later, between 2001 and 2007, with the appearance of PDA and other

handheld devices, availability of reliable virtual machines and faster wireless network access,

the focus of most study moved toward implementing working prototypes and developing

algorithms for making offloading decisions [18, 19, 20, 1]. Modern offloading era started in

2007 where improved virtualization techniques became available, network bandwidths signif-

icantly improved and cheap cloud computing infrastructure appeared [21, 22, 23, 1]. During

this time, two main types of system architectures became popular [24]: client-server or service

oriented architecture and virtualization approach. Remote Procedure Call (RPC) and Re-

mote Method Invocation (RMI) are examples of popular protocols that enabled inter-process

communication between different machines in the service-oriented architecture. However, it

9

was virtualization approach that created modern offloading movement by allowing cloud

vendors to run arbitrary applications from different customers on virtual machines instead

of service providers managing programs running on servers [25].

In recent years, with the popularity of mobile devices and the availability of relatively

cheap public cloud resources, code offloading has been extended to mobile devices and

Mobile-Cloud Computing (MCC) was introduced to overcome mobile limitations by offload-

ing part of applications to elastic cloud resources in a dynamic on-demand fashion [26]. For

many years, most of the systems benefiting from code offloading used one of the following

two approaches: Rely on the programmers to manually partition the program and specify

how to offload parts of an application to remote servers [27] or to us full virtual machine mi-

gration [28, 29] in which entire process or entire OS is migrated to cloud space assuming that

executing the same code on a faster machine improves the performance. Overall picture of

modern elastic mobile-cloud applications research is presented by Zhang et al [30]. Zhang et

al [30] suggest that an elastic application will consists of one or more weblets, each of which

can be launched on a mobile device or a cloud space. Weblets can be migrated between

mobile device and cloud space according to dynamic changes of the computing environment

or user preferences on the device. However, their work discusses the high level idea and

the requirement for such a system rather than provide a specific design or implementation.

Moreover, the work primarily focuses on security concerns within such a system.

MAUI (from Microsoft research) [12] is one of the first working implementation of mobile

code offloading that enables fine-grained energy-aware offloading of mobile code to cloud re-

sources. MAUI uses a combination of virtual machine migration (VMM) and automatic code

partitioning to decide at run-time what single method should be remotely executed in order

to minimize energy consumption on mobile device. However, every time a single method is

being offloaded, the program halts, the state is transferred to a remote machine, executed

there and the result and new state is brought back to the mobile device, merged with the local

program state before the execution of the program resumes. This results in completely se-

quential application execution, requires manual annotation of methods by programmer, and

offline static analysis of the source code before execution. In order to overcome some of the

limitations of MAUI such as the requirement for manual annotation of offloadable methods,

CloneCloud [13] was introduced in 2011 by Intel Berkeley Labs: CloneCloud avoids manual

annotation and enables unmodified mobile applications to offload part of their execution

from mobile device into device clones running in a cloud space. CloneCloud automatically

marks offloadable methods by static analysis of the application byte-code but dynamically

decides at run-time about the optimal offloading plan using profiled data. Multiple methods

may be offloaded at the same time. A significant limitation of CloneCloud is that it requires

10

an exact clone of the mobile device in the cloud and uses virtual machine migration (VMM)

to transfer the memory image, CPU state, storage contents and network connections between

the mobile device and the cloud clone. While theoretically CloneCloud provides opportunis-

tic concurrency, in practice it results in an almost serial execution as the phone execution

halt whenever a method tries to access migrated state or make a call to migrated functions.

Moreover, the application partitioner is static and needs to pre-process the application code

in an offline mode in order to determine offloadable parts of the code. CloneCloud also

only considers limited input/environmental conditions in the offline-preprocessing and needs

to be bootstrapped for every new application built. ThinkAir [14] supports method-level

computation offloading and is designed to address MAUI’s lack of scalability by providing

on-demand virtual machine creation and to remove CloneCloud restrictions on applications,

inputs, and environmental conditions by adopting an online method-level offloading that

allows on-demand resource allocation. The main focus of ThinkCloud is on dynamic cre-

ation, resume, and destroy of virtual machines as needed. However, a single mobile device

only knows and interact with one of these VMs; Other VMs are masked and only available

to the primary VM. Also, an application needs to be modified and programmers have to

manually annotate their offloadable methods. Moreover, VMs on the cloud will be used by

different mobile application users and there is no isolation or security protection between

offloadded code from different users. Similar to CloneCloud, ThinkAir also relies on exist-

ing opportunistic parallelism inside the mobile application and blocks mobile execution if

there is any call made to the offloaded methods. In fact, ThinkAir is more focused on VM

load-balancing rather than mobile-cloud application offloading. Load-balancing of VMs have

been studied by many researchers [31, 32, 33, 34, 35, 36] with the primary focus on improv-

ing physical hardware resource utilization by moving or assigning VMs to physical machines

with lower resource utilization and balancing load between different physical machines. Load

balancing VMs results in better overall utilization of physical machines and is essential for

cloud management but it does not improve the performance of a specific mobile application.

Since VM migration is typically coarse-grained, Imai et al [5] combines VM migration with

application-level migration to reach fine-grained load balancing. Their work is similar to ours

as it is also based on component-based application development using actor programming

paradigm and focuses on moving individual actors between different spaces. However, Imai

et al [5] are also focused on load-balancing of VMs over physical machines within a cloud

space and do not consider the side-effect of that on individual applications. Moreover, they

focus on cloud environments and do not consider specific requirements of mobile applica-

tions, dynamic context of mobile devices, and varying requirements of application users over

time.

11

Orleans is another framework for building elastic cloud applications developed by Microsoft

research [37]. Orleans exploits notions such as immutability to enable state replication. Or-

leans is based on distributed actor-like components called grains. Grains are containers of

the application state and can be persisted to durable storage. However, unlike actor model,

multiple instances of a grain can concurrently run and modify the grain’s state. Our frame-

work differs from Orleans by maintaining a closer adherence to the actor model in that there

is only one thread in the system at any given time that can change an object-actor’s state.

This is in contrast to Orleans which permits concurrent modification of multiple activation

of a grain. This allows Orleans to have greater responsiveness and system throughput at

the expense of a weaker consistency model [38]. In addition, Orleans supports only weak

mobility: an actor may be moved from one machine to another but not while processing a

request. It also does not provide fair scheduling and does not allow loading new code into

an actor at run-time: actors are started with an initial code and will continue executing the

same code. In fact, its current implementation only supports best-effort fair scheduling for

multiple grains and multiple instances of each grain.

Table 2.1: A comparison of Mobile-Cloud systems. Goals of minimizing mobile energy consumption and
maximizing application performance lead to same offloading plans when local mobile execution is paused
while offloading code.

System Year Goal Offload
Decision

Partition
Level

Parallel Privacy Manual
work

No.
Cloud
spaces

MAUI 2010 Energy Dynamic Method No No Yes 1
CloneCloud 2011 Energy= Per-

formance
Static Method pseudo No No 1

ThinkAir 2012 Energy= Per-
formance

Dynamic Method pseudo No Yes 1

Cloud OS
(COS)

2012 Load Balanc-
ing

Dynamic Actor Yes No No Many

Orleans 2014 State Recog-
nition

Static Grains Yes No No Many

IMCM 2014 Energy, Per-
formance,
Data usage,
combination

Dynamic Actor Yes Yes No Many

Table 2.1 compares our approach with that of others. In almost all of the mentioned

mobile-cloud offloading systems, solving the offloading problem for maximizing energy sav-

ing on the mobile device or maximizing the application performance, or minimizing total

application execution time results in almost same offloading plan. The reason is that mobile

12

device is assumed to be in idle state while offloaded code is being executed. As a result,

the amount of energy consumed on the phone is proportional to the execution time and the

energy-based and performance-based optimization goals results in the same offloading plan.

This is an effect of running applications sequentially which is a basic assumption in design

of MAUI [12]. However, even in systems that are trying to support opportunistic parallelism

[13, 14], the execution of the application ends up being very close to sequential execution.

The reason is that such systems pause on-mobile execution as soon as the on-mobile code

makes a call to any of the offloaded methods or tries to access the state needed by the of-

floaded code. In fact, this is one of the main distinction between our research and previous

work, as our application model is based on naturally concurrent actor model and supports

full parallelism. The actor model provides completely autonomous code components that

can be executed independently and concurrently. This significantly simplifies the system as

the compile time method-level migration makes it too complex for most practical applica-

tions [39, 40]. Another distinction between our work and previous research is the fact that

most of the previous systems are limited to offloading to a single remote resource. Although

a few systems [14, 5] support dynamic creation and merging of VMs as needed, these sys-

tems are focused on improving underlying physical machine performance and not application

component outsourcing to different cloud spaces because of privacy, cost, performance, or

availability of resources. Finally, most of the previous studies make no distinction between a

cloud space and a remote server. Our work is based on a general hybrid cloud model where

multiple cloud resources with different parameters, costs, performance, and access levels are

available.

2.2 Mobile Device Energy Measurement and Power Model

Generation

Since most mobile devices do not provide any tool for direct measurement of consumed en-

ergy, energy consumption models using available parameters are required to estimate energy

use in mobile devices. Older generation of power models work as black-boxes that require no

knowledge of hardware components but rely on processor power models. These models are

based on the assumption of linear relationships between processor power consumption and

several hardware performance counters, e.g. instructions executed and TLB misses. Pow-

erScope [41] works based on this method and assigns energy consumption to processes and

procedures within a process without imposing large overhead. However, PowerScope only

models power consumption by the CPU and its result shows only part of the real energy con-

13

sumed. Moreover, it requires programmers to use a set of specialized APIs to estimate power

consumption. More recent models usually assume energy consumption of different hardware

components independent and estimate total energy consumption based on measured usage

of different components. As a result, these models are sensitive to the selected coefficients

for estimating the contribution of each hardware component toward total energy consump-

tion. An important step of generating an energy estimation model is to find appropriate

coefficients for different hardware components. Methods for generating energy models for

mobile devices can be categorized into manual and automated models. Most of prior work

relies on manual methods involving external power meter equipment to calculate required

coefficients for different hardware components energy consumption [42, 43]. Shye et al [42]

proposed a utilization-based power model. Pathak et al [43] proposed a finite state machine

(FSM) based power model using system call to overcome the limitation of utilization based

power model. However, it is time consuming and hard to construct individual power models

for each new mobile device using these manual approaches because of the need for external

power metering equipment and significant amount of manual work.

Due to the difficulty of manually generating energy consumption models, automated meth-

ods for generating the models have become popular in recent years [44, 45, 46, 47, 48]. Pow-

erProf [46] provides an unsupervised power profiling scheme for Nokia mobile devices that

generates component power models based on a generic algorithm in order to automatically

identify the power states of underlying hardware components. PowerProf enables online

energy estimation, but the scheme is focused on power modeling rather than application en-

ergy metering. It measures power consumption for API calls issued in programming language

and is limited in terms of application energy metering because the technique still strongly

depends on the programmer’s intention. Zhang et al [44] proposed using existing internal

voltage sensor and a training software to generate the energy consumption model. They

defined states for each hardware component and then executed a set of training programs

for each defined state. The power consumed during the execution period is then sampled

to generate the power model. Kim et al [48] overcame the limitation of PowerTutor [44]

which considers only one CPU core and linear power consumption for the display. They pro-

posed a more improved power estimation technique than PowerTutor, considering multi-core

mobile devices and the nonlinear power consumption characteristics typical of displays and

3G modules. Our proposed model is similar to these models as they all depend on battery

discharge curve and training programs to generate the power model. Processors and Screens

consume most part of energy on a mobile device. However, there is significant difference

between energy consumption of LCD screens, as considered in these models, and the OLED

screen, as used in out experiments. LCD screens are lit up using a background light and

14

their energy consumption can be measured using the brightness of the background light. On

the other hand, OLED and AMOLED screens do not have background light. Instead, each

pixel is individually lit up. We used an average of brightness of all pixels on the AMOLED

screen for estimating energy consumption resulting from screen.

Dong et al [45] suggested an accurate self-modeling mechanism for generating power esti-

mation models without requiring any external equipment. Their method is able to achieve

high accuracy rate (100 Hz) but it only targets the whole mobile system and not individ-

ual applications. Jung et al [47] proposed an autonomous power modeling tool for mobile

devices, which overcomes the limitations of internal sensors. They generate their model

according to the update rate of internal sensors but they rely on mobile current sensor for

current values. Most mobile devices do not have an on-board current sensor limiting the ap-

plication of their proposed solution. Lee et al [49] suggested a solution for generating power

model without requiring detailed knowledge of the underlying hardware or a specific training

program. Their method uses a regular user’s usage pattern, which is already recorded on

the phone, to identify data segments that contains the hardware status and power data for a

single operating state. They then use these extracted data and regression analysis to build

energy consumption estimate for each hardware component. Moinzadeh [50] also followed a

similar approach and used application logs and regression to estimate energy consumption

of individual components of a wireless sensor node. Compared to PowerTutor [44], these

regression-based models [49, 50] use data from the user log file instead of a benchmark suite.

However, their approach takes more time to generate a power model, as enough logged usage

data must first be collected to perform regression analysis. We believe use of the calibration

code is not a problem for most applications. Besides, generation of the power model needs

to be performed only once for each mobile device. As a result, only one user needs to run the

calibration code for each new mobile device and the generated energy model can be shared

with other users.

Another view on automatic energy estimation models is based on their speed and frequency

for reporting updates. Based on this view, energy estimation models can be classified into

two categories: i) sampling-based methods ii) event-based methods. Sampling-based meth-

ods periodically collect the information of hardware activities and power modes from the

Linux kernel and predict the system power consumption based on them. [42], [44], and [45]

uses sampling-based methods. A common issue with all sampling-based techniques is the

excessive performance and energy overhead due to frequent accessing the Linux kernel and

reading large amount of data from the kernel even when there is not much changes in system

parameters.

In contrast, event-driven methods collect system activities only when an event, which

15

affects the system power consumption, occurs. This approach significantly reduces the over-

head of profiling and makes it more usable for high-frequency profiling of energy consump-

tion. However, this method requires modifying the source code of Android or the Linux

kernel that limits its application for most practical applications. Eprof [51] predicts the

power consumption using this approach by modifying the kernel code and accounting sys-

tem call events. Based on the FSM power model [43], Eprof is able to analyze the asyn-

chronous energy state of an application, modeling the tail-state energy characteristics of

hardware components with routine-level granularity. Energy metering is achieved using a

post-processing mechanism using an explicit accounting policy. Eprof requires modification

in the Android framework, to trace the API calls, in addition to modification to application

source code. AppScope [52] uses the debugging tools for the Linux kernel to collect the

required information in a non-disruptive way. Although they did not modify kernel code,

they still insert breakpoints in arbitrary kernel functions in order to be notified of desired

events. FEPMA [53] follows the same approach and provides highly accurate and nearly

instantaneous estimation of power consumption by monitoring system events in the device

driver layer of Linux kernel. However, they still rely on debugging tools to insert breakpoints

at arbitrary functions of operating system kernel in order to be notified of the events. Some

of the common drawbacks of event-driven approaches are the inaccurate event time-stamps,

un-observable devices, and low time granularity of the power metering [53]. Since our appli-

cation does not require very high frequency sampling of run-time parameters and in order

to prevent any modification to kernel code, we decided to use a sampling-based method.

This allows us to adjust the sampling rate as needed. Besides, the overhead of running our

sampling-based power generation model is relatively low, as we only need power estimation

every few seconds and based on the intervals of running the distribution optimizer.

2.3 Privacy and Access Control in Cloud Computing Environment

privacy and access control is a big concern when outsourcing parts of an application data or

computation to machines owned and operated by third part companies [54, 55, 56]. Since

our framework supports offloading data and computation from mobile device to a hybrid

cloud model consisting of one or more cloud resources, we need a suitable cloud environment

access control system to define and enforce the required restrictions and limitations in terms

of offloading different parts of the mobile application to different cloud resources, interactions

between different cloud resources, and interactions between different mobile-cloud applica-

tion components when placed at different locations. We review existing cloud computing

16

access control systems in this section.

The widespread application of cloud platforms for managing large datasets has brought

an increasing awareness of the security requirements of these applications [57, 54, 56]. Tra-

ditionally, cloud solutions are developed in a closed trusted environment without providing

high level of security protection [54, 58]. Such a trusted environment can only be reached

when the cloud is isolated from the outside word and used by a small group of authorized

people within the company. However, with the cloud acting as the heart of many orga-

nizations and applications [30], the number of users accessing cloud services has increased

dramatically. In addition to the internal users accessing the cloud from within the com-

pany, new external clients also interact with the cloud through the provided cloud-based

applications. It is imperative to adopt a flexible and fine-grained authorization system to

regulate accesses to different cloud resources. The required levels of accesses are different

for internal users from different departments developing programs on top of the cloud and

for external clients reaching the cloud through mobile-cloud applications running on their

un-trusted personal devices. This highlights the need for a reliable access control system for

cloud-based applications.

Sandhu et al. [57] defined authorization as limiting the actions that a legitimate user

can perform within a system. It does not provide a comprehensive solution for all security

concerns of a system and has to be coupled with authentication and audition in order to

work. Authentication establishes the identity of users, authorization controls their accesses,

and audition provides a posterior analysis of all the activities of the system. Samarati and di

Vimercati [59] further decompose authorization into a security policy, defining what needs

to be enforced, a security mechanism, enforcing the defined access control decisions, and

a security model, providing a formal representation of the defined access control policy.

Traditional authorization models of Discretionary Access Control (DAC) and Mandatory

Access Control (MAC) (as explained in the Orange Book of the U.S. Department of Defense)

are either too weak for effective control of information assets or are too rigid and often

subverted in practice [60, 57]. Moreover, they are both static authorization systems while

cloud applications require dynamic policies allowing addition and removing of subjects and

resources [59]. With the hype of web applications, the focus of many researches shifted

toward providing authorization-based access control on the web. Damiani et al. [61] focused

on developing an access control model for restricting access to web documents using XML

format. Their work provides a great understanding of the required concepts but was mostly

limited to simple web documents retrieved by a remote user from a server. Later, Role-

Based Access Control (RBAC) was introduced to address these problems by changing the

underlying subject-object model. RBAC regulates users’ access to the information on the

17

basis of the user’s defined roles in the system. RBAC offer an attractive alternative to the

strict rigidity of classical MAC, while providing some of the flexibility inherent in DAC [57].

RBAC is simple, reflects organizational structure, and is easy to administer and review.

However, it is still difficult and costly to build a good RBAC instance, and a pure RBAC

system lacks flexibility to efficiently adapt to changes. Particularly, it is impractical to

manually make (and maintain) user to role assignment and role to permission assignment

for a dynamic application or a large-scale application with a large number of users or objects.

DAC, MAC, and RBAC models are all identity-based access control models (IBAC) where

subjects and objects are identified by unique names and access control is based on the

identity of the subject, either directly or through roles assigned to subjects. As a result,

IBAC’s are most effective for closed and relatively unchangeable distributed systems that

deal only with a set of known users who access a set of known services [62]. However, modern

cloud environment is far from these rigid assumptions; it is very dynamic with subjects and

resources continually added and removed.

With the development of Internet-based distributed systems in late 1990s, a new access

model – the Attribute-Based Access Control (ABAC)– appeared. ABAC defines access

rights based on attributes of the requester and resource, and users need not to be known by

the resource before sending a request [61]. These attributes can be static or dynamic and

this makes ABAC popular for Web Services [62]. ABAC is emerging as a dominant form of

access control due to its policy-neutral nature (that is the ability to express different kinds

of access control policies including DAC, MAC and RBAC) and dynamic decision-making

capabilities [63]. Not surprisingly, The US National Institute of Standards and Technology

(NIST) recognizes ABAC as a suitable choice for large and federated enterprises over other

existing access control mechanism due to its unprecedented amount of flexibility and security

[64]. It is straightforward to use ABAC to represent policy based on the attributes of users,

objects, and the access environment, and it is easy to revise policy to adapt to a changing

application. However, ABAC is typically more complex than classical access controls models

(DAC, MAC, RBAC) with respect to attribute definition, attribute relation definition and

policy review [65].

With ABAC systems being widely used in service oriented architecture (SOA) based appli-

cations, specifications related to ABAC are published as access control-related web services

standards that supports ABAC. The standards are expressed in the eXtensible Access Con-

trol Markup Language (XACML) and the Security Assertion Markup Language (SAML)

[62]. At its core, XACML defines the syntax for a policy language and the semantics for

processing policies [66] while SAML defines a framework for exchanging security information

such as authentication and authorization decisions in XML format between remote systems.

18

ABAC’s XACML is flexible and scalable and, thus, suitable for cloud computing [62]. Its

open standard status, definition in XML, and availability of open source projects has already

drawn support from diverse applications. XACML’s ability to tie into other authorization

systems makes it a natural inter-operability point, even for legacy systems. Its expressive se-

mantics and extensible nature also make it useful as an intermediary language [66]. However,

there are practical limitation with using ABAC and XACML in distributed environments

such as cloud. It has already been shown that the safety problem of an ABAC system with

infinite value domain of attributes is undecidable [63]. Lorch et al. [66] summarizes other

problems of XACML as significantly greater size of policies and privilege statements due to

the XML encoding overhead and verbosity of the language. XACML does not standardize a

complete authorization solution but instead provides a foundation upon which cooperative

solutions can manage. Lorch et al. [66] studied different attempts to implement ABAC

using XACML within distributed systems and concluded that XACML’s flexibility and ex-

pressiveness comes at the cost of complexity and verbosity. Moreover, ABAC’s XACML

lacks from natural support of multiple independent policies that is a requirement in hetero-

geneous environments such as cloud. Despite XACML’s support of arbitrary sub-policies,

it is intrinsically designed to supports only single policy. In order to be able to use ABAC

for grid computing, Lang et al. [62] extended the access control model and authorization

architecture of XACML to encapsulate and support multiple heterogeneous policies without

requiring any changes to the policy description and evaluation mechanism of different grid

system domains. However, their solution requires making a call to each domain’s policy

manager for every action in the system. Remote call to individual policy managers for every

action is extremely expensive and reduces the performance of the whole system. Cha et al.

[67] investigate development of an ABAC framework that supports multiple policies with

primary focuses on the cloud environment. Their focus is on providing ways to identify users

by their characteristics and attributes rather than predefined identities. Recent efforts in

terms of developing a practical distributed authorization system primarily focused on com-

bining different access control models to overcome the limitations of each. Ni and Bertino

[68] proposed a new access control language of xfACL to combine the benefits of ABAC’s

XACML with RBAC. However, their focus is on the language specification rather than im-

plementation and practicality. Huang et al. [65] also propose a framework for combining best

features of RBAC and ABAC to provide effective access control for distributed and changing

applications. Their model looks as an RBAC from outside while it is internally defined using

ABAC. However, they still followed the traditional view of the cloud as data-focused service

provider with users seeking data-access services from outside domains.

In summary, although XACML has the potential to be extended to combine results of

19

multiple policies [69], those policies must be consistent, written with respect to the same

access control model, and follow many prior-arrangements. In practice, this large set of

prior-agreements prevents XACML from natively supporting multiple independent policies

and extensive modifications and extensions are needed to make XACML support multiple

policies. This might be an option in applications that services are provided at different

domains where a uniform run-time environment to mask the heterogeneity and federation of

the underlying system can be reached, e.g. grid computing. However, in our mobile-hybrid-

cloud application development framework, hybrid cloud model is a set of public and private

cloud resources defined dynamically at run-time. Moreover, the end-user has the option of

modifying the pre-defined policy in order to address a certain privacy concern in terms of how

different application data are outsourced to different cloud spaces. Thus, it is not possible to

assume any prior arrangements between different cloud spaces and a new access restriction

system that does not rely on prior arrangements is needed. A few studies have focused on

protecting the privacy of the outsourced data for the mobile-cloud applications [54, 70, 71, 1]

but their suggested solutions are very restrictive and limited to specific applications. Liu

et al. [72] study the privacy protection issue in computation offloading and suggest the use

of steganography to hide a mobile picture in another reference picture before sending it to

cloud space for processing. However, their suggested solution only works for images and

a server can do very little with the combined sent image. Moreover, the server can still

extract the hidden image from the combined image, although this is not straightforward.

