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ABSTRACT 

 

 

 

 Terrestrial biomass consists largely of lignocellulosic materials. Abundant in nature, 

lignocellulosic biomass can be cultivated easily on land otherwise unsuitable for traditional crops 

or be harvested from crop waste, such as corn stover. After pretreatment and hydrolysis, the 

lignocellulosic biomass will yield several sugars including glucose (6C), xylose (5C) and 

cellobiose (a glucose dimer). Complete conversion of each of these sugars is necessary to 

efficiently produce a target fermentation product from lignocellulosic hydrolysates. Until now, 

biofuels, such as ethanol, have been the only major fermentation product produced at an 

industrial-scale from lignocellulosic biomass. The primary goal of my dissertation research is to 

utilize metabolic engineering to construct a recombinant microbe capable of rapidly and 

efficiently producing value-added non-ethanol products from these lignocellulosic sugars. With 

this in mind, lactic acid has been selected as the target product to develop this lignocellulosic 

chemical production platform. Lactic acid has many industrial uses including as a feedstock for 

surgical implants, 3D printing, and renewable polyesters. The production of lactic acid from 

xylose was first achieved by cloning and introduction of a heterologous lactate dehydrogenase 

gene (ldhA) from the filamentous fungus Rhizopus oryzae into an engineered, xylose-fermenting 

Saccharomyces cerevisiae yeast strain. Simultaneous co-fermentation of xylose and cellobiose 

for the production of lactic acid by yeast was achieved by the introduction of the ldhA cassette 

into an engineered, xylose- and cellobiose-fermenting S. cerevisiae. Through screening on a 

variety of fermentation conditions and carbon sources, it was determined that non-repressing 

sugars, such as xylose and cellobiose, resulted in high lactic acid yields and negligible ethanol 

yields despite no genotypic disruption of the native yeast ethanol pathways. Similarly, a high 
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lactic acid yield was also achieved from lactose and cheese whey by the ldhA-expressing yeast 

strain. Production from lignocellulosic feedstocks was scaled-up to a one-liter bioreactor as a 

proof-of-concept, resulting in lactic acid yields exceeding 70 g lactic acid/g sugar with titers 

greater than 120 g/L of lactic acid. To further improve lactic acid yield by the engineered strains, 

a variety of industrial S. cerevisiae yeast strains were screened for their ability to tolerate organic 

acids, low pH conditions, and common fermentation inhibitors such as furfural. The industrial 

strain screening provided insight towards the future development of a highly lactic acid-resistant 

Saccharomyces spp. strain. In addition to attempting to improve lactic acid production by 

selecting an ideal parental yeast strain, several metabolic engineering approaches were 

implemented to elucidate ideal genetic characteristics of an engineered ldhA-expressing strain. 

Primarily, it was discovered that deletion of JEN1 and/or ADY2, genes which code for 

monocarboxylate transporters, either reduced lactic acid uptake (∆ADY2ΔJEN1 or ΔJEN1) or 

reduced lactic acid yield by at least 25 % (∆ADY2ΔJEN1). Collectively, this research has 

demonstrated a viable platform for the production of non-fuel chemicals from lignocellulosic 

feedstocks by engineered yeast and generated new understanding for the molecular basis of lactic 

acid production by engineered microbes. 
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CHAPTER I  INTRODUCTION TO YEAST METABOLIC ENGINEERING FOR 

PRODUCTION OF RENEWABLE CHEMICALS 

 

1.1 General background 

As human society has grown and developed, our demand for fuels and commodity 

chemicals has accelerated. This demand has manifested as many different outputs for both fuels 

and chemicals. For fuels, we have two major categories: transportation fuels and non-

transportation fuels. Here, we will mainly discuss transportation fuels, which are currently 

primarily derived from non-renewable fossil fuels. These hydrocarbons, such as coal, petroleum, 

or natural gas, are processed into gasoline, ethanol, jet fuel, or other specialized products [1].  

Approximately 80 % of energy use by humans is derived from fossil fuels, with up to 58 % 

consumed for transportation [2, 3]. Because the rate of natural production of fossil fuels has been 

increasingly outpaced by humanity’s usage for decades, renewable alternatives for transportation 

fuels are considered a societal necessity [1]. 

 As with fuels, many non-fuel chemicals are produced using unsustainable fossil fuel 

feedstocks. This petrochemical-based system is non-renewable and, as with fuels, an alternative 

method of production is needed to allow for continued advancement of human society. In 

particular, the petrochemical industry produces chemicals used in nearly every industry on earth. 

Many bulk chemicals, such as ethylene and propylene, are produced in the 1 – 100 million 

annual tons range, relying majorly if not entirely on fossil fuels as a feedstock for chemical 

catalysis [4]. 
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 Although fossil fuels and the petrochemical industry have been instrumental in the 

advancement of human society, as mentioned, humanity’s use of fossil fuels far outpaces its rate 

of natural replenishment [5, 6]. The overall process by which fossil fuels are collected and 

processed has been described as the “peak oil” theory. M.K. Hubbert first presented the “peak 

oil” theory in 1956, stating that oil production in any geographical region would raise rapidly, 

level off (“peak”), and then decline rapidly, following a standard bell curve [1]. Recently, “peak 

oil” concerns in the short-term have been somewhat alleviated due to significant advances in 

fossil fuel harvesting technologies such as hydraulic fracturing or “fracking” [7, 8]. These 

advanced drilling technologies have also caused M. Hubbert’s “peak oil” predictions for the 

United States to become inaccurate, with available oil exceeding the original prediction [9]. The 

fracking process requires the injection of high-pressure fluids deep into the earth to break large 

rock formations, providing easier access to buried fossil fuels [10]. Despite the economic 

benefits of fracking, there is a significant concern for financial, health, and environmental risks 

associated with the technique, including links to increased seismic activity [11-14]. 

 Beyond the risks associated with the harvesting and processing of petrochemical-based 

fuels and chemicals, there also exists a significant environmental risk for the usage of these 

products. Namely, anthropogenic climate change is the process by which sequestered carbon is 

released into the Earth’s atmosphere, in part by the usage of chemicals or burning of fuels, 

resulting in a net increase in atmospheric greenhouse gases [15]. As atmospheric greenhouse gas 

concentrations increase, the global climate is expected to warm and diminished living conditions 

are expected [16, 17]. Because carbon dioxide makes up the majority of anthropogenic 

greenhouse gas emissions, it is often the target compound for research seeking to reduce 

manmade climate change [18]. The production of fuels and chemicals from renewable, plant-
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based biomass, is expected to decrease the rate of anthropogenic climate change, given 

appropriate land-use and other necessary considerations [19, 20]. 

 The finite supply of fossil fuels, the risks associated with harvesting hard-to-obtain fossil 

fuels, and the concerns about manmade climate change related to fossil fuel use has collectively 

pushed researchers and governments towards producing fuels and chemicals from renewable 

biomass by engineered microbes [21, 22]. In particular, yeasts have served as major platform 

microbes for many of these studies. 

 Yeasts, specifically the species Saccharomyces cerevisiae, are well-studied organisms, 

even beyond their traditional use for the production of beer and other fermented foods and 

beverages [23]. Extensive tools exist for the manipulation and engineering of yeasts [24-27]. 

These tools have allowed for harnessing the S. cerevisiae native ability to grow in minimal 

medium, their generally recognized as safe (GRAS) designation, and their tolerance towards low 

pH and acidic conditions [28, 29]. With these tools and inherent physiological advantages, 

scientific advances for the production of fuels and chemicals from biomass by S. cerevisiae have 

improved dramatically in recent years. In this dissertation and the associated studies, I have 

aimed to further improve our knowledge of yeast metabolism and physiology with a specific goal 

of better understanding the production of lactic acid from lignocellulosic sugars by engineered 

Saccharomyces cerevisiae.  

 

1.2 Yeast research processes 

  With modern metabolic engineering techniques improved since their advent in the 1970s 

and the more recent development of synthetic biology procedures, yeast engineering 

technologies have grown dramatically [21]. Many yeast engineering approaches follow a scheme 
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known as the “Design, Build, Test, and Learn” cycle [30, 31]. This scheme first requires a target 

outcome or goal. For example, a target goal could be to produce ethanol from the pentose sugar 

xylose by engineered S. cerevisiae, which natively are unable to ferment xylose. 

 Once the desired outcome is determined, a parental yeast strain, often a wild-type strain, 

is selected as the target organism to be engineered. The steps for engineering the parental strain 

are as follow: 1) Designing the specific yeast engineering steps, including plasmids and 

transformation protocols, 2) Building the engineered strain by introduction of target genetic 

perturbations, 3) Testing the newly-developed strain, often being fermentation and sampling, 

and 4) Learning from the new strain (Fig. 1.1).  The new knowledge obtained from this process 

can then be factored into the design of the next strain and the cycle will repeat until the target 

outcome is reached. This systematic approach has led to significant advances in the development 

of engineered S. cerevisiae capable of fermenting novel substrates for the production of fuels and 

chemicals. Although not all studies explicitly state this four-step process, the general concept is 

applied in many cases and has been used for nearly all experiments within this dissertation. 

 

1.3 Chemical production by engineered or evolved yeast 

There has been an intensive effort for the engineering of S. cerevisiae to produce non-

fuel, value-added chemicals. Historically, S. cerevisiae has been used for ethanol production by 

the food or fuel industries, but scientific advances for the purpose of ethanol production by yeast 

can often easily be applied to non-fuel production. As previously mentioned, S. cerevisiae has 

GRAS status and their genetic system has been studied heavily. Thus, many genetic tools are 

available [26, 32, 33] which ease the engineering of this host organism to produce 



 

5 

 

nonconventional target products. These products include food additives, pharmaceuticals, 

advanced biofuels, and valuable chemicals for industrial applications. 

Natively, S. cerevisiae produces numerous minor and major intermediates and 

metabolites, especially those throughout the glycolytic pathway, the pentose phosphate pathway, 

and the tricarboxylic acid pathway [35]. However, to accumulate a significant concentration of 

these intermediates (or other, non-native compounds) for industrial purposes, considerable 

engineering or evolution of S. cerevisiae is often necessary. Methods, such as the Design, Build, 

Test, and Learn approach (Fig. 1.1) or tools, such as CRISPR/Cas9 [32], have been largely 

applied for the purpose of producing ethanol by yeast fermentations, but can and have been 

easily re-tooled for constructing yeast capable of producing many other chemicals. These 

chemicals cover many broad categories including isoprenoids, fatty acids, organic acids, rare 

sugars, sugar alcohols, and others. A recent tour de force of S. cerevisiae engineering came from 

Galanie et al., in which the group required 23 enzymes from bacteria, mammals, plants, and 

yeast to produce a tiny amount of opioids, albeit at roughly five orders of magnitude below what 

would be necessary for industrial scale-up [36]. However, this demonstrates a future for yeast 

biotechnology in which a single biosynthetic pathway can create downstream products that may 

otherwise take multiple chemical catalysis steps. Many of these chemicals and their associated 

studies are listed in Table 1.2. 

 

1.3.1 Categories of chemicals produced by S. cerevisiae 

 

1.3.1.1 Isoprenoids 

Isoprenoids, also known as terpenes, are a diverse group of chemical compounds 
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typically utilized as medicine, cosmetics, nutritional supplements, food additives, or even as a 

potential future biofuel [37]. S. cerevisiae harbor natural metabolic pathways to produce certain 

isoprenoids, however, yields and productivities are very poor [38]. Despite the poor natural 

production, isoprenoids have great interests due to their diverse structures and a wide range of 

potential uses. Monoterpenes (C10) and sesquiterpenes (C15) are two of the main candidates for 

jet fuels and biodiesel alternatives, due to their low freezing temperature and high ignition 

stability properties. To produce isoprenoids, acetyl-CoA production is of a high importance since 

all isoprenoids share the mevalonate metabolic pathway starting from acetyl-CoA [39-41]. Either 

the bacterial 1-deoxyl-D-xylulose 5-phosphate (DXP) pathway or the eukaryote/archaea 

mevalonate (MVA) pathway is essential for the biosynthesis of isoprenoids. Both pathways end 

with the formation of five-carbon monomers dimethylallyl pyrophosphate (DMAPP) and 

isopentenyl pyrophosphate (IPP). DMAPP and IPP are then condensed and modified by 

prenyltransferases to form isoprenoid precursors such as geranyl pyrophosphate (GPP, C10) and 

farnesyl pyrophosphate (FPP, C15) [42]. 

 Monoterpenes (C10) are derived from GPP by monoterpene synthases. Fischer et al. is 

the first group able to produce geraniol, a monoterpene and alcohol, with a titer of up to 5 mg/L 

in S. cerevisiae by a mutation of ERG20 (farnesyl pyrophosphate synthase) and the 

overexpression of heterologous geraniol synthase (monoterpene synthases) from Ocimum 

basilicum [40]. To improve the monoterpene biosynthesis, Ignea et al. applied the yeast sterol 

biosynthesis pathway genes, HMG2, ERG20, and IDI1, and also co-expression of two terpene 

synthase enzymes (cineole synthase) from Salvia fruticosa and Salvia pomifera. The final titer of 

cineole was up to 1 g/L [43].  
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 Sesquiterpenes (C15) are another isoprenoid-derived potential fuel source which has 

recently gained interest for several industrial applications. Bisabolene, a precursor of bisabolane, 

was produced at a titer of over 900 mg/L in engineered S. cerevisiae by Peralta-Yahya et al. [44]. 

The yeast was first engineered by overexpression of acetyl-CoA acetyltransferase (ERG10), 

isoprenyl diphosphate isomerase (IDI1), and farnesyl pyrophosphate synthase (ERG20), 

truncated HMG-CoA reductase (tHMGR), and the transcriptional regulator of the sterol pathway 

(Upc2-1). Then researchers examined six different bisabolene synthases isolated from 

Arabidopsis thaliana, Picea abies, Pseudotsuga menziesii, and Abies grandis. At last, they 

developed the highest titer with the codon-optimized bisabolene synthase (BIS) from A. grandis 

[44]. Recently, Özaydın et al. screened the S. cerevisiae deletion collection for carotenoid 

production and constructed a strain producing the highest titer of up to 5.2 g/L of bisabolene 

through double deletion of YJL064W and YPL062W [45].  

 

1.3.1.2 Organic acids 

Organic acids are widely used for many applications including usage as food additives. 

However, organic acids also serve as building blocks of many larger polymers by undergoing 

several steps of chemical catalysis. For example, lactic acid is produced by engineered S. 

cerevisiae by introducing lactate dehydrogenase (ldh). Through catalysis, polylactic acid (also 

known as polylactide; PLA) can be produced [46]. PLA is a renewable and biodegradable 

polyester used for many purposes including as a filament for 3D printing, for producing medical 

screws/implants, and for producing plastic diningware. Numerous studies have been conducted 

for producing lactic acid from engineered S. cerevisiae from a variety of feedstocks including 

glucose [47, 48], xylose [49], and cellobiose [50]. Currently, no study using engineered yeast has 
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been able to achieve the theoretical maximum of lactic acid production from glucose, xylose, 

cellobiose, or a mixture of these carbon sources, so work is on-going to further improve these 

fermentation processes. 

Succinic acid is value-added organic acid which can be overproduced by engineered 

yeast [51-53]. Like lactic acid, succinic acid can be used as a precursor to several polyesters [54]. 

Furthermore, succinic acid is designated as GRAS by the U.S. Food and Drug Administration, 

which has allowed its use in the food industry as an acidity regulator. As an intermediate of the 

citric acid cycle (or tricarboxylic acid cycle), yeast will natively produce succinic acid if 

provided an aerobic environment, but overproduction of succinic acid requires multiple genetic 

perturbations. For example, Otero et al. constructed an engineered S. cerevisiae with deletions of 

SDH3, SER3, and SER33 to reduce primary succinate consuming reactions and to interrupt 

glycolysis-derived serine [53]. The resulting engineered yeast displayed a 30-fold improvement 

in succinic acid titer and a 43-fold improvement in succinic acid yield as compared to the control 

strain. 

Beyond succinic acid, glycolic acid, a C2 hydroxy acid, has gained attention in recent 

years. The global glycolic acid production in 2011 was approximately 40 million kg with 

expected value to more than double by 2018 [55]. Glycolic acid is often used as a building block 

of a polyglycolate. The polyglycolate polymer is used as a packaging material due to its high 

gas-permeability and mechanical strength. However, most glycolic acid is produced in a 

chemical process which relies on non-renewable fossil resources [55]. As an alternative, a 

biological route for the production of glycolic acid exists by converting glyoxylate through 

glyoxylate reductase into glycolic acid. In order to successfully overproduce glycolic acid, 

efficient glyoxylate reductase activity in an engineered S. cerevisiae is required. A further 
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improvement, up to approximately 1 g/L glycolic acid, can be achieved by deletions of the 

malate synthase (MLS1) and the cytosolic form of isocitrate dehydronase (IDP2) genes [55]. As 

the current generation of organic acids produced by S. cerevisiae continues to improve and 

develop, it is likely that more new, rare, or hard-to-obtain organic acids will begin to be 

produced in laboratories by engineered S. cerevisiae strains.  

 

1.3.1.3 Rare sugars and sugar alcohols 

Sugars such as L-ribose, D-allose, D-tagatose, and D-psicose are classified as rare sugars.  

As the name implies, these sugars are rarely found in nature, but also have beneficial health 

properties. L-ribose, for example, is considered as a very important intermediate to produce 

chemicals for pharmaceutical and food products [56, 57]. While D-ribose is very common in 

nature, L-ribose is not found in nature based on current knowledge. The driving demand of L-

ribose production is due to its potential building block for L-nucleoside-based pharmaceutical 

compounds. L-nucleoside-based compounds or analogs play an important role in treating viral 

infections and cancers [58]. Currently, research regarding rare sugar production by engineered 

yeast is very limited. 

Sugar alcohols, such as erythritol, xylitol, or sorbitol, have a high demand in the food 

industry due to their sweetening properties without causing dental caries [59]. In general, sugar 

alcohols are not fermentable by S. cerevisiae, which limits reuptake by engineered yeast 

designed to overproduce target sugar alcohols. As one primary example, xylitol shares similar 

sweetening power with sucrose, yet it does not contribute to dental caries and has a cooling 

effect when eaten. A chemical hydrogenation process to produce xylitol has existed for decades 

[60], but more recently, several groups have produced high xylitol titers and yields from 
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biological, engineered yeast systems [61-63]. Oh et al. were able to produce xylitol rapidly and 

efficiently using an engineered S. cerevisiae expressing xylose reductase (XYL1), a cellodextrin 

transporter (cdt-1), and an intracellular β-glucosidase (gh1-1) via simultaneous utilization of 

xylose and cellobiose [62]. As a result, the engineered S. cerevisiae was able to produce xylitol 

at the maximum theoretical yield by co-utilization of xylose and cellobiose. 

 

1.4 Current scope and future outlook of industrial chemical production by yeast 

 These recent developments for producing non-fuel chemicals from yeast have generated 

S. cerevisiae strains which can overproduce native yeast compounds or, through expression of 

heterologous genes, produce non-native compounds. As with biofuel production, only a small 

portion of laboratory-scale yeast chemical production platforms have made the transition to the 

industrial-scale. Largely, this transition is made difficult by low yields and productivities. 

  Many non-S. cerevisiae microbes are employed for industrial chemical production due to 

the wide-range of target chemicals produced by the biobased chemical industry. Although S. 

cerevisiae is extremely hardy and can be easily engineered, there are still instance where other 

microbes are preferred for a target product. Perhaps the most notable example is the use of 

engineered E. coli for the production of recombinant insulin [64], and over 150 recombinant 

therapeutics have been approved by the European Medicines Agency [65]. However, only 

approximately one third of approved therapeutics utilize engineered E. coli, with S. cerevisiae 

and other yeast also account for a significant portion of industrial therapeutics, fuels, and 

chemicals [65]. 

 Currently, there are dozens of companies worldwide which employ microbial 

fermentation for the production of renewable chemicals. In many cases, the exact specifications 
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of the species of microbe used or the precise metabolic pathway engineering protocol are not 

entirely disclosed. However, some of the more notable companies using a yeast-based 

fermentation platform include DSM, Verdezyne, BioAmber, Amyris, and NatureWorks, which 

produce, respectively, succinic acid [66], adipic acid [67], 1,4-butanediol [68], farnesene [69], 

and lactic acid [70]. 

 As previously discussed, the United States Environmental Protection Agency’s 

Renewable Fuel Standard mandates a certain amount of fuel must be derived from renewable 

resources [71]. However, there is no equivalent legislation in the U.S. or worldwide which forces 

or encourages industry-wide production of renewable chemicals from non-petroleum sources. A 

global effort to limit global warming to 2 °C by reducing greenhouse gas emissions provides a 

minor incentive for biobased chemical production [72]. The influence this legislation has on 

biobased chemicals is small due to less than 10 % of total fossil fuels being employed for 

chemical catalysis, with the vast majority going towards the energy and transportation fuel 

industries [73, 74]. 

 

1.5 Motivations and research objectives 

 Equipped with rapid advances in metabolic engineering, synthetic biology, and genomics, 

the production of fuels and non-fuel chemicals by engineered S. cerevisiae has developed 

tremendously. Several of these advances have transitioned to industrial-scale fermentation 

processes, allowing for the sustainable production of many valuable chemicals from renewable 

biomass. Despite these advances and growing number of industrial examples, many barriers still 

exist which can hinder the further adoption of S. cerevisiae industrial fermentations. 



 

12 

 

 Currently, global oil prices have reached the lowest levels in approximately a decade 

[75]. Low oil prices are a major detriment not only to the cost-effective production of renewable 

fuels and chemicals, but also to consumer and government sentiment regarding the short-term 

importance of developing a renewable chemical industry infrastructure. Furthermore, reduced oil 

prices significantly lower the cost of petroleum-based chemicals, which places additional 

pressure on renewable, fermentation-based biochemical production. Despite these pressures, 

many industrial biobased processes, such as succinic acid production (from E. coli) [76] and 

bioethanol production (from S. cerevisiae) [77, 78], are still considered to be feasible or even 

preferential to petrochemical production. 

 The objective of this dissertation is to not only develop optimal yeast strains for the 

production of lactic acid from lignocellulosic sugars, but also, to elucidate the underlying 

mechanisms which are necessary for this process to occur. The specific objectives include: 1)  

produce lactic acid from xylose and cellobiose by engineered yeast, 2) provide evidence of 

laboratory scale-up of this process, 3) identify industrial yeast, with all strains used in this 

dissertation listed in Table 1.3, which have increased lactic acid tolerance, 4) modify native 

carboxylate transporters to improve or change lactic acid yields, and 5) uncover the basis by 

which perturbations of carboxylate transporters impacts lactic acid production at the molecular 

level. Throughout this process, the “Design, Build, Test, and Learn” cycle (Fig. 1.1) will be 

employed and, ideally, these studies will have a positive impact on future laboratory- and 

industrial-scale lactic acid production projects. 
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1.6 Figures 

 

 

 

 

 

 

 

Fig. 1.1 Schematic demonstrating the step-by-step process for the Design, Build, Test, and Learn 

metabolic engineering/synthetic biology cycle used to develop engineered Saccharomyces 

cerevisiae for industrial-scale production of renewable fuels and chemicals. 
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Product Substrate Result Genetic Modification(s) Reference 

Hydrocodone Glucose 
~0.3 µg/L 

titer 

Expression of 23 genes encoding for 

various enzymes, overexpression of two 

native genes, and inactivation of one 

native gene 

[36] 

Geraniol Glucose 5 mg/L titer 
ERG20 mutation and O. basilicum 

monoterpene synthase expression 
[79] 

Cineole Galactose 1 g/L titer 

Overexpression of HM2, ERG20, and 

IDI1 with expression of two genes 

encoding for terpene synthases from S. 

fruticosa and S. pomifera 

[43] 

Bisabolene 

Glucose 

and 

galactose 

>900 mg/L 

titer 

Overexpression of ERG10, IDI, ERG20, 

tHMGR, and Upc2-1 with A. grandis BIS 

expression. 

[44] 

Bisabolene 

Glucose 

or 

galactose 

5.2 g/L titer Deletion of YJL062W and YPL064W [45] 

Lactic acid Glucose 44% tm 
First use of R. oryzae ldhA in S. 

cerevisiae 
[80] 

Lactic acid Glucose 62.2% tm 
Bovine LDH controlled by PDC1 

promoter 
[81] 

Lactic acid Glucose 86-93% tm Selected cells with high intracellular pH [82] 

Lactic acid Glucose 
60% higher 

titer 
SSB1 knockout [83] 

Lactic acid Glucose 81.5% tm Bovine LDH and PDC1∆PDC5∆ [48] 

Lactic acid 

Glucose 

and 

xylose 

69% tm 

R. oryzae ldhA with S. stipitis XYL1, 

XYL2, and XYL3 balanced expression and 

PHO13∆ALD6∆ 

[49] 

Lactic acid 

Glucose, 

xylose, 

and 

cellobiose 

66% tm 

R. oryzae ldhA with S. stipitis XYL1, 

XYL2, XYL3, and N. crassa cdt-1 and 

gh1-1 balanced expression with 

PHO13∆ALD6∆ 

[50] 

Succinic acid Glucose 
12.97 g/L 

titer 

Cytosolic retargeting of MDH3, FRDS1, 

and E. coli FumC with PYC2 

overexpression and GPD1∆FUM1∆ 

[51] 

Succinic acid Glucose 
43-fold 

increase 

SDH3∆SER3∆SER33∆ and directed 

evolution 
[53] 

Glycolic acid 

Xylose 

and 

ethanol 

~1 g/L titer 

A. thaliana GLYR1 and MLS1∆IDP2∆ 

with ICL1 and XR/XDK/XK xylose 

utilization pathway expression 

[55] 

Xylitol 

Xylose 

and 

cellobiose 

~100% tm 

S. stipitis XYL1, N. crassa cdt-1 and gh1-

1 expression with ALD6, IDP2, and 

ZWF1 overexpression 

[62] 

Xylitol 

Glucose 

and 

xylose 

~100% tm 
Two XYL1 genes, ZWF1, and ACS1 

expression with fed-batch optimization 
[63] 

Table 1.2 Biobased chemicals from Saccharomyces cerevisiae. tm = theoretical maximum 
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Strain Description Source 
S. cerevisiae D452-2 MATα, leu2, his3, ura3, and can1 [84] 

D10 D452-2 leu2::LEU2 pYS10 [85] 

SR6 D10-6 ura3::URA3 pSR6-X123 [85] 

SR7 SR6 his1::HIS1 pSR3-X23 [85] 

SR7e3 Evolved strains of SR7 (SR7e1, SR7e2, and SR7e3) [85] 

SR8 SR7e3 ald6::AUR1-C pAUR_d_ALD6 [85] 

SR8L SR8 pITy3-ldhA-G418 Chapter II 

SR8HL SR8 pITy3-ldhA-HygB Chapter VI 

SR8HL-Emp SR8HL pRS42K Chapter VI 

SR8HL-J1 SR8HL pRS42K-JEN1 Chapter VI 

SR8HL-A2 SR8HL pRS42K-ADY2 Chapter VI 

EJ3 SR8 leu2::LEU2 pRS405-gh1-1ura3::URA3 pRS406-cdt-1 [86] 

EJ4 
Evolved strain of EJ3 by repeated transferring in cellobiose-

containing media 
[86] 

EJ4∆JEN1 EJ4 pRS42H-JEN1∆ Chapter VI 

EJ4∆ADY2 EJ4 pRS42H-ADY2∆ Chapter VI 

EJ4∆ADY2∆JEN1 EJ4 ADY2∆ pRS42H-JEN1∆ Chapter VI 

EJ4∆ADY2∆JEN1-empty EJ4 ADY2∆JEN1∆ / pRS42N Chapter VI 

EJ4∆ADY2∆JEN1/ADY2 EJ4 ADY2∆JEN1∆ / pRS42N-ADY2 Chapter VI 

EJ4L EJ4 pITy3-ldhA-G418 Chapter VI 

EJ4L∆JEN1 EJ4L pRS42H-JEN1∆ Chapter VI 

EJ4L∆ADY2 EJ4L pRS42H-ADY2∆ Chapter VI 

EJ4L∆ADY2∆JEN1 EJ4L ADY2∆ pRS42H-JEN1∆ Chapter VI 

EJ4L∆ADY2∆JEN1-empty EJ4L ADY2∆JEN1∆ / pRS42N Chapter VI 

EJ4L∆ADY2∆JEN1/ADY2 EJ4L ADY2∆JEN1∆ / pRS42N-ADY2 Chapter VI 

ATCC 2360 (JIN 01 or J1) Wild-type strain ATCC 

ATCC 4098 (JIN 02 or J2) Wild-type strain ATCC 

ATCC 4124 (JIN 03 or J3) Wild-type strain ATCC 

ATCC 4126 (JIN 04 or J4) Wild-type strain ATCC 

ATCC 4127 (JIN 05 or J5) Wild-type strain ATCC 

ATCC 4921 (JIN 06 or J6) Wild-type strain ATCC 

ATCC 7754 (JIN 08 or J8) Wild-type strain ATCC 

ATCC 9763 (JIN 09 or J9) Wild-type strain ATCC 

ATCC 20597 (JIN 10 or J10) Wild-type strain ATCC 

ATCC 20598 (JIN 11 or J11) Wild-type strain ATCC 

ATCC 24855 (JIN 12 or J12) Wild-type strain ATCC 

ATCC 24858 (JIN 13 or J13) Wild-type strain ATCC 

ATCC 24860 (JIN 14 or J14) Wild-type strain ATCC 

ATCC 26422 (JIN 15 or J15) Wild-type strain ATCC 

ATCC 38554 (JIN 16 or J16) Wild-type strain ATCC 

ATCC 46523 (JIN 17 or J17) Wild-type strain ATCC 

ATCC 56069 (JIN 18 or J18) Wild-type strain ATCC 

ATCC 60222 (JIN 19 or J19) Wild-type strain ATCC 

ATCC 60223 (JIN 20 or J20) Wild-type strain ATCC 

ATCC 60493 (JIN 21 or J21) Wild-type strain ATCC 

ATCC 62914 (JIN 23 or J23) Wild-type strain ATCC 

ATCC 66348 (JIN 24 or J24) Wild-type strain ATCC 

ATCC 66349 (JIN 25 or J25) Wild-type strain ATCC 

ATCC 96581 (JIN 26 or J26) Wild-type strain ATCC 

J1X ATCC 2360 pSR6-X123 Chapter V 

J2X ATCC 4098 pSR6-X123 Chapter V 

Table 1.3 (cont.)   
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J3X ATCC 4124 pSR6-X123 Chapter V 