Gentry [73, 74] suggest the use of homomorphic encryption that keeps mobile data private

but allows cloud to partially process the data without having the decryption key. However,

such encryption can only be used in very limited applications dealing with only data and

suffers from all the previous mentioned problems of using encryption.

Our framework is built using an actor programming framework; the framework allows the

creation of a pseudo-homogeneous development environment by masking the existing under-

lying heterogeneities of different cloud environments. Our proposed framework then adds

the ability to dynamically restrict access to different cloud spaces, control communication

between different cloud spaces and manage new application component creation and the

interactions between them [39, 40]. Moreover, it simplifies the development of the privacy

and access control policies by removing unnecessary complexity from the XACML grammar

and allows support of multiple policies based on the requirements of the application organi-

zation, developer, and end-user. In order to respond to dynamic environmental changes, our

framework supports context-aware policy-based reconfiguration of actors that is inspired by

context-aware web applications presented by Chang and Agha [75, 76] and quality-of-service

enabled middleware developed by Venkatasubramanian et al [77].

20

CHAPTER 3

ARCHITECTURE OVERVIEW

In this chapter we present a framework that embodies components we developed to facili-

tate parallel mobile hybrid cloud application development. Supporting mobile applications

with elastic on-demand cloud resources opens door to overcome mobile hardware limita-

tions. However, in order to properly offload application components into cloud space, to

ensure satisfaction of varying application requirements and user expectations, and to ad-

dress the dynamism in environmental conditions the following challenges should be clarified

and addressed:

1. How to model and represent hybrid cloud space, mobile-cloud application, and com-

ponent interactions to allow efficient and dynamic component configuration and dis-

tribution.

2. How to derive current and near-future dynamic environmental parameters, resource

usage, network availability, and energy consumption with low overhead.

3. How to represent application target goal, define required policies to restrict accesses

and communications, limit offloading budget, specify quality of services, and adjust

target goal based on user expectation.

4. How to efficiently configure and distribute application components in a way that all

different requirements are satisfied.

5. How to apply dynamic environmental, resource, network, and energy information to

component configuration and distribution.

In the remaining of this chapter we first discuss how hybrid-cloud space and mobile-cloud

applications are represented in our proposed framework to address 1. We will then explain

the initial design and current implementation of the framework and use experimental results

to support the idea.

21

3.1 System Representation

In order to formulate application component distribution into an optimization problem to

be solved, we need to have a comprehensive mobile hybrid cloud application model. In

this section, we clarify our view on cloud, cloud-applications, mobile-cloud applications, and

specify underlying assumptions.

3.1.1 Cloud Model

Over time, cloud services have moved from the model of using public cloud spaces to private

clouds and recently to the hybrid model combining both [54, 56]. Cloud infrastructure is

traditionally provided by large enterprises, thus, referred to as public cloud. However, stor-

ing data on third-party machines suffers from potential lack of control and transparency in

addition to legal implications [54, 70, 71, 1]. To address this problem, cryptographic methods

are usually used to encrypt the data stored in public cloud while decryption keys are only

disclosed to authorized-users [78, 79, 80, 55]. However, these solutions inevitably introduce

heavy computational overhead for continuous encryption and decryption of data, distribu-

tion of decryption keys to authorized users, and management of data when fine-grained data

access control is desired [58]. Cryptographic methods do not scale well, have significant

overhead, are expensive to maintain, and are often slow, especially in widely geographi-

cally distributed environments such as cloud. To address some of these limitations, several

techniques, such as attribute-based encryption (ABE) [81, 82], proxy re-encryption and lazy

re-encryption [58], and homomorphic encryption techniques [83, 84, 73], have been developed

to provide attribute-based encryption while delegating part of the required decryption to the

cloud or providing limited in-cloud computations on the ciphered-text (encrypted data) with-

out revealing data content. However, these efforts still have the traditional data-centric view

on the cloud computing, focused on storing data and providing services to access the stored

data. If data storage is the primary use for the cloud, the required data access control is

already mature enough to effectively implement a fine-grained access control system [85, 86].

In modern mobile-cloud applications, resources stored in the cloud contain more than just

data. These resources contain part of the application code that results in access operation

meaning execution of the code inside the cloud. It is obvious that the certificate-based

authorization systems fail to address this type of applications, as the encrypted piece of code

within the cloud cannot be executed without decryption and revealing the content to the

cloud provider. As a result, companies gradually moved toward building their own private

cloud [54, 87, 88]. Storing sensitive data within private cloud aligns with the traditional

22

on-premise application deployment model where sensitive data resides within the enterprise

boundary and is subject to its physical, logical and personnel security and access control

policies [56]. However, owning and maintaining private datacenter is usually not as efficient,

scalable, reliable, nor elastic as using the public ones offered, supported and maintained by a

large third-party company [87, 88, 89]. Thus, in recent years, a combination of both private

and public cloud spaces is used that benefits from all the advantages of the public cloud, while

keeping the confidential or sensitive data and algorithms in-house [87, 89]. In order to cover

different applications, our framework views the cloud as the most general form combining

one or multiple private and public cloud spaces. This allows creation of a general elastic

hybrid cloud space to address different needs of a specific mobile-cloud application, while

different application components can be executed on different cloud resources according to

defined restriction policies, user expectations and application requirements.

3.1.2 Mobile-cloud Application Model

Despite having well explored the benefits of cloud computing to enterprise consumers and

service providers over past years, its effect on end users, applications and application develop-

ers is still not clear [30]. As mentioned in the previous section, traditional data-centric view

of the cloud services needs to be replaced with a more general data-computation-centric

view. To reach this, the current common client-server-based service-oriented architecture

[25, 30], that provides services on data stored in the cloud to external users, needs to be

replaced with a more general elastic architecture that dynamically and transparently lever-

age cloud resources to provide services and support resource limitations on the end-user

device. In such an elastic application development environment, components storing data

or performing computations are transparently scattered between the private clouds, public

clouds, and the end-user device. When such an application is launched, an elasticity manager

monitors the environment and resource requirements of the application and makes decisions

about where components should be launched and when they should migrate from device

to cloud, or from cloud to device, according to environmental parameters and changes in

user preferences [30]. Rather than a simple and rigid solution where nearly all processing

and storage are either on the device or cloud, an elastic device should have the ability to

migrate functionality between the device and cloud. This ability allows the device to adapt

to different workloads, performance goals, energy limitations, and network latencies [30].

One important design objective of this modern application development is to build an in-

frastructure with enabling functions, such as network protocols, secure communication, and

23

resource management, in a way that the new elastic computing model introduces minimal

extra considerations to application developers. To reach this, unnecessary details of distribu-

tion and move-around of application components should be masked from the programmers

while access to different components and resources is still restricted for different applications

or users.

In order to reach maximum level of parallelism and concurrency without the hassle of tra-

ditional multi-threading model, modern cloud-based applications avoid using shared mem-

ory model that is unnatural for developers and leads to error-prone non-scalable programs

[25, 90]. Instead of relying on global variables and shared states, modern cloud-based applica-

tions restrict the interaction between various components to communication using messages.

This approach to cloud application development aligns perfectly with the concepts of actor

model of computation [91] that sees distributed components, called actors, as autonomous

objects operating concurrently and asynchronously (Figure 3.1). In response to a received

message, an actor can make local decisions, create new actors, send more messages, or

change its behavior to respond differently to the next received message [92]. Compared to

the traditional shared memory model, actors are a better fit for highly dynamic applica-

tions operating in open and challenging environments. Actors may be created and destroyed

dynamically, they can change their behaviors, and migrate to different physical locations.

The model provides natural concurrency, resiliency, elasticity, decentralization, extensibility,

location transparency, and transparent migration that ease the process of scaling-up or out,

which is a critical requirement for cloud-based applications.

3.1.3 Mobile Hybrid Cloud Application Entities

In order to define different entities involved in a mobile hybrid cloud application, we fol-

lowed guidelines suggested by Special Publication of National Institute of Standards and

Technology on security and privacy in cloud computing [93]. We assume the mobile-cloud

application to include the following parties: the owner organization, that owns data and gov-

erns cloud infrastructure, different programmers inside the owner organization, that develop

different applications using cloud resources, and end-users, that use the developed mobile

cloud application. In this view, organization provides mobile cloud application as a product

or service to be used by external clients. In addition to these entities, there is public cloud

provider that is a third party company providing the cloud resources. To run applications,

external application users, or end-users for brevity, install the application on their mobile

device. Installed application has different components running on the end-user device or

24

State

Methods

Mailbox

Thread

State

Methods

Mailbox

Thread

State

Methods

Mailbox

Thread

create

msg

Figure 3.1: Actor model of computation. Actors are concurrent objects that communicate
through message-passing and may in turn create new actors. An actor has its own thread
of control, a mailbox, and a globally unique immutable name.

provided cloud spaces. Our proposed framework provides solution for automatic dynamic

configuration and distribution of these components between user device and different cloud

spaces.

3.2 IMCM: Illinois Mobile Cloud Management Middleware

Framework

Mobile-cloud computing relies on code offloading process to benefit from available remote

cloud servers. Running applications in Virtual Machines (VM) and migrating the entire VM

to a more resourceful machine allows benefiting from offloading without processes even know-

ing of the migration. VM migration is popular because of improving overall performance by

running the same code on a more-resourceful machine. With current cloud architecture that

runs several virtual machines on one physical machine to provide flexibility and efficiency,

system loads between different physical machines can be balanced by migrating VMs out

of overloaded/overheated servers. The ability to migrate an entire operating system over-

comes difficulties that have traditionally made process-level migration a complex operation

[94, 31, 95, 5, 96].

However, VMs are usually large in size (Gigabytes size of data) and migrating them is

25

Figure 3.2: Cost of VM migration in a local network. Required time for VM migration in a
Local Area Network(LAN). Source: [5]

costly even when performed within a local area network (LAN) [5]. Figure 3.2 [5] shows

the result of VM migration time as a function of VM memory size and reveals that it takes

on average 10 seconds per 1 Gigabyte of memory for VM migration within a high-speed

LAN. Considering that most VMs have a size of more than a few gigabytes, required time

for migrating them rests within the order of tens of seconds. However, run-time parameters

and program requirements can change in order of milliseconds which requires continuous

changes to offloading plan. As a result, VM migration fails to provide a comprehensive

solution where fast repeating dynamic offloading is required.

An alternative solution to VM migration, that prevents coarse-grained data transfer, is to

migrate application components. As a result, modern offloading processes require decision-

making about appropriate parts to offload in addition to migrating them, executing them

on remote servers and bringing back the results. Our proposed actor-based mobile-cloud

application model provides natural application partitioning and masks component migra-

tion process. However, we still need to develop the component offloading decision-making

model. In order to develop a code offloading decision-making model for fully parallel mobile

applications, we need to specify the target goal for offloading. Offloading goals can vary

significantly based on the application or user and range from maximizing the application

performance (e.g. games, vision-based applications) to minimizing energy consumption on

26

the mobile device (e.g. background applications). We have selected two of the most popu-

lar offloading goals and developed models for their offloading decision-makings. These two

goals include: Maximizing application performance and Minimizing mobile device energy

consumption. While offloading to a single remote server and serial monotonic application

execution results in similar offloading decision for both mentioned target goals of optimiz-

ing for application performance and mobile energy consumption, supporting hybrid cloud

environment with multiple public and private cloud spaces in addition to fully parallel ap-

plication execution results in significantly different component distribution plan for different

offloading goals. This requires design and development of two different offloading models.

Chapter 4 discusses design and development of an optimal offloading decision-making model

with respect to target goal of maximizing application performance and Chapter 5 covers the

goal of minimizing mobile energy consumption.

3.3 Evaluation

This section discusses our experimental setup for evaluating our proposed framework. To

make the results comparable and link them to our target offloading goal of maximizing appli-

cation performance, we measure effectiveness as the speedup gained compared to sequential

local execution on mobile device. Our selected corpus consists of applications covering

different types of programs: CPU intensive, communication intensive, I/O intensive, and

combined.

3.3.1 Experimental Setup

Our used equipment include a Samsung Google Nexus S as the mobile device and a Macbook

Pro Laptop as the remote offloading server. Table 3.1 summarizes the specifications of

our used equipment. Mobile device and the remote server are both on the same WiFi

network. We repeated many of our experiments using external cloud spaces and reached

similar proportional results. As a result, we include mostly results from tests performed

using our own server in the remaining.

The base case in our evaluation is the required time for local sequential execution of the

application on the mobile device and the execution speedups are used for comparing different

scenarios. In order to account for randomness, we repeat each experiment five times and

verify the statistical significance of observed execution times through non-parametric Mann-

Whitney U-tests. Unless stated otherwise, the test is two-tailed and the significance level is

27

Table 3.1: Specifications of the used equipment for evaluation

Remote Server Mobile Device
System Macbook Pro-Retina Samsung Google Nexus S
OS Mac OSX 10.9.4 Android 4.1.2
VM JVM (JRE 1.6) DalvikVM
Processor Intel Core i7 ARM Coretex-A8
Proc. speed 2.3 GHz 1 GHz
No. of cores 4 1
L2 Cache 256 KB/Core 256 KB
L3 Cache 6MB -
Memory 16 GB 512 MB

α = 0.01.

3.3.2 Program Corpus

Table 3.2 and Table 3.3 list the programs used in the evaluation together with their main

characteristics. Evaluation benchmark programs are selected based on their characteristics

to cover different application behavior: Computational intensive, Communication intensive,

and I/O intensive. In addition, a multi-behavior application is added to combine different

characteristics. To avoid a bias towards specific strengths of our approach and to foster

comparability, we mostly use similar examples as for works presenting solutions to mobile-

cloud computation offloading. The NQueen program is a computation-intensive application

that places N queens on a N ∗N chessboard so that no two queens threaten each other [14].

This is a classical puzzle and despite some possible optimization, it still requires checking

large number of possible permutations. It is known as a classical computationally intensive

problem. We used the SALSA provided implementation for solving this problem that benefits

from parallelism and breaks down the board into smaller parts so that they can be processed

concurrently. The Heat program is a communication-intensive application that simulates

heat transfer in a two-dimensional grid in an iterative fashion [5]. Our implementation

allows specifying the desired level of communication and both medium and high level of

communications are studied. The Trap program is a computation-intensive application that

calculates a definite integral by approximating the region under the graph as a trapezoid

and calculating its area. The Virus program reads in file streams from disk and scans for the

signature of a given virus [13, 14]. The Rotate program is an I/O-intensive application that

reads in an image from disk, rotates it in memory and writes it back to disk. Similarly, the

ExSort program is an I/O-intensive application that sorts the content of a large file using

external sort algorithm in limited amount of memory. Finally, the Image program combines

28

all I/O, CPU, and communication characteristics by detecting and recognizing all faces in

a given picture using a large dataset of known faces [97, 14, 12, 13]. Its process can be

summarized as below:

1. Finding faces in the picture and generating one smaller picture for each detected face.

2. Extracting the features from the picture of each detected face.

3. Performing a similarity calculation against the given database of known faces. This

assumes that the features of the database collection are already extracted and finds

the minimum Euclidean distance between the given picture and the database.

4. Perform classification and tag all the people recognized in the initial given picture.

Since processing of each picture is performed sequentially, multiple images are processed

simultaneously in order to add parallelism.

Table 3.2: Benchmark applications used to evaluate our framework.

Experiment Description
NQueen Places N Queens on N*N board
Image Detects & recognizes all faces in a photo
Trap Uses trapezoidal rule to calculate definite integral
Virus Scans a file stream for a specific virus signature

Rotate Reads, rotates & saves an image to disk
ExSort External Sort of the content of a file
Heat1 simulates heat exchange on a board
Heat2 simulates heat exchange on a board

Table 3.3: Benchmark application main characteristics showing dominant behavior of the application.

Experiment
Application Characteristic

Comp. Comm.
I/O

read write
NQueen intensive - - -
Image intensive limited limited -
Trap intensive limited - -
Virus - - intensive -

Rotate - - intensive intensive
ExSort intensive - intensive intensive
Heat1 limited medium - -
Heat2 limited high - -

29

3.3.3 Implementation

Many actor-programming languages have been developed over years to support different

applications, including: Erlang [98, 99], ActorFoundry [100], SALSA [101], Scala Actors [102,

103], and Akka [104] and etc. Despite some small differences, most of these programming

languages can be used to provide the properties of actor semantics including encapsulation,

fair scheduling, location transparency, locality of references, and transparent migration [105].

Although programmers can use any of these languages to develop cloud-based applications,

still the sole practical solution for providing dynamic actor distribution and migration is to

code the desired rules inside the developed program as part of the application logic. Our work

is focused on removing this additional application logic complexity by separating the actor

component distribution management from the logic of the program and developing a dynamic

automatic component management. To reach this, we chose SALSA as our programming

language mainly due to its loyalty to standard actor semantics. SALSA provides a great

support for parallel and distributed programming. Its support for code and data mobility

and asynchronous message passing makes programming for distributed systems a natural

task. Its coordination model provides an attractive feature for parallel programming where

multiple CPUs need to coordinate and communicate between themselves in an efficient

manner. SALSA depends on Java, hence it inherits Java’s powerful feature of portability

across different platforms. All of this makes SALSA an attractive language for mobile-cloud

application development [101].

Since SALSA runs on top of Java Virtual Machine (JVM), it can be made to work

on Android mobile devices running DalvikVM with some modifications. SALSA provides

lightweight actors. The use of lightweight actors makes SALSA highly scalable that is one of

the main limitations of some older actor languages. In order to evaluate the performance of

actor creation in SALSA, we performed an experiment by creating local anonymous actors,

actors created locally without specifying any name or run-time location, local named actors,

actors created on the local machine with a specific unique name, and remote actors, named

actors created on a remote mobile device connected through WiFi. The results (Figure 3.3)

show that SALSA actor creation is significantly fast and it takes less than 100 ms to create

a remote actor on a mobile phone connected through WiFi.

A huge advantage of using lightweight actors is the speed and ease of actor migration

between different devices. As can be seen in Figure 3.4 it takes less than 200 ms to mi-

grate an actor from a local machine to a remote mobile device working on the same WiFi

network. This capability eases the process of mobile application component distribution

between different connected spaces.

30

Figure 3.3: Overhead of SALSA actor creation. SALSA actors are lightweight. Both local
and remote creation of SALSA actors are significantly fast.

Figure 3.4: Overhead of SALSA actor migration. SALSA actors are lightweight which
makes the process of actor migration very fast.

3.3.4 Effectiveness of IMCM in automatic detection of application
run-time parameters and offloading appropriate components

In order to support the practicality of the suggested solution, we designed and implemented

a simplified elasticity manager for the case of maximizing application performance. Our

implementation uses a simplified profiler that records the execution time of each component

and reports it to the elasticity manager. Our evaluation is based on the face detection

application. As we saw earlier, offloading computation to a more resourceful remote server

significantly reduces the total execution time for the face detection application.

Despite significant performance speedup resulting from offloading application to more re-

sourceful systems, manual configuration of components between local mobile device and

remote server is not possible. Ideal component distribution depends on several factors that

31

Figure 3.5: Speedup of local, remote, and elasticity manager. Speedup summary for local
execution (base case) vs. remote execution (ideal case) vs. local execution with elasticity
manager (all automatic management) of image processing problem with different problem
size (different number of images to process)

can dynamically change during execution. Thus, an elasticity manager is required to mon-

itor environmental changes and find optimal offloading plan. Figure 3.5 shows the result

for manual placement of application components versus automatic component management

using IMCM elasticity manager that solves Equation 4.7 and Equation 4.9. Implemented

elasticity manager uses the previous profiled execution times of different components at var-

ious locations to find the optimal location for placing every component for next interval.

We currently do not use profiled execution time from previous execution of the application.

Thus, there is an initial lag between start of an application and optimal placement of com-

ponents resulting from the required time to collect enough profiled data. As a result, when

problem size and resulting total application execution time increases, the gap between ideal

placement of component and automatic distribution becomes narrower.

3.3.5 Performance overhead of IMCM

While offloading appropriate components to a remote server can potentially improve appli-

cation performance, having a costly elasticity manager to profile run-time and application

parameters and finding optimal distribution plan can result in less overall performance.

Figure 3.6 shows the overhead results from our implemented elasticity manager. It shows

the performance overhead of the IMCM automatic elasticity manager in practice. Results

show that having profiler and elasticity manager running in the background generates 1−5%

32

Figure 3.6: Elasticity manager overhead. Overhead resulting from elasticity manager for
image processing problem with different problem size (different number of images to
process)

speedup decrease on average. Considering the range of 9−60× for speedup gain from offload-

ing applications shows that IMCM elasticity manager overhead is insignificant. Moreover,

as the problem size increases, the benefit of offloading becomes more dominant and the

elasticity manager overhead becomes even less important.

33

CHAPTER 4

A DECISION-MAKING MODEL FOR
PERFORMANCE-BASED CODE OFFLOADING OF

FULLY-PARALLEL MOBILE HYBRID CLOUD
APPLICATIONS

While offloading to a single remote server and serial monotonic application execution results

in similar offloading decision regardless of the target offloading goal, supporting hybrid cloud

environment with multiple public and private cloud spaces in addition to fully parallel appli-

cation execution result in significantly different component distribution plan depending on

the target offloading goal. This requires design and development of different offloading mod-

els for various target goals. Offloading goals can vary significantly based on the application or

user and can range from maximizing the application performance (e.g. games, vision-based

applications) to minimizing energy consumption on the mobile device (e.g. background ap-

plications). This chapter discusses our effort toward creating an offloading decision-making

model for the target goal of maximizing application performance.

4.1 Offloading Decision for Sequential Applications to Single

Remote Server

A straight-froward solution for decision making in terms of offloading an application is to

pause execution before processing any part, check on offloading equation and decide whether

to offload or not. This section uses this strategy to build a pause-offload-resume decision-

making model for sequential applications with a single remote server. We start by initially

ignoring the overhead of offloading process and then moving to a more complex solution for

both small and large applications.

4.1.1 Code Offloading Decision Ignoring the Offloading Process Overhead

Without considering the offloading process overhead and its effect on application behavior,

speedup resulting from running the same code on a more-resourceful machine can be defined

as the ratio of available resources on the two machines:

34

Speedup =
Ss

Sm

=
Fserver ∗ Cserver ∗Xserver

Fmobile ∗ Cmobile

(4.1)

where Ss, Fserver, Cserver, Sm, Fmobile, Cmobile are the speed, processor frequency and number

of cores of the server and mobile device. Xserver is the additional speedup resulting from

availability of additional resources on the remote server, e.g. caches, memory and potentially

more aggressive pipe-lining.

In order to evaluate the speedup achieved by offloading the code from a mobile device to

a more powerful remote server in practice, we conducted a series of experiments. Table 4.1

shows the speedup results for our benchmark applications(Table 3.2 and Table 3.3) together

with applications’ main characteristics.

Table 4.1: Speedup resulting from offloading. Speedup resulting from offloading benchmark applications
to a more resource-full remote server. Application characteristic column shows dominant behavior of the
application, raw speedup column summarizes maximum speedup gained by running application on a
more-resourceful machine excluding offloading overhead, and offload speedup shows maximum speedup
resulting from offloading including offloading overhead

Experiment
Application Characteristic

Raw Speedup Offload Speedup
Comp. Comm.

I/O
read write

NQueen intensive - - - 73 56
Image intensive limited limited - 91 44
Trap intensive limited - - 30 21
Virus - - intensive - 28 21

Rotate - - intensive intensive 28 9
ExSort intensive - intensive intensive 46 36
Heat1 limited medium - - 31 29
Heat2 limited high - - 14 14

While raw speedup column ignores the cost of offloading process, offload speedup column

shows a more realistic view on mobile-cloud offloading by including the required time for

offloading process. Note that different rows of the table represents different applications

with significantly different behavior, architecture, characteristics, and amount of works that

should not be compared with each other. Comparing the values of raw speedup and offload

speedup columns shows the effect of offloading cost on gained speedup. Offloading cost

includes the required resources to make offloading decision, offload the application code

to remote server and bringing back the result. Ignoring the cost of offloading process,

Equation 4.1 predicts the speedup resulting from running the same code on a faster machine.