J4X ATCC 4126 pSR6-X123 Chapter V 

J5X ATCC 4127 pSR6-X123 Chapter V 

J6X ATCC 4921 pSR6-X123 Chapter V 

J8X ATCC 7754 pSR6-X123 Chapter V 

J9X ATCC 9763 pSR6-X123 Chapter V 

J10X ATCC 20597 pSR6-X123 Chapter V 

J11X ATCC 20598 pSR6-X123 Chapter V 

J12X ATCC 24855 pSR6-X123 Chapter V 

J13X ATCC 24858 pSR6-X123 Chapter V 

J14X ATCC 24860 pSR6-X123 Chapter V 

J15X ATCC 26422 pSR6-X123 Chapter V 

J16X ATCC 38554 pSR6-X123 Chapter V 

J17X ATCC 46523 pSR6-X123 Chapter V 

J18X ATCC 56069 pSR6-X123 Chapter V 

J19X ATCC 60222 pSR6-X123 Chapter V 

J20X ATCC 60223 pSR6-X123 Chapter V 

J21X ATCC 60493 pSR6-X123 Chapter V 

J23X ATCC 62914 pSR6-X123 Chapter V 

J24X ATCC 66348 pSR6-X123 Chapter V 

J25X ATCC 66349 pSR6-X123 Chapter V 

J26X ATCC 96581 pSR6-X123 Chapter V 

J1C ATCC 2360 pRS425-BTT Chapter V 

J2C ATCC 4098 pRS425-BTT Chapter V 

J3C ATCC 4124 pRS425-BTT Chapter V 

J4C ATCC 4126 pRS425-BTT Chapter V 

J5C ATCC 4127 pRS425-BTT Chapter V 

J6C ATCC 4921 pRS425-BTT Chapter V 

J8C ATCC 7754 pRS425-BTT Chapter V 

J9C ATCC 9763 pRS425-BTT Chapter V 

J10C ATCC 20597 pRS425-BTT Chapter V 

J11C ATCC 20598 pRS425-BTT Chapter V 

J12C ATCC 24855 pRS425-BTT Chapter V 

J13C ATCC 24858 pRS425-BTT Chapter V 

J14C ATCC 24860 pRS425-BTT Chapter V 

J15C ATCC 26422 pRS425-BTT Chapter V 

J16C ATCC 38554 pRS425-BTT Chapter V 

J17C ATCC 46523 pRS425-BTT Chapter V 

J18C ATCC 56069 pRS425-BTT Chapter V 

J19C ATCC 60222 pRS425-BTT Chapter V 

J20C ATCC 60223 pRS425-BTT Chapter V 

J21C ATCC 60493 pRS425-BTT Chapter V 

J23C ATCC 62914 pRS425-BTT Chapter V 

J24C ATCC 66348 pRS425-BTT Chapter V 

J25C ATCC 66349 pRS425-BTT Chapter V 

J26C ATCC 96581 pRS425-BTT Chapter V 

J17XL J17X pITy3-ldhA-G418 Chapter V 

Escherichia coli TOP10 Chemically competent E. coli Thermo Fisher  

Table 1.3 A list of all strains and their sources used throughout this dissertation. 
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Plasmid Description Source 

pLDH68X R. oryzae ldhA template Provided by Dr. 

Chris Skory 

pITy3-ldhA-G418 pPGK1-ldhA-PGK1t-Kanamycin/G418 Chapter II 

pITy3-ldhA-HygB pPGK1-ldhA-PGK1t-Hygromycin B Chapter VI 

pSR6-X123 XYL1, XYL2, XYL3 [87] 

pRS425-BTT cdt-1 and gh1-1 [88] 

pAG32 Hygromycin B template Addgene 

pRS42K 2-μm origin, drug resistance marker (G418) [89] 

pRS42K-JEN1 pRS42K-pGPD1-JEN1-CYCt Chapter VI 

pRS42K-ADY2 pRS42K-pGPD1-ADY2-CYCt Chapter VI 

gRNA-ura-HYB gRNA URA3 expression plasmid [90] 

pRS42H-∆JEN1gRNA pRS42H-JEN1gRNA Chapter VI 

pRS42H-

∆ADY2gRNA 

pRS42H-ADY2gRNA Chapter VI 

pRS42N pRS42-series conferring NAT resistance Internal/Not 

published 

pRS42N-ADY2 pRS42N-ADY2 Chapter VI 

   

Primers Description Source 

cLdhA-U gggcccGGTACCGTCGACatggtattacactcaaaggtc Chapter II 

cLdhA-D gggcccGGTACCGGATCCtcaacagctacttttagaaaagg Chapter II 

Jin419 AGTCACATCAAGATCGTTTATGG Chapter V 

Jin420 GCACGGAATATGGGACTACTTCG Chapter V 

Jin421 ACTCCACTTCAAGTAAGAGTTTG Chapter V 

T102-JdDNA-U aagtttttcctcaaagagattaaatactgctactgaaaat 

CTTACGCCCAAGAACGTAGC 
Chapter VI 

T103-JdDNA-D atagagaagcgaacacgccctagagagcaatgaaaagtga 

GCTACGTTCTTGGGCGTAAG 
Chapter VI 

T104-AdDNA-U actaaacaaccacaaaacaactcatatacaaacaaataat 

AGCACCCTCCACTTGGTCAA 
Chapter VI 

T105-AdDNA-D tttttatttcaatagttctcgttattagtaggtcgtgctc 

TTGACCAAGTGGAGGGTGCT 
Chapter VI 

T106-J-Confirm-F AGCTAATAGCCGACAAACGG Chapter VI 

T107-J-Confirm-R GCTACGTTCTTGGGCGTAAG Chapter VI 

T108-A-Confirm-F CATCTGCAGCGAGATACGAA Chapter VI 

T109-A-Confirm-R TTGACCAAGTGGAGGGTGCT Chapter VI 

T110-J-gRNA-F CGGTACGTACACTAGTTCTTTG Chapter VI 

T111-J-gRNA-R GTACGTACGAGCTCAGACAT Chapter VI 

T112-A-gRNA-F GCGTACGTACACTAGTTCTTTG Chapter VI 

T113-A-gRNA-R GTACGTACGAGCTCAGACAT Chapter VI 

Ady2OE-F gtacgtacggatccACCTTGGGATATCGTTGGA Chapter VI 

Ady2OE-R gtacgtacccgcggGGCAAACGATAGACCTTTC Chapter VI 

Table 1.4 A list of plasmids and primers used throughout this dissertation.



 

The content of this chapter was published. The authors, according to appearance in citation include Timothy L. 

Turner, Guo-Chang Zhang, Soo Rin Kim, Vijay Subramaniam, David Steffen, Christopher D. Skory, Ji Yeon Jang, 

Byung Jo Yu, and Yong-Su Jin. 2015. Lactic acid production from xylose by engineered Saccharomyces cerevisiae 

without PDC or ADH deletion. Applied Microbiology and Biotechnology 99.19 p.8023-8033. I performed the 

research with help from the co-authors and Dr. Yong-Su Jin was the director of the research. 
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CHAPTER II  LACTIC ACID PRODUCTION FROM XYLOSE BY 

ENGINEERED SACCHAROMYCES CEREVISIAE WITHOUT PDC OR ADH 

DELETION 

 

2.1 Introduction 

 Lactic acid is a chemical that has not been produced from fossil fuels currently [91, 92]. 

Lactic acid is biologically produced in excess of 260,000 tons annually [93] and it is primarily 

used as a precursor for the production of polylactide [91, 92]. Polylactide is a biodegradable 

polyester that has numerous applications, including use in plastic cups, bags, packaging 

materials, and surgical implants [94, 95]. While current production methods for producing lactic 

acid utilize sugars derived from corn starch or sugarcane as the primary substrate, utilization of 

cellulosic sugars derived from lignocellulosic biomass will be desirable in terms of availability 

and sustainability. Moreover, lactic acid from lignocellulosic biomass, such as Miscanthus, 

switchgrass, or corn stover would contribute to reducing carbon emissions [96].  

 The yeast Saccharomyces cerevisiae has been explored for its potential as a candidate for 

producing fuels and chemicals [97]. As opposed to lactic acid bacteria or Escherichia coli, which 

both suffer from limited growth in harsh fermentation conditions and are susceptible to phage 

infections, S. cerevisiae is a robust and acidic pH-resistant yeast that is preferred for lactic acid 

production. Natively, S. cerevisiae is incapable of producing lactic acid. Therefore, introduction
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 of lactate dehydrogenase (LDH) into S. cerevisiae is necessary to produce lactic acid. LDH 

catalyzes the one-step conversion of pyruvate into lactic acid without producing carbon dioxide 

as a byproduct. Prior studies which produced lactic acid from S. cerevisiae introduced bovine 

LDH [81], Lactobacillus plantarum LDH [98], Rhizopus oryzae LDH [80], or Lactobacillus 

casei LDH [100] into S. cerevisiae to produce lactic acid from glucose. Although high lactic acid 

titers were achievable, disruption of the ethanol pathway by deletion of pyruvate decarboxylase 

(PDC) or alcohol dehydrogenase (ADH) was needed to minimize ethanol accumulation from 

glucose.  

 In order to produce lactic acid from cellulosic sugars such as xylose by engineered yeast, 

it is necessary to introduce a xylose metabolic pathway into S. cerevisiae as well as LDH. 

Through a combination of rational and inverse metabolic engineering approaches, we developed 

an efficient xylose-fermenting S. cerevisiae (SR8) [85].  Possessing balanced expression levels 

of XYL1, XYL2, and XYL3 and deletion of ADL6 and PHO13, the SR8 strain was able to ferment 

xylose rapidly and efficiently. In this study, we introduced ldhA from the fungi Rhizopus oryzae 

into the SR8 strain to produce lactic acid from xylose as well as glucose (Fig. 2.1). In terms of 

redox balance, the production of lactic acid from pyruvate requires the conversion of one NADH 

to an NAD
+
, which is identical to the redox balance from the two enzymatic reactions which 

allow for ethanol production from pyruvate. Therefore, replacement of ethanol production with 

lactic acid production by S. cerevisiae should cause no change to the overall redox of the cellular 

system as compared to the wild type S. cerevisiae producing ethanol. By introduction of a 

heterologous xylose assimilation pathway and a heterologous lactate dehydrogenase (LDH), the 

naturally low pH-tolerant S. cerevisiae could be a viable host strain for the conversion of 

cellulosic sugars into lactic acid. 
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2.2 Materials and Methods 

 

2.2.1 Media, strains, and plasmids 

 Yeast cells were cultured in yeast extract peptone medium (10 g/L yeast extract and 20 

g/L peptone, YP) containing glucose (YPD) or xylose (YPX). The concentrations of the sugars 

were displayed as numbers following their initials (e.g., YPD20, YP medium containing 20 g/L 

of glucose). In order to construct an S. cerevisiae strain capable of converting xylose to lactic 

acid, an engineered yeast strain (SR8) capable of fermenting xylose was transformed with an 

integrating plasmid which contained ldhA from R. oryzae under the control of the PGK1 

promoter. The integrating plasmid was based on a multi-copy integration pITy3 plasmid 

containing a kanMX antibiotic marker. The ldhA-expression cassette amplified from the 

pLDH68X plasmid [102] using primers cLdhA-U: 

gggcccGGTACCGTCGACatggtattacactcaaaggtc and cLdhA-D: 

gggcccGGTACCGGATCCtcaacagctacttttagaaaagg was inserted into SalI and BamHI enzyme 

sites of the pITy3 plasmid. Escherichia coli TOP10 were used for gene cloning and manipulation 

and were grown in Luria-Bertani medium; 50 µg/mL of kanamycin was added to the medium 

when required. The plasmid was transformed into the strain using a high-efficiency lithium 

acetate transformation method [103]. Yeast transformants were selected on YPD20 plates 

containing 300 µg/mL G418.  

 

2.2.2 Flask fermentation experiments 

 S. cerevisiae stock cultures were maintained on YPX agar (2% w/v agar, 1% w/v yeast 

extract, 2% peptone, 2% xylose) plates. Yeast precultures were grown overnight in YPX40 
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medium in 5 mL total volume and harvested at mid-exponential phase, then washed twice with 

sterilized water to prepare inoculums for fermentations. Flask fermentations were performed 

using 25 mL of YP medium containing appropriate amounts of glucose or xylose in 125 mL 

Erlenmeyer flasks with an initial OD = 1 or 10 (A600 nm) as indicated with dry cell weight 

(DCW) also listed. For xylose fermentations, no glucose contamination was detected as 

determined by high-performance liquid chromatography (HPLC). Approximately 35 g/L of 

calcium carbonate (CaCO3) was used as a neutralizing agent in specific experiments. All 

fermentations were held at 30 °C and at 100 RPM in a MaxQ4000 orbital shaker (Thermo Fisher 

Scientific Inc., USA) unless otherwise specified. Anaerobic fermentations were performed in an 

anaerobic glove chamber maintained in an N2-CO2-H2 (85:10:5) atmosphere (Coy Laboratory 

Products, USA) at 30 °C and were allowed to sit idly without agitation, although flasks were 

shaken by hand before each sample was taken. All experiments were repeated independently in 

duplicate with variations indicated with error bars. 

 

2.2.3 Bioreactor fermentation 

 Yeast precultures were grown in YPX medium and harvested at mid-exponential phase, 

then washed twice with sterilized water to prepare inoculums for fermentations. The bioreactor 

fermentations were conducted in YP medium containing 80 g/L of xylose using a 

BioFlo/CelliGen 115 bioreactor (New Brunswick Scientific Co., USA). An initial yeast cell 

concentration of OD =10 (A600 nm) was used. Working volume was set at 1 L inside of a 2 L 

glass vessel. Aeration was maintained at 1.5 L/min using microfiltered (0.22 µm) ambient air and 

an impeller rotation of 200 RPM. Temperature was maintained at 30 °C. NaOH (10 N) was 

added as needed to maintain a pH value of 6. 
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2.2.4 Lactate dehydrogenase activity assay 

 Lactate dehydrogenase enzymatic activity was measured by coupling the conversion of 

pyruvate to lactic acid to the oxidation of NADH to NAD
+
 with each reaction evaluated by a 

Biomate 3 UV-visible spectrophotometer (Thermo Fisher Scientific Inc., USA) at 340 nm. 

Glucose- or xylose-grown yeast were harvested at mid-exponential phase and centrifuged for 1 

minute at 3200 × g by a 5810R benchtop centrifuge with a swing-bucket rotor (A-4-81, 

Eppendorf, Germany) and the supernatant was removed. Fresh cell pellets were washed with a 

cocktail containing one dissolved tablet of cOmplete protease inhibitor (Roche Applied Science, 

Germany), 1 mM dithiothreitol, and 25 mM Tris-HCl at pH 7.5. The washed cells were 

transferred to a microcentrifuge tube, centrifuged for 1 minute at 21,000 × g by a 5424R 

benchtop centrifuge (Eppendorf, Germany), and the supernatant was discarded. The cell pellet 

was resuspended with 1 mL of the described cocktail and a PCR tube-sized volume of 0.5 mm 

diameter glass beads was added to the microcentrifuge tube. The tube was alternated between 30 

seconds on ice and 30 seconds of vortexing at high speed for 20 minutes. The cells were then 

centrifuged for 10 minutes at 21,000 × g at 4 °C and the resulting raw cell extract was used for 

all enzymatic activity assays. Protein concentrations of freshly lysed cell extracts was measured 

by a Pierce BCA Protein Assay Kit (Thermo Fisher Scientific Inc., USA) following the supplied 

protocol using the included bovine serum albumin as the protein standard. Calculated activities 

were reported in units per milligram of soluble protein (U/mg). One U was defined as the amount 

of enzyme required to convert 1 µmol of NADH to NAD
+
 per minute. All results were reported 

as the average of two replicates. Reactions were carried out in 50 mM potassium phosphate 

buffer at pH 6.7 containing final concentrations of 1 mM pyruvate, 0.4 mM NADH, and an 80 

µL aliquot of freshly prepared cell extract. The reaction was conducted at room temperature by 
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addition of pyruvate into a final volume of 800 µL. Reactions were also attempted using 100 mM 

Tris HCl buffer at pH 6.7 containing final concentrations of 1 mM pyruvate, 0.4 mM NADH, 

and an 80 µL aliquot of freshly prepared cell extract, although they were unsuccessful as detailed 

in the Section 2.3.1. 

 

2.2.5 Analytical methods  

 Cell density for fermentations not using CaCO3 was monitored by optical density (OD) at 

600 nm using a Biomate 3 UV-visible spectrophotometer (Thermo Fisher Scientific Inc., USA). 

Due to the inability of CaCO3 to fully dissolve in the media, cell density was not measured for 

experiments containing CaCO3. Glucose, xylose, xylitol, glycerol, acetate, ethanol, and lactic 

acid concentrations were determined by a 1200 Series high-performance liquid chromatography 

(Agilent Technologies Inc., USA) instrument equipped with a refractive index detector using a 

Rezex ROA-Organic Acid H
+
 (8%) column (Phenomenex Inc., USA). The column was eluted 

with 0.005 N of H2SO4 at a flow rate of 0.6 mL/min at 50 °C. pH was monitored using a 

PHM210 pH meter (Radiometer Analytical SAS, France) with attached Accumet 13-620-290 pH 

probe (Thermo Fisher Scientific Inc., USA).  

 

2.3 Results 

 

2.3.1 Construction of a xylose-fermenting, lactic acid-producing S. cerevisiae (SR8L) 

 We constructed an S. cerevisiae strain capable of producing lactic acid from xylose by 

introducing a fungal ldhA from R. oryzae into a xylose-fermenting S. cerevisiae. We used a Ty-

integration vector for introduction of the ldhA expression cassette. As the copy number and 
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location of the Ty-integration vector can vary [104], we assumed that expression levels of ldhA 

in each transformant might be different. Therefore, we picked thirty colonies which grew on a 

YPD plate containing 300 µg/mL G418 and evaluated the production of lactic acid from xylose 

by each colony. From these colonies, only mild variation was observed, but the colony with the 

highest lactic acid yield (g/g) from xylose was named SR8L and used for all further experiments. 

Successful integration of the ldhA-containing plasmid was confirmed by colony PCR. 

 To further confirm successful expression of ldhA, we measured lactate dehydrogenase 

(LDH) activity from the crude cell extract of the SR8L strain grown on glucose or xylose. When 

initially measuring the LDH activities in the crude extracts of the SR8 and SR8L strains, we 

observed overlapping activity between PDC/ADH and LDH when using 100 mM Tris-HCl 

buffer (pH 6.7) for the reactions. We resolved this issue by replacing the Tris-HCl buffer with 50 

mM potassium phosphate buffer (pH 6.7) instead (more explanations in Discussion). Using the 

potassium phosphate buffer, glucose- or xylose-grown SR8L expressed LDH activity of 1.4 ± 0.3 

U/mg protein or 1.0 ± 0.2 U/mg protein, respectively. The parental strain (SR8), grown on 

glucose or xylose, expressed non-detectable LDH activity (<0.01 U/mg) with either sugar. 

 

2.3.2 Lactic acid production from glucose by engineered S. cerevisiae (SR8L) at low initial 

cell density 

 We investigated lactic acid production profiles from glucose or xylose by the SR8L yeast 

strain. We conducted fermentation experiments in YP medium containing glucose, with or 

without a neutralizing agent (CaCO3). Under YPD with 4% glucose medium without CaCO3 

(Fig. 2.2b) at an initial cell density of OD = 1 (0.47 mg/mL DCW, A600 nm), the engineered 

strain (SR8L) produced 6.9 g/L of lactic acid from ~40 g/L of glucose within 6.5 hours, but the 
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pH of the medium drastically reduced to 3.7 from the initial pH of 6.5. The yield and 

productivity of lactic acid from glucose were 0.17 g lactic acid/g glucose and 1.05 g lactic 

acid/l/h, respectively. Still, ethanol was a dominant fermentation product and its concentration 

reached to 15.4 g/L with a yield of 0.38 g ethanol/g glucose and a productivity of 2.4 g 

ethanol/L/h. Maximum concentrations of acetate and glycerol were 0.4 g/L and 1.1 g/L, 

respectively. The SR8L cell density increased from ~0.47 to 3.76 mg/mL DCW (A600 nm) by 

the end of the fermentation. This fermentation indicated that the SR8L strain produced twice as 

much ethanol as lactic acid from glucose when a neutralizing agent was not used. Under the 

same condition (YPD40) without CaCO3 at an initial cell density of OD = 1 (0.47 mg/mL DCW, 

A600 nm), the parental SR8 strain produced no appreciable lactic acid, but accumulated 18.3 g/L 

of ethanol, a yield of 0.45 g ethanol/g glucose and a productivity of 2.6 g ethanol/L/h (Fig. 2.2a). 

The pH of the medium reduced from 6.5 to 5.3, the acetate titer was 0.25 g/L, and glycerol titer 

was 1.0 g/L. The SR8 cell density increased from ~0.47 to ~5.64 mg/mL DCW (A600 nm) by 

the end of the fermentation, a final cell density 50% greater than the SR8L strain in the same 

conditions. 

 To examine if controlling pH would improve lactic acid yield by the SR8L strain, we 

repeated the previous experiments, but added 35 g/L CaCO3 (Fig. 2.2d). At an initial cell density  

of OD = 1 (0.47 mg/mL DCW, A600 nm) with CaCO3, the SR8L strain produced  9.9 g/L of 

lactic acid from ~40 g/L of glucose within 7.5 hours (Fig. 2.2d). This resulted in a yield of 0.22 g 

lactic acid/g glucose and a productivity of 1.32 g lactic acid/L/h. During the fermentation, the pH 

of the medium decreased from ~6.6 to 5.5. Ethanol accumulation reached a peak of ~14 g/L, a 

yield of 0.31 g ethanol/g glucose, and a productivity of 1.9 g ethanol/L/h. Titers for acetate and 

glycerol reached a peak of 0.5 g/L or 0.9 g/L, respectively. Presumably, the higher pH 
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maintained by CaCO3 addition improved lactic acid production from glucose by the SR8L strain. 

When grown in YPD with an initial cell density of OD = 1 (0.47 mg/mL DCW, A600 nm) with 

35 g/L of CaCO3, the parental SR8 strain converted ~40 g/L of glucose into a non-appreciable 

amount of lactic acid, but accumulated 19.4 g/L of ethanol, a yield of 0.43 g EtOH/g glucose, 

and a productivity of 2.6 g/L/h (Fig. 2.2c). During the fermentation, the pH of the medium 

increased from 6.5 to 6.8. Acetate and glycerol accumulation reached a maximum of 0.4 g/L or 

1.5 g/L, respectively. The fermentation profile was similar to the fermentation without CaCO3 

(Fig. 2.2a), suggesting that CaCO3 had no influence on the parental SR8 strain fermentation 

profile. 

 

2.3.3 Lactic acid production from xylose by engineered S. cerevisiae with low initial cell 

density 

 We then tested whether SR8L, which possessed a xylose metabolic pathway, could 

efficiently produce lactic acid from xylose. With an initial cell density of OD = 1 (0.47 mg/mL 

DCW, A600 nm), SR8L was unable to completely utilize all of 40 g/L of xylose in YP medium 

without neutralizing agent (Fig. 2.3b). Approximately 15 g/L of xylose remained in the medium 

after 74 hours, resulting in a total consumption of 27 g/L of xylose. At 45 hours, when lactic acid 

was at the highest concentration of 10.1 g/L, approximately 21 g/L of xylose had been 

consumed, resulting in a yield of 0.48 g lactic acid/g xylose and a productivity of 0.22 g lactic 

acid/L/h. At the same 45 hour time point, only 2 g/L of ethanol were produced, a yield of 0.1 g 

ethanol/g xylose and a productivity of 0.046 g/L/h. The pH of the medium decreased drastically 

from 6.2 to 3.6 at 45 hours. At the end of the fermentation, xylitol, acetate, and glycerol titers 

were 0.1 g/L, 3.45 g/L, and 1.2 g/L respectively. The SR8L cell density increased from ~0.47 to 
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2.12 mg/mL DCW (A600 nm) by the end of the fermentation, nearly half the final cell density of 

the glucose fermentation (Fig. 2.2b) without CaCO3. Although SR8L (containing a heterologous 

ldhA encoding for lactate dehydrogenase) could not utilize all available xylose, lactic acid was a 

primary fermentation product, with very little ethanol or xylitol production. In contrast, the 

parental strain (SR8) utilized 40 g/L of xylose completely within 45 hours in the same 

fermentation conditions (Fig. 2.3a). Ethanol production reached 13.6 g/L with a yield of 0.35 g 

ethanol/g xylose and a productivity of 0.48 g ethanol/L/h. After 28 hours, the pH of the medium 

decreased to 5.1 from an initial pH of 6.3. Xylitol, acetate, and glycerol accumulations after 28 

hours were 1.9 g/L, 0.5 g/L, or 3.5 g/L respectively. The SR8 cell density increased from ~0.47 

to 7.52 mg/mL DCW (A600 nm) by the end of the fermentation, a final cell density almost four 

times greater than the SR8L strain in the same conditions. 

 We reasoned that the combination of low pH and high lactic acid accumulation was the 

leading roadblock for the SR8L strain to utilize all available xylose, so we conducted another 

xylose fermentation after adding CaCO3 as a neutralizing agent. As expected, the fermentation 

profile with the neutralizing agent greatly improved. Using YP medium containing 40 g/L of 

xylose with 35 g/L of CaCO3 (Fig. 2.3d) with an initial cell density of OD = 1 (0.47 mg/mL 

DCW, A600 nm), the SR8L strain utilized all but 4.3 g/L of xylose within 56 hours. This 

resulted in a lactic acid accumulation of 28.9 g/L, a yield of 0.69 g lactic acid/g xylose and a 

productivity of 0.52 g lactic acid/L/h. The ethanol titer was negligible despite the SR8L strain 

contained an ethanol-producing pathway that was proven to be functional in glucose media or 

xylose media without addition of CaCO3. The initial pH of the medium was 6.6 which decreased 

to 5.6 within 56 hours. Xylitol, acetate, and glycerol accumulations reached 0.5 g/L, 0.4 g/L, or 

3.3 g/L respectively. As with glucose (Fig. 2.2d), SR8L produced a significant amount of lactic 
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acid, especially when pH was maintained by addition of CaCO3. The rate of fermentation was 

roughly half of the parental SR8 in similar conditions (Fig. 2.3c), which may be due to the 

accumulation of lactic acid. Surprisingly, SR8L accumulated very little xylitol (~0.012 g xylitol / 

g xylose), a xylose pathway intermediate that otherwise accounts for up to 10% of the consumed 

xylose in the parental SR8 strain. To summarize, when a higher pH was maintained by addition 

of CaCO3, the SR8L strain produced nearly three times as much lactic acid and was able to 

ferment all available xylose. 

 The parental SR8 strain with an initial cell density  OD = 1 (0.47 mg/mL DCW, A600 

nm), in YP medium containing ~40 g/L of xylose and 35 g/L of CaCO3, utilized all but 1.9 g/L 

of xylose within 25 hours (Fig. 2.3c). Lactic acid was not accumulated and ethanol titer reached 

a peak of 15 g/L with a yield of 0.35 g ethanol/g xylose and a productivity of 0.61 g ethanol/L/h. 

During the fermentation, the initial pH of 6.6 reduced only slightly to a final pH of 6.5. Xylitol, 

acetate, and glycerol titers reached maximums of 3.9 g/L, 0.9 g/L, or 3.3 g/L, respectively. 

Compared to the lactic acid-producing SR8L strain, the parental SR8 strain produced 

substantially more xylitol (3.9 g/L compared to 0.5 g/L). 

 

2.3.4 Lactic acid production from glucose by engineered S. cerevisiae at lower temperatures 

 Owed to a significantly greater production of lactic acid from xylose-grown SR8L than 

from glucose-grown SR8L and the slower rate of xylose utilization, we speculated that a slower 

sugar uptake rate could be the cause of the increased lactic acid titer from xylose. To assess this 

hypothesis, we conducted flask fermentations of SR8 and SR8L grown in YP medium with 40 

g/L of glucose and 35 g/L of CaCO3 at 30 °C, 23 °C, and 16 °C. With an initial cell density of 

OD = 1 (0.47 mg/mL DCW, A600 nm), the SR8 and SR8L strains grown at 30 °C were nearly 
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identical to results shown in Fig. 2.2c and 2.2d, respectively (data not shown). When grown at 

23 °C and 16 °C, the titers and yields of each product were nearly identical to that at 30 °C, 

although unsurprisingly, the rate of glucose uptake and productivity were significantly reduced 

(data not shown). Specifically, the lactic acid titer from SR8 was still negligible while the lactic 

acid titer from SR8L was approximately the same as when grown at 30 °C. 

 

2.3.5 Lactic acid production from xylose by engineered S. cerevisiae at high initial cell 

density and high initial xylose concentration 

 To determine whether the SR8L strain can produce lactic acid even from high 

concentrations of sugar, a flask fermentation with 100 g/L of xylose and 35 g/L of CaCO3 was 

conducted. With an initial cell density of OD = 10 (4.70 mg/mL DCW, A600 nm), the SR8L was 

able to consume all but 4.5 g/L of xylose within 126 hours (Fig. 2.4). At 102 hours, when 90 g/L 

of xylose had been utilized, lactic acid concentrations reached up to 60 g/L, representing a yield 

of 0.67 g lactic acid/g xylose and a productivity of 0.59 g/L/h. Compared to the fermentation 

experiment with a lower xylose concentration (40 g/L) containing CaCO3 (Fig. 2.3d), the yield 

and productivity were similar, which suggests that SR8L can completely ferment high 

concentrations of xylose as long as pH is maintained using CaCO3. Most importantly, at 102 

hours, accumulated xylitol, glycerol, acetate, or ethanol by the SR8L strain were less than 1 g/L 

each. Collectively, this result suggests that efficient production of lactic acid from xylose might 

be feasible without disruption of the ethanol-producing pathway via deletion of pdc or adh, 

which is necessary to produce lactic acid from glucose by engineered yeast. 
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2.3.6 Lactic acid production from xylose by engineered S. cerevisiae under strict anaerobic 

conditions 

 Although the SR8L strain was able to produce lactic acid from xylose under oxygen-

limited conditions, i.e. a micro-aerobic environment, large-scale industrial fermentations often 

utilize nearly complete anaerobic conditions. To examine whether the SR8L strain could produce 

lactic acid from glucose or xylose under strict anaerobic conditions, we conducted several 

fermentations in an anaerobic chamber with an initial cell density of OD = 1 (0.47 mg/mL DCW, 

A600 nm). Agitation was only provided when samples were taken by brief manual shaking of the 

flask. In YP medium containing 40 g/L of glucose and 35 g/L CaCO3, the SR8L strain utilized 

nearly all glucose within 20 hours (Fig. 2.5a). At 20 hours, lactic acid titer reached to 7.8 g/L 

with a yield of 0.21 g lactic acid/g glucose and a productivity of 0.39 g/L/h. As with the oxygen-

limited fermentation (Fig. 2.2d), ethanol was the major product accumulating a titer of ~15 g/L. 

Other minor byproducts were formed including glycerol and acetate. In YP medium containing 

~40 g/L of xylose and 35 g/L CaCO3, the SR8L strain utilized all xylose within 180 hours (Fig. 