Assuming Xserver = 7 for our experimental setup, the expected speedup is as below:

35

Speedup =
Ss

Sm

=
2.3 ∗ 4 ∗ 7

1.0 ∗ 1
= 64 (4.2)

raw speedup column of Table 4.1 shows that a speedup of close to 64 times or even higher is

possible when offloading overhead is ignored. However, when large amount of data needs to

be offloaded (such as Rotate application), offloading speedup reached in practice including

the offloading process overhead is significantly lower. Moreover, the result highly depends on

the application type and behavior as well. A computational-intensive application with high

degree of parallelism (e.g. NQueen) can benefit from all the additional available resources

on the remote server and can reach a high offloading speedup. Extensive I/O operations or

communications between different components limits application’s ability of benefiting from

additional available computational resources at the remote server and reduces the gained

speedup (e.g. Rotate and Heat).

4.1.2 Code Offloading Decision Including Offloading Process Overhead

Equation 4.1 states that offloading is always beneficial, as long as there is a more resourceful

server. However, it ignores the required resources for the offloading process and the effect of

offloading on application behavior. Only if the required amount of resources for offloading

process is small, network connection is fast, and amount of transferred data is small, speedup

close to Equation 4.1 can be achieved in practice. For most practical applications, the

required resources for offloading process cannot be ignored. As a result, we need to extend

Equation 4.1 to include the cost of offloading. Note that we are focused on the target

offloading goal of maximizing application performance in this chapter.

Maximizing application performance, or minimizing total execution time, provides real-

time applications with higher quality computation in the same amount of time, leading to a

smoother and better experience for users. Assuming a small application with w amount of

off-loadable work, the goal is to decide whether to offload it or not. Following [1] model, we

can summarize the problem as below:

w

Sm

>
di
B

+
w

Ss

→ w ∗ (
1

Sm

− 1

Ss

) >
di
B

(4.3)

where Sm and Ss are the speed of the mobile device and remote server processors, B is the

network connection bandwidth and di is the size of data to be transferred. The left side of

this equation shows the total required time to execute work w on the mobile device while

the right side captures the required time to transfer data to a remote server and execute it

36

on the server. Obviously, it only makes sense to offload when the left side is larger than the

right side. Note that this equation ignores many parameters such as communication latency,

required time to bring back the result, etc.

Equation 4.3 can be interpreted in different ways. It is true, if w is large enough, meaning

that the program requires heavy computation. It can also be true, if Ss is large, meaning

that the server is fast enough. Alternatively, it is true if di is low and the required amount

of data to be transferred is small. Finally, it can be true, if B is large enough and the

available bandwidth is high. In addition to these interpretations, there is also a different

way to interpret equation 4.3. It can be seen that in order for offloading to be economical,

the following equation must be true:

w

Sm

>
di
B

(4.4)

Equation 4.4 shows that Ss effect is of second degree. In other words, an infinitely fast

server (Ss =∞), does not always lead to an offloading decision, if other parameters are not

proportional. Only tasks with heavy computation (large w) and small data exchange (small

di) worth considering for offloading. This shows the need for profiling the performance of

different application components in order to detect such tasks [1].

4.1.3 Code Offloading Decision for Large Applications

Use of Equation 4.3 leads to a pause-offload-resume model, where the system pauses before

executing any part, checks Equations 4.3 and decides whether to offload or not. If decision is

to offload, mobile application will be paused, data transferred to remote server, code executed

on remote server, results brought back to the mobile device, and mobile application resumed

[12]. However, in communication-intensive applications, offloading single components at a

time results in significant remote communications. When components are on the same device,

communications are relatively fast and through shared memory space. But when placed

on different machines, communications go through multiple network devices and become

costly. As a result, components communicating extensively should be offloaded together and

the communication cost must be included in offloading decision. The problem of deciding

on offloading multiple parts of an application can be formulated into a graph partitioning

problem, where nodes are application components, having a weight equal to the amount of

their computation, and edges are communications in between, having a weight equal to the

amount of transferred data. In such a graph, offloading decision equals finding the minimum

cost cut to partition the graph between mobile device and remote server [13, 14]. Note

37

that application execution is still considered sequential, only one of the components will be

executed at any time, and a single remote server is considered for partitioning.

Let’s dive deeper in this solution and assume that a mobile application consists of com-

ponents A, B, C, D, E, and F. Figure 4.1 shows these components as circles, where the size

of each circle represents the required amount of computation by that component. Arrows

represent communications between different application components and their sizes show

the amount of data to be transferred. Table 4.2 shows the relationships between different

application components and the size of the communicated data in between. Since we are

considering the case of offloading multiple components simultaneously, all the components

will be divided between the mobile device and remote server. In order to do this, the mini-

mum cut cost in the graph to partition the components between the mobile device and the

remote server should be found.

Table 4.2: Components of a large mobile application and their interactions with each other. Relationship
between different components of a mobile application (see Figure 4.1)

Relationship Size of Input Size of output
(b,c) = A(a) a is small b and c are large
(d,e) = B(b) b is large d and e are small
g = C(d,e) d and e are small b is small
(f,h,i,j) = D(c) c is large f & h are small, i & j are large
k = E(g,h) g & h are small k is small
z = F(i,j,k) k is small, i & j are large z is small

Assuming that the graph partitioning is performed and resulted in an offloading plan of

Figure 4.2, components A, B and C will be executed locally on the phone while components

D, E and F will be offloaded to the remote server and executed there. Component A requires

medium amount of computation and the size of its input (a) is small. So, it makes sense to

execute it locally on the phone. Component B also requires small amount of computation.

It requires output from component A that is relatively large amount of data. So, component

B should also be executed locally on the phone. Component C requires very small amount

of computation and thus, there is no gain in offloading it. Component D requires very large

amount of input data (c) and seems to be better executed locally on the phone. However, its

required amount of computation is so large that it justifies the transfer of large amount of

input data (c) to the remote location and execution of the component there. Component E

also requires large amount of computation with small size of input data. Since component D

is offloaded, it makes sense to offload E as well. Component F requires medium size of data

but since the components generating its required inputs (Components D and E) are already

offloaded and the size of its input data (i,j) is also large, it is more efficient to offload and

38

execute component E on the remote server as well. The final result from component F will

then be sent back to the mobile device and returned as the final result of the computation.

4.2 Code offloading and Parallelism

In order to avoid sequential program execution resulting from previous graph-based par-

titioning approach, CloneCloud [13] and ThinkAir [14] support opportunistic parallelism.

When a component is offloaded, the remaining code on the mobile device continues with its

execution, as long as the offloaded state is not accessed. As soon as the local code tries to

access the state of the offloaded part, local execution is blocked and only resumed when the

offloaded code result is received. Despite theoretical potential for parallel execution, this

model still leads to sequential execution in practice. In most applications, shared program

state is constantly accessed by different parts and mobile code execution remains blocked

most of the time. The evaluation results from both CloneCloud and ThinkAir show this

phenomena. Those results show similar output for the case of minimizing mobile energy

consumption as well as maximizing the performance. Having the same results for both these

optimization goals supports the fact that there is not much parallelism achieved in practice.

This is one of the main drawbacks of using a shared state program model and a natural result

of sequential applications. Moreover, these systems only considers a single remote location

for offloading. When parallelism is considered, mobile device and remote server can execute

code simultaneously. In addition, when multiple remote servers are considered, application

components can be distributed between all of them and be executed at different locations

concurrently.

Equation 4.2 predicts the ideal speedup resulting from offloading where computation is

large enough, code has high degree of parallelism roughly comparable to available resources,

and negligible amount of resources is used for offloading process. Without benefiting from

parallelism, running the same code on a more resourceful machine can only provide limited

speedup (Sequential remote execution graphs of Figure 4.6 and Figure 4.7). This speedup

is mostly because of benefiting from remote server’s faster CPU speed, additional available

caches, and more memory. However, additional available processing units are not used. We

mentioned that for practical applications, the amount of resources required for offloading

process is negligible compared to resources required for performing large amount of compu-

tation. If computation is not large enough, even using high degree of parallelism does not

provide significant additional speedup. However, when the amount of computation is large

enough, higher degree of parallelism significantly improves the performance and the benefit

39

of having additional processing resources becomes visible.

Figure 4.3 shows the relationship between application parallelism degree and speedup

resulting from offloading. While on a mobile device with only one core, increasing parallelism

degree does not improve the performance, on a more resourceful remote server increasing the

program parallelism degree allows better utilization of resources and increases application

performance. While sequential execution of NQueen problem on a faster system generates a

speedup of 14 times, increasing the parallelism degree increases the resulting speedup to 55.

N-Queen solution benefits from parallelism by breaking down the problem into smaller parts

and executing all parts simultaneously. Thus, different number of workers creates different

degree of parallelism for the experiment. Although the number of possible permutations to

be investigated increases exponentially when the size of the problem changes from N=8 to

N=16, execution time is almost the same when executed locally on the phone regardless of

the parallelism degree used. In other words, when executing locally on the mobile phone,

using only one solver actor and performing the solution sequentially provides the same

result as parallel local execution. This is consistent with the fact that this problem is a

computationally intensive application and thus, the total run-time is related to the speed

and number of the processors available on the device. If the mobile device used has only

one processing core, that core will always be busy with computation and no CPU cycle is

wasted. Using any further number of workers provides no additional benefit, as there is no

other core to run those solver actors simultaneously. Instead, it even adds the overhead of

creating those workers, switching between them, and managing resources among them. In

summary, although N-Queen problem can be solved in parallel, parallelism will not improve

total execution time when running the code locally on a mobile device with a single core.

Studying the cases of remote execution of Figure 4.3 reveals that, on a more resourceful

server with multiple cores, using more number of workers improves the performance. Using

multiple actors per core gives the best performance, as all cores will be constantly kept busy.

Considering the case of sequential execution on the remote server as the base case, we can

have a speedup of up to 5 times when executing code in parallel on the same remote server.

So, if enough resources are available on one machine, increasing the level of parallelism can

improve the performance.

Considering the case of remote execution for Nqueen of size=8 in Figure 4.3 shows that

there is not much difference in terms of speedup gained between running the problem in a

sequential mode versus running it in a full parallel mode when the amount of computation

is small. On the other hand, running the case of N=16 on the remote server in sequential

or parallel mode makes a huge difference. In fact, when the amount of computation is

large enough, the importance of additional cores become much more visible. Running large

40

amount of computation (N=16 case) on the remote server in the sequential mode provides

2 times speedup, while running the same amount of computation in the fully parallel mode

provides 55 times speedup. This means that for large amount of computation, a speedup

of 55 times can be reached because of having more caches, faster CPU, more number of

cores and existing parallelism in the implemented solution. It also shows that the gain from

running the code on a remote server becomes much more significant when the amount of

computation increases (N goes from 8 to 16).

Similarly, comparing the local and remote execution of the Image processing application in

Figure 4.9 shows that running the face detection algorithm on remote server is roughly more

than 200 times faster than running it locally on the phone. Similar to N-Queen problem case,

when running on the laptop, we are benefiting from increased amount of caches, increased

amount of memory and faster CPU speed. Note that a single image cannot be processed in a

parallel mode due to the sequential implementation of the face detection algorithm. In order

to evaluate the effect of parallelism on face detection problem, we considered processing

more than one image. Since images are processed independently from each other, they can

be processed simultaneously and in parallel. The reason for such an improvement when

compared to N-queen problem is because of the fact that N-Queen problem requires no

I/O operation. However, in face detection problem, images must be read from disk which

requires I/O operations. While one worker is loading the image from disk, other workers can

work on processing other images. This is in fact the main reason that we see higher speedup

for parallel execution on the local mobile device despite the fact that there is only 1 core

available on the mobile phone.

Performance improvement resulting from increasing program parallelism degree is limited

by the availability of resources. At a certain parallelism degree, resources will become satu-

rated and further increase of parallelism degree will have reverse negative effect (Figure 4.9).

Considering the null hypothesis that remote sequential execution is as effective as the re-

mote parallel execution, Mann-Whitney U-test shows that all differences for various problem

sizes and parallelism degrees are significant (P < 0.01, two-tailed). Consequently, the null

hypothesis is rejected.

In order to show the significant effect of parallelism on application performance, we can

compare the result from increasing parallelism degree of a problem to the effect of other

parameters. A good parameter to study is image quality. Required time for processing an

image is related to the size and quality of the image. The larger the image, the more time

it takes to process it. Figure 4.4 shows the relationship between image quality and resulting

speedup for both local and remote execution. Note that the code for face detection executes

sequentially and thus, the remote execution does not benefit from additional number of

41

cores. It can be seen that for both local execution on mobile device and remote execution on

a more-resourceful server, exponential reduction in image size, reduces the total execution

time linearly. Comparing this with the result from increasing the paralleism degree of a

problem (e.g. Figure 4.9) highlights the importance of parallelism degree compared to other

parameters. It should also be emphasized the while lowering image quality has significant

impact on the accuracy and precision of the results, increasing the parallelism degree has no

side effect on accuracy of the results but provides all the benefits of faster processing time.

Although we focused on the goal of maximizing application performance in this chapter,

offloading decision for the goal of minimizing mobile device energy consumption is similar

for sequential applications. As we will see in next chapter, in sequential execution, mobile

device remains in idle state consuming energy while waiting for the results from the offloaded

code. Consequently, the required time for application execution on the remote server is

proportional to mobile device energy usage [12, 13, 14]. However, this effect is limited to

sequential applications where only one of the mobile device or remote server executes code

at any time.

4.3 Performance-based Offloading Decision Model for Parallel

Applications to Hybrid Cloud Environment

Deciding on optimized offloading plan for parallel applications in a hybrid cloud environment

requires considering application type, available resources at different remote machines, and

the effect of offloading on future application behavior. Similar to previous sections, target

offloading goal is maximizing application performance or minimizing total application exe-

cution time. We still have a graph G(V,E) where vertices represent application components

and edges represent communications in between. The goal is to partition the graph between

mobile and different cloud resources in a way that total execution time is minimized. Total

execution time consists of the time required to execute the application code in addition to the

time required for remote components to communicate and exchange data with each other.

Fully parallel execution refers to both parallel execution on multiple remote locations and

simultaneous local and remote execution. In other words, mobile device and different cloud

spaces execute their components simultaneously. As a result, total application execution

time is the maximum time required for any of the mobile or remote spaces to finish exe-

cuting program code for all of its assigned components. Since local communication between

components located on the same machine is relatively fast, we can ignore local communi-

cation and only consider communications between different components placed at different

42

locations. Note that different locations can communicate simultaneously and the total re-

quired time for communication is equal to the maximum communication time of different

locations. Table 4.3 summarizes notations used in the remaining of this chapter.

Table 4.3: Notations used in parallel offloading model

Notation Description
B(L) Connection bandwidth out of location L
CommAtLoc(L) Communication time from components on Location L to all other loca-

tions
Cores(L) Number of cores available at Location L
∆ Time interval of running elasticity manager
Exec(i,l) Exec. time of component i ∈ [1, N] at location l ∈ [0,M]
ExecAtLoc(L) Execution time for all components on Location L
JobCount(i) Number of requests processed by component i during the time interval

∆
Loc(i,t) Location of component i at time t
LocAllowed(i, t) Set of locations at which component i is allowed to be placed at time t.

LocAllowed(i, t) ∈ [0,M]
LocEQ(L1, L2) Checks whether two given locations are identical. Returns 1, if L1 = L2.

Otherwise, returns 0.
MaxAppPerf Maximum Application Performance
MinAppExec Minimum Application Execution Time
ProfComm(i, j) Profiled amount of communication between components i and j during

the time interval ∆

Using Table 4.3 notations, the offloading goal for parallel mobile hybrid cloud application

problem can be summarized as following:

max(MaxAppPerf) = Min(MinAppExec) =

min(max
0≤L≤M

(ExecAtLoc(L) + CommAtLoc(L)))
(4.5)

Mobile application consists of N components and each component i ∈ [1, N] is located

at Loc(i, t) at time t. Having M different cloud spaces results in Loc(i, t) ∈ [0,M] where

0 represents local mobile device and [1,m] corresponds to different cloud spaces. Assuming

that we know the application component distribution between the local mobile device and

the hybrid cloud spaces at time t1, our goal is to find optimal component distribution for

next time interval t2 in a way that application performance is maximized. Thus, different

parts of Equation 4.5 can be extended as following:

43

ExecAtLoc(L) =

1

Cores(L)
∗

N∑
i=1

{LocEQ(L,Loc(i, t2)) ∗ Exec(i,Loc(i, t2)) ∗ JobCount(i)}
(4.6)

Note that both Exec(i, L) and JobCount(i)) are provided by the monitoring system and

are results of previous profiling of the application. LocEQ(L1, L2) considers the execution

time of only components running on location L. Similarly, the second part of Equation 4.5

can be extended as below:

CommAtLoc(L) =

1

B(L)
∗

N∑
i=1

N∑
j=1

{LocEQ(L,Loc(i, t2)) ∗ (1− LocEQ(L,Loc(j, t2))) ∗ ProfComm(i, j)}

(4.7)

As mentioned before, this equation shows the maximum required time for each location

to send out all its communications to other locations. LocEQ(L,Loc(i, t2)) considers only

components that will be located at Location L at time t2 and (1 − LocEQ(L,Loc(j, t2)))

captures only remote communications out of location L. Solving these equations results in a

set of Loc(i, t2) that are the optimized locations for different application components during

the next time interval ∆. Plugging Equation 4.6 and Equation 4.7 into Equation 4.5 results

in the following:

max(MaxAppPerf) = Min(MinAppExec) =

min(max
0≤L≤M

(ExecAtLoc(L) + CommAtLoc(L))) =

min(max
0≤L≤M

(
1

Cores(L)
∗

N∑
i=1

{LocEQ(L,Loc(i, t2)) ∗ Exec(i,Loc(i, t2)) ∗ JobCount(i)}

+
1

B(L)
∗

N∑
i=1

N∑
j=1

{LocEQ(L,Loc(i, t2)) ∗ (1− LocEQ(L,Loc(j, t2))) ∗ ProfComm(i, j)}))

(4.8)

It should be noted that equation 4.8 ignores the required time to migrate components

between different spaces. This assumption is based on the fact that actor migration is fast

44

and only transfers actor state and not the actor source code. This is consistent with previous

research assumptions that method offloading only takes program state and not the method

source codes and experimental results supports its validity for most practical applications.

Since not all components of an application are off-loadable, a few constraints must be

added to the above optimization problem to restrict move around of non-off-loadable com-

ponents. As we are considering a hybrid cloud consisting of multiple private and public

cloud spaces, application developers or users can specify additional constraints in terms of

how different components can be offloaded to different locations. We will look at the flex-

ibility of the framework in supporting definitions of such restrictions in Chapter 7. These

additional constraints can address certain privacy issues in terms of not offloading sensitive

or confidential components to public cloud spaces. Required constraints can be expressed as

below:

subject to constraints:

Loc(i, t1) ∈ LocAllowed(i, t1) : ∀ i ∈ [1, N]

Loc(i, t2) ∈ LocAllowed(i, t2) : ∀ i ∈ [1, N]

N∑
i=1

N∑
j=1

{LocEQ(L,Loc(i, t2)) ∗ (1− LocEQ(L,Loc(j, t1)))}

≤ α ∗ Cores(L) : ∀ L ∈ [0,M]

(4.9)

The last constraint is added to prevent flooding too many components at once to a remote

server with good initial performance. We limit the number of components that can be

offloaded to each remote server to a factor of the number of available cores on that server. α

of range 2 to 8 is compatible with our evaluation results, that shows best performance can

be achieved when 2 to 8 actors are assigned to each core. If after one round of component

move around the target remote server still has enough resources and the execution times

are still fast enough, another round of actors can be migrated to that location. In most

cases, LocAllowed(i, t1) = LocAllowed(i, t2), as the privacy constrained are not often changed

during execution. However, the user or the run-time environment has the option of adjusting

privacy requirements at run-time whenever needed.

45

4.4 Experimental Results

There are many factors that can affect an offloading decision ranging from run-time param-

eters to application type, amount of work, and parallelism degree. In this section we discuss

some of these parameters and show our experimental results of their effects on offloading

decision.

4.4.1 Effect of run-time parameters on mobile-cloud offloading decision

In order to decide on the beneficiary of offloading w amount of computation to a remote

server for our experimental setup, Equation 4.3 can be used with values from table 3.1:

w ∗ (
1

1024Mhz
− 1

2.3 ∗ 1024MHz ∗ 4 ∗ 7
) >

di
B
→ B > 1040 ∗ di

w
(4.10)

Rearranging the equation results in Bmin ≥ 1040 ∗ di
w

to be the minimum required band-

width in order for offloading decision to reduce total application execution time. The equa-

tion depends on the ratio of di
w

and can only be true when the ratio is small enough. In

other words, application offloading is beneficial for large amount of computation (w) and low

amount of transferred data (di). For values in between, the decision depends on the available

bandwidth (B) and an elasticity manager must evaluate the equation based on run-time pa-

rameters. Figure 4.5 summarizes equation 4.4 for different amount of computation (w) and

communication data (di).

For N-Queen problem, a single integer value has to be transferred both for input value (N)

and final result and di is very small. At the same time, problem is computational-intensive

and requires large amount of computation (large w). According to Wikipedia [106], for

N = 8 there are 4,426,165,368 possible arrangements but only 92 solutions. Even using

some optimization tricks, the size of possible permutations to be checked is only reduced

to 16,777,216, which still requires a brute-force approach to investigate all. Applying equa-

tion 4.10 to this problem results in Bmin = 1040 ∗ 1
16

= 65 bit
sec

. This is the minimum required

bandwidth to make offloading of the N-Queen problem efficient. Table 4.4 shows average

bandwidth for different existing technologies. It shows that any type of network connection

provides enough bandwidth and offloading always improves application performance. Note

that the code of the N-Queen solver is assumed to be available on the remote server and

network latency is ignored. So, as long as there is a reliable Internet connection for the

mobile phone, it always makes sense to offload the N-Queen problem computation to the

remote server. However, note that we are ignoring the existing latency in sending and re-

46

ceiving the data. Large values of latency can change the above interpretation. Fortunately,

public cloud providers have several geographically distributed datacenters that can provide

a relatively-close remote server for most mobile users.

Table 4.4: Average bandwidth of different mobile technologies

Technology Average Existing Bandwidth (bit/sec)
2G (Edge) 0.2 Mega
3G 1 Mega
4G (LTE) 5 Mega
WiFi 10 Mega

In case of the Image problem, assuming remote server to be super fast (Ss =∞), offloading

decision depends on w, di and B. If detection of faces in the initial image, extracting features

for every detected face and comparison to database are all offloaded, the entire initial image

needs to be transferred to the remote server and the amount of communicated data (di) is

large. Thus, it is only beneficial to offload, if B is large enough. On the other hand, if the

initial detection of faces are performed locally and only the extracted features are transferred,

di is much smaller. Consequently, even for slower network connections, offloading of the

remaining parts is beneficial. This highlights the importance of considering the combination

of all parameters for deciding on offloading. Different parts of an application can become

offloading candidates at different time and an elasticity manager is required to dynamically

decide on offloading based on run-time parameters.

4.4.2 Effect of application type on mobile-cloud offloading decision

We saw earlier in the effect of offloading process overhead on resulting speedup. However,

there is a significant difference between offloading speedup for different applications. One of

the main reasons for such a large difference is application type. For applications that require

large amount of data to be transferred (such as Rotate application), offloading speedup

reached in practice is significantly lower. The main reason is that these applications take

large amount of data with themselves when offloaded to remote locations and the overhead

of offloading becomes very large. On the other hand, applications that has large amount of

computation but requires only small amount of data to be transferred (e.g. NQueen) can

benefit from all the additional available resources on the remote server and can reach a high

offloading speedup without spending much resources for offloading process. N-queen problem

is a computationally intensive application with high degree of parallelism. So, when executed

on a more resourceful system, it can benefit from all available resources and reach a speedup

47

comparable to equation 4.1. Extensive I/O operations or communications between different

components limits application’s ability of benefiting from additional available computational

resources at the remote server and reduces the gained speedup (e.g. Rotate and Heat). Image

application requires reading and writing from disk in addition to processing images and is

a combination of both computationally and I/O intensive types. Since I/O operations are

part of image processing application, its performance is affected by delays resulting from

that and the speedup reached by running it on a more resourceful system is slightly less

than equation 4.1. Table 4.1 reveals that applications with intensive computations are

the best candidates for offloading. On the other hand, having intensive I/O operations or

communications reduces the benefits of offloading. Thus, application type and behavior have

significant impact on offloading results and different applications need different offloading

plans even in same environmental settings. This highlights the requirement of profiling

application component performance in order to gain a real-world perspective on its behavior

and real requirement.

4.4.3 Effect of problem size (amount of work) on mobile-cloud offloading

We mentioned earlier that the amount of computation of a problem has significant impact on

offloading results. With offloading process overhead having significant impact on resulting

speedup, transferring less amount of data and larger computations improves the offloading

speedup. Such observation suggests that larger problem sizes can potentially lead to in-

creased offloading speedup. In order to investigate this hypothesis, we conducted a bunch

of experiments with different amounts of computations. Figure 4.6 and Figure 4.7 show

offloading speedup for different amount of work for NQueen and Image applications. By

comparing the remote execution curves and local execution curve, it is revealed that larger

amount of work results in more computationally-intensive applications, reduces the impor-

tance of the fixed amount of work required for offloading process, and increases the gained

speedup. While initial offloading speedup of NQueen problem is almost equal to 1 (for N=8)

due to low amount of required computation, changing N value exponentially increases the

amount of work to be performed and similarly increases the resulting speedup.

Image problem is a multi-behavior application with initial speedup of larger than 1 due

to the size of computations required for processing even one single image. For this problem,

changing the amount of work equals increasing the number of images to be processed and

results in linear increase of speedup. Having larger number of images to process allows

creating a fixed number of worker actors and reuse them for processing other images. This

48

further lowers the overhead of offloading process by preventing the continuous creation and

removal of worker actors. As a result, there is a linear relationship between the number of

images and the total execution time for remote execution of the Image problem.

4.4.4 Comparison of Sequential Local Application Execution versus
Parallel Local and Remote Execution

While offloading computation to a more resourceful system can improve overall application

performance, mobile device local resources are wasted while waiting in the idle state for the

result of offloaded code to be returned. With mobile devices becoming more powerful, this

wasted computational power can be put to a better use. Our proposed framework supports

simultaneous local and remote application execution and uses local mobile resources to

execute other parts of an application while waiting for the offloaded code result.

Figure 4.8 shows the speedup differences between processing different number of images

using only remote server and simultaneous execution on both local device and remote server.

Since processing of a single image is sequential, for small amount of work (small number of

pictures to process), total execution time will be dominated by the required time for local

mobile device to process its share. This will result in remote server starvation and waste of

resources, as there will be no more job for it to process. However, with increase in the amount

of work, there will always be enough job for remote server to perform and the advantage of

using both local and remote server for application code execution becomes visible.

Figure 4.9 shows the same effect based on application parallelism degree. We mentioned

earlier that higher degree of parallelism will increase the flexibility of the application and

results in higher offloading speedup. However, this is only true, if enough computational

resources are available. As can be seen in the graph, increasing the parallelism degree

(number of workers) initially results in higher speedup but after a certain point this effect is

reversed. In fact, having higher degree of parallelism than the available resources results in

over-saturation of resources, adds the overhead of managing all those workers, and reduces

overall speedup. Our results show that required parallelism degree for an application to

reach highest speedup is proportional to number of processing cores available. The coverage

differences of any two different number of workers for both remote and simultaneous local

and remote executions are significant (α = 0.01). Thus, the null hypothesis that there is no

significant difference between image processing execution with different number of workers

can be rejected.

49

Figure 4.1: A mobile Application represented as a graph before partitioning. Application
components are represented as circles where their sizes represent required amount of
computation. Arrows represent communication between different components where arrow
sizes shows the amount of data to be transferred.

50

Figure 4.2: A mobile Application represented as a graph after partitioning. Application
components are distributed between mobile device and the remote server.

Figure 4.3: Speedup for NQueen problem. Speedup summary for local and remote
execution of NQueen problem with different degree of parallelism

51

Figure 4.4: Effect of Image Quality on Speedup for Face Detection algorithm. When
processed locally on the mobile device and remotely on a more resourceful server

Figure 4.5: Offloading decision for optimizing application performance. A combination of
to-be-transferred data size, computation size and bandwidth determines whether offloading
is beneficial or not. Source: [25]

52

Figure 4.6: N-Queen problem with different amount of work. Speedup summary for local
and remote execution of N-Queen execution for different amount of work (different problem
size)

Figure 4.7: Effect of amount of work on speedup. Speedup summary for local and remote
execution of Image Processing application for different amount of work (different no. of
images to process)

53

Figure 4.8: Speedup different problem size. Speedup summary for remote execution vs.
local+remote execution of image processing problem with different problem size (different
number of images)

Figure 4.9: Remote vs. local+remote execution. Speedup summary for remote execution
(x remote workers) vs. local+remote execution (1 local + x remote workers) of image
processing problem with different number of remote workers

54

CHAPTER 5

A DECISION-MAKING MODEL FOR
ENERGY-BASED CODE OFFLOADING

Chapter 4 studied an offloading decision model for maximizing application performance. We

also mentioned that for sequential application execution with a single remote server, the

result of offloading decisions model is the very similar regardless of target offloading goal.

Unless the device goes into deep sleep mode while waiting for execution of the offloaded code,

its energy consumption is proportional to the waiting time. In this chapter, we focus on the

target offloading goal of minimizing mobile energy consumption and create an offloading

decision-making model for this target goal.

5.1 Offloading Decision for Sequential Applications to Single

Remote Server

In order to build an offloading decision model for sequential execution with a single remote

server, we follow an approach similar to Chapter 4. We start by initially ignoring the

overhead of offloading process and then move toward a more complex solution for both

small and large applications.

5.1.1 Energy-based Offloading Decision Model for Sequential Applications
Ignoring Offloading Process Overhead

Ignoring the overhead of offloading process, Equation 4.1 is valid regardless of the target

offloading goal. Table 5.1 shows the energy saving ratio results for our benchmark appli-

cations(Table 3.2 and Table 3.3) together with applications’ main characteristics. Energy

saving ratio (ESR) is defined as the ratio of saved energy compared to the energy consumed

by local sequential execution on the mobile device.

55

Table 5.1: Energy saving ratio resulting from offloading. Energy saving ratio resulting from offloading
benchmark applications to a more resource-full remote server. Application characteristic column shows
dominant behavior of the application, raw ESR column summarizes maximum energy saving ratio gained
by running application on a more-resourceful machine excluding offloading overhead, and offload ESR
shows maximum energy saving ratio resulting from offloading including offloading overhead

Experiment
Application Characteristic

Raw ESR Offload ESR
Comp. Comm.

I/O
read write

NQueen intensive - - - - -
Image intensive limited limited - 91 44
Trap intensive limited - - - -
Virus - - intensive - - -

Rotate - - intensive intensive - -
ExSort intensive - intensive intensive - -
Heat1 limited medium - - - -
Heat2 limited high - - - -

5.2 Energy-based Offloading Decision Model for Sequential

Applications Including Offloading Process Overhead

Code offloading in order to minimize mobile energy consumption is popular goal. Using less

mobile energy allows mobile devices to last longer without requiring charging. This is of

prime importance for service or background applications that runs in the background for

a long time. An equation similar to 4.3 can be formed to decide on the benefit of code

offloading for w amount of work when the goal is to minimize energy consumption on the

phone for sequential execution [1]:

P1 ∗
w

Sm

> P2 ∗
di
B

+ P3 ∗
w

Ss

→ w ∗ (
P1

Sm

− P3

Ss

) > P2 ∗
di
B

(5.1)

where P1, P2 and P3 are the power consumption of the mobile device when performing

computation at the highest speed, communicating data over network, or in the idle mode.

Sm and Ss are the speed of the mobile device and remote server processors, B is the network

connection bandwidth and di is the size of data to be transferred. The left hand side

of Equation 5.1 shows the amount of energy consumed on the phone when performing the

computation locally while right hand side captures the amount of energy required to transfer

input data to the remote server in addition to energy consumed by the mobile device while

waiting for the offloaded code result. It should be noted that the focus is on minimizing the

amount of energy consumed on the phone and not the total amount of energy required for

the computation.

56

Equations 5.1 and 4.3 are very similar and usually results in close decisions, if P1, P2

and P3 are proportional. This is usually the case, as the mobile screen is assumed to be

on even in idle state. Turning screen off can definitely help save energy but it will be an

uncomfortable experience for the users to see the screen going on and off several times during

the execution of an application. As a result, all previous research [12, 13, 14] assumed the

mobile screen to remain on even in idle mode.

This is , in fact, the main reason that all the previous research [12, 13, 14] reached the same

offloading decision plan regardless of optimizing for maximizing application performance or

minimizing mobile energy consumption. As mentioned before, all those research resulted in

a sequential application execution even when, in theory, their models support opportunistic

parallel execution. In fact, method-level offloading results in a pause-offload-resume model,

where the system pauses before executing any method, checks either of the equations 5.1 or

4.3 and decides whether to offload or not. If the decision is to offload, the phone application

will be paused, data transferred to remote server, code executed on remote server, results

brought back to the phone, and the phone application resumed. MAUI [12] was the first to

fully implement this approach at method level and showed that it can help both save energy

on the mobile device and improve the performance of the application.

5.3 Energy-based Offloading Decision Model for Parallel

Applications to Hybrid Cloud Environment

Fully parallel execution refers to both parallel execution on multiple remote locations and

simultaneous local and remote execution. In order to decide on optimal offloading plan for

minimizing mobile energy consumption in fully parallel execution model, we need to develop

a model that includes different offloading locations in addition to the effect of component

distribution on application internal behavior. In this section we develop a model for this

purpose. The goal of minimizing mobile battery energy consumption can be extended as

below:

57

min(Application Mobile Energy Consumption) =

max(Energy Saving on Mobile Device) =

max(Total Mobile Energy Saving by remote comp. exec.

− Energy Loss due to local comm. becoming remote comm.

+ Energy Save due to remote comm. becoming local comm.

)

(5.2)

The above extension is based on the fact that all parts of an application has to be executed

locally on the phone, if no offloading is made. The first part of equation 5.2 can be further

extended as below:

Total Mobile Energy Saving by remote comp. exec. =

N∑
i=1

(LocEQ(0,Loc(i, t1)) ∗ (1− LocEQ(0,Loc(i, t2))) ∗ Energy(i))

(5.3)

where Energy(i) is the profiled energy consumption of component i running locally on the

mobile device during the time interval ∆. Note that the first term of the equation considers

only components that are currently on the phone and second term adds the condition that

those element must now be at a remote location. This way energy saving is only counted for

components that have been migrated from the local phone to a remote location. It should

be noted again that our goal is to minimize energy consumption at the mobile device and

not the total energy. Thus, the migration of components between remote locations does not

help with this goal and is not considered in the equation.

The second part of equation 5.2 can also be extended as below:

Energy Loss due to local comm. become remote comm. =

N∑
i=1

(LocEQ(0,Loc(i, t2)) ∗ (1− LocEQ(0,Loc(j, t2))) ∗ ProfiledComm(i, j) ∗ PcommMobile)

(5.4)

where ProfiledComm(i, j) is the profiled amount of communication between components i

58

and j during the time interval ∆ and PcommMobile is the mobile power when communicating.

Note that first term of the equation restrict the summation to components i that will be

local on the phone while the second part limits the problem to components j that will be on a

remote location. As a result, the combined effect it to limit the summation to communication

between components that one will be local on the phone and the other one is in a remote

location.

Similarly, the last part of equation 5.2 can be extended as below:

Energy Save due to remote comm. become local comm. =

N∑
i=1

(LocEQ(0,Loc(i, t1)) ∗ (1− LocEQ(0,Loc(j, t1))) ∗ ProfiledComm(i, j) ∗ PcommMobile)

(5.5)

this will result in the energy saving from components that were previously remote but are

now local on the phone and communicate locally. Note that we are assuming that local

communication is very efficient and ignoring its energy consumption. This is a valid ap-

proximation considering the fact that most local communication is through shared memory

space or reference passing rather than sending the message through network devices.

In terms of required constraints, we have the following restrictions:

subject to :

Loc(i, t1) ∈ LocAllowed(i, t1) : ∀i ∈ [1, N]

Loc(i, t2) ∈ LocAllowed(i, t2) : ∀i ∈ [1, N]

Total Execution time after offloading ≤

β ∗ (Total exec. time for running all comp. locally on phone)

(5.6)

The last constraint guarantees that by offloading components to remote locations to save

local energy, we are not affecting the performance of the application in a way that it becomes

unacceptable. In other words, it allows energy saving as long as a certain service performance

quality is satisfied. The range for β varies from 1.05 to 1.10 for most practical applications.

This is one of the parameters that can be adjusted based on application developer or user

expectations. This restriction can further be extended similar to equations 4.6 and 4.7 as

below:

59

max
0≤L≤M

{ 1

Cores(L)
∗

N∑
i=1

(LocEQ(L,Loc(i, t2))∗

Exec(i, Loc(i, t2)) ∗ JobCount(i)) +

1

B(L)
∗

N∑
i=1

N∑
j=1

(LocEQ(L,Loc(i, t2))∗

(1− LocEQ(L,Loc(j, t2))) ∗ profiledComm(i, j)) } ≤ β ∗ 1

Cores(L)

N∑
i=1

Exec(i, 0))

(5.7)

As mentioned, this last constraint adds some limitation in performance reduction because

of code offloading. This was not a big factor in many of the previous research, as their

formulation based on sequential code gave almost same result for offloading for both energy

saving and performance improvement goals. However, since we are using a full parallel

model, the results from the two optimization goals are very different. This is the main

reason that we added some restriction on how much improving for one goal can affect the

other. A similar restriction can also be added for the case of performance optimization where

we want to limit the mobile energy consumption increase to a certain level.

A big challenge to solving Equation 5.3 is the use of Energy(i). As mentioned, Energy(i) is

the profiled energy consumption of component i running locally on the mobile device. This

requires fine-grained profiling of energy consumption per application component on mobile

device. However, most mobile devices do not provide any tool for direct measurement of

the consumed energy. Almost all previous research in this area rely on external power

meters to measure energy consumption. Although using expensive external power meters

work for experimental settings, we cannot expect end users to carry such a device with

themselves to profile energy consumption of the mobile device. This is a big challenge for

optimizing energy consumption of mobile hybrid cloud applications. Even if the total energy

consumption of the mobile device can be measured, there are multiple applications running

on a mobile device at any time. This requires distribution of the total measured energy

among those applications, which itself is another challenge. Even if this can solved, there

are multiple components within our target application running over times and distributing

energy further among those application components is another big remaining issue. We

discuss these challenges as part of our online monitoring and energy modeling system in

Chapter 6.

60

5.4 Experimental Results

In order to evaluate our assumption in building an energy-based offloading decision-making

mode, we performed several experiments. The remainder of this section discuss the results

of those experiments.

5.4.1 Effect of application type on mobile-cloud offloading decision

Ignoring the cost of offloading and internal communication between different application

components, offloading always results in energy saving on mobile device as long as the remote

server is faster than mobile device. Offloading cost includes the required resources to make

offloading decision, offload the application code to remote server and bringing back the result.

Different applications have significantly different behavior, architecture and characteristics

that can significantly affect the offloading decision. While NQueen components need to

take very limited input data to a remote location, Rotate application requires taking the

entire picture. As a result, energy used by mobile device to offload these components can

become larger than required energy for computation making offloading ineffective. The

result highly depends on the application type and behavior. A computational-intensive

application with high degree of parallelism (e.g. NQueen) can benefit from all the additional

available resources on the remote server and can reach a high offloading speedup. Extensive

I/O operations or communications between different components limits application’s ability

of benefiting from additional available computational resources at the remote server and

reduces the gained speedup (e.g. Rotate and Heat).

5.4.2 Effect of problem size (amount of work) on energy-based
mobile-cloud offloading

Figure 5.1, Figure 5.2, and Figure 5.3 show mobile energy usage, energy saving ratio, and

execution speedup for different amount of work for Image application.

5.4.3 Effect of application parallelism degree on energy-based mobile-cloud
offloading

Figure 5.4, Figure 5.5, and Figure 5.6 shows the effect of application parallelism degree

on mobile energy usage, mobile energy saving ratio and execution speedup resulting from

offloading.

61

Figure 5.1: Energy usage with different amount of work. Mobile energy usage for local and
remote execution of Image Processing application for different amount of work (different
no. of images to process). Note that lower vertical values represent less mobile energy
usage that is desired.

Figure 5.2: Energy saving ratio with different amount of work. Mobile energy saving ratio
for local and remote execution of Image Processing application for different amount of
work (different no. of images to process). Note that higher vertical values represent more
mobile energy saving that is desired.

62

Figure 5.3: Speedup for different amount of work. Execution speedup for local and remote
execution of Image Processing application for different amount of work (different no. of
images to process). Note that this speedup is a side-effect of offloading for maximizing
energy saving on mobile device. Also, note that higher vertical values represent more
execution speedup that is desired.

Figure 5.4: Energy usage for local and remote execution. Mobile energy usage for local and
remote execution of Image Processing application with different degree of parallelism. Note
that lower vertical values represent less mobile energy usage that is desired.

63

Figure 5.5: Energy saving ratio for local and remote execution. Mobile energy saving ratio
for local and remote execution of Image Processing application with different degree of
parallelism. Note that higher vertical values represent more mobile energy saving that is
desired.

Figure 5.6: Parallelism and speedup for local and remote execution. Execution speedup for
local and remote execution of Image Processing application with different degree of
parallelism. Note that this speedup is a side-effect of offloading for maximizing energy
saving on mobile device. Also, note that higher vertical values represent more execution
speedup that is desired.

64

CHAPTER 6

MONITORING APPLICATION COMPONENT
ENERGY CONSUMPTION

In this chapter we discuss our monitoring system. The offloading decision model developed

in Chapter 5 shows the need for fine-grained component based energy consumption of mobile

applications. While many of the required run-time usage parameters can be directly col-

lected or measured using underlying operating system, e.g. using procfs/systemfs or different

existing sensors on the mobile device, most of mobile devices do not provide any tool for

direct measurement of existing or consumed energy. Even if total energy consumed on the

mobile device can be measured, multiple applications are running on the phone at different

times and distribution of energy among different applications is not known. Different appli-

cations consume significantly different amount of energy and total energy cannot simply be

equally distributed among them. This requires development of an energy estimation model

that uses different mobile hardware component usage to estimate total energy consumed on

the phone. Even when energy consumption of individual applications is known, distribution

of that energy among different components of the application remains as a challenge.

Resource limitations of mobile devices imply that any monitoring system should be light

weight and energy efficient. The proposed monitoring system for application component

energy consumption compromises of tow parts. The first part estimates energy consumption

per applications and the second part provides fine-grained energy consumption per applica-

tion components.

6.1 Energy Consumption of Applications

The accuracy of application-level energy consumption relies on energy estimation model

using hardware usage. In this section, we first explain our design of energy estimation model

and then clarify how such a model can be calibrated for different mobile devices without

using any external measurement tool.

65

6.1.1 Development of the Energy Estimation Model

While many previous energy models have been developed as a black box relying on assumed

relationship between processor energy consumption and other hardware energy consumption,

our energy estimation model considers different hardware components independently and

predicts total consumed energy based on information of different component states and

their energy consumption. It has already been shown that maximum error resulting from

considering independence for individual component energy consumption results in less than

6 percent error [44]. As a result, a sum of independent component-specific energy estimates

is sufficient to estimate system energy consumption. Using a linear energy model, energy

consumption of each application can be defined as Equation 6.1 [52]:

Ej =
M∑
i=1

(βi ∗ uji ∗ t
j
i) (6.1)

where Ej is the energy consumption of application j, βi is the power coefficient of hardware

component i, uji is the hardware component i usage by application j, and tji is the active

usage duration of hardware component i by application j. For every application j, the

equation goes over all different hardware components of the mobile device and calculates the

energy consumption on that hardware component for that application. Assuming that energy

consumption of different hardware components are independent and that mobile device has

M different components, Ej shows the total energy consumption for a specific application.

Note that the accuracy of Ej is affected by correct measurement of βi, u
j
i , and tji [52]. tji can

directly be measured using system clock and processor utilization per applications. uji can

also be directly measured using Android operating system profiled data. The only remaining

part is βi that varies significantly for different mobile devices. βi is usually measured using

external power measurement tools in laboratory and is part of the energy model generation

process. We will discuss methods to generate βi without using any external device in the

next section. for this section, we assume that βi coefficients are known.

Knowing energy consumption of different applications allows estimating total mobile en-

ergy consumption, Equation 6.2.

E =
N∑
j=1

Ej + (Pbase ∗ D) + ε (6.2)

where E is the total energy consumption of the mobile device, Ej is the energy consumption

of application j, Pbase is the base power consumption on the mobile device, D is the device’s

power-up duration, and ε is the noise energy that cannot be estimated from the model. It is

66

assumed that N different applications are running on the mobile device during time interval

D.

Among all different hardware components available on a mobile device, only a few of them

consume most of the total energy [44, 52]. In our model, we considered processor, screen,

WiFi, cellular, GPS, audio hardware components as the main sources of energy consumption

on the mobile device. Using energy models proposed by [42] [44], [52], [107], [108] and [53],

we developed an energy estimation model for mobile devices summarized in Table 6.1.

As mentioned before, our energy estimation model includes energy consumption from

CPU, screen, GPS, audio, Wifi, and cellular modules. Coefficients for different modules

capture relationship between each component state and power consumption of the hardware

component. These required coefficients are typically calculated using an external power

measurement tool and a calibration program that changes component activity state while

keeping all other component states constant. Since processor has to be on while other compo-

nents are working, processor should be the first component to study. Knowing the processor

energy consumption in different states allows excluding energy consumption of CPU from

other hardware components when studying different mobile components. Processor energy

consumption of an application depends on processor frequency and utilization. Processor

parameters can be changed independently from other components while keeping all other

components turned off. Thus, it is relatively straight forward to build the power model for

processor using an external power meter. For other hardware components, we measure the

total energy consumption and then exclude processor energy consumption using the previous

CPU energy model. A good example is WiFi module. WiFi cannot work without processor

being turned on. Thus, any measurement of energy will include both processor and WiFi

component and we need to monitor the state of both hardware components in order to build

an energy model for WiFi module. Previous research in this regard [42, 44, 52, 107, 108, 53]

have already found important states for different hardware components. GPS module energy

consumption is mostly affected by whether GPS module is on or off. Other state factors,

such as number of detedcted satellite or received signal strength, are of secondary impor-

tance and can be ignored. For WiFi module, the state of the WiFi component is the critical

factor. WiFi state can be high power, resulting in higher energy consumption, or low power.

The effect of other factors, such as data rate, channel rate, no of packets transferred, are

of secondary importance and automatically included in the WiFi state by the operating

system. As a result, we only need to include the WiFi state in our power model. Cellular

module energy consumption is governed by four main states: off, idle, shared channel, and

dedicated channel. In idle state, cellular module only receives paging messages and does not

transmit any data. When data needs to be transferred, depending on the rate of data to be

67

sent, the module will use one shared channel for all applications or one dedicated channel for

each application. As a result, the effect of all factors, such as data rate, up-link queue size,

down-link queue size, are automatically considered by the operating system in the module’s

channel state. Audio module power consumption is governed by whether audio component

is on or off. The volume has negligible effect on power consumption and is ignored.

6.1.2 Calibration of the Energy Estimation Model

The power models developed in previous section are device dependent and the resulting

energy models significantly vary for different types of mobile devices. Even mobile devices

having the same processor and screen hardware components can have power variations up

to 62% [44, 49]. This requires significant amount of manual work to generate an energy

estimation model for each new mobile device and puts creation of energy models behind

release of new mobile devices. As a result, we focused on developing a calibration solution

that allows building energy estimation models for different mobile devices without requiring

any manual work or use of any external power measurement tool.

Mobile devices are capable of showing the remaining amount of battery as a percentage

of the total. This is possible by knowing characteristics of Lithium-Ion batteries, that are

currently used on all mobile devices. Lithium-Ion batteries are popular because of the

their high energy-to-weight ratio, long service lifetimes, and low self-discharge currents [44].