2.5b). At 140 hours, lactic acid titer reached to 15 g/L with a yield of 0.43 g lactic acid/g xylose 

and a productivity of 0.10 g/L/h, respectively. In contrast to oxygen-limited conditions where 

negligible amounts of byproducts (<0.1 g/L of ethanol, 3.3 g/L of glycerol, and 0.5 g/L of 

xylitol) were accumulated (Fig. 2.3d), the strict anaerobic condition resulted in accumulation of 

substantial amounts of ethanol (5.6 g/L), glycerol (7.3 g/L), and xylitol (1.5 g/L). This result 

suggests that homo-lactic acid production from xylose by the SR8L strain is at least slightly 

dependent on respiratory pathways and oxygen availability. 
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2.3.7 Lactic acid production from xylose by engineered S. cerevisiae in a 1 L bioreactor 

 To assess whether lactic acid production from xylose by the SR8L strain at a larger-scale, 

a bioreactor experiment with a working volume of 1 L was conducted. YP medium containing 80 

g/L of xylose was used with an initial cell density of OD = 10 (4.70 mg/mL DCW, A600 nm). 

NaOH (10 N) was added as needed in place of CaCO3 to maintain a pH value of 6 throughout the 

fermentation. Within 105 hours, nearly all xylose was consumed (Fig. 2.6). The lactic acid titer 

reached 49.1 g/L with a yield of 0.60 g lactic acid/g xylose and a productivity of 0.47 g/L/h. 

Titers of ethanol (< 3 g/L), glycerol (< 8 g/L), xylitol (< 1 g/L), and acetate (< 2.5 g/L) all 

remained relatively low. The cell concentration increased 20% to ~12 (A600 nm). After 105 

hours, 50 g /L of xylose was added to the bioreactor and was fermented within an additional 200 

hours, resulting in a final lactic acid titer of ~80 g/L (data not shown). 

 

2.4 Discussion 

 In order to produce lactic acid through microbial fermentation of sugars, prior studies 

have employed various microorganisms including Bacillus sp. [105, 106], Rhizopus oryzae [107, 

108], and cyanobacteria [109]. Mostly, glucose was used as a carbon source to produce lactic 

acid. In a study which introduced a heterologous LDH into the natively xylose-fermenting yeast 

Pichia stipitis, xylose had been shown to be an effective carbon source for lactic acid production 

[110]. Here, we have demonstrated lactic acid production in an engineered yeast (S. cerevisiae) 

that cannot naturally ferment xylose (unlike the naturally xylose-fermenting P. stipitis), with a 

high yield and minimal byproduct formation (Fig. 2.4). Besides Pichia stipitis, other microbes 

including Candida sonorensis, Rhizopus oryzae, and Candida utilis have been engineered to 

produce lactic acid from xylose, but until now, lactic acid production from xylose-fermenting S. 
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cerevisiae has not been reported [108, 111]. In our study, the nearly undetectable production of 

ethanol was achieved without deletion or disruption of pdc or adh genes, which has been 

previously studied for producing lactic acid from glucose by S. cerevisiae [81, 112]. The SR8L 

strain, as shown, produces lactic acid as the primary product when grown on xylose, but 

produces ethanol as the primary product when grown on glucose. Additionally, the presence of 

ldhA in SR8L does not appear to inhibit glucose utilization even when lactic acid is produced. 

 The present study has constructed an engineered S. cerevisiae strain to produce L-lactic 

acid from xylose as a sole carbon source. This was achieved through introduction of a 

heterologous R. oryzae-sourced ldhA gene coding for lactate dehydrogenase into a xylose-

fermenting S. cerevisiae. Of significant interest, we observed that the engineered strain (SR8L) 

primarily produced ethanol from glucose and lactic acid from xylose. We named this 

phenomenon as a substrate-dependent product formation (S-DPF). Similarly, Ilmén and 

colleagues engineered a Pichia stipitis strain capable of producing more lactic acid when 

fermenting xylose than glucose, although lactic acid was always the major product even when 

fermenting glucose [110]. From ~100 g/L xylose in CaCO3-buffered YNB medium, the 

engineered P. stipitis strain accumulated 58 g/L of lactic acid and 4-5 g/L of ethanol; from ~100 

g/L glucose in YNB medium, the P. stipitis strain accumulated ~40 g/L of lactic acid and 20 g/L 

of ethanol [110]. While the engineered P. stipitis produced a mixture of lactic acid and ethanol 

from xylose, our engineered S. cerevisiae was able to produce only lactic acid from xylose. 

Putative molecular mechanisms behind this S-DPF are currently not clear but we speculated 

several underlying mechanisms. First, because the xylose utilization rate of SR8L was much 

slower than on glucose, we hypothesized that a slower rate of sugar consumption, regardless of 

which sugar is used, results in a greater lactic acid yield. In order to test this, we grew SR8L in 
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YPD40 with 35 g/L CaCO3 at 30 °C, 23 °C, and 16 °C, but despite an unsurprising decrease in 

glucose uptake rate at the lower temperatures, the yields of all products remained very similar 

(data not shown). Although the low temperature fermentations did not modify the lactic acid 

yield, the slower rate of xylose uptake compared to glucose uptake by the SR8L strain may still 

explain why more lactic acid is produced when fermenting xylose. The KM of R. oryzae LDH on 

pyruvate is approximately 0.55 mM [113], which is a substantially lower than that of the S. 

cerevisiae PDC which has been measured as high as 3 mM and most recently at 2.29 mM [114]. 

This suggests that the slower uptake of xylose compared to that of glucose results in a lower 

intracellular pyruvate concentration, allowing for LDH to rapidly convert pyruvate into lactic 

acid before the pyruvate concentration is high enough for the lower affinity PDC to become 

effective. 

 Because conversion of pyruvate to ethanol or lactic acid both result in regeneration of 

NAD
+
, the redox balance by either pathway will be the same and therefore redox imbalance is 

unlikely to be a major factor for the substrate-dependent product formation. While cofactor 

differences of xylose reductase (XR) and xylitol dehydrogenase (XDH) might cause cofactor 

imbalance during xylose fermentation, we speculate that the imbalance would not be substantial 

enough to cause the changes in product formation patterns. Rather, it is possible that the lack of 

glucose signaling in xylose-fermenting S. cerevisiae resulted in weaker fluxes toward ethanol 

production, allowing the one-step conversion of pyruvate to lactic acid to take priority [115, 

116]. In particular, the recognition of extracellular glucose by SNF3- or RGT2-encoded glucose 

sensors is known to cause the suppression of JEN1 coding for lactic acid permease. However, 

JEN1 is induced when non-fermentable carbon sources are metabolized [117-119], especially 

when xylose is used as a sole carbon source [120]. Since the SR8L strain produces ethanol as the 
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major product from glucose, but produces lactic acid as the major product from xylose, a highly-

induced JEN1 in the xylose condition may be one factor resulting in this phenotype. We can 

speculate that the up-regulation of JEN1 might allow SR8L cells to rapidly expel lactic acid 

when grown on xylose. As the conversion of pyruvate to lactic acid is a reversible reaction and 

lactic acid can act as an allosteric inhibitor of LDH, efficient elimination of lactic acid from the 

cytosol might enhance metabolic fluxes toward lactic acid production.   

 When first measuring the LDH activities in the crude extracts of the SR8 and SR8L 

strains, we observed overlapping activity between PDC/ADH and LDH. As pyruvate can be a 

substrate for both PDC and LDH, NADH can be oxidized with the production of lactic acid via 

LDH, and with the production of ethanol if there is a strong activity of ADH via PDC. Under our 

initial LDH activity assay conditions using 100 mM Tris-HCl buffer (pH 6.7) and 3 mM 

pyruvate, crude extracts from the SR8 strain displayed a false-positive LDH activity, suggesting 

that the oxidation of NADH via PDC and ADH from pyruvate into ethanol was interfering with 

our LDH activity assay. In order to alleviate this issue, we reduced pyruvate concentrations from 

3 mM to 2 mM, or even 1 mM in the assay as LDH has a much lower KM for pyruvate than PDC. 

This reduction of the pyruvate concentration in the LDH assay resulted in a significant decrease 

in false-positive LDH activity in the crude extract of the SR8 strain but failed to completely 

eliminate NADH oxidation from the PDC/ADH reaction. Therefore, we replaced the 100 mM 

Tris-HCl buffer with 50 mM potassium phosphate (pH 6.7) buffer, as higher concentrations of 

phosphate (more than 25 mM) are known to decrease the affinity of PDC for pyruvate [121, 

122]. After these modifications, we observed that crude extracts from the SR8 strain did not 

show any false-positive LDH activity but crude extracts from the SR8L strain showed strong 

LDH activity.  
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 Serendipitously, we also observed that SR8L not only produced lactic acid at a relatively 

high yield (0.69 g lactic acid/g xylose), but also accumulated a nearly undetectable amount of 

ethanol when calcium carbonate (CaCO3) was used as a neutralizing agent. As shown in Fig. 

2.3d, ≤ 0.3 g/L of ethanol was detected during the xylose fermentation, a yield of < 0.007 g 

ethanol/g xylose. This represented nearly complete inactivity of the ethanol pathway naturally 

present in S. cerevisiae, and a 98% reduced ethanol titer (~0.3 g/L in contrast to ~15 g/L) as 

compared to the parental strain in the same condition. It is well understood that disruption or 

deletion of pyruvate decarboxylase genes (PDC1, PDC5, and PDC6) can significantly reduce or 

eliminate ethanol production, but at the cost of cell health [123, 124]. Similarly, deletion of 

alcohol dehydrogenase (ADH) can impair or eliminate ethanol production, but requires additional 

resources and may result in only temporary disruption of ethanol production [125]. For our 

study, no deletion of any pdc or adh genes was conducted, which resulted in relatively healthy 

cells that were capable of rapidly utilizing all available xylose, although this is dependent on 

usage of a neutralizing agent for maintaining pH above ~3.5. Previous attempts to genotypically 

disrupt ethanol production in lactic acid-producing yeast have resulted in limited productivity 

[126, 127].  

 Of additional interest is the relative lack of byproducts in the final fermentation broth, 

resulting in a nearly homofermentative conversion of xylose to lactic acid. Xylitol accumulation, 

which results in wasted carbons and a reduced target product yield, is a long-term and yet 

unsolved problem for xylose utilization by engineered yeast possessing the heterologous xylose 

reductase (XR)/xylitol dehydrogenase (XDH) pathway [87, 128-130]. Xylitol accumulation has 

been resolved in engineered yeast which utilize the xylose isomerase (XI) pathway [131]. In this 

report, SR8L, which possesses the aforementioned XR/XDH xylose-utilization pathway, 
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converted ~100 g/L of xylose into ≤ 0.5 g/L xylitol, a yield of ~0.005 g xylitol/g xylose (Fig. 

2.4). The single-step lactic acid pathway, consisting of only the reduction of pyruvate to lactic 

acid as opposed to two steps for the decarboxylation and reduction of pyruvate to ethanol may be 

one factor attributing to this phenotype. Importantly, the low accumulation of xylitol can lead to 

a higher target product yield and minimization of purification steps. 

 Acetate titer remained at ≤ 2 g/L during the YPX100 with 35 g/L CaCO3 fermentation 

(Fig. 2.4), a yield of ~0.02 g acetate/g xylose. The glycerol titer reached 1.9 g/L and a yield of 

~0.02 g glycerol/g xylose. Collectively, each measured byproduct (ethanol, xylitol, acetate, and 

glycerol) reached a maximum combined titer of 5.4 g/L, a combined yield of ~0.06 g 

byproducts/g xylose. Combined with a lactic acid yield of approximately 0.63 g lactic acid/g 

xylose (at 126 h), ~69% of xylose was converted into various end products, with the remainder 

likely for cell biomass, cell maintenance (especially export of lactic acid), or other minor 

metabolites. Although cell biomass, minor metabolites, and unspent medium nutrients would still 

require removal, the low concentrations of otherwise major byproducts in xylose fermentations 

(Fig. 2.4) may result in cheaper and less complex purification for the purpose of industrial lactic 

acid production. In general, purification cost, alongside feedstock cost, is a significant hindrance 

to cost-effective production of organic acids from microbial sources [132]. Industrial-scale 

production of lactic acid would require fermentation volumes far-exceeding our 1 L bioreactor 

fermentation (Fig. 2.6). In addition, a lower pH with minimal buffer or neutralizing agents and 

lignocellulosic hydrolysate medium rather than complex YP medium containing purified sugars 

would be necessary to minimize feedstock and purification costs. Further scale-up of xylose 

fermentations by SR8L as well as methods to improve lactic acid tolerance are on-going. The 

efficacy of using lignocellulosic feedstocks for the production of value-added chemicals has been 
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questioned for many reasons, such as price competitiveness and inefficient fermentation results. 

However, this study provides initial insight into considerations that non-glucose sugars, i.e. 

inexpensive and abundant cellulosic sugars, may be preferential for producing chemicals from 

heterologous pathways in S. cerevisiae [133]. Specifically, xylose could be a preferred sugar for 

the production of lactic acid by engineered yeast, assuming proper considerations for pH and 

oxygen control, resulting in minimal ethanol production without genetic disruption of the native 

ethanol pathway. 

 Here, we have demonstrated successful lactic acid production from xylose by engineered 

S. cerevisiae. This newly engineered yeast, named SR8L, accumulated lactic acid at a yield of 

~0.21 g lactic acid/g glucose in CaCO3-containing YPD medium, whereas the same strain 

accumulated lactic acid at a yield of ~0.69 g lactic acid/g xylose in CaCO3-containing YPX 

medium with a xylitol titer of ≤ 0.5 g/L. Importantly, in YPX40 medium containing 35 g/L 

CaCO3, SR8L accumulated a minimal level of ethanol (0.3 g/L) and ~28.8 g/L of lactic acid 

during the fermentation, representing an ethanol:lactic acid ratio of nearly 1:100 without deletion 

of pdc or adh. This suggests that xylose is a preferential carbon source for production of lactic 

acid from S. cerevisiae, and also indicates that direct genotypic disruption of the yeast ethanol 

pathway is not necessarily needed for production of lactic acid. Moreover, we envision that the 

substrate-dependent alteration in fermentation products reported here might be exploited for the 

efficient production of value-added products by engineered S. cerevisiae. 
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2.5 Figures 

 

 

 

 

Fig. 2.1 Metabolic pathway for the engineered SR8L xylose-utilizing yeast with a heterologous 

lactic acid pathway. XR, XDH, and XK were previously expressed and ald6 and pho13 were 

deleted to allow for efficient xylose utilization and minimization of acetate production. In this 

study, ldhA, which encodes for lactate dehydrogenase (LDH) was introduced to allow for lactic 

acid production from xylose or glucose. 
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Fig. 2.2 Fermentation profiles for yeast grown in YPD medium. a Parental SR8 strain without 

CaCO3. b Recombinant SR8L strain without CaCO3. c Parental SR8 strain with 35 g/L CaCO3. d 

Recombinant SR8L strain with 35 g/L CaCO3. Glucose (closed circle), lactic acid (closed 

diamond), ethanol (closed square), pH (closed triangle), xylitol (open circle), acetate (open 

square), glycerol (open diamond), and OD (open triangle) are shown. The values are the means 

of two independent experiments and the error bars indicate the standard errors. 
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Fig. 2.3 Fermentation profiles for yeast grown in YPX medium. a Parental SR8 strain without 

CaCO3. b Recombinant SR8L strain without CaCO3. c Parental SR8 strain with 35 g/L CaCO3. d 

Recombinant SR8L strain with 35 g/L CaCO3. Xylose (closed circle), lactic acid (closed 

diamond), ethanol (closed square), pH (closed triangle), xylitol (open circle), acetate (open 

square), glycerol (open diamond), and OD (open triangle) are shown. The values are the mean of 

two independent experiments and the error bars indicate the standard errors. 
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Fig. 2.4 Recombinant strain SR8L displaying a standard fermentation profile for 100 g/L of 

xylose (closed circle) in complex YP medium supplemented with 35 g/L of CaCO3. SR8L 

produced ~60 g/L of lactic acid (closed diamond). Ethanol (closed square), pH (closed triangle), 

xylitol (open circle), acetate (open square), and glycerol (open diamond) are also shown. The 

values are the mean of two independent experiments and the error bars indicate the standard 

errors. 
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Fig. 2.5 Fermentation profiles for yeast grown in an anaerobic glove box. a Recombinant strain 

SR8L grown in YPD medium containing 35 g/L of CaCO3. SR8L fermented ~40 g/L of glucose 

(closed circle) producing 8.3 g/L of lactic acid (closed diamond). b Recombinant strain SR8L 

grown in YPX medium containing 35 g/L of CaCO3. SR8L converted ~40 g/L of xylose (closed 

circle) into ~15 g/L of lactic acid (closed diamond). Ethanol (closed square), pH (closed 

triangle), xylitol (open circle), acetate (open square), and glycerol (open diamond) are also 

shown. The values are the mean of two independent experiments and the error bars indicate the 

standard errors. 
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Fig. 2.6 Recombinant strain SR8L displaying a standard fermentation profile in a 1 L working 

volume bioreactor containing YP medium with 80 g/L of xylose (closed circle). SR8L produced 

~50 g/L of lactic acid (closed diamond). Ethanol (closed square), pH (closed triangle), xylitol 

(open circle), acetate (open square), glycerol (open diamond), and OD (open triangle) are 

shown. Initial cell density was established at OD =10 (A600 nm) and a pH value of 6 was 

maintained by addition of 10 N NaOH as necessary.