One of the main characteristics of Lithium-Ion batteries is that their voltage drops during

discharge and is related to the remaining amount of charge on the battery. Since most mobile

devices are already equipped with voltage sensors to be able to use this Lithium-Ion battery

characteristic and report the remaining battery charge, we can also use the existing voltage

sensor to measure energy consumption on the phone resulting from different activities.

Figure 6.1 shows the trend of remaining battery charge and battery voltage for our ex-

perimental mobile device over time while the mobile is put in a constant state using full

processing power to perform computations. It can be seen that both measured voltage and

reported remaining battery charge are reduced over time, though at different rates.

In order to reveal the relationship between battery voltage and reported remaining battery

charge, we can use figure 6.2. It reveals that when remaining battery charge decreases from

100% to 0%, the battery also drops from around 4 volts to 2.85 volts. Knowing this voltage-

charge curve allows measuring what percentage of battery capacity used during specific

period of time using measured voltage at the beginning and end of the time period.

In order to calculate average power consumption during time interval [t1, t2], we can use

68

Figure 6.1: Trend of remaining battery charge and battery voltage changes over time. It
can be seen that both graphs decrease monotonically over time.

Equation 6.3.

P ∗ (t1 − t2) = E ∗ (Cv1 − Cv2) (6.3)

where P is the average power consumption during time interval [t1, t2], E is the total energy

capacity of the battery, Cv1 is remaining battery charge at time t1, and Cv2 is remaining

battery charge at time t2. By knowing the percentage of remaining battery at start and end

of the time interval, we can calculate what percentage of the total battery energy is used

during the time interval.

Knowing average power consumption for different time periods, we use a calibration soft-

ware to put different mobile hardware components in different states for fixed amount of

time and measure the total energy consumption during that time interval. Having the total

energy consumption at different states of a specific hardware component, we can calculate

the required energy coefficient, β, for that component to build the energy estimation model

explained in previous section. Figure 6.3 summarizes different steps required to find the

required hardware component energy consumption coefficients and calibrate the energy es-

timation model. The reason to put mobile device in low power state for 1 minute before

each coefficient measurement is to eliminate the impact of the voltage drop across the bat-

tery internal resistance [44]. The selected period (15 minutes) is long enough to exceed any

potential noise in change of the battery voltage. Previous research have already proved the

practicality of this approach and experimental results revealed error less than 1% compared

to manual measurement of component hardware energy coefficients [44, 49]. Thus, battery-

based automatic power model is as accurate as meter-based power estimation models. Also

69

Figure 6.2: Trend of battery voltage and AndroidSalsa consumed Energy changes versus
remaining battery charge

evaluation results show that there is 1% error using manual power estimation models for

intervals of 10 seconds. Similarly, error resulting from automatic power estimation models is

4% [44, 49]. Thus, automatic power estimation models are accurate enough for our purpose

of estimating energy consumption of different applications.

Figure 6.3 shows experimental result for estimating energy consumption of different ap-

plications compared to total energy consumption by mobile device. We specifically focus on

AndroidSalsa, which provides a SALSA actor environment for running our mobile applica-

tion. We also profiled the energy consumed by AndroidSalsa applicaiton on communication

by considering only components dedicating to communication, WiFi and Cellular modules.

It should be added that both energy capacity of a Lithium-Ion battery and the charge/dis-

charge curve for it can change with discharge current, temperature, and battery age [44, 52,

49]. These factors can potentially affect the accuracy of the generated energy estimation

models. In fact, the total energy capacity that we used in our calculations is for a brand new

battery. Fortunately for our specific application, the absolute total energy is not important

but instead the relative difference of energy values between different applications and differ-

ent application components is important. Moreover, the change of total energy in normal

range of temperature, 73 to 78 degrees of Fahrenheit, is very limited (less than 4% by one

estimate [44]). It is only for extreme temperatures or significant temperature changes that

the effect of that on total energy and energy-voltage discharge curve becomes significant.

Finally, there are two solutions to generate an energy estimation model automatically: i) run

the entire calibration code once completely in order to put different hardware components

into different states for 15 minutes and measure the energy consumption and find related

70

Figure 6.3: Required steps to calibrate the energy estimation model. Steps required to find
the required hardware component energy consumption coefficients and calibrate the energy
estimation model.

coefficient. This will take a few hours and will consume around one charge of battery. ii)

have an online database and gradually collect energy usage of different components at dif-

ferent states from different users using the same phone model. This prevents the initial wait

time and consumes less energy for calibration. Fortunately, the energy estimation model

only needs to be created once for each mobile device model and any of the two mentioned

method can easily be used to generate it.

6.1.3 Experimental Result

In order to evaluate the accuracy of our generated model, we uses an external power meter

to monitor instant power of the mobile device. We removed the battery and connected the

mobile device to an external source of energy and set the voltage to a fixed value 3.6 volts

while allowing current to be changed. Figure 6.5 shows the result from our energy estimation

model and the measured values for instant power. It can be seen that error range varies

around 10%. Considering the fact that this is the instant power changing rapidly, the result

71

Figure 6.4: Energy profiling per application results. Energy consumption of all running
applications on the mobile device, Android Salsa application, and Communication
resulting from Android Salsa over time

is within the accuracy that we expect from the model.

Figure 6.6 shows the result for total energy consumption from our energy estimation model

and manual measurement. It can be seen from the graph that the two curves follow each

other and the resulting average error of 13% is within the acceptable range.

6.2 Fine-grained Energy Consumption of Application Components

In this section we provide a method to attribute aggregate application energy consump-

tion, measured using generated energy consumption model, to individual application com-

ponents. Let’s assume that application under consideration has N different components

C = c1, c2, ..., cN . Total energy used by a specific application during time interval ti is Ei

and can be represented as:

E =
N∑
k=1

nck ∗ Eck (6.4)

72

Figure 6.5: Estimated and measured powers. Estimated instant power resulting from the
energy consumption model compared to instant power directly measured using external
power meter.

Figure 6.6: Estimated and measured energy. Estimated energy calculated using generated
model compared to total energy directly measured using external power meter.

73

Table 6.1: Power estimation model for different mobile hardware components

Component Energy Estimation Model

CPU

PCPU = βCPU
freq ∗ util + βidle

freq

util: processor utilization, 0 ≤ util ≤ 100
freq: Frequency index, 0 ≤ freq ≤ n, n max mode of CPU freq.

βCPU
freq : processor coefficient for different freq.
βidle
freq: processor coefficient for idle state

Screen

PScreen = αLCD ∗ βLCD
br ∗BRbg + (1− αLCD) ∗ βLED

br ∗ (
∑
BRpx)/PX

αLCD = 0, 1, specifies LCD or OLED (AMOLED)
BRbg: brightness background in LCD

BRpx: brightness current pixel for OLED
PX: total no. of pixels on screen
βLCD
br : screen coefficient for LCD

βLED
br : screen coefficient for OLED or AMOLED

GPS
PGPS = αGPS ∗ βGPS

αGPS = 0, 1; specifies whether GPS is on or off
βGPS: GPS module energy coefficient

WiFi

PWiFi = αLow
WiFi ∗ βLow

Wifi + αHigh
WiFi ∗ β

High
Wifi

αLow
WiFi = 0, 1, specifies whether Wifi is in low state
βLow
WiFi: WiFi energy coefficient for low state

αHigh
WiFi = 0, 1, specifies whether Wifi is in high state

βHigh
WiFi: WiFi energy coefficient for high state

Cellular

PCell = αidle
cell ∗ βidle

cell + αshCH
cell ∗ βshCH

cell + αdCH
cell ∗ βdCH

cell

αidle
cell = 0, 1, specifies whether Cellular module is in idle state
βidle
cell : cellular module energy coefficient for idle state

αshCH
cell = 0, 1, specifies whether Cellular module is in shared channel state
βshCH
cell : cellular module energy coefficient for shared channel state

αdCH
cell = 0, 1, specifies whether Cellular module is in dedicated channel state
βdCH
cell : cellular module energy coefficient for dedicated channel state

Audio
PAudio = αAudio ∗ βAudio

αAudio = 0, 1, specifies whether audio module is on or off
βAudio: Audio module energy coefficient

74

CHAPTER 7

FLEXIBLE POLICY-DRIVEN RESTRICTIONS FOR
PRIVACY, BUDGET LIMITATION, AND

EXECUTION QUALITY OF MOBILE HYBRID
CLOUD APPLICATIONS

While having an automatic framework for dynamic offloading of mobile application com-

ponents to multiple cloud resources is great for maximizing application performance or

minimizing mobile energy usage, it cannot be directly applied to all applications. Many

organizations, developers, or users benefiting from cloud resources have certain additional

requirements, expectations, and policies in terms of how different private or public cloud

resources can be used by a mobile application. Without having enough flexibility in the

offloading framework to address these additional requirements, many users will not be able

to benefit from the cloud resources. In this section, we look at some of these additional

requirements, define the required grammar to define policy, and explain how the framework

can be customized to address them.

7.1 Defining Privacy for Mobile Hybrid Cloud Applications

One of the primary goals of our proposed framework is to mask the unnecessary details of

distribution and move-around of application components from the programmers, while access

to different resources and move-around of sensitive or confidential components resources are

still restricted based on required policies. This requires the framework to follow authorization

rules defined by the organizations, developers, or users. Elastic application components on

the cloud should adhere to the property of least privileges. Which permissions a component

might have may depend on its execution location, application requirements, or user concerns.

Implicit access to device resources may require additional scrutiny when the component

is no longer running local to the device [30]. A comprehensive security solution requires

authentication, access control, and audition. There has been significant amount of work

on authentication and audition for cloud applications in the past and the existing solutions

are mature enough to address most applications [30, 109, 110, 111, 112, 112]. While our

work primarily focuses on building the transparent connection between mobile device and

different cloud resources, privacy of user and applications is of prime importance. As a result,

75

in this section, we explain our approach for adding policy-based privacy to our framework

for restricting the accesses, actions, and move-around of components.

7.1.1 Design of the Authorization System

Our main design goal is to provide a fine-grained authorization system for application com-

ponents moving between mobile device and different public and private cloud spaces. Using

entities defined in Chapter 3, organization, developers and end-users, we want to enable

organizations to enforce a organization-wide policy while developers and end-users can fine-

tune it. Organization is the primary owner of the data and resources and must be able to

keep private and public cloud components separate from each other and define an overall

policy in terms of resource usage for different users or different applications. Based on this

definition, policy must initially be defined as a high-level organization-wide guideline spec-

ifying the restrictions for different applications and users. In addition, specific applications

might also need to further tighten these organization-wide policy rules. End-Users or pro-

grammers must also be able to further restrict resource usage and component distributions

for specific applications. As a result, our framework supports two types of policies: hard

policy and soft policy.

Hard policy refers to organization-wide authorization rules defined per user or application

by the organization. Users includes different developers inside the organization in addition

to external clients. On the other hand, soft policy refers to application-specific authoriza-

tion rules defined in addition to the organization-wide hard policy. Despite the fact that

these two types of policies have complementary roles in increasing system flexibility, soft

policy can only tighten the organization-wide policy and not vice versa. In other words, if

the organization-wide hard policy allows a specific user or a specific application to access

resources A and B, soft policy can only further restrict the access to one of the resources A

or B and can never loosen the restrictions by allowing access to a new resource such as C. As

a result, hard policies are pre-defined by a central authority, here the organization, and can

effectively be used to implement corporate-wide authorization policy for different users or

different application. Additionally, soft policies are defined based on the specific needs of the

application or user. This perfectly aligns with our initial goal of separating the restriction

policy definition from the application logic. Organization defines in advance its hard policy

for different applications and users based on its overall goals and characteristic of its cloud

architecture. Programmers, working within the organization, later define the application

logic without worrying much about compromising the pre-defined organization-wide policy.

76

The principle of separation of concern is further extended to the developed application by

requiring programmers or end-users to specify their arbitrary application-specific restriction

rules separate from the program logic and as a soft policy.

Each developed application is used by one end-user. We call each application used by one

user as an application instance. Each application instance can have two policy with it: a

non-modifiable hard-policy, a modifiable soft-policy. Each application instance initially au-

thenticates itself with a Policy Manager Machine (PMM) and receives a locked unchangeable

hard-policy that defines organization-wide authorization rules defined by the organization.

Each organization can define its authorization policy as one policy for all users, one policy

for all applications, one policy per application, one policy per per user, or one policy per

application instance. At the end, each application instance can acquire one locked hard pol-

icy from the policy manager machine. In addition, each application instance can have one

soft-policy. Developers can define the initial soft-policy per application or per application

instance. They can also allow end-users to change all or part of this soft-policy through

the application. Thus, end-users can modify soft-policy through application, based on rules

defined by the developers. At the end, each application instance can have one soft-policy in

addition to the locked hard-policy. We follow XACML usage model [93] and assume a Policy

Enforcement Point (PEP) as part of our elasticity manager. PEP is responsible for protect-

ing authorization rules, sending a request containing description of the attempted action to

a Policy Decision Point (PDP) for evaluation against available hard and soft policies. The

PDP evaluates the requested action and returns an authorization decision for the PEP to

enforce.

As was mentioned before, our cloud application consists of distributed components storing

data or performing computation and scattering between cloud spaces and end-user device.

As a result, our authorization framework needs to be able to apply the restriction rules at

the granularity of actors. It still allows defining those rules at higher-level entities, such

as groups or sets of actors, but it recursively propagates all those specified authorizations

(permissions or denials) to all actors contained within that set at run-time. This makes it

easy to specify authorizations holding for a larger set of actors (on the whole system in case

ALL is used) and have it propagated to all the actors within that set til stopped by an explicit

conflicting restriction rules (Damiani et al. 2002, Jajodia et al. 2001, Lunt 1989). Actor

frameworks allow multiple actors to be placed together in a container, called actor-System

or theaters, to share common attributes. We respect this structuring in our grammar and

allow authorization rules to be defined on actors, actor-systems, set of actors (called Group),

set of actor-systems (called Location), or subset of multiple actors and actor-systems (called

Selection).

77

There is a significant distinction between traditional access control systems and our pro-

posed authorization model. While access control models restrict access to different compo-

nents or resources, our mobile hybrid cloud framework provides more than access restriction.

Actor programming paradigm allows an actor to send and receive messages, create new ac-

tors, or migrate to new locations. As a result, our authorization grammar must allow defining

rules regulating all these actions. Note that these actions are usually bidirectional, meaning

that if actor 1 is allowed to send to actor 2, then actor 2 must also be allowed to receive from

actor 1 in order for the policy to be consistent. If any of these two actions are not explicitly

allowed as part of the policy, the framework automatically rejects both actions, as they will

always happen together.

7.1.2 Mobile Hybrid Cloud Authorization Grammar

Authorization decisions are made based on the attributes of the requester, the resource, and

the requested action using policy-defined rules. As a result, definition of our authorization

policy is composed of defining the authorization entities and their required attributes in

addition to defining rules and desired rule-orderings. In this section we will look at the

required grammar to define these. Note that any new definition of a grammar is surrounded

by curly braces ”{ }”, sequence of elements are separated by comma ”,”, optional entities are

surrounded by the brackets ”[]”, and choices are separated by vertical bar ” — ”. Moreover,

every definition in our grammar must have a unique name working as its identifier throughout

the entire policy.

Authorization-Related Entities

As mentioned earlier, our cloud application model consists of components called actors stor-

ing data or computational code. Based on this view, actors are the smallest entities in our

programming model and thus, the finest granularity on which we can define access restriction.

In order to provide location transparency, multiple actors running on one instance of JVM

on one machine are placed inside a container, called actor-system, or Theater as in SALSA.

Actor-systems main task is to mask the underlying details of calling remote actors, migrating

actors to remote locations, enforcing authorization rules, and dynamic management of actor

distribution. Our grammar supports both actors and actor-systems and Table 7.1 below

shows the definition of these entities.

Every actor is defined by its related reference, logical path to reach the element at run-

time environment, in addition to its containing actor-system. Authorization framework uses

78

Table 7.1: Definition of authorization-related entities

Entity Definition

Actor

{Name,
Static (Reference, ActorSystem) |
Dynamic ([Reference], [ActorSystem]),
Quality([Quality-Level] | [(ActorSystem,Quality-Level)]) }

ActorSystem
{Name, Static (URL, Port) |
Dynamic ([URL], [Port]),
Budget-Type (UNLIMITED | FIXED | RATE), Budget}

AnonymousActors
{Name, Ref-ActorSystem | ALL,
Existence (ALLOWED | FORBIDDEN),
Limitation (LIMITED | UNLIMITED), max-number}

AnonymousActorSystems
{Name, URL | ANONYMOUS-URLs,
Creation (ALLOWED | FORBIDDEN),
ActorSystem-Limitation (LIMITED | UNLIMITED),
max-number-of-ActorSystems,
Actors-per-ActorSystem-Limitation(LIMITED|UNLIMITED),
Max-Number-of-Actors-per-ActorSystem}

these attributes to bind actors defined in the policy to real-world application components.

Both static and dynamic bindings are supported with static type using fixed known actor

reference and actor-system to bind an actor definition to its related run-time component,

while dynamic type acting as a placeholder for an actor not fully known at the time of

writing policy file. Note that actor-system property of an actor definition uses the name of

an already-defined actor-system as an ID to reach it.

Table 7.1 also shows rule for defining an actor-system. In our grammar, every actor belongs

to an actor-system. Actor-system is defined by specifying its related URL/IP address and the

listening port number. Since more than one actor-system can run in one JVM on a specific

machine, both URL and port numbers are needed to connect to different actor-systems

running on the same machine. Most actor frameworks allows using actor-systems URL and

port number to interact with remote actors. However, they usually provide communication

optimization for local communication between actors running on the same JVM. While actors

are extremely lightweight and many of them can efficiently be executed within one actor-

system on a normal machine, actor-systems are usually not as lightweight as actors. Actor-

systems usually need to provide a thread-pool for the use of actors, perform bookkeeping

operation for messages being transmitted between actors, and properly schedule the actors.

Fortunately, the use of actor-system hides all these underlying details from the programmer

or the authorization policy writer.

79

Explicit actor and actor-system definitions can be used to define entities for application

or resources with known architecture. A good example is defining a specific actor as the

gateway to a public cloud space. Since organizations know the architecture of their cloud

spaces, specific actors from these spaces can be selected, defined as an entity, and later

used by rules defining the required gateway access restrictions. On the other hand, details

of the to-be-developed applications are unknown at the time of writing organization-wide

policy. In order for our grammar to be able to control the existence and activities of these

to-be-developed application-specific components, anonymous types of entities are defined as

part of the proposed grammar. Anonymous-actor rule allows restricting the creation and

number of unknown actors in a reference-actor-system. Similarly, anonymous-actor-system

rule allows controlling the creation and the number of unknown actor-systems, in addition to

potential unknown actors to be placed in them. Using specific URL/IP restricts the actor-

system creation on a specific machine while using anonymous-URL generalizes the definition

to any unknown machines. Moreover, limitation can also be placed on the number of such

actor-systems, in addition to the number of actors to be created on them.

7.1.3 Grouping, Selection, and Binding

Although definitions of Table 7.1 can be used to define individual actors and actor-systems,

in many cases it is easier to group several entities and treat them as one. Table 7.2 presents

required grammar to support grouping. Group definition puts several actors together into

one virtual container and allows placing both known actors and unknown anonymous-

actors together into one group. Location provides the same grouping functionality but for

actor-systems. One or several previously defined actor-systems, locations or even unknown

anonymous-actor-systems can be placed into one container location entity.

Instead of specifying individual entities to form a container, selection definition can be

used to pick entities based on a condition. It starts with the initial set defined by the from

field and removes entities having a specific attribute condition defined by using attribute

names, types, values and operators.

Previously defined sets can be combined and modified using the set-operation definition.

This modification includes adding/removing object entities to/from subject set in addition

to intersecting/combining subject and object sets. Set-operation evaluation is performed at

the run-time and its result depends on existing bound run-time entities. As an example, the

result of executing a set-operation requesting to add all anonymous-actors to group1 will

depend on the run-time actors defined by the application and belonging to the anonymous-

80

Table 7.2: Definition of authorization entity grouping, selection, and binding

Entity Definition

Group
{Name, Actors | Groups | AnonymousActors |
ALL (Actors | AnonymousActors)}

Location
{Name, ActorSystems | Locations | AnonymousActorSystems |
ALL (ActorSystems | AnonymousActorSystems)}

Selection

{Name, From (Actors | ActorSystems |
AnonymousActors | AnonymousActorSystems | Groups |
Locations), Condition (Attribute-Name, Attribute-Type,
Condition-Operation (== | != | ≥ | >| ≤ | <|
HAVE | NOT-HAVE | CONTAIN | NOT-CONTAIN),
Attribute-Value) }

Set-Operation

{Name, Subject (Actors | ActorSystems |
AnonymousActors | AnonymousActorSystems | Groups |
Locations | Selections | ALL),
Object (Actors | ActorSystems | AnonymousActors |
AnonymousActorSystems | Groups | Locations | Selections | ALL),
Operator (UNION | INTERSECTION | ADD | REMOVE) }

Assignment

{Name, Actors (Reference-Actor-Name,
Actor-Reference-Value, ActorSystem-Value) |
ActorSystems (Reference-ActorSystem-Name, ActorSystem-URL-Value,
ActorSystem-Port-Value) }

actors entity.

In order to bind previous dynamic actors and actor-systems to specific run-time compo-

nent, assignment definition can be used. Any remaining unbound dynamic actor or actor-

system is in passive state and will be ignored while enforcing the policy. Assignment defi-

nition can then be used to bind them to specific actors or actor-systems and change their

passive state to active at any time.

7.1.4 Policy Description

The main goal of writing a policy file is to define required authorization rules on actions

among distributed application components, known as actors. Previous defined grammar

allows defining entities and grouping or selecting them that is a pre-requisite for defining

restriction rules. Table 7.3 shows the required defining grammar for expressing authorization

rules and specifying their enforcement ordering.

Each rule definition regulates one action from subject entities to be performed on object

entities. Actions include all allowable actions within an actor framework: sending, receiving,

81

Table 7.3: Definition of authorization rules and their enforcement ordering

Entity Definition

Rule

{ Name, Subject (Actors | ActorSystems | AnonymousActors |
AnonymousActorSystems | Groups | Locations | Selections | ALL),
Object (Actors | ActorSystems | AnonymousActors |
AnonymousActorSystems | Groups | Locations | Selections | ALL),
Actions (SEND-TO | RECEIVE-FROM | MIGRATE-TO |
BE-MIGRATED-FROM | CREATE-AT |
BE-CREATED-AT-BY | ALL),
Permission (ALLOWED | DISALLOWED) }

Rule-Order

{ Name, Subject (Actors | ActorSystems | AnonymousActors |
AnonymousActorSystems | Groups | Locations | Selections |
Rules | ALL),
Object (Actors | ActorSystems | AnonymousActors |
AnonymousActorSystems | Groups | Locations | Selections |
Rules | ALL),
Order (PRECEDENCE | SUBSEQUENCE) }

migrating, and creating. This allows regulating actions, move-around, and communication

between actor components of a mobile hybrid cloud application.

Since defined rules are not all equally important, rule-order definition allows prioritizing

specific rules to give them precedence or sub-sequence order over one or several other rules.

This highly affects the authorization evaluation result and is one of the most important

issues of defining a comprehensive policy.

7.1.5 Policy Evaluation

In a mobile hybrid cloud framework with authorization restrictions, every requested action

by the subject has to be approved by the authorization framework before being performed

on the object. To make a decision, authorization system has to evaluate the defined policy

rules. However, it is possible for different policy rules to contradict each other, as rules

are human-defined by different parties, organization and developers, at different times, at

different levels, and for different purposes. Moreover, our framework supports both posi-

tive (permissions) and negative (denials) access rules. The reason for having both positive

and negative authorizations is to provide a simple and effective way to authorization rules

applicable to different sets and groups of actor components with supports for exceptions.

Having both permission and denial rules further complicates the development of a compre-

hensive conflict resolution strategy. As mentioned earlier, our framework prioritizes hard

82

policy rules, defined at a higher level by the organization, over soft policy rules, defined by

programmers for individual applications or instances. Prioritizing hard policy restriction

rules over soft policy rules allows resolving any potential conflict between hard and soft

policies. However, it is still possible for one type of policy to internally have contradicting

rules. Although our grammar allows policy makers to explicitly prioritize some of the action

control rules over others within a specific policy, our conflict resolution policy is designed to

always prioritize action denials over permissions in case of any remaining ambiguity between

two contradicting rules. Furthermore, our framework follows a closed action control system

model by rejecting any request from a user without an explicit policy rule permitting the

action. In other words, in case of no explicit rules allowing an action, the framework simply

denies it.