 

The content of this chapter was published. The authors, according to appearance in citation include Timothy L. 

Turner, Guo-Chang Zhang, Eun Joong Oh, Vijay Subramaniam, Andrew Adiputra, Vimal Subramaniam, 

Christopher D. Skory, Ji Yeon Jang, Byung Jo Yu, In Park, and Yong-Su Jin. 2015. Lactic acid production from 

cellobiose and xylose by engineered Saccharomyces cerevisiae. Biotechnology and Bioengineering 113.5 p.1075-

1083. I performed the research with help from the co-authors and Dr. Yong-Su Jin was the director of the research. 

44 

CHAPTER III LACTIC ACID PRODUCTION FROM CELLOBIOSE AND 

XYLOSE BY ENGINEERED SACCHAROMYCES CEREVISIAE 

 

3.1 Introduction 

 Economic production of value-added chemicals from renewable biomass is an important 

step towards a sustainable economy. Lactic acid is one such value-added chemical which is 

produced in excess of 260,000 tons annually [93]. Uses for lactic acid have been known for 

decades. Commercial purposes for lactic acid include use as a mosquito attractant and [134] use 

as a natural food preservative [135] in part because lactic acid is classified as GRAS (generally 

recognized as safe) by government agencies worldwide. Although widely used as a natural food 

preservative before, lactic acid has also found extensive use as a precursor for polylactic acid 

(PLA) synthesis recently [93]. PLA is a durable thermoplastic polyester which can be used in 

numerous products including consumer plastic ware and surgical sutures [136]. In the expanding 

3D printing market, PLA has been used as a fabrication filament. For these and numerous other 

reasons, PLA has become one of the most highly-studied renewable polyesters. [46] 

 Currently, almost all industrially-produced lactic acid is generated by fermentation of 

glucose by lactic acid bacteria [47, 137]. Percent theoretical yields of lactic acid produced from 

various carbon sources by engineered S. cerevisiae have been reported as high as 81.5 % from 

glucose [48], 69 % from xylose [49], and 78 % from cellobiose [138]. Many groups have studied
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 the production of lactic acid from glucose by a variety of host organisms including yeast [99, 

112], fungi [139], Escherichia coli [140], and lactic acid bacteria [141]. As with lactic acid 

production, corn- or sugarcane-derived glucose has been a major feedstock for the production of 

biofuel additives or biofuels, such as ethanol. Increasing demand for sugars, including use for 

biofuel production, has been considered a catalyst for increasing food costs [142]. Because fuel 

and chemical demands are ever-increasing, utilization of sugars from generally non-edible 

lignocellulosic materials for the production of these chemicals could alleviate pressure on the 

already constrained food supply [143]. In addition, a fermentation process to transform 

lignocellulosic materials into useful products would be relatively carbon-neutral, unlike most 

fossil fuel-based processes which release significant amounts of once-sequestered carbon into the 

atmosphere [144]. Disappointingly, there are few commercial examples for converting 

lignocellulosic materials into value-added fuels or chemicals. 

 Major sugars in the cellulosic hydrolysates are glucose and xylose, constituting upwards 

of 40 % and 20 % of plant biomass, respectively [145]. Because xylose makes up a significant 

portion of terrestrial biomass, efficient fermentation of xylose is necessary for complete 

utilization of lignocellulosic biomass. Unfortunately, many microorganisms are not able to 

ferment xylose. However, engineered yeast [146] have been developed in recent years as 

platform microbes for conversion of xylose into fuels or chemicals. Still, most engineered strains 

exhibit the glucose repression problem, i.e. xylose cannot be utilized until glucose is depleted, 

when cellulosic hydrolysates containing both glucose and xylose are fermented. To bypass this 

problem, simultaneous co-fermentation of xylose and cellobiose has been demonstrated by 

engineered Saccharomyces cerevisiae [147]. Cellobiose is a disaccharide of glucose molecules 

connected by a β-1,4 linkage that cannot natively be transported into the cell by S. cerevisiae. 
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Through intracellular utilization of cellobiose via cellobiose transport across the cell membrane 

and an intracellular β-glucosidase, the glucose repression problem was avoided [148]. Even the 

feasibility of simultaneous co-utilization of cellobiose, xylose, and acetic acid has been 

demonstrated recently [149]. In order to construct engineered yeast capable of simultaneously 

fermenting cellobiose and xylose, we have optimized expression of a heterologous XYL1 (xylose 

reductase), XYL2 (xylitol dehydrogenase), and XYL3 (xylulose kinase) from Scheffersomyces 

stipitis, which allowed for utilization of xylose. Deletion of ALD6 (acetaldehyde dehydrogenase) 

and PHO13 (a general phosphorylase) further improved xylose fermentations [85]. Genome 

integration of a heterologous cellodextrin transporter (cdt-1) and an intracellular β-glucosidase 

(gh1-1) from the cellulolytic fungi Neurospora crassa permitted the ability to ferment cellobiose 

and maintain stable gene expression. Laboratory evolution on medium containing cellobiose as 

the sole carbon source increased the copy numbers of cdt-1 and gh1-1, resulting in the EJ4 strain 

being capable of rapid and efficient xylose and cellobiose co-utilization [149]. 

 The objective of this study was to utilize the efficient xylose- and cellobiose-fermenting 

capabilities of the EJ4 yeast strain to produce lactic acid. To achieve this, we introduced a 

heterologous lactate dehydrogenase gene (ldhA) from Rhizopus oryzae using the pITy3 multi-

copy integration vector [150]. This vector was chosen to integrate multiple copies of ldhA, as 

previous studies have shown improved lactate dehydrogenase activity from expressing more than 

one copy of the lactate dehydrogenase gene in engineered yeast [112]. In addition, Ty-integration 

sites are believed to have few functional genes, so there is a limited chance for disruption of 

important native genes [151]. Prior this this study, engineered S. cerevisiae have not been used to 

product lactic acid from a mixture of lignocellulosic sugars. However, using Corynebacterium 

glutamicum, Sasaki et al. were able to convert a mixture of 40 g/L glucose, 20 g/L xylose, and 10 
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g/L cellobiose into a mixture of lactic, succinic, and acetic acids at a total yield of 0.85 g organic 

acids/g sugar [152]. Although their sugar mixture was predominantly glucose, their study was 

one of the earliest demonstrations for converting mixtures of lignocellulosic sugars into value-

added products. Their study provided initial insight into the potential for one-pot monocultures 

capable of producing value-added products from lignocellulosic materials. Here, we use an 

engineered S. cerevisiae, which can convert one mol of pyruvate into one mol of ethanol or one 

mol of lactic acid resulting in the regeneration of one NAD
+
, providing equal redox balance from 

producing ethanol or lactic acid. For the purposes of this study, deletion of genes involved in the 

native yeast ethanol pathway (pyruvate decarboxylase and alcohol dehydrogenase) was not 

conducted, allowing the EJ4L strain the ability to convert pyruvate to both ethanol and lactic 

acid.  

 

3.2 Materials and Methods 

 

3.2.1 Media, strains, and plasmids 

 Yeast were cultured in YP medium (10 g/L yeast extract and 20 g/L peptone) containing 

glucose (YPD), xylose (YPX), cellobiose (YPC), or glycerol (YPG). The concentrations of the 

sugars were displayed as numbers following their initials (e.g., YPD20, YP medium containing 

20 g/L of glucose). To construct an S. cerevisiae strain capable of producing lactic acid from 

cellobiose and xylose, an engineered strain (EJ4) capable of fermenting cellobiose and xylose 

was transformed with an integrating plasmid which contains ldhA from R. oryzae under the 

control of the constitutive PGK promoter. The integrating plasmid was based on a multi-copy 

integration pITy3 plasmid containing a kanMX antibiotic marker [150]. The ldhA-expression 
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cassette amplified from the pLDH68X plasmid using primers cLdhA-U: 

gggcccGGTACCGTCGACatggtattacactcaaaggtc and cLdhA-D: 

gggcccGGTACCGGATCCtcaacagctacttttagaaaagg was inserted into SalI and BamHI enzyme 

sites of the pITy3 plasmid. E. coli TOP10 were used for gene cloning and manipulation and were 

grown in Luria-Bertani medium; 50 µg/mL of kanamycin was added to the medium when 

required. A 20 μL reaction containing ~2,000 ng of the  plasmid, 10 units of the XhoI enzyme 

(New England Biolabs, USA), and the appropriate buffer was placed in a 37 °C water bath for 90 

minutes to linearize the plasmid. A double-enzyme digestion of the plasmid was used for gel 

electrophoresis to confirm appropriate fragment sizes. The linearized plasmid was transformed 

into the EJ4 strain using a standard high-efficiency lithium acetate method [103]. Yeast 

transformants were selected on YPD20 plates containing 300 µg/mL G418. Colony PCR of 

suspected transformants was conducted to confirm successful ldhA integration. 

 

3.2.2 Flask fermentations 

 S. cerevisiae stock cultures were maintained on YPC (2% w/v agar, 1% w/v yeast extract, 

2% peptone, 2% cellobiose) plates. Yeast precultures were grown in YPX40 medium at 300 

RPM and harvested at mid-log phase, then washed twice with sterilized water to prepare 

inoculums for fermentations. For experiments comparing preculture effects of different sugars 

(see Results and Discussion, 3.2.), yeast cells were precultured in YP medium containing 40 g/L 

of glucose, xylose, cellobiose, or glycerol with an initial cell inoculum in the fermentation of ~1 

(0.47 mg DCW/mL, OD600). All flask fermentations were performed using 25 mL of YP medium 

containing an appropriate concentration of sugar in 125 mL Erlenmeyer flasks with an initial cell 

concentration of ~1 or ~10 (0.47 or 4.70 mg DCW/mL, OD600) as indicated. Approximately 35 
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g/L or 50 g/L of calcium carbonate (CaCO3) was used as a neutralizing agent in specific 

experiments. All flask fermentations were oxygen-limited and were held at 30 °C and at 100 

RPM in a MaxQ4000 orbital shaker (Thermo Fisher Scientific Inc., USA). The rate of oxygen 

transfer for flask fermentations was determined to be 6.2 mmol O2/L/h by the sodium sulfite 

oxidation method [153, 154]. All experiments were repeated independently in duplicate with 

variations indicated with error bars. 

 

3.2.3 Bioreactor fermentations 

 Yeast precultures were grown in YPX40 medium and harvested at mid-log phase, then 

washed twice with sterilized water to prepare inoculums for fermentations. The bioreactor 

fermentations were conducted in YP medium containing 10 g/L of glucose, 40 g/L of xylose, and 

80 g/L of cellobiose using a BioFlo/CelliGen 115 bioreactor (New Brunswick Scientific Co., 

USA). An initial yeast cell concentration of ~1 (0.47 mg DCW/mL, OD600) was used. Working 

volume was set at 1 L inside of a 2 L glass vessel. Aeration was maintained at a flow rate of 1.5 

L/min of microfiltered (0.22 μm) ambient air and an impeller rotation of 200 RPM. Temperature 

was maintained at 30 °C. NaOH (10 N) was added as needed to maintain a pH value of 6. 

 

3.2.4 Lactate dehydrogenase activity assay of crude cell extracts 

 Lactate dehydrogenase enzymatic activity was measured by coupling the conversion of 

pyruvate to lactic acid to the oxidation of NADH to NAD
+
 with each reaction evaluated by a 

UV-visible spectrophotometer at 340 nm. Glucose-, xylose-, or cellobiose-grown yeast were 

harvested at mid-log phase and centrifuged for 1 minute at 3200 × g by a 5810R benchtop 

centrifuge with a swing-bucket rotor (A-4-81, Eppendorf, Germany) and the supernatant was 
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removed. Fresh cell pellets were washed with a cocktail containing one dissolved tablet of 

cOmplete protease inhibitor (Roche Applied Science, Germany), 1 mM dithiothreitol, and 25 

mM Tris-HCl (pH 7.5). The washed cells were transferred to a microcentrifuge tube, centrifuged 

for 1 minute at 21,000 × g by a 5424R benchtop centrifuge (Eppendorf, Germany) and the 

supernatant was discarded. The cell pellet was resuspended with 1 mL of the described cocktail 

and a PCR tube-sized volume of 0.5 mm glass beads was added to the microcentrifuge tube. The 

tube was alternated between 30 seconds on ice and 30 seconds of vortexing at high speed for 20 

minutes. The cells were then centrifuged for 10 minutes at 21,000 × g at 4 °C and the resulting 

raw cell extract was used for all enzymatic activity assays. Protein concentrations of freshly 

lysed cell extracts were measured by a Pierce BCA Protein Assay Kit (Thermo Fisher Scientific 

Inc., USA) following the supplied protocol using the included bovine serum albumin as the 

protein standard. Calculated activities were reported in units per milligram of soluble protein 

(U/mg). One U was defined as the amount of enzyme required to convert 1 µmol of NADH to 

NAD
+
 per minute. All results were reported as the average of two replicates. Reactions were 

carried out in 50 mM potassium phosphate buffer at pH 6.7 containing final concentrations of 1 

mM pyruvate, 0.4 mM NADH, and an 80 µL aliquot of freshly prepared cell extract. The 

reaction was conducted at room temperature by addition of pyruvate into a final volume of 800 

µL. 

 

3.2.5 Analytical methods  

 Cell concentration was monitored by optical density (OD) at 600 nm using a Biomate 3 

UV-visible spectrophotometer (Thermo Fisher Scientific Inc., USA). Due to the low solubility of 

CaCO3 in the fermentation media, cell concentration was not measured for experiments 
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containing CaCO3. Glucose, cellobiose, xylose, xylitol, glycerol, acetate, ethanol, and lactic acid 

concentrations were determined by a 1200 Infinity Series high performance liquid 

chromatography (HPLC, Agilent Technologies Inc., USA) instrument equipped with a refractive 

index detector using a Rezex ROA-Organic Acid H
+
 (8%) column (Phenomenex Inc., USA). The 

column was eluted with 0.005 N of H2SO4 at a flow rate of 0.6 mL/min at 50 °C. The pH value 

was monitored using a PHM210 pH meter (Radiometer Analytical SAS, France) with attached 

Accumet 13-620-290 pH probe (Thermo Fisher Scientific Inc., USA).  

 

3.3 Results and Discussion 

 

3.3.1 Construction of an engineered S. cerevisiae (EJ4L) capable of producing lactic acid 

from cellobiose and xylose 

 An engineered S. cerevisiae strain with the ability to ferment cellobiose, xylose, and/or 

glucose into lactic acid was constructed by introduction of a fungal lactate dehydrogenase (ldhA) 

from R. oryzae into an engineered yeast (EJ4) which can ferment cellobiose and xylose [149]. 

Because the plasmid containing ldhA was a multi-copy, random-integration plasmid (pITy3, 

[150], we reasoned some variations in lactic acid production could occur among transformants. 

Therefore, we screened 30 transformants for their ability to produce lactic acid from cellobiose. 

Although the variations of lactic production were minor, we chose the strain that produced the 

highest lactic acid yield (g lactic acid/g cellobiose) and named the resulting strain as EJ4L.  

In order to examine the expression levels of ldhA in the EJ4L strain grown on different carbon 

sources, we measured the lactate dehydrogenase (LDH) activity from crude cell extracts of 

glucose-, xylose-, or cellobiose-grown EJ4L. The LDH activities were 1.2 ± 0.1, 1.0 ± 0.1, and 
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1.35 ± 0.2 U/mg protein for glucose-, xylose-, and cellobiose- grown cells, respectively. The 

lactate dehydrogenase activities of 1-1.35 U/mg protein from EJ4L were similar to that reported 

by a previous study [80]. This consistent lactate dehydrogenase activity in the EJ4L strain 

provided further confirmation of successful integration of ldhA into EJ4. Unsurprisingly, 

negligible activity was detected when measuring the crude cell extract of the parental EJ4 strain. 

 

3.3.2 Effects of EJ4L precultures containing various carbon sources on lactic acid yield 

 We conducted experiments to assess whether using different carbon sources for 

preculturing the EJ4L strain affected the lactic acid yield of the proceeding fermentation. To 

assess this, we precultured the EJ4L strain on YP medium containing 40 g/L of glucose, xylose, 

cellobiose, or glycerol before inoculating with an initial cell concentration of ~1 (0.47 mg 

DCW/mL, OD600) into YP medium containing 35 g/L of CaCO3 and 40 g/L of glucose, xylose, 

or cellobiose. The yields of lactic acid and ethanol from each of the twelve sets of fermentations 

showed only minor variation between preculture conditions (Fig. 3.1). For glucose 

fermentations, glucose-, xylose-, or cellobiose-precultured EJ4L were similar, but glycerol-

precultured cells resulted in a lower lactic acid yield (0.19 g lactic acid/g glucose, 19 % of 

theoretical maximum). When fermenting xylose, both xylose- and glycerol-precultures resulted 

in slightly higher lactic acid yields (0.77 g lactic acid/g xylose, 77 % theoretical maximum) as 

compared to glucose- or cellobiose-precultures. Finally, for fermenting cellobiose, the xylose 

preculture resulted in the highest lactic acid yield (0.60 g lactic acid/g cellobiose, 60 % 

theoretical maximum) and no ethanol production. Overall, the variation was relatively minor 

between the four preculture conditions. To maintain a consistent method going forward, xylose 
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was used as the preculture carbon source as xylose-precultured EJ4L generally had high lactic 

acid yields and low ethanol yields. 

 In general, S. cerevisiae is a robust microbe that is easy to handle in a laboratory due to 

its relatively consistent growth phenotype. The preculture carbon source had only a mild effect 

on the proceeding fermentation to which the EJ4L strain was transferred, which suggests that the 

EJ4L strain is robust and predictable. In certain instances, the preculture condition of yeast has 

been shown to influence yeast physiology in several ways, including gene regulation [155] and 

ethanol tolerance [156]. For the EJ4L strain, these data (Fig. 3.1) suggest that consideration of 

preculture media might not be overly important when pursuing improved lactic acid yields from 

lignocellulosic sugars. 

 

3.3.3 Cellobiose- or xylose-fermenting EJ4L produce more lactic acid than glucose-

fermenting EJ4L 

 Using xylose as the preculture sugar, we conducted flask fermentations of EJ4L using YP 

medium containing 40 g/L glucose, 40 g/L of xylose, or 40 g/L of cellobiose. An initial cell 

concentration of ~1 (0.47 mg DCW/mL, OD600) was used and 35 g/L of CaCO3 was added as a 

neutralizing agent. The EJ4L strain consumed all glucose within 10 hours, and produced ethanol 

(12 g/L) and lactic acid (11.5 g/L) at similar titers (Fig. 3.2a). The yields of ethanol and lactic 

acid were 0.29 and 0.27 g product/g glucose, respectively, with percent theoretical yields of 58 

% and 27 %, respectively. The productivity for lactic acid was 1.17 g/L/h. The titers of acetate 

and glycerol never exceeded 0.5 g/L. The pH value of the fermentation medium decreased from 

an initial 6.6 to approximately 5.4. Importantly, it is apparent that the ethanol pathway, which 

consists of pyruvate decarboxylase (PDC) and alcohol dehydrogenase (ADH), was the primary 
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metabolic route by which glucose is metabolized. To further improve the yield of lactic acid 

from glucose by engineered S. cerevisiae, disruption of the ethanol pathway might be necessary. 

As there are at least three known PDC genes (pdc1, pdc5, and pdc6), deletion of one or more of 

these genes has been shown to improve lactic acid yield from glucose by engineered S. 

cerevisiae containing a heterologous lactate dehydrogenase [157]. However, PDC deletion in S. 

cerevisiae often results in detrimental phenotypes due to redox imbalance and limitation in C2 

precursor (acetyl-CoA) supply [158]. While the introduction of LDH can resolve the redox 

imbalance problem through providing an alternative route to regenerate NAD
+
, growth 

phenotypes of the lactic acid-producing yeast might not be robust because the LDH-expressing 

strain still suffers from limited C2 precursor production. In the case of ADH deletion [80] or 

ADH/PDC double-deletion [159], cell growth on glucose was found to be hindered. In Skory’s 

study, it was speculated that ADH deletion caused accumulation of acetaldehyde in the cell, 

resulting in a lethal cell condition. In both studies, ethanol production was not completely 

eliminated which is likely due to the presence of multiple PDC and ADH genes in S. cerevisiae, 

but only pdc1 and/or adh1 were deleted in these studies [80, 159].  To maintain rapid cell 

growth, it might be desirable to not delete the native ethanol-producing pathway for lactic acid 

production. However, this can result in reduction in the yield of lactic acid due to carbon usage 

for ethanol production.  

 The xylose fermentation (Fig. 3.2b) by the EJ4L strain completed within 72 hours and 

primarily produced lactic acid (25.2 g/L). Interestingly, almost no ethanol (0.4 g/L) was 

accumulated from xylose at the end of the fermentation even though the EJ4L strain has a 

functional ethanol production pathway. The yields of ethanol and lactic acid were 0.01 and 0.66 

g product/g xylose, respectively, and the percent theoretical yields were 0.02 % and 66 %, 
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respectively. The productivity for lactic acid from xylose was 0.33 g/L/h. The titers of acetate, 

glycerol, and xylitol were < 0.5 g/L. The pH value of the fermentation medium decreased to 

approximately 5.6. Compared to the glucose fermentation, the xylose fermentation by the EJ4L 

strain produced negligible ethanol and an almost 2.5 times higher lactic acid yield (0.66 vs. 0.27 

g lactic acid/g sugar). When fermenting xylose instead of glucose, the EJ4L strain produced 

almost no ethanol, a phenotype similar to that of ∆pdc yeast [28], but the detrimental effects 

from the deletion of multiple pdc genes were not observed. 

 When the EJ4L strain ferments cellobiose (Fig. 3.2c), lactic acid was the major product 

(21.7 g/L) and ethanol was a minor product (1.3 g/L). All cellobiose was fermented within 48 

hours. The yields of ethanol and lactic acid were 0.03 and 0.56 g product/g cellobiose, 

respectively, and the percent theoretical yields were 0.6 % and 56 %, respectively. The 

productivity of lactic acid was 0.44 g/L/h. The concentrations of acetate and glycerol were less 

than 0.5 g/L and the pH value of the medium decreased to approximately 5.1. The average yield 

of lactic acid by the EJ4L strain from xylose and cellobiose (0.61 g lactic acid/g xylose or 

cellobiose) is more than double that from glucose (0.27 g lactic acid/g glucose). The average 

yield of ethanol by the EJ4L strain from xylose and cellobiose (0.02 g ethanol/g xylose or 

cellobiose) is almost 15 times lower than from glucose (0.29 g ethanol/g glucose). 

 The production of lactic acid from glucose by engineered yeast is well-studied [80, 112]. 

The major limitation for using S. cerevisiae to produce lactic acid was the reduced lactic acid 

yield because of the overproduction of ethanol. Moreover, because S. cerevisiae cannot ferment 

cellulosic sugars, such as xylose and cellobiose, engineered S. cerevisiae cannot be used for 

production of lactic acid from inexpensive and abundant cellulosic sugars. The engineered EJ4L 
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strain has provided initial evidence that high yield lactic production without ethanol production 

is feasible even without deletion of the PDC or ADH genes if xylose or cellobiose is used. 

 

3.3.4 Lactic acid production from galactose, glycerol, mannose, and sucrose 

 Because the EJ4L strain produced different yields of lactic acid and ethanol from glucose, 

xylose, or cellobiose, we conducted fermentations using other carbon sources which are 

abundant in nature. EJ4L was grown on YP medium containing 35 g/L CaCO3 and 40 g/L of one 

of the following carbon sources: galactose, glycerol, mannose, or sucrose. When the EJ4L strain 

was grown on glycerol, no ethanol or lactic acid were produced (Fig. 3.3b), although the strain 

was able to consume glycerol. 

 The EJ4L strain was able to produce lactic acid and ethanol by fermenting galactose, 

mannose, and sucrose. The ethanol and lactic acid yields from galactose were 0.20 and 0.33 g 

product/g galactose, respectively (Fig. 3.3a), with percent theoretical yields of 40 % and 33 %, 

respectively. The yield of ethanol and lactic acid from mannose were nearly identical with 0.27 

and 0.24 g product/g mannose, respectively (Fig. 3.3c), with percent theoretical yields of 54 % 

and 24 %, respectively. Finally, the sucrose fermentation resulted in low yields for both ethanol 

and lactic acid of only 0.17 and 0.09 g product/g sucrose, respectively (Fig. 3.3d), with percent 

theoretical yields of 34 % and 9 %, respectively. With these data, an organization based on lactic 

acid yield from various carbon sources by the EJ4L strain can be determined. In terms of average 

lactic acid yield, from greatest to least: xylose (0.66), cellobiose (0.56), galactose (0.33), glucose 

(0.27), mannose (0.24), and sucrose (0.09, g lactic acid/g sugar). This order is based on 25 mL 

flask fermentations (n = 2) of the EJ4L strain in YP medium with 40 g/L of the appropriate sugar 

and 35 g/L of CaCO3 acid neutralization. 
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 S. cerevisiae has been known for years to display different phenotypes depending on 

which carbon source it is utilizing. However, most of those studies have focused on comparing 

glucose, fructose, or sucrose as S. cerevisiae cannot natively ferment xylose or cellobiose. In this 

study, interesting metabolic shifts are observed when cells are fermenting cellobiose and xylose 

as compared to glucose.  

 

3.3.5 EJ4L can simultaneously co-ferment cellobiose and xylose to produce lactic acid at 

high titers 

 As shown, the EJ4L strain can efficiently ferment xylose or cellobiose as single sugars 

into lactic acid (Fig. 3.2b and 3.2c). To assess whether these sugars could be simultaneously co-

fermented, we conducted a fermentation by the EJ4L strain in YP medium containing 40 g/L of 

both cellobiose and xylose with 50 g/L of CaCO3 (Fig. 3.4). Initial cell concentration was ~10 

(4.70 mg DCW/mL, OD600). All sugars were fermented within 115 hours and lactic acid was the 

major product (62 g/L). Ethanol accumulation was minor, with a peak titer of 2 g/L. The yields 

of ethanol and lactic acid were 0.02 and 0.73 g product/g sugar, respectively, with percent 

theoretical yields of 0.04 % and 73 %, respectively. The productivity for lactic acid was 0.54 

g/L/h. The cumulative titer of acetate, glycerol, and xylitol was <0.8 g/L. The pH value of the 

fermentation medium decreased to approximately 4.9. 

 The EJ4L strain fermented 80 g/L of combined lignocellulosic sugars and produced over 

60 g/L of lactic acid. During this process, very little ethanol was produced despite a functional 

ethanol pathway that is well-expressed when fermenting glucose. To the best of our knowledge, 

this is the first example that a mixture of xylose and cellobiose, without glucose, has been 

converted to an organic acid (lactic acid) by engineered S. cerevisiae.  
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3.3.6 EJ4L can efficiently ferment cellulosic sugars into lactic acid 

 When lignocellulosic materials are depolymerized, the resulting hydrolysate will contain 

a mixture of sugars. Therefore, effective industrial scale-up of a lignocellulosic fermentation 

process must be able to ferment high concentrations of mixed sugars. Accordingly, we conducted 

a flask fermentation of the EJ4L strain in YP medium containing 10 g/L of glucose, 40 g/L of 

xylose, and 80 g/L of cellobiose with 50 g/L of CaCO3 (Fig. 3.5). A high initial cell 

concentration of ~10 (4.70 mg DCW/mL, OD600) was used. All sugars were fermented within 

200 hours and lactic acid was the major product (83 g/L). Ethanol accumulation was higher early 

in the fermentation with a peak titer of approximately 8.4 g/L in the first 70 hours, but by the end 

of the fermentation the titer had decreased below 4 g/L. The yields of ethanol and lactic acid 

were 0.03 and 0.66 g product/g sugar, respectively, with percent theoretical yields of 0.06 % and 

66 %, respectively. The productivity for lactic acid was 0.42 g/L/h. The cumulative titer of 

acetate, glycerol, and xylitol was < 4 g/L. The pH value of the fermentation medium decreased 

from 6.2 to 5.0. 

 This fermentation provides evidence that high concentrations of lignocellulosic sugars 

can be converted to lactic acid with minimal byproduct accumulation even with a functional 

ethanol pathway. Of specific interest here is that, while glucose was utilized initially, xylose and 

cellobiose were co-fermented once all glucose was consumed. This simultaneous sugar 

utilization, as opposed to a sequential utilization, is considered a key aspect for efficient 

fermentation of lignocellulosic biomass [148]. This sugar-utilization phenotype is consistent with 

the parental EJ4 strain [149] from which the lactic acid-producing EJ4L strain was derived. A 

major hindrance to efficient scale-up of the EJ4L strain is the low productivity for lactic acid. 
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This can likely be resolved by utilizing a significantly increased initial cell concentration, as an 

OD600 of ~10 (4.70 mg DCW/mL) is relatively low by industrial standards. 

 

3.3.7 The EJ4L strain can produce a high titer of lactic acid from lignocellulosic sugars in a 

bioreactor 

 To test whether the EJ4L strain could produce lactic acid from lignocellulosic sugars at a 

larger scale, we conducted a bioreactor fermentation in one-liter of YP medium containing 10 

g/L of glucose, 40 g/L of xylose, and 80 g/L of cellobiose (Fig. 3.6). A pH value of 6 was 

maintained throughout the fermentation by addition of 10 N NaOH as needed. Initial cell 

concentration was ~1 (0.47 mg DCW/mL, OD600). To allow for increased cell growth, we 

sparged ambient, microfiltered (0.22 µm) air into the bioreactor at a flow rate of 1.5 L/min. The 

flow rate was maintained throughout the fermentation to provide a consistent and clear 

understanding of the EJ4L phenotype in the given medium.  