Every authorization rule can be summarized as a five-tuple of the form <Subject, Object,

Action, Sign, Type >. Subject and object are the entities between which the specific action is

being restricted. Sign can be allowance (+) or prohibition (-) and Type covers hard policy (H)

or Soft policy (S). In order to decide on any requested action, the authorization system has

to process rules in a meaningful way from the most prioritized one, usually the most specific

rule, to the least prioritized one, the most general one. Based on our conflict resolution

policy of prioritizing denial over contradicting allowance, the rule processing sequence can

be ordered as below:

1. Hard explicit prohibition rules

2. Soft explicit prohibition rules

3. Hard explicit allowance rules

4. Soft explicit allowance rules

5. No explicit rules defined

For every requested action, the rules have to be processed in this order and the decision

can be made as soon as a matching rule is found. However, as can be seen, this does not

include the user explicit requested rule ordering. The revised ordering sequence based on

user specific rule-orderings can be seen below:

1. Unordered hard explicit prohibition rules

2. Unordered soft explicit prohibition rules

3. Ordered hard explicit allowance/prohibition rules

83

4. Ordered soft explicit allowance/prohibition rules

5. Ordered/unordered hard explicit allowance rules

6. Ordered/unordered soft explicit allowance rules

7. No explicit rules defined

In order to evaluate the rules in the sequence defined above, we can stop at the first

governing rule when processing categories 1, 2, 5, and 6. In other words, if there is any

unordered explicit prohibition rule (categories 1 and 2) or no explicit governing rule (category

7), we simply reject the action. If there is any ordered/unordered explicit allowance rule,

the action is accepted (categories 5 and 6). However, for ordered allowance and prohibition

rules, we cannot stop at the first governing rule and we need to process them all before

accepting or rejecting an action. This category of rules (3 and 4) forms a directed graph

where nodes are the subjects and objects of the rule definitions connected by directed edges

showing the direction of the defined priority, precedence or subsequence. In order to evaluate

them, we need to do a level-order traversal on the graph. Obviously, the graph needs to

be a directed acyclic graph (DAG) in order to prevent any inconsistency between governing

rules. As a result, our framework first checks the graph and notifies the user in case of

any cycle. However, in order to make a decision, not all the levels of the graph have to be

traversed. A decision can be made as soon as one level is completely traversed and at least

one governing rule is found. If no governing rule is found, then the next level has to be

completely traversed. Decision can be made at the end of complete traversing of any level,

if at least one governing rule is found. Algorithm shows the pseudo-code of rule evaluation

algorithm for different categories of rules:

7.1.6 Implementation of the Policy-based Authorization System

In order to simplify the process of defining authorization policy and transferring it between

different platforms, policies can be defined as XML documents, that will be validated ac-

cording to a designed schema. Figure 7.1, Figure 7.2, Figure 7.3, and Figure 7.4 show parts

of such validation schema tree and the related XML Schema Design (XSD) file. Both or-

ganization and application policies are presented as labeled tree containing a node for each

element, attribute, and value associated with fixed attributes. There is an arc between an

element and an element/attribute belonging to it, labeled with the cardinality of the rela-

tionship, and between a fixed attribute and each of its value(s). Note that since elements and

84

Algorithm Pseudo-code for rule evaluation algorithm

bool Policy Eval(Subject s, Object o, Action a) {
for all rulesr ∈ categoriesa&b do

if r.action.contains(a) &&
r.subject.contains(s) &&
r.object.contains(o) then

//note: an action has to be disallowance to be placed in categories a & b
return false

end if
end for
for all categoriesi ∈ categoriesc&d do

for all leveljoflevelorder traversal(graph(categories(i).rules)) do
bool matching rule found = false;
bool matching rule result = false;
for all rulesrdefinedatlevelj do

if r.action.contains(a) &&
r.subject.contains(s) &&
r.object.contains(o) then

if !matching rule found && r.permission.equalsIgnoreCase(”Allowance”) then
matching rule result = true

end if
matching rule result = true

end if
end for
if matching rule found then

return matching rule result;
end if

end for
end for
for all rulesr ∈ categoriese&f do

if r.action.contains(a) &&
r.subject.contains(s) &&
r.object.contains(o) then

//note: an action has to be allowance to be placed in categories e & f
return true

end if
end for
//closed authorization system rejects any action not explicitly allowed:
return false;

85

Figure 7.1: Policy schema tree

attributes defined in a policy file may appear in an XML document zero (optional elements),

one, or multiple times, according to their cardinality constraints, the structure shown in the

Figure 7.2 is not rigid. Different authorization policy files may differ in the number and

structure of elements.

All our grammar definitions are further translated to XML schema design format and

stored in an XSD file that is used to validate any user-defined policy file before use. Figure

2.a and 2.b below shows a sample definition of actor entity grammar in the tree and xsd

format. Other definitions are also defined in a similar way but more complex and are skipped

here to save space.

7.1.7 An Example

This section presents how the proposed authorization grammar can be used to construct

required policies for one of our benchmark applications, Image or image processing appli-

cation. Details of the implementation of the Image problem was explained in Chapter 3.

86

Figure 7.2: Part of policy schema definition as XML schema design file (xsd)

Figure 7.5 shows a summary of different modules involved in Image application.

In order to respect the privacy of the clients and prevent potential vulnerabilities of storing

private data on third-party machines, the owner organization breaks down the database of

all known faces into two main categories: i) faces that are publicly known and contains

no sensitive or confidential information and can be stored on public cloud space. ii) faces

that contains sensitive or confidential information and should never be placed on third party

machines even if encrypted. In order to make this more interesting, different subcategories

are also considered for each main category. Let’s assume that the goal is recognize people

entering the country at an airport through image processing of photos taken by security

officers at the airport. Based on this scenario, the two main categories for database of

known faces include known criminals whose faces are publicly announced and normal people

and citizens whose face should not be stored on any third party machines. Furthermore,

faces of known criminals are divided into international criminals and national criminals.

Similarly, faces of normal people are divided into citizens, permanent residents and people

with visa. Figure 7.6 shows these databases and their storage on different public and private

cloud spaces.

As can be seen in Figure 7.6, DB1 stores faces of citizens, DB2 stores faces of permanent

residents, and DB3 stores faces of people with visa. Similarly, DB4 stores faces of interna-

tional criminals and DB5 stores faces of national criminals. Image processing application

87

Figure 7.3: Actor entity attributes tree

allows comparing a picture taken by phone with these databases and recognize the people in

the photo. The main design goal of developing an authorization policy for this application is

to keep private confidential data, normal people databases, separate from unauthorized users

and provide different levels of restrictions for different types of users ranging from security

officers, who has access to all databases, to normal airport staff, who should only be able to

recognize criminals.

Authorization Policy Development Process

In the following, we briefly present how to use the proposed grammar in building the re-

quired authorization policy instance for image processing application. In addition to the

authorization goal of restricting access of different users to the private and public cloud

spaces, a service oriented architecture that allows access to cloud resources through gateway

service providers is considered. Private and public cloud spaces are structured as a bunch

of services with gateway actors responding to requests. This architecture allows cloud ser-

vices to be developed and maintained in advance of application development in addition to

keeping cloud resources transparent and separate from the rest of the system. Obviously,

this is a customized architecture for this specific organization but shows the flexibility of the

88

Figure 7.4: Actor entity attributes definition as XML schema design file (xsd)

proposed grammar and its capability to adjust. Figure 7.7 shows the internal architecture

of databases within private and public cloud spaces.

Architecture shown in Figure 7.7 considers one actor component for accessing each database

and reading face images, actors 1, 2, 3, 7, and 8. In addition, there are actors processing

those face images, extracting features, and generating a pre-processed set of known face

features for all the faces in that database, actors 4, 5, 6, 9, 10. Databases stored in pri-

vate and public cloud spaces are contained within an actor-system, actor-systems 1 and 3.

Services offered by each of these actor-systems can be accessed through a gateway actor,

privateGateway actor and publicGateway actor. Since we are considering offloading, each of

private and public cloud spaces provide additional actor-system for application components

to be offloaded, actor-system 2 and actor-system 4.

As we mentioned earlier, we want to restrict accesses to public and private cloud databases

based on the users of our application. These cloud spaces are owned by the organization and

the governing authorization policies are defined by the organization and as a hard policy.

In order to build the required policy, let’s start by the private cloud space that stores three

of the confidential databases and provide access to those services through privateGateway

actor. To better manage the private cloud, two actor-systems are created. ActorSystem1

manages confidential databases and ActorSystem2 allows offloading resource for applications.

Figure 7.8 shows the detailed structure of the private cloud.

The process of development of the required policy is to ,first, define the required entities,

second, define the required rules, and finally, define the required rule-orderings to prioritize

more specific rules over more general ones. Table 7.4 shows details of such authorization

89

Figure 7.5: Modules involved in image processing application

policy defined for the private cloud and as part of the hard policy file.

As can be seen, the organization enforces a specific architecture in terms of using private

cloud databases by defining a gateway actor(ActorPrivateGate in line 2 and 13). This

gateway actor receives requests from outside world, accesses databases to perform the actions,

and sends back the result. In this specific example, private cloud actor-system provides 3

different services, to access set of extracted features from DB1, DB2, and DB3. Details

of actors proving these services can be developed independently from the specific Image

application using them. These service actors are statically defined, in lines 4,5,6,7,8. In

addition, creation of additional actors within this this actor-system and creation of any

other actor-system on private cloud space are prohibited, lines 9 and 10. Actor-system2 is

defined to allow offloading components from specific applications, line 16. As a result, this

actor-system allows creation of dynamic actors based on application requirements, line 17.

Having the required private cloud entities defined, the next step is to define required rules

restricting their interactions with the rest of the system. For ActorSystem1, gateway actor,

privateGateway, is the only entity that should be accessed by external components. This is

reached by first isolating all the actors in the actor-system1 from communicating to any other

entity (lines 11), then defining overriding rules to allow their communication within their

own actor-system (lines 12), and finally allowing the gateway actor to freely communicate

with all other entities (lines 13). Note that after defining the required rules, the required

ordering must also be specified (lines 14, and 15).

90

Figure 7.6: Modules involved in image processing application

The structure of the public cloud is very similar to the private cloud with the exception

that only two databases are stored there. Figure 7.9 shows the detailed structure of the

private cloud. ActorSystem3 consists of a gateway Actor, PublicGateway actor, and two

service actors to access databases and provide extracted feature sets, Actor9 and Actor 10.

The steps needed for the development of the required policy for a public cloud are similar

to those needed for the development of the required policy in a private cloud and is defined

in the same organization-wide hard policy. Table 7.5 shows the required policy file for the

public cloud space:

Having organization-wide public and private cloud policies defined, the only remaining

step for the organization-wide hard policy is to allow different applications to define their

own structure and have access to these cloud resources. Note that hard policy is defined

in advance of any application development and is not bound to any specific application

architecture. Instead, it defines restrictions for existing services based on their pre-defined

architecture. Allowing user applications to create any arbitrary architecture is relatively

easy and can be done using dynamic binding property of the framework. Table 7.6 shows

the required policy file for the end-user applications:

91

Figure 7.7: Internal structure and organization of databases within the private and public
cloud spaces

Table 7.4, Table 7.5, and Table 7.6 together form the organization-wide hard policy defined

for an application instance that has access to both private and public cloud databases. As

a result, the user using this hard-policy can check faces in a photo against all public and

confidential databases. While this high level of access can be useful for a security officer

at an airport, other staff members or ordinary people using the application must not be

able to access the confidential private cloud databases. As a result, the hard-policy needs

to be adjusted to provide correct access rights for normal people. This is relatively straight

forward using our defined grammar. Since the only change is to revoke access to private cloud

databases, the only required change to the previous policy file is to remove rules providing

those accesses, lines 13 and 15. Removing these two lines, prevents access to private cloud

databases for a normal application user and restrict his access to public cloud databases.

Note that the user can still use private cloud for offloading purposes and only access to

private cloud databases is removed.

In addition to the hard policy defined by organizations, developers can define additional

required soft policy to tighten organization-wide policies for their specific application. De-

velopers can also provide end-users with the ability to adjust these soft policies based on

92

Figure 7.8: The structure of the private cloud space consisting of 2 ActorSystems.
ActorSystem1 manages confidential databases and ActorSystem2 provides offloading for
applications.

their requirements and expectations. In order to show flexibility of the framework in defining

required policy for different users, we consider three types of users: i) a user without specific

privacy concerns ii) a privacy-concerned user iii) an extremely cautious user with utmost

privacy concerns.

Figure 7.5 showed different modules involved in Image application. The right column

of the figure are services provided by the cloud spaces. These services are governed by

the organization-wide hard policy that we previously defined. Based on this figure, Image

application consists of components defining left column. These components include: image

loader, face detector, feature extractor, and face recognizer. Thus, application soft-policy

should govern these components for different types of users.

For type i users without additional privacy concerns, Image application components can

be arbitrary placed at different locations ranging from mobile device to public or private

cloud spaces. Figure 7.10 shows the overall structure of Image application for these users.

The only restriction for these types of users is to keep the image loader component on the

mobile device, as photos are locally stored/taken on the mobile device.

Table 7.7 shows the required soft policy file for type i end-users, users without specific

93

Figure 7.9: Structure of the public cloud space. The structure of the public cloud space
consisting of 2 ActorSystems. ActorSystem3 manages 2 public databases and
ActorSystem4 provides offloading for applications.

privacy concerns. It first defines user actor-system, line 1, and then defines the required

entities, lines 2, 3, 4, and 5. Optionally, developers decided to restrict creation of any other

actor or actor-systems on user device, lines 6 and 7. Note that these two lines are optional

and can be changed for different applications based on developer preferences. The remaining

part is to define rules restricting actions allowed in the application and its interactions with

the private and public cloud spaces. Entire application components are first isolated from

interacting with any other component, line 8, but then this restriction is relaxed by allowing

all actors in user actor-system to interact with each other, line 9, in addition to allowing face

recognizer actor to communicate with private and public gateway actors, line 10. Although

access to private databases is restricted for different types of users, we do not need to worry

about having such restrictions added in soft policy as well. Since such restrictions are already

defined as part of the hard policy, only users with proper access rights can access private

databases. For all other users, requests to access private databases will be rejected by the

gateway actor according to the hard policy defined for that application instance. In order

to allow face recognizer, feature extractor, and face detector components to be offloaded to

public and private cloud spaces, additional rule is defined, line 11. Finally, required rule

94

Figure 7.10: Application for users without specific privacy concerns. The structure of
Image application for users without specific privacy concerns. Application components,
face-recognizer, feature-extractor, and face-detector, can be placed on any of mobile device
or different cloud offloading spaces.

orderings are defined to prioritize defined rules, lines 12, 13, and 14.

For type ii users with privacy concerns, Image application components containing privacy-

sensitive information must remain on the phone. These components include image loader,

face detector, and feature extractor actors that deal with original user-submitted picture

containing real faces. Figure 7.11 shows the overall structure of Image application for these

users. The only remaining component that can be offloaded for these users is face recognizer.

Face recognizer works with extracted features from the original picture and does not contain

any real face. Thus, it is safe to assume that it can be offloaded.

Table 7.8 shows the required soft policy file for type ii end-users, users with privacy

concerns. It can be seen that it is exactly the same policy as Table 7.7 with the only

modification in the rule defining off-loadable components, line 11. Instead of allowing all

components to use private and public cloud spaces, we limit the use of those spaces to face

recognizer component.

For type iii users with utmost privacy concerns, Image application components containing

95

Figure 7.11: Application for privacy-concerned users. The structure of Image application
for privacy-concerned users. Application components, image loader, face-detector, and
feature-extractor, must remain on the phone, as they process original picture containing
real faces. Face recognizer component uses extracted features, does not need any real face
picture, and can be offloaded.

privacy-sensitive information must remain on the phone. In addition, face recognizer compo-

nent must also remain on the mobile device and not offloaded. Although extracted features

can not be used to reconstruct the original image, they still reveal partial information about

the content of the original image. As a result, extremely cautious users might want to pre-

vent offloading of these components as well. Figure 7.12 shows the overall structure of Image

application for these users. It can be seen that all application components must remain on

the phone and only reference images are received from remote cloud spaces.

Table 7.9 shows the required soft policy file for type iii end-users, extremely cautious

users with utmost privacy concerns. The policy is the same as policies defined in Table 7.7

and Table 7.8 with the only modification that the rule allowing offloading of some of the

components is removed. Instead of allowing all components to use private and public cloud

spaces, we limit their execution to local mobile device.

96

Figure 7.12: Application for extremely cautious users. The structure of Image application
for extremely cautious users with utmost privacy concerns. All application components
must remain on the mobile device.

7.2 Defining Execution Quality for Different Components at

Various Locations

The grammar defined for authorization policy definition allows defining additional restric-

tions in terms of entity-based restrictions. One application of that can be to define different

quality of service for different resources. As a result, application components can be executed

at different locations depending on the requested quality of service for that location. Let’s

consider the Image application. for this application, quality of the service can be defined

in two different ways: i) use different number of known faces for recognizing step ii) use

different picture resolution and size for face detection and feature extraction. Using the first

approach results in less comparison time to recognize the faces in input picture. In order to

detect faces or extract features, initial picture is considered at different sizes usually differing

by a factor of 2. Usually the maximum size is the original picture size. However, having

quality of service defined based on picture size, the maximum size can be limited to lower

sizes. Lower picture size results in faster processing time for both face detection and feature

97

Figure 7.13: Local and remote execution of Image processing with different fixed qualities.

extraction. However, it also lowers the accuracy and quality of the result.

In order to show the effect of quality of processing service on the performance, we con-

ducted an experiment running image processing application for processing 300 images both

locally and remotely with different selected qualities. Figure 7.13 shows the result. It can

be seen that the required time to process images at different qualities is proportional to

the selected quality of service. The difference is much more severe when processing images

locally on the phone, as phone processor is much slower than the remote laptop and the

effect of any change to the amount of work becomes much more visible.

When different quality of services are available for component execution, the framework

is allowed to pick any quality of service for component execution at any location. Lower

quality of service will lower required processing. As a result, when offloading goal is defined

based on maximizing application performance or minimizing mobile energy consumption, the

system always picks the lowest quality of service for components regardless of the location.

This is because of the fact that no additional value is defined for higher quality of service.

One solution is to define an additional value for higher quality of service and allow the

system to pick the quality of service to reach a certain added value. Another solution

is to relate quality of service to other parameters. A good example is relating quality

of service to different locations. In this scenario, we specify a certain quality of service

for different components at different locations. Offloading decision making results in the

optimal component distribution plan to meet a certain target goal. Based on this offloading

98

Figure 7.14: Code offloading with fixed quality of service for all locations and limited
offloading budget rate. Mobile code offloading to a single remote server with fixed quality
of service and limited offloading budget rate. Quality is set to Low for all locations

plan, different quality of service can be selected for different components. Figure 7.14 shows

offloading result for the Image application processing 300 images using two worker actors.

The problem faces limited offloading budget rate while the quality of service is fixed at low

for all components and at all locations. It can be seen that the components are started on

the phone and then migrated to the remote server. When offloading budget for current time

interval is reached, components are brought back to the mobile phone. With current time

interval passing, offloading budget will be retested. As a result, components are offloaded

to the remove server and this cycle continues. However, since we have fixed the quality of

service for all components at all locations to low, all processing is performed at low resolution

regardless of the location.

We can change the above scenario and define different quality of service for different

locations. In this example, we specified high processing resolution for worker actors when

processing images at the remote server and low processing resolution when processing images

at local mobile device. This is consistent with the fact that mobile device is much slower

than the remote server and processing images at a high quality on mobile device takes a lot

longer. Figure 7.15 shows the result for this case. It can be seen that quality of execution is

set at low when components are executed locally and at high when components are executed

at the remote server. Since remote server is more-resourceful than local mobile device,

increasing the quality of processing images on it has negligible effect on execution time. As

99

Figure 7.15: Code offloading with variable quality of service for different locations and
limited offloading budget rate. Mobile code offloading to a single remote server with
variable quality of service and limited offloading budget rate. Quality of the service is set
to Low for local mobile device and high for fast remote server.

a result, it can be seen that both Figure 7.14 and Figure 7.15 takes same amount of execution

time. However, the outcome from Figure 7.14 is at a higher quality and better accuracy as

offloaded components are executed at a higher resolution.

7.3 Defining Offloading Budget Limitations for Different Cloud

Resources

If third party cloud resources are used for offloading of an application, there will be an

additional cost for using these resources. This cost is usually defined based on resource

usage. As a result, many organizations, developers, or users might want to limit additional

costs related to using third party cloud resources, public cloud, for offloading. Our framework

allows defining an offloading budget for different resources, which will then be enforced as

an additional constraints while solving the offloading optimization problem.

With our framework in use and without any budget limitation on using cloud resources,

application components will be moved around and distributed between the mobile device and

the remote cloud server in a way that optimized target offloading goal. Figure 7.16 shows a

sample output for the Image application processing 500 images using a single remote cloud

100

Figure 7.16: Code offloading with unlimited offloading budget. Mobile code offloading to a
single remote server without any offloading budget restrictions

server without any offloading budget.

As can be seen in Figure 7.16, application consists of two worker components that are

both started on the mobile device. When the application starts, the profiler begins to collect

application and resource usage for different components. A few seconds after the start of the

application, elasticity manager asks local worker components to migrate to the remote cloud

server, because the cloud server has the faster resources. It takes local workers a few seconds

to migrate to the new location. When this happens, the progress significantly improves, as

can be seen by background vertical bars. Since there is no budget limitation for using remote

server, components remain on the remote server and process all the remaining pictures at a

faster speed on the remote location.

Now, let’s consider the case that we define a fixed total offloading budget for the use

of remote server. This fixed budget is defined as a lump sum in terms of the time entire

remote server processor is being used. It is relatively straight forward to define this cost

in any other desired form, such as used time per core, used time per virtual machine, etc.

Elasticity manager is free to use the remote server for code offloading up to the specified

budget. Figure 7.17 shows the output for the same previous Image application example

subject to a fixed total offloading budget.

Figure 7.17 shows that a few seconds after the start of the application, the two local

workers are migrated to the remote server in order to improve the overall performance.

Workers will remain on the remote server for several seconds until the fixed total offloading

101

Figure 7.17: Code offloading with a fixed total offloading budget. Mobile code offloading to
a single remote server with a fixed total offloading budget

budget for using the remote server is reached. At this time, workers are brought back to the

mobile device and continue with processing the remaining pictures on the local mobile device.

This is also reflected in the vertical bars representing progress of processing pictures. When

workers are placed on the fast remote server, the slope of the vertical bar increases become

very steep. However, when workers are brought back to mobile device, this steep slop will

become much flatter due to lower availability of resources on the mobile device. Comparing

the total execution time of Figure 7.16 and Figure 7.17 reveals that having restriction on

offloading budget can significantly affect the performance and increase the total execution

time.

While defining a total fixed offloading budget can be useful in many applications, limiting

offloading budget rate can also be beneficial. Offloading budget rate is defined as a fixed

budget per time interval and repeated when that interval is passed. A good example is

defining a fixed budget for offloading per hour. This ensures that offloading budget will not

exceed a certain fixed amount per hour but will be restarted when the first hour is passed,

if the budget is consumed. Figure 7.18 shows the output for the previous Image application

example subject to a limited offloading budget rate, which in this case is defined per minute.

As can be seen in Figure 7.18, local workers are started on the mobile device but then

offloaded to the remote server after a few seconds. They remain on the remote server till the

offloading budget for current time interval is consumed. As a result, the elasticity manager

brings back the offloaded components to the mobile device and they are executed locally till

102

Figure 7.18: Code offloading with a limited offloading budget rate. Mobile code offloading
to a single remote server with a fixed offloading budget per time interval (in this case every
1 minutes)

the current time interval is finished. When current time interval is passed, the offloading

budget is refreshed. Thus, worker components are offloaded again to the remote server and

this cycle continues till all images are processed. Comparing the total execution time of

Figure 7.18 and Figure 7.17 reveals that having a renewable offloading budget significantly

improves the performance.

Due to additional costs resulting from using third party cloud resources, many organiza-

tions or developers might want to use a hybrid cloud consisting of both public and private

cloud spaces. IMCM is flexible enough to allow definition of different offloading budget

restrictions for various cloud resources. Considering a hybrid cloud consisting of a public

cloud space, with more resources to use due to public cloud elasticity, and a private cloud

space, with less resources to use due to limitations with availability of in-house resources,

and the previous Image application, we can have the following situations. The basic case

happens when we have no limitation on using public cloud. Note that we are assuming the

public cloud is able to provide a faster processing time compared to private cloud space, as

a public cloud may have better hardware or more elasticity in terms of adding additional

resources whenever needed. In contrast, a private cloud space has a fixed number of in-house

servers owned by the organization but shared between different users and applications. Due

to a fixed number of servers in a private cloud, there is limitation in terms of elasticity of

the cloud and the performance degrades when the number of users or applications increases.

103

Figure 7.19: Code offloading with unlimited offloading budget in a Hybrid Cloud. Mobile
code offloading to a hybrid cloud without any offloading budget restrictions. Hybrid cloud
consists of a more-resourceful public cloud space and a more-restricted private cloud.

Thus, it is reasonable to assume that a public cloud provides better performance when com-

pared to a private cloud as we do for this example. Without any budget limitation on using

public and private clouds, results from running the Image application can be summarized

as Figure 7.19.

The results from Figure 7.19 shows that after application is started locally on the mobile

device, worker components are migrated to the faster public cloud and the remaining of the

computation is performed on the public cloud. Since we have no budget limitation in terms

of using cloud resources and public cloud has more resources with improved performance, no

component is sent to the private cloud and all components are placed at public cloud space.

In order to control offloading cost, we can define a fixed total offloading budget for the

use of more-resourceful public cloud. Note that we are assuming unlimited offloading budget

for the private cloud, as it is owned by the organization and not subject to additional usage

costs. Figure 7.20 shows the result for this case:

The result from Figure 7.20 shows that after starting the application on the mobile device,

both worker components are migrated to the faster more-resourceful public cloud. After a

while, the fixed budget for using public cloud space is consumed and the components are

brought back to the mobile device. Since there is no more budget left for using the public

cloud, worker components are offloaded to the slower but free private cloud server. Worker

components remains on the private cloud server and process the remaining images at a faster

104

Figure 7.20: Code offloading with fixed total offloading budget in a Hybrid Cloud. Mobile
code offloading to a hybrid cloud with a fixed total offloading budget restriction for use of
public cloud space. Hybrid cloud consists of a budgeted more-resourceful public cloud
space and an unlimited more-restricted private cloud.

speed than mobile device, but slower than the more-resourceful public cloud server.

It is also possible to define a fixed budget rate for the use of public cloud space. Figure 7.21

shows the output result for Image application subjected to a fixed offloading budget rate

for use of more-resourceful public cloud space and unlimited offloading budget for the use of

more-restricted private cloud space.

Application components are started initially on the mobile device and offloaded to the

fastest remote space, in this case public cloud, within a few seconds. Worker components

remains on the public cloud server til the offloading budget rate is consumed for that time

interval. They are, then, brought back to the phone and then offloaded to the more-restricted

private cloud. With the current time interval passing, public cloud usage budget is restarted.

As a result, components are migrated from the private cloud server to the faster more-

resourceful public cloud and this cycle continues till all images are processed. These examples

show the flexibility of the proposed framework in defining additional constraints in terms of

offloading budget for different cloud resources.

105

Figure 7.21: Code offloading with fixed offloading budget rate in a Hybrid Cloud. Mobile
code offloading to a hybrid cloud with a fixed offloading budget rate restriction for use of
public cloud space. Hybrid cloud consists of a budget-rate-limited more-resourceful public
cloud space and an unlimited more-restricted private cloud.

106

Table 7.4: Private cloud policy defined as part of the hard policy file

1. ActorSystem: {Name:ActorSysPrivate1, Static (URL:174.123.78.456, Port:1362))}
2. Actor: {Name:ActorPrivateGate, Static (

Reference: akka.tcp://app@174.123.78.456/privateGateway,
ActorSystem:”ActorSysPrivate1)}

3. Actor: {Name:ActorPrivateVisasDB, Static (
Reference: akka.tcp://app@174.123.78.456/Actor1,
ActorSystem:ActorSysPrivate1)}

4. Actor: {Name:ActorPrivateResidentDB, Static (
Reference: akka.tcp://app@174.123.78.456/Actor2,
ActorSystem:ActorSysPrivate1)}

5. Actor: {Name:ActorPrivateCitizenDB, Static (
Reference: akka.tcp://app@174.123.78.456/Actor3,
ActorSystem:ActorSysPrivate1)}

6. Actor: {Name:ActorPrivateVisaProcessor, Static (
Reference: akka.tcp://app@174.123.78.456/Actor4,
ActorSystem:ActorSysPrivate1)}

7. Actor: {Name:ActorPrivateResidentProcessor, Static (
Reference: akka.tcp://app@174.123.78.456/Actor5,
ActorSystem:ActorSysPrivate1)}

8. Actor: {Name:ActorPrivateCitizenProcessor, Static (
Reference: akka.tcp://app@174.123.78.456/Actor6,
ActorSystem:ActorSysPrivate1)}

9. AnonymousActors: {Name:AnonymousPrivate1,
Ref-ActorSystem:ActorSysPrivate1, Existence:FORBIDDEN}

10. AnonymousActorSystems: {Name: Other-ActorSys-Private,
URL:174.123.78.456, Creation: FORBIDDEN}

11. Rule: {Name:Private-Rule-1, Subject (ActorSystems:ActorSysPrivate1),
Object (ALL), Actions: ALL, Permission: DISALLOWED}

12. Rule: {Name:Private-Rule-2, Subject (ActorSystems:ActorSysPrivate1),
Object (ActorSystems:ActorSysPrivate1),
Actions: SEND-TO, RECEIVE-FROM, Permission: ALLOWED}

13. Rule: {Name:Private-Rule-3, Subject (Actor:ActorPrivateGate),
Object (ALL), Actions: SEND-TO, RECEIVE-FROM,
Permission: ALLOWED}

14. Rule-Order: {Name: Private-Rule-Order-1, Subject (Rules: Private-Rule-2),
Object(Rules: Private-Rule-1), Order: PRECEDENCE}

15. Rule-Order: {Name: Private-Rule-Order-2, Subject (Rules: Private-Rule-3),
Object(Rules: Private-Rule-1), Order: PRECEDENCE}

16. ActorSystem: {Name:ActorSysPrivate2, Static (URL:174.123.78.456, Port:1369))}
17. AnonymousActors: {Name:AnonymousPrivate2,

Ref-ActorSystem:ActorSysPrivate2, Existence:ALLOWED}
18. Rule: {Name:Private-Rule-4, Subject (ActorSystems:ActorSysPrivate2),

Object (ALL), Actions: ALL, Permission: ALLOWED}

107

Table 7.5: Public cloud policy defined as part of the hard policy file

19. ActorSystem: {Name:ActorSysPublic1, Static (URL:179.987.654.321, Port:1352))}
20. Actor: {Name:ActorPublicGate, Static (

Reference: akka.tcp://app@179.987.654.321/publicGateway,
ActorSystem:”ActorSysPublic1)}

21. Actor: {Name:ActorPublicInternationalDB, Static (
Reference: akka.tcp://app@179.987.654.321/Actor7,
ActorSystem:ActorSysPublic1)}

22. Actor: {Name:ActorPublicNationalDB, Static (
Reference: akka.tcp://app@179.987.654.321/Actor8,
ActorSystem:ActorSysPublic1)}

23. Actor: {Name:ActorPublicInternationalProcessor, Static (
Reference: akka.tcp://app@179.987.654.321/Actor10,
ActorSystem:ActorSyspublic1)}

24. Actor: {Name:ActorPublicNationalProcessor, Static (
Reference: akka.tcp://app@179.987.654.321/Actor9,
ActorSystem:ActorSysPrivate1)}

25. AnonymousActors: {Name:AnonymousPublic1,
Ref-ActorSystem:ActorSysPublic1, Existence:FORBIDDEN}

26. AnonymousActorSystems: {Name: Other-ActorSys-Public,
URL:179.987.654.321, Creation: FORBIDDEN}

27. Rule: {Name:Public-Rule-1, Subject (ActorSystems:ActorSysPublic1),
Object (ALL), Actions: ALL, Permission: DISALLOWED}

28. Rule: {Name:Public-Rule-2, Subject (ActorSystems:ActorSysPublic1),
Object (ActorSystems:ActorSysPublic1),
Actions: SEND-TO, RECEIVE-FROM, Permission: ALLOWED}

29. Rule: {Name:Public-Rule-3, Subject (Actor:ActorPublicGate),
Object (ALL), Actions: SEND-TO, RECEIVE-FROM,
Permission: ALLOWED}

30. Rule-Order: {Name: Public-Rule-Order-1, Subject (Rules: Public-Rule-2),
Object(Rules: Public-Rule-1), Order: PRECEDENCE}

31. Rule-Order: {Name: Public-Rule-Order-2, Subject (Rules: Public-Rule-4),
Object(Rules: Public-Rule-1), Order: PRECEDENCE}

32. ActorSystem: {Name:ActorSysPublic2, Static (URL:179.987.654.321, Port:1359))}
33. AnonymousActors: {Name:AnonymousPublic2,

Ref-ActorSystem:ActorSysPublic2, Existence:ALLOWED}
34. Rule: {Name:Public-Rule-4, Subject (ActorSystems:ActorSysPublic2),

Object (ALL), Actions: ALL, Permission: ALLOWED}

108

Table 7.6: End-user application policy defined as part of the hard policy file. It uses dynamic binding
property of the framework to support any arbitrary architecture of to-be-developed applications.

35. AnonymousActorSystems: {Name: Arbitrary-ActorSys-User, ANONYOUS-URLs,
Creation: ALLOWED, ActorSystem-Limitation: ”UNLIMITED”,
Actors-per-ActorSystem-Limitation: ”UNLIMITED” }

109

Table 7.7: End-user soft policy for users without specific privacy concerns

1. ActorSystem: {Name:ActorSysUser, Static (URL:98.123.123.456, Port:1979))}
2. Actor: {Name:UserImageLoader, Static (

Reference: akka.tcp://app@98.123.123.456/Image-Loader,
ActorSystem:”ActorSysUser)}

3. Actor: {Name:UserFaceDetector, Static (
Reference: akka.tcp://app@98.123.123.456/Face-Detector,
ActorSystem:”ActorSysUser)}

4. Actor: {Name:UserFeatureExtractor, Static (
Reference: akka.tcp://app@98.123.123.456/Feature-Extractor,
ActorSystem:”ActorSysUser)}

5. Actor: {Name:UserFaceRecognizer, Static (
Reference: akka.tcp://app@98.123.123.456/Face-Recognizer,
ActorSystem:”ActorSysUser)}

6. AnonymousActors: {Name:AnonymousUser,
Ref-ActorSystem:ActorSysUser, Existence:FORBIDDEN}

7. AnonymousActorSystems: {Name: Other-ActorSys-User,
URL:98.123.123.456, Creation: FORBIDDEN}

8. Rule: {Name:User-Soft-Rule-1, Subject (ActorSystems:ActorSysUser),
Object (ALL), Actions: ALL, Permission: DISALLOWED}

9. Rule: {Name:User-Soft-Rule-2, Subject (ActorSystems:ActorSysUser”),
Object (ActorSystems: ”ActorSysUser”),
Actions: SEND-TO, RECEIVE-FROM, Permission: ALLOWED}

10. Rule: {Name:User-Soft-Rule-3, Subject (Actors:UserFaceRecognizer”),
Object (Actors:ActorPublicGate, ActorPrivateGate),
Actions: SEND-TO, RECEIVE-FROM, Permission: ALLOWED}

11. Rule: {Name:User-Soft-Rule-4,
Subject (Actors:UserFaceDetector, UserFeatureExtractor,

UserFaceRecognizer),
Object (ActorSystems: ”ActorSysUser, ActorSysPrivate2,

ActorSysPublic2”),
Actions: ALL, Permission: ALLOWED}

12. Rule-Order: {Name: User-Soft-Rule-Order-1, Subject (Rules: User-Soft-Rule-2),
Object(Rules: User-Soft-Rule-1), Order: PRECEDENCE}

13. Rule-Order: {Name: User-Soft-Rule-Order-2, Subject (Rules: User-Soft-Rule-3),
Object(Rules: User-Soft-Rule-1), Order: PRECEDENCE}

14. Rule-Order: {Name: User-Soft-Rule-Order-3, Subject (Rules: User-Soft-Rule-4),
Object(Rules: User-Soft-Rule-1), Order: PRECEDENCE}

110

Table 7.8: End-user soft policy for privacy-concerned users

1. ActorSystem: {Name:ActorSysUser, Static (URL:98.123.123.456, Port:1979))}
2. Actor: {Name:UserImageLoader, Static (

Reference: akka.tcp://app@98.123.123.456/Image-Loader,
ActorSystem:”ActorSysUser)}

3. Actor: {Name:UserFaceDetector, Static (
Reference: akka.tcp://app@98.123.123.456/Face-Detector,
ActorSystem:”ActorSysUser)}

4. Actor: {Name:UserFeatureExtractor, Static (
Reference: akka.tcp://app@98.123.123.456/Feature-Extractor,
ActorSystem:”ActorSysUser)}

5. Actor: {Name:UserFaceRecognizer, Static (
Reference: akka.tcp://app@98.123.123.456/Face-Recognizer,
ActorSystem:”ActorSysUser)}

6. AnonymousActors: {Name:AnonymousUser,
Ref-ActorSystem:ActorSysUser, Existence:FORBIDDEN}

7. AnonymousActorSystems: {Name: Other-ActorSys-User,
URL:98.123.123.456, Creation: FORBIDDEN}

8. Rule: {Name:User-Soft-Rule-1, Subject (ActorSystems:ActorSysUser),
Object (ALL), Actions: ALL, Permission: DISALLOWED}

9. Rule: {Name:User-Soft-Rule-2, Subject (ActorSystems:ActorSysUser”),
Object (ActorSystems: ”ActorSysUser”),
Actions: SEND-TO, RECEIVE-FROM, Permission: ALLOWED}

10. Rule: {Name:User-Soft-Rule-3, Subject (Actors:UserFaceRecognizer”),
Object (Actors:ActorPublicGate, ActorPrivateGate),
Actions: SEND-TO, RECEIVE-FROM, Permission: ALLOWED}

11. Rule: {Name:User-Soft-Rule-4,
Subject (Actors:UserFaceRecognizer),
Object (ActorSystems: ”ActorSysUser, ActorSysPrivate2,

ActorSysPublic2”),
Actions: ALL, Permission: ALLOWED}

12. Rule-Order: {Name: User-Soft-Rule-Order-1, Subject (Rules: User-Soft-Rule-2),
Object(Rules: User-Soft-Rule-1), Order: PRECEDENCE}

13. Rule-Order: {Name: User-Soft-Rule-Order-2, Subject (Rules: User-Soft-Rule-3),
Object(Rules: User-Soft-Rule-1), Order: PRECEDENCE}

14. Rule-Order: {Name: User-Soft-Rule-Order-3, Subject (Rules: User-Soft-Rule-4),
Object(Rules: User-Soft-Rule-1), Order: PRECEDENCE}

111

Table 7.9: End-user soft policy for extremely cautious users with utmost privacy concerns

1. ActorSystem: {Name:ActorSysUser, Static (URL:98.123.123.456, Port:1979))}
2. Actor: {Name:UserImageLoader, Static (

Reference: akka.tcp://app@98.123.123.456/Image-Loader,
ActorSystem:”ActorSysUser)}

3. Actor: {Name:UserFaceDetector, Static (
Reference: akka.tcp://app@98.123.123.456/Face-Detector,
ActorSystem:”ActorSysUser)}

4. Actor: {Name:UserFeatureExtractor, Static (
Reference: akka.tcp://app@98.123.123.456/Feature-Extractor,
ActorSystem:”ActorSysUser)}

5. Actor: {Name:UserFaceRecognizer, Static (
Reference: akka.tcp://app@98.123.123.456/Face-Recognizer,
ActorSystem:”ActorSysUser)}

6. AnonymousActors: {Name:AnonymousUser,
Ref-ActorSystem:ActorSysUser, Existence:FORBIDDEN}

7. AnonymousActorSystems: {Name: Other-ActorSys-User,
URL:98.123.123.456, Creation: FORBIDDEN}

8. Rule: {Name:User-Soft-Rule-1, Subject (ActorSystems:ActorSysUser),
Object (ALL), Actions: ALL, Permission: DISALLOWED}

9. Rule: {Name:User-Soft-Rule-2, Subject (ActorSystems:ActorSysUser”),
Object (ActorSystems: ”ActorSysUser”),
Actions: SEND-TO, RECEIVE-FROM, Permission: ALLOWED}

10. Rule: {Name:User-Soft-Rule-3, Subject (Actors:UserFaceRecognizer”),
Object (Actors:ActorPublicGate, ActorPrivateGate),
Actions: SEND-TO, RECEIVE-FROM, Permission: ALLOWED}

11. Rule-Order: {Name: User-Soft-Rule-Order-1, Subject (Rules: User-Soft-Rule-2),
Object(Rules: User-Soft-Rule-1), Order: PRECEDENCE}

12. Rule-Order: {Name: User-Soft-Rule-Order-2, Subject (Rules: User-Soft-Rule-3),
Object(Rules: User-Soft-Rule-1), Order: PRECEDENCE}

112

CHAPTER 8

CONCLUSION AND FUTURE WORK

In this chapter we provide a summary of the dissertation. We will also discuss its limitations

and future directions.

8.1 Summary

In this dissertation we studied the problem of code offloading for mobile hybrid cloud applica-

tions. Optimizing application performance or mobile energy consumption are two important

target offloading goals for many mobile applications. We therefore focus on developing of-

floading decision-making models for these two target offloading goals in the face of varying

application requirements, environmental conditions, and user expectations. We follow four

main principles in our proposed solution: separation of concerns, flexibility, ease of use, and

adaptivity. The result is IMCM : Illinois Mobile Cloud Management middleware framework

for mobile hybrid cloud application development.

In the design of IMCM, we consider applications as a combination of independent compo-

nents storing data or processing code. We use the Actor model of computation to present

code and data components and their interactions. Actors are concurrent objects inter-

acting via asynchronous message passing. Our proposed framework provides a systematic

method to support dynamic application component configuration and distribution for mobile

cloud applications based on run-time parameters and individual application requirements.

Specifically, we design an approach using specification of application-defined requirements

and user-defined expectations. Application target goals are significantly different and range

from maximizing application performance to minimizing mobile energy consumption. We

model each mobile application according to its target goal and formulate the application

into an optimization problem. Every possible configuration of components that satisfy the

requirements will be evaluated and the best distribution plan that optimizes the dynamic

application target goal is selected and enforced.

The architecture of IMCM has three main parts: first, a light-weight monitoring sys-

113

tem, called Monitor, to capture dynamic environmental parameters and end-user context,

profile application resource usage and communications, as well as monitoring availability

and performance of cloud resources. Profiling energy consumption per specific application

components is primary of importance and requires design and development of a fine-grained

automatic energy consumption model, as most mobile devices do not provide any tool for

direct measurement of consumed energy and different applications with arbitrary number of

components might be running at any time.

Second, we design and implement two independent performance-based and energy-based

models to enable transparent automatic configuration and distribution of application code

and data components that address specific organization, application, and end-user require-

ments. These models leverage dynamic information from the Monitor on run-time param-

eters, energy and resource usage of different components, and application characteristics to

optimize application performance or mobile energy consumption with respect to a predefined

policy. While offloading to a single remote server and serial monotonic application execution

results in similar offloading plan for both target goals of optimizing for application perfor-

mance and mobile energy consumption, supporting hybrid cloud environment with multiple

public and private cloud spaces in addition to fully parallel application execution results

in significantly different component distribution plan for different offloading goals. This

requires design and development of a very different offloading model.

Finally, we design and develop the required grammar and enforcement mechanism to

allow organizations, developers or end-users to easily adjust target offloading goal at run-

time in addition to define required policy-based restrictions in terms of privacy, component

move around, communications, resource accesses, offloading budget, and quality of service of

resources. Privacy of data is a challenging issue especially when parts of the application are

outsourced. Many companies are using a hybrid cloud model in order to keep the confidential

or sensitive algorithms or user data within secure private in-house servers. The grammar

of the policy specification language we develop allows organizations, application developers,

and end users to define their required privacy authorization rules and adjust them during

execution. A light-weight action control and policy management system is designed and

implemented to interpret the defined policy rules and enforce them at run-time at different

levels.

IMCM facilitates mobile hybrid cloud application development by allowing transparent

and automatic distribution of application components between mobile device and multi-

ple cloud spaces. It also detects run-time properties and adjust offloading plan according

to dynamic environment. The actor model in turn allows dynamic reconfiguration and

parametrization of the components based on application requirements, environmental con-

114

ditions, user expectations, and policy-based defined restrictions. The approach taken in

IMCM is vastly applicable to other areas of distributed systems. For example, this frame-

work can be used in Wireless Sensor Networks (WSNs) to allow dynamic configuration and

distribution of services among different wireless nodes.

8.2 Limitations and Future Work

We try to ensure conclusion validity of our evaluation by checking the statistical significance

of measured execution times with a robust non-parametric test at a relatively high level α =

0.01. One threat to the construct validity of our experiment is the use of performance speedup

and energy-saving factor as effectiveness metrics. With the amount of work increased, the

gap between local mobile execution and other form of execution becomes larger. This reflects

the improved performance and can be used to evaluate the performance of one application

with different settings. However, the amount of work performed by different applications

varies significantly. Moreover, different applications have different behavior, architecture

and characteristics. Thus, comparison of speedup or energy-saving factor between different

applications cannot be performed. The external validity of our evaluation is threatened by

our focused corpus. Despite the fact that programs selected include benchmarks used in

previous works, the corpus does not constitute a random sample of programs. Consequently,

our results may generalize poorly. A larger study would mitigate this risk and is considered

as future work.

Mobile hybrid cloud applications impose unique requirements that are crucial to their

successful execution. We therefore focus on optimizing target offloading goal while satisfying

application constraints in the design of IMCM. Our offloading decision-making models covers

target offloading goals of maximizing application performance and minimizing mobile energy

consumption. These decision-making models can be extended to cover other target goals,

such as minimizing network data usage, minimizing interaction time, maximizing security,

minimizing monetary cost of using cloud resources, etc. Moreover, multiple combination of

these goals can be combined to generate new offloading goals for different applications.

IMCM assumes reliable network connection to remote cloud resources. Even with current

reliable network connections, power outage or network failure still happens. As a result,

reliability of the solution is a remaining challenge. Mobile devices rely on wireless or cel-

lular network connections that are still limited in many locations, such as subway, tunnels,

airplanes, undergrounds, and etc. The case of network connection disconnecting or cloud

resources becoming unavailable during offloading still needs to be investigated. Caching a

115

copy of the offloaded components locally or on other cloud resources can solve this problem.

However, the use of caching in a dynamic distributed system requires additional efforts, such

as cache validation coherency, that needs to be further studied.

The adaptive middleware framework enforces a policy-based restriction on allowable ac-

tions and move-around of application components. Our work does not specify how these

policies are defined and how effective they are in terms of providing privacy. With auditing

solutions becoming popular, combing the framework with audition modules allow evaluation

of enforced policy and potentially suggestions in terms of improving policy rules.

Another area of future work is optimizing when offloading decision-making should be exe-

cuted and when the results should be enforced. Component distribution offloading updates

can be distributed either periodically or in the event of specific occurrences. We followed

a periodic approach where offloading decision-making and enforcement of the new plan are

enforced at specific time intervals. We leave a through investigation of this approach for

future work.

116

REFERENCES

[1] K. Kumar, J. Liu, Y.-H. Lu, and B. Bhargava, “A survey of computation offloading
for mobile systems,” Mobile Networks and Applications, vol. 18, no. 1, pp. 129–140,
2013.

[2] B. D. Noble, M. Satyanarayanan, D. Narayanan, J. E. Tilton, J. Flinn, and K. R.
Walker, Agile application-aware adaptation for mobility. ACM, 1997, vol. 31, no. 5.

[3] J. P. Sousa and D. Garlan, “Aura: an architectural framework for user mobility in
ubiquitous computing environments,” in Software Architecture. Springer, 2002, pp.
29–43.

[4] R. Balan, J. Flinn, M. Satyanarayanan, S. Sinnamohideen, and H.-I. Yang, “The case
for cyber foraging,” in Proceedings of the 10th workshop on ACM SIGOPS European
workshop. ACM, 2002, pp. 87–92.

[5] S. Imai, T. Chestna, and C. A. Varela, “Elastic scalable cloud computing using
application-level migration,” in Proceedings of the 2012 IEEE/ACM Fifth Interna-
tional Conference on Utility and Cloud Computing. IEEE Computer Society, 2012,
pp. 91–98.

[6] V. Lee, H. Schneider, and R. Schell, Mobile applications: architecture, design, and
development. Prentice Hall PTR, 2004.

[7] D. Kovachev, Y. Cao, and R. Klamma, “Mobile cloud computing: a comparison of
application models,” arXiv preprint arXiv:1107.4940, 2011.

[8] S. Blom, M. Book, V. Gruhn, R. Hrushchak, and A. Kohler, “Write once, run any-
where a survey of mobile runtime environments,” in Grid and Pervasive Computing
Workshops, 2008. GPC Workshops’ 08. The 3rd International Conference on. IEEE,
2008, pp. 132–137.

[9] J. Jing, A. S. Helal, and A. Elmagarmid, “Client-server computing in mobile environ-
ments,” ACM computing surveys (CSUR), vol. 31, no. 2, pp. 117–157, 1999.

[10] X. Dai and J. Grundy, “Netpay: An off-line, decentralized micro-payment system
for thin-client applications,” Electronic Commerce Research and Applications, vol. 6,
no. 1, pp. 91–101, 2007.

117

[11] J. Kim, R. A. Baratto, and J. Nieh, “pthinc: a thin-client architecture for mobile
wireless web,” in Proceedings of the 15th international conference on World Wide
Web. ACM, 2006, pp. 143–152.

[12] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu, R. Chandra, and
P. Bahl, “Maui: making smartphones last longer with code offload,” in Proceedings of
the 8th international conference on Mobile systems, applications, and services. ACM,
2010, pp. 49–62.

[13] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti, “Clonecloud: elastic execution
between mobile device and cloud,” in Proceedings of the sixth conference on Computer
systems. ACM, 2011, pp. 301–314.

[14] S. Kosta, A. Aucinas, P. Hui, R. Mortier, and X. Zhang, “Thinkair: Dynamic re-
source allocation and parallel execution in the cloud for mobile code offloading,” in
INFOCOM, 2012 Proceedings IEEE. IEEE, 2012, pp. 945–953.

[15] M. L. Powell and B. P. Miller, Process migration in DEMOS/MP. ACM, 1983, vol. 17,
no. 5.

[16] R. S. Gray, “Agent tcl: A flexible and secure mobile-agent system,” 1997.

[17] B. D. Noble and M. Satyanarayanan, “Experience with adaptive mobile applications
in odyssey,” Mobile Networks and Applications, vol. 4, no. 4, pp. 245–254, 1999.

[18] P. Rong and M. Pedram, “Extending the lifetime of a network of battery-powered
mobile devices by remote processing: a markovian decision-based approach,” in Pro-
ceedings of the 40th annual Design Automation Conference. ACM, 2003, pp. 906–911.

[19] G. Chen, B.-T. Kang, M. Kandemir, N. Vijaykrishnan, M. J. Irwin, and R. Chan-
dramouli, “Studying energy trade offs in offloading computation/compilation in java-
enabled mobile devices,” Parallel and Distributed Systems, IEEE Transactions on,
vol. 15, no. 9, pp. 795–809, 2004.

[20] S. Gurun, C. Krintz, and R. Wolski, “Nwslite: a light-weight prediction utility for
mobile devices,” in Proceedings of the 2nd international conference on Mobile systems,
applications, and services. ACM, 2004, pp. 2–11.

[21] S. Ou, K. Yang, A. Liotta, and L. Hu, “Performance analysis of offloading systems in
mobile wireless environments,” in Communications, 2007. ICC’07. IEEE International
Conference on. IEEE, 2007, pp. 1821–1826.

[22] C. Xian, Y.-H. Lu, and Z. Li, “Adaptive computation offloading for energy conservation
on battery-powered systems,” in Parallel and Distributed Systems, 2007 International
Conference on, vol. 2. IEEE, 2007, pp. 1–8.

[23] K. Yang, S. Ou, and H.-H. Chen, “On effective offloading services for resource-
constrained mobile devices running heavier mobile internet applications,” Commu-
nications Magazine, IEEE, vol. 46, no. 1, pp. 56–63, 2008.

118

[24] N. Fernando, S. W. Loke, and W. Rahayu, “Mobile cloud computing: A survey,”
Future Generation Computer Systems, vol. 29, no. 1, pp. 84–106, 2013.

[25] K. Kumar and Y.-H. Lu, “Cloud computing for mobile users: Can offloading compu-
tation save energy?” Computer, vol. 43, no. 4, pp. 51–56, 2010.

[26] M. R. Rahimi, J. Ren, C. H. Liu, A. V. Vasilakos, and N. Venkatasubramanian, “Mobile
cloud computing: A survey, state of art and future directions,” Mobile Networks and
Applications, vol. 19, no. 2, pp. 133–143, 2014.

[27] S. Osman, D. Subhraveti, G. Su, and J. Nieh, “The design and implementation of zap:
A system for migrating computing environments,” ACM SIGOPS Operating Systems
Review, vol. 36, no. SI, pp. 361–376, 2002.

[28] B.-G. Chun and P. Maniatis, “Augmented smartphone applications through clone
cloud execution.” in HotOS, vol. 9, 2009, pp. 8–11.

[29] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The case for vm-based
cloudlets in mobile computing,” Pervasive Computing, IEEE, vol. 8, no. 4, pp. 14–23,
2009.

[30] X. Zhang, J. Schiffman, S. Gibbs, A. Kunjithapatham, and S. Jeong, “Securing elastic
applications on mobile devices for cloud computing,” in Proceedings of the 2009 ACM
workshop on Cloud computing security. ACM, 2009, pp. 127–134.

[31] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, I. Pratt, and
A. Warfield, “Live migration of virtual machines,” in Proceedings of the 2nd conference
on Symposium on Networked Systems Design & Implementation-Volume 2. USENIX
Association, 2005, pp. 273–286.

[32] A. Singh, M. Korupolu, and D. Mohapatra, “Server-storage virtualization: integration
and load balancing in data centers,” in Proceedings of the 2008 ACM/IEEE conference
on Supercomputing. IEEE Press, 2008, p. 53.

[33] Z. Chaczko, V. Mahadevan, S. Aslanzadeh, and C. Mcdermid, “Availability and load
balancing in cloud computing,” in International Conference on Computer and Software
Modeling, Singapore, vol. 14, 2011.

[34] J. Hu, J. Gu, G. Sun, and T. Zhao, “A scheduling strategy on load balancing of virtual
machine resources in cloud computing environment,” in Parallel Architectures, Algo-
rithms and Programming (PAAP), 2010 Third International Symposium on. IEEE,
2010, pp. 89–96.

[35] P. Wang, W. Huang, and C. A. Varela, “Impact of virtual machine granularity on
cloud computing workloads performance,” in Grid Computing (GRID), 2010 11th
IEEE/ACM International Conference on. IEEE, 2010, pp. 393–400.

[36] R. Kaur and P. Luthra, “Load balancing in cloud computing,” in Int. Conf. on Recent
Trends in Information, Telecommunication and Computing, ITC, 2014.

119

[37] S. Bykov, A. Geller, G. Kliot, J. R. Larus, R. Pandya, and J. Thelin, “Orleans: cloud
computing for everyone,” in Proceedings of the 2nd ACM Symposium on Cloud Com-
puting. ACM, 2011, p. 16.

[38] V. Thornton, “Java object actors: An actor based service framework.”

[39] M. Astley and G. A. Agha, “Customization and composition of distributed objects:
Middleware abstractions for policy management,” in ACM SIGSOFT Software Engi-
neering Notes, vol. 23, no. 6. ACM, 1998, pp. 1–9.

[40] M. Astley, D. C. Sturman, and G. Agha, “Customizable middleware for modular dis-
tributed software,” Communications of the ACM, vol. 44, no. 5, pp. 99–107, 2001.

[41] J. Flinn and M. Satyanarayanan, “Powerscope: A tool for profiling the energy us-
age of mobile applications,” in Mobile Computing Systems and Applications, 1999.
Proceedings. WMCSA’99. Second IEEE Workshop on. IEEE, 1999, pp. 2–10.

[42] A. Shye, B. Scholbrock, and G. Memik, “Into the wild: studying real user activity
patterns to guide power optimizations for mobile architectures,” in Proceedings of the
42nd Annual IEEE/ACM International Symposium on Microarchitecture. ACM, 2009,
pp. 168–178.

[43] A. Pathak, Y. C. Hu, M. Zhang, P. Bahl, and Y.-M. Wang, “Fine-grained power mod-
eling for smartphones using system call tracing,” in Proceedings of the sixth conference
on Computer systems. ACM, 2011, pp. 153–168.

[44] L. Zhang, B. Tiwana, Z. Qian, Z. Wang, R. P. Dick, Z. M. Mao, and L. Yang, “Ac-
curate online power estimation and automatic battery behavior based power model
generation for smartphones,” in Proceedings of the eighth IEEE/ACM/IFIP interna-
tional conference on Hardware/software codesign and system synthesis. ACM, 2010,
pp. 105–114.

[45] M. Dong and L. Zhong, “Self-constructive high-rate system energy modeling for
battery-powered mobile systems,” in Proceedings of the 9th international conference
on Mobile systems, applications, and services. ACM, 2011, pp. 335–348.

[46] M. B. Kjærgaard and H. Blunck, “Unsupervised power profiling for mobile devices,”
in Mobile and Ubiquitous Systems: Computing, Networking, and Services. Springer,
2012, pp. 138–149.

[47] W. Jung, C. Kang, C. Yoon, D. Kim, and H. Cha, “Devscope: a nonintrusive and
online power analysis tool for smartphone hardware components,” in Proceedings of
the eighth IEEE/ACM/IFIP international conference on Hardware/software codesign
and system synthesis. ACM, 2012, pp. 353–362.

[48] M. Kim, J. Kong, and S. W. Chung, “Enhancing online power estimation accuracy
for smartphones,” Consumer Electronics, IEEE Transactions on, vol. 58, no. 2, pp.
333–339, 2012.

120

[49] J. Lee, H. Joe, and H. Kim, “Automated power model generation method for smart-
phones,” Consumer Electronics, IEEE Transactions on, vol. 60, no. 2, pp. 190–197,
2014.

[50] P. Moinzadeh, “I-admin: a framework for deriving adaptive service configuration in
wireless smart sensor networks,” Ph.D. dissertation, University of Illinois at Urbana-
Champaign, 2014.

[51] A. Pathak, Y. C. Hu, and M. Zhang, “Where is the energy spent inside my app?: fine
grained energy accounting on smartphones with eprof,” in Proceedings of the 7th ACM
european conference on Computer Systems. ACM, 2012, pp. 29–42.

[52] C. Yoon, D. Kim, W. Jung, C. Kang, and H. Cha, “Appscope: Application en-
ergy metering framework for android smartphone using kernel activity monitoring.” in
USENIX Annual Technical Conference, 2012, pp. 387–400.

[53] K. Kim, D. Shin, Q. Xie, Y. Wang, M. Pedram, and N. Chang, “Fepma: fine-grained
event-driven power meter for android smartphones based on device driver layer event
monitoring,” in Proceedings of the conference on Design, Automation & Test in Europe.
European Design and Automation Association, 2014, p. 367.

[54] R. Chow, P. Golle, M. Jakobsson, E. Shi, J. Staddon, R. Masuoka, and J. Molina,
“Controlling data in the cloud: outsourcing computation without outsourcing control,”
in Proceedings of the 2009 ACM workshop on Cloud computing security. ACM, 2009,
pp. 85–90.

[55] G. Wang, Q. Liu, and J. Wu, “Hierarchical attribute-based encryption for fine-grained
access control in cloud storage services,” in Proceedings of the 17th ACM conference
on Computer and communications security. ACM, 2010, pp. 735–737.

[56] S. Subashini and V. Kavitha, “A survey on security issues in service delivery models
of cloud computing,” Journal of Network and Computer Applications, vol. 34, no. 1,
pp. 1–11, 2011.

[57] R. S. Sandhu and P. Samarati, “Access control: principle and practice,” Communica-
tions Magazine, IEEE, vol. 32, no. 9, pp. 40–48, 1994.

[58] S. Yu, C. Wang, K. Ren, and W. Lou, “Achieving secure, scalable, and fine-grained
data access control in cloud computing,” in INFOCOM, 2010 Proceedings IEEE.
IEEE, 2010, pp. 1–9.

[59] P. Samarati and S. C. de Vimercati, “Access control: Policies, models, and mecha-
nisms,” in Foundations of Security Analysis and Design. Springer, 2001, pp. 137–196.

[60] D. C. Latham, “Department of defense trusted computer system evaluation criteria,”
Department of Defense, 1986.

121

[61] E. Damiani, S. De Capitani di Vimercati, S. Paraboschi, and P. Samarati, “A fine-
grained access control system for xml documents,” ACM Transactions on Information
and System Security (TISSEC), vol. 5, no. 2, pp. 169–202, 2002.

[62] B. Lang, I. Foster, F. Siebenlist, R. Ananthakrishnan, and T. Freeman, “A flexible
attribute based access control method for grid computing,” Journal of Grid Computing,
vol. 7, no. 2, pp. 169–180, 2009.

[63] K. Z. Bijon, R. Krishnan, and R. Sandhu, “Towards an attribute based constraints
specification language,” in Social Computing (SocialCom), 2013 International Confer-
ence on. IEEE, 2013, pp. 108–113.

[64] V. C. Hu, D. Ferraiolo, R. Kuhn, A. R. Friedman, A. J. Lang, M. M. Cogdell,
A. Schnitzer, K. Sandlin, R. Miller, K. Scarfone et al., “Guide to attribute based
access control (abac) definition and considerations (draft),” NIST Special Publication,
vol. 800, p. 162, 2013.

[65] J. Huang, D. M. Nicol, R. Bobba, and J. H. Huh, “A framework integrating attribute-
based policies into role-based access control,” in Proceedings of the 17th ACM sympo-
sium on Access Control Models and Technologies. ACM, 2012, pp. 187–196.

[66] M. Lorch, S. Proctor, R. Lepro, D. Kafura, and S. Shah, “First experiences using xacml
for access control in distributed systems,” in Proceedings of the 2003 ACM workshop
on XML security. ACM, 2003, pp. 25–37.

[67] B. Cha, J. Seo, and J. Kim, “Design of attribute-based access control in cloud comput-
ing environment,” in Proceedings of the International Conference on IT Convergence
and Security 2011. Springer, 2012, pp. 41–50.

[68] Q. Ni and E. Bertino, “xfacl: an extensible functional language for access control,” in
Proceedings of the 16th ACM symposium on Access control models and technologies.
ACM, 2011, pp. 61–72.

[69] A. Anderson, “A comparison of two privacy policy languages: Epal and xacml,” 2005.

[70] Q. Wang, C. Wang, J. Li, K. Ren, and W. Lou, “Enabling public verifiability and data
dynamics for storage security in cloud computing,” in Computer Security–ESORICS
2009. Springer, 2009, pp. 355–370.

[71] C. Wang and Z. Li, “Parametric analysis for adaptive computation offloading,” in
ACM SIGPLAN Notices, vol. 39, no. 6. ACM, 2004, pp. 119–130.

[72] J. Liu, K. Kumar, and Y.-H. Lu, “Tradeoff between energy savings and privacy protec-
tion in computation offloading,” in Proceedings of the 16th ACM/IEEE international
symposium on Low power electronics and design. ACM, 2010, pp. 213–218.

[73] C. Gentry, “Fully homomorphic encryption using ideal lattices.” in STOC, vol. 9, 2009,
pp. 169–178.

122

[74] C. Gentry, “Computing arbitrary functions of encrypted data,” Communications of
the ACM, vol. 53, no. 3, pp. 97–105, 2010.

[75] P.-H. Chang and G. Agha, “Towards context-aware web applications,” in DAIS, vol.
4531. Springer, 2007, pp. 239–252.

[76] P.-H. Chang and G. Agha, “Supporting reconfigurable object distribution for cus-
tomized web applications,” in Proceedings of the 2007 ACM symposium on Applied
computing. ACM, 2007, pp. 1286–1292.

[77] N. Venkatasubramanian, C. Talcott, and G. A. Agha, “A formal model for reasoning
about adaptive qos-enabled middleware,” ACM Transactions on Software Engineering
and Methodology (TOSEM), vol. 13, no. 1, pp. 86–147, 2004.

[78] M. R. Thompson, A. Essiari, and S. Mudumbai, “Certificate-based authorization pol-
icy in a pki environment,” ACM Transactions on Information and System Security
(TISSEC), vol. 6, no. 4, pp. 566–588, 2003.

[79] R. Alfieri, R. Cecchini, V. Ciaschini, L. dellAgnello, A. Frohner, A. Gianoli,
K. Lorentey, and F. Spataro, “Voms, an authorization system for virtual organiza-
tions,” in Grid computing. Springer, 2004, pp. 33–40.

[80] T. Barton, J. Basney, T. Freeman, T. Scavo, F. Siebenlist, V. Welch, R. Ananthakr-
ishnan, B. Baker, M. Goode, and K. Keahey, “Identity federation and attribute-based
authorization through the globus toolkit, shibboleth, gridshib, and myproxy,” in 5th
Annual PKI R&D Workshop, 2006.

[81] V. Goyal, O. Pandey, A. Sahai, and B. Waters, “Attribute-based encryption for fine-
grained access control of encrypted data,” in Proceedings of the 13th ACM conference
on Computer and communications security. ACM, 2006, pp. 89–98.

[82] Z. Wan, J. Liu, and R. H. Deng, “Hasbe: A hierarchical attribute-based solution for
flexible and scalable access control in cloud computing,” Information Forensics and
Security, IEEE Transactions on, vol. 7, no. 2, pp. 743–754, 2012.

[83] S. Ruj, A. Nayak, and I. Stojmenovic, “A security architecture for data aggregation
and access control in smart grids,” arXiv preprint arXiv:1111.2619, 2011.

[84] A.-R. Sadeghi, T. Schneider, and I. Wehrenberg, “Efficient privacy-preserving face
recognition,” in Information, Security and Cryptology–ICISC 2009. Springer, 2010,
pp. 229–244.

[85] P. McDaniel and A. Prakash, “Methods and limitations of security policy reconcilia-
tion,” ACM Transactions on Information and System Security (TISSEC), vol. 9, no. 3,
pp. 259–291, 2006.

[86] T. Yu and M. Winslett, “A unified scheme for resource protection in automated trust
negotiation,” in Security and Privacy, 2003. Proceedings. 2003 Symposium on. IEEE,
2003, pp. 110–122.

123

[87] B. Sotomayor, R. S. Montero, I. M. Llorente, and I. Foster, “Virtual infrastructure
management in private and hybrid clouds,” Internet Computing, IEEE, vol. 13, no. 5,
pp. 14–22, 2009.

[88] F. J. Krautheim, “Private virtual infrastructure for cloud computing,” in Proceedings
of the 2009 conference on Hot topics in cloud computing. USENIX Association, 2009,
pp. 5–5.

[89] R. K. Grewal and P. K. Pateriya, “A rule-based approach for effective resource pro-
visioning in hybrid cloud environment,” in New Paradigms in Internet Computing.
Springer, 2013, pp. 41–57.

[90] E. A. Lee, “The problem with threads,” Computer, vol. 39, no. 5, pp. 33–42, 2006.

[91] G. Agha and C. Hewitt, “Concurrent programming using actors: Exploiting large-
scale parallelism,” in Foundations of Software Technology and Theoretical Computer
Science. Springer, 1985, pp. 19–41.

[92] G. A. Agha, I. A. Mason, S. F. Smith, and C. L. Talcott, “A foundation for actor
computation,” Journal of Functional Programming, vol. 7, no. 01, pp. 1–72, 1997.

[93] W. Jansen, T. Grance et al., “Guidelines on security and privacy in public cloud
computing,” NIST special publication, vol. 800, p. 144, 2011.

[94] D. S. Milojičić, F. Douglis, Y. Paindaveine, R. Wheeler, and S. Zhou, ACM Computing
Surveys (CSUR), vol. 32, no. 3, pp. 241–299, 2000.

[95] W. Voorsluys, J. Broberg, S. Venugopal, and R. Buyya, “Cost of virtual machine live
migration in clouds: A performance evaluation,” in Cloud Computing. Springer, 2009,
pp. 254–265.

[96] M. F. Bari, M. F. Zhani, Q. Zhang, R. Ahmed, and R. Boutaba, “Cqncr: Optimal vm
migration planning in cloud data centers,” Submitted to IFIP Networking, 2014.

[97] B.-G. Chun and P. Maniatis, “Dynamically partitioning applications between weak
devices and clouds,” in Proceedings of the 1st ACM Workshop on Mobile Cloud Com-
puting & Services: Social Networks and Beyond. ACM, 2010, p. 7.

[98] J. Armstrong, R. Virding, C. Wikström, and M. Williams, “Concurrent programming
in erlang,” 1993.

[99] J. Armstrong, Programming Erlang: software for a concurrent world. Pragmatic
Bookshelf, 2007.

[100] M. Astley and T. Clausen, “Actor foundry,” 2000.

[101] C. Varela and G. Agha, “Programming dynamically reconfigurable open systems with
salsa,” ACM SIGPLAN Notices, vol. 36, no. 12, pp. 20–34, 2001.

124

[102] P. Haller and F. Sommers, Actors in Scala. Artima Incorporation, 2012.

[103] M. Odersky, L. Spoon, and B. Venners, Programming in scala. Artima Inc, 2008.

[104] M. Gupta, Akka Essentials. Packt Publishing Ltd, 2012.

[105] R. K. Karmani, A. Shali, and G. Agha, “Actor frameworks for the jvm platform: a
comparative analysis,” in Proceedings of the 7th International Conference on Principles
and Practice of Programming in Java. ACM, 2009, pp. 11–20.

[106] Wikipedia, “Eight queens puzzle,” 2014, online; accessed 19-July-2014. [Online].
Available: http://www.wikipedia.org/wiki/Eight queens puzzle

[107] D. Li, S. Hao, W. G. Halfond, and R. Govindan, “Calculating source line level en-
ergy information for android applications,” in Proceedings of the 2013 International
Symposium on Software Testing and Analysis. ACM, 2013, pp. 78–89.

[108] D. Kim, W. Jung, and H. Cha, “Runtime power estimation of mobile amoled displays,”
in Proceedings of the Conference on Design, Automation and Test in Europe. EDA
Consortium, 2013, pp. 61–64.

[109] D. Huang, X. Zhang, M. Kang, and J. Luo, “Mobicloud: building secure cloud frame-
work for mobile computing and communication,” in Service Oriented System Engi-
neering (SOSE), 2010 Fifth IEEE International Symposium on. IEEE, 2010, pp.
27–34.

[110] R. Chow, M. Jakobsson, R. Masuoka, J. Molina, Y. Niu, E. Shi, and Z. Song, “Authen-
tication in the clouds: a framework and its application to mobile users,” in Proceedings
of the 2010 ACM workshop on Cloud computing security workshop. ACM, 2010, pp.
1–6.

[111] X. Yu and Q. Wen, “Design of security solution to mobile cloud storage,” in Knowledge
Discovery and Data Mining. Springer, 2012, pp. 255–263.

[112] A. N. Khan, M. Mat Kiah, S. U. Khan, and S. A. Madani, “Towards secure mobile
cloud computing: A survey,” Future Generation Computer Systems, vol. 29, no. 5, pp.
1278–1299, 2013.

125