 All sugars were fermented within 170 hours and lactic acid was the major product (81.6 

g/L). Ethanol accumulation reached a peak of 2.6 g/L, but decreased to 1.3 g/L by the end of the 

fermentation. The yields of ethanol and lactic acid were 0.01 and 0.65 g product/g sugar, 

respectively, with percent theoretical yields of 0.02 % and 65 %, respectively. The productivity 

for lactic acid was 0.49 g/L/h. The cumulative titer of acetate, glycerol, and xylitol was <6 g/L, 

with glycerol accounting for 5 g/L. The pH value of the fermentation medium decreased from 

6.2 to 6.0 and was maintained at 6.0 ± 0.02. After 170 hours and all initial sugars were 

consumed, 40 g of cellobiose and 40 g of xylose were added to the bioreactor and within an 

additional 48 hours the lactic acid titer had reached over 120 g/L (data not shown), at which 

point the fermentation was halted. 
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 Initially, we attempted a bioreactor fermentation at pH 4 (data not shown) with all other 

conditions identical to the above fermentation. Glucose and xylose were fermented at a similar 

rate as the pH 6 bioreactor fermentation (Fig. 3.6), but after 200 hours, less than 10 g/L of 

cellobiose had been fermented. We then attempted another fermentation at pH 5 (data not 

shown) with otherwise identical conditions. Again, glucose and xylose were fermented similarly 

to the pH 6 fermentation (Fig. 3.6), but the rate of cellobiose utilization was slow, with only 40 

g/L being consumed within 120 hours. We suspect that the heterologous cellodextrin transporter 

(cdt1) and/or intracellular β-glucosidase (gh1-1) of EJ4L are highly pH sensitive. Therefore, the 

ability for the EJ4L strain to produce lactic acid from cellobiose at a low pH is currently limited. 

Development of low pH-tolerant cdt1 and gh1-1 are needed for improving cellobiose utilization 

by the EJ4L strain at low pH. In general, production of lactic acid at a low pH, without the need 

for buffers or neutralizing agents such as CaCO3, would be economically ideal for industrial-

scale fermentations, as purification of lactic acid-salt mixtures can be costly. Many studies 

discuss avenues towards isolating or developing low-pH or lactic acid-tolerant yeast [82], 

although a unique approach might be needed to target improvement of the cellobiose pathway in 

the EJ4L strain. Despite the difficulty for fermenting cellobiose at a low pH, the EJ4L yeast 

strain provides evidence that high concentrations of lignocellulosic sugars can be converted into 

lactic acid without the need for deleting pdc or adh to reduce the production of ethanol. 

Development of S. cerevisiae strains that are able to tolerate the harsh growth inhibitors found in 

lignocellulosic hydrolysates will be necessary before lactic acid can be produced from 

lignocellulosic materials at an efficient industrial level. 

 The molecular mechanisms to explain why lactic acid is produced at a significantly 

higher yield from xylose and cellobiose rather than glucose by the EJ4L yeast strain are still 



 

61 

 

unclear. However, there are several possible explanations for this phenomenon. Natively, yeast 

possess several glucose-sensing proteins, such as SNF3 or RGT2. In the presence of glucose, 

these sensors have been found to suppress JEN1, a gene which codes for lactate permease [115, 

116, 118]. However, the presence of non-fermentable carbon sources induces JEN1 [117, 118]. 

As a result, there may be an elevated lactate permease activity when fermenting xylose or 

cellobiose which could improve the capability of the EJ4L strain to efficiently remove otherwise 

toxic intracellular lactic acid. Because intracellular lactic acid can act as an allosteric inhibitor of 

LDH, efficient removal of lactic acid by an upregulated JEN1 in the presence of xylose and/or 

cellobiose may be the driving force for improved lactic acid production from non-glucose sugars. 

 The redox balances of glucose, xylose, and cellobiose metabolism for the production of 

lactic acid are not identical. When converted to ethanol or lactic acid, a mol of glucose, or a half 

mol of cellobiose will net two moles of ATP. However, one mol of xylose fermented by the 

xylose reductase, xylitol dehydrogenase, and xylulokinase pathway (as expressed in the EJ4L 

strain in this study) into ethanol or lactic acid will net 1.67 moles of ATP and surplus NADH 

[149, 160]. Because glucose and cellobiose have similar redox balances while xylose differs, it is 

difficult to draw a clear conclusion to explain why xylose and cellobiose appear preferential for 

lactic acid production based on this information. 

 

3.4 Conclusions 

 This study discloses fermentation results of an engineered S. cerevisiae strain, EJ4L, 

possessing the ability to ferment cellobiose and xylose into lactic acid. Native pdc and adh genes 

were not deleted, but still, almost no ethanol was produced when fermenting a cellobiose and 

xylose mixture. In a one L bioreactor fermentation, the EJ4L strain converted 10 g/L of glucose, 
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40 g/L of xylose, and 80 g/L of cellobiose into over 80 g/L of lactic acid and negligible ethanol. 

This study provides evidence that lignocellulosic sugars may be preferential for producing lactic 

acid by engineered S. cerevisiae. 
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3.5 Figures 

 

 

 

Fig. 3.1 EJ4L grown on four different preculture conditions (YP medium containing 40 g/L of 

glucose, xylose, cellobiose, or glycerol) were inoculated into flasks containing fresh YP medium 

containing 40 g/L of glucose, xylose, or cellobiose and 35 g/L CaCO3. Minor variation in the 

yields of lactic acid and ethanol occurred depending on the preculture carbon source. Results are 

the averages of duplicate experiments with error bars. 
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Fig. 3.2 Fermentation profiles of the EJ4L strain grown on YP medium containing 35 g/L of 

CaCO3 and 40 g/L of glucose (Fig. 3.2a), xylose (Fig. 3.2b), or cellobiose (Fig 3.2c). The ethanol 

yields from glucose, xylose, and cellobiose were 0.29, 0.01, and 0.03 g ethanol/g sugar, 

respectively. The lactic acid yields from glucose, xylose, and cellobiose were 0.27, 0.66, and 

0.56 g lactic acid/g sugar, respectively. Despite possessing a fully-functioning ethanol pathway, 

the EJ4L strain produces primarily lactic acid from both xylose and cellobiose. Symbols: glucose 

(open triangle), xylose (closed circle), cellobiose (closed triangle), xylitol (open circle), ethanol 

(closed square), lactic acid (closed diamond), acetate (open square), glycerol (open diamond), 

and pH (closed hexagon). Results are the averages of duplicate experiments with error bars. 
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Fig. 3.3 Yields of lactic acid and ethanol by the EJ4L strain grown on YP medium containing 35 

g/L of CaCO3 and 40 g/L of galactose (Fig. 3.3a), glycerol (Fig. 3.3b), maltose (Fig. 3.3c), or 

sucrose (Fig. 3.3d). No lactic acid or ethanol was produced from glycerol. The yield of lactic 

acid was the highest from galactose (0.33 g lactic acid/g galactose). Results are the averages of 

duplicate experiments with error bars. 
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Fig. 3.4 Fermentation profile of the EJ4L strain grown on YP medium containing 50 g/L of 

CaCO3, 40 g/L of xylose, and 40 g/L of cellobiose. The EJ4L strain simultaneously fermented 

cellobiose and xylose resulting in a lactic acid yield of 0.73 g lactic acid/g sugar and an ethanol 

yield of 0.02 g ethanol/g sugar. Symbols: xylose (closed circle), cellobiose (closed triangle), 

xylitol (open circle), ethanol (closed square), lactic acid (closed diamond), acetate (open square), 

glycerol (open diamond), and pH (closed hexagon). Results are the averages of duplicate 

experiments with error bars. 
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Fig. 3.5 Fermentation profile of the EJ4L strain grown on YP medium containing 50 g/L of 

CaCO3, 10 g/L of glucose, 40 g/L of xylose, and 80 g/L of cellobiose. The EJ4L strain fermented 

all sugars, resulting in a lactic acid yield of 0.66 g lactic acid/g sugar and an ethanol yield of 0.03 

g ethanol/g sugar. Symbols: glucose (open triangle), xylose (closed circle), cellobiose (closed 

triangle), xylitol (open circle), ethanol (closed square), lactic acid (closed diamond), acetate 

(open square), glycerol (open diamond), and pH (closed hexagon). Results are the averages of 

duplicate experiments with error bars. 
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Fig. 3.6 Fermentation profile of the EJ4L strain grown on YP medium containing 10 g/L of 

glucose, 40 g/L of xylose, and 80 g/L of cellobiose in a one-liter (working volume) bioreactor. 

The pH value was maintained at 6.0 using 10 N NaOH. The EJ4L strain fermented all sugars, 

resulting in a lactic acid yield of 0.65 g lactic acid/g sugar. Symbols: glucose (open triangle), 

xylose (closed circle), cellobiose (closed triangle), xylitol (open circle), ethanol (closed square), 

lactic acid (closed diamond), acetate (open square), glycerol (open diamond), and pH (closed 

hexagon).
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CHAPTER IV CONVERSION OF LACTOSE, BOVINE MILK, AND WHEY TO 

LACTIC ACID BY ENGINEERED SACCHAROMYCES CEREVISIAE 

 

4.1 Introduction  

Whey is a significant and troublesome byproduct of the dairy industry [161]. In 

particular, cheese production can generate up to 9 kg of whey per 1 kg of cheese, with the 

disaccharide lactose serving as the major constituent of the permeate after whey filtration [162]. 

Acid whey is specifically problematic, as it is produced in excess as a byproduct of Greek yogurt 

production and has proven difficult for the yogurt industry to efficiently reuse or discard in part 

due to the relatively low pH of acid whey (pH ≤ 5.1) [163, 164]. In response, one creative 

solution for the problem of whey as a dairy industry byproduct is to use engineered microbes to 

ferment the lactose contained in the whey for the production of value-added fuels and chemicals 

[162] However, even this solution is not easy, as it is recommended that the whey concentration 

used should result in up to 120 g/L lactose in order to minimize downstream purification costs 

[161, 165]. Therefore, an engineered microbe must not only be able to withstand the acidity of 

acid whey and osmotic stress induced by a high concentration of lactose, but must also produce a 

target product at a high yield and productivity. 

 Previously, our lab has developed an engineered Saccharomyces cerevisiae baker’s yeast 

strain which can efficiently produce ethanol at a yield of 0.361 g ethanol/g lactose from whey 

medium containing 150 g/L of lactose [manuscript under review]. Natively, most yeast,  
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including S. cerevisiae, cannot ferment lactose. Our lactose-fermenting strain was created by 

introduction and expression of two heterologous genes cloned from the fungus Neurospora 

crassa: a lactose transporter (CDT-1) to transport lactose into the yeast cell and a β-galactosidase 

(GH1-1) to cleave the lactose disaccharide into glucose and galactose [166, 167]. 

 

4.2 Materials, Methods, and Results 

Here, we have expanded upon the initial concept of producing a natural fermentation 

product of S. cerevisiae, ethanol, towards producing a heterologous value-added product, lactic 

acid. As a result, this study provides a proof-of-concept for the conversion of purified lactose, 

milk, and whey into lactic acid by an engineered S. cerevisiae strain. Yeast, especially S. 

cerevisiae, are particularly ideal microbes for industrial chemical production due to their 

tolerance to high external osmotic stress (such as high sugar concentrations), their tolerance 

against low pH (essential for overproducing organic acids), their generally recognized as safe 

(GRAS) status, and for the wide range of genetic perturbation tools available to study, introduce, 

and delete genes within the yeast genome. Furthermore, the theoretical maximum yield of lactic 

acid from lactose is 1.00 g lactic acid/g lactose due to the lack of carbon loss throughout the 

pathway. Perhaps most importantly, no oxygen is theoretically necessary for this process to 

occur, so a large-scale lactose-to-lactic acid fermentation could be conducted entirely 

anaerobically, significantly reducing the costs otherwise accrued if oxygen were added. 

We expressed a heterologous lactate dehydrogenase (ldhA), cloned from the fungus Rhizopus 

oryzae, into the CDT-1 and GH1-1 expressing S. cerevisiae as previously reported [50]. The 

ldhA was integrated into the S. cerevisiae chromosome using the pITy3-ldhA-G418 plasmid to 

integrate at Ty δ loci [150] and selected using G418 (geneticin) as an antibiotic selection 
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pressure. For all experiments, two engineered yeast strains were used, both expressing the CDT-1 

and GH1-1 lactose-fermenting pathway: EJ4 (no ldhA) and EJ4L (expressing ldhA). EJ4 served 

as the control strain which in all fermentations was unable to produce lactic acid. Importantly, 

the native ethanol production pathway consisting of pyruvate decarboxylase (PDC) and alcohol 

dehydrogenase (ADH) was not disrupted in either the EJ4 or EJ4L strains, allowing the yeast 

cells to produce ethanol as necessary [50]. 

 S. cerevisiae stock cultures were maintained on yeast extract-peptone dextrose (YPD) 

agar plates (2% agar, 1% yeast extra, 2% peptone, and 2% glucose) at 4° C. Yeast precultures 

were grown in YPD40  medium at 300 RPM and harvested at mid-log phase and then washed 

twice with sterilized water to prepare inoculums for fermentations. All flask fermentations were 

conducted using 25 mL of media in a 125 mL Erlenmeyer flask maintained at 30 °C on a 100 

RPM MaxQ4000 orbital shaker (Thermo Fisher Scientific Inc., MA).Flask fermentations in Fig. 

4.2 were performed using YP medium containing 40 g/L of purified lactose (Sigma-Aldrich, 

MO) with an initial cell concentration of ∼1 (0.47 DCW/mL, OD600); the YP medium and 

lactose were sterilized separately via autoclave. Flask fermentations in Fig. 4.3 were performed 

using Horizon Organic brand, shelf-stable, 1% fat, organic, cow’s milk (Whitewave Services, 

Inc., lot #36-4016 03:37) which was used prior to the printed “best before” date. Because the 

milk was shelf-stable, we did not autoclave it prior to use. Flask fermentations in Fig. 4.4 

contained YP medium with 250 g/L whey from bovine milk (Sigma-Aldrich, MO) which 

resulted in ~140 g/L of free lactose. Due to suspected microbial contamination when using non-

autoclaved whey (data not shown), all results in Fig. 4.4 are from autoclaved whey medium. 

Approximately 35 g/L of calcium carbonate (CaCO3) was used as a neutralizing agent in specific 
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experiments. All experiments were repeated independently in duplicate (n=2) with variations 

indicated with error bars. 

 Yeast cell concentration was monitored by optical density (OD) at 600 nm using a 

Biomate 3 UV–visible spectrophotometer (Thermo Fisher Scientific Inc., MA). Lactose, 

glycerol, acetate, ethanol, and lactic acid concentrations were determined by a 1200 Infinity 

Series high performance liquid chromatography (HPLC, Agilent Technologies Inc., CA) 

instrument equipped with a refractive index detector using a Rezex ROA-Organic Acid H+ (8%) 

column (Phenomenex Inc., CA). The column was eluted with 0.005 N of H2SO4 at a flow rate of 

0.6 mL/min at 50 °C. The pH value was monitored using a PHM210 pH meter (Radiometer 

Analytical SAS, France) with attached Accumet 13-620-290 pH probe (Thermo Fisher Scientific 

Inc., MA). 

 Our initial test of the ability for our engineered S. cerevisiae strain (EJ4L) to produce 

lactic acid from lactose utilizes purified lactose. Previous results indicated that a CDT1 and 

GH1-1 expressing yeast strain without a functional lactate dehydrogenase could produce ethanol 

at a yield of 0.334 g ethanol/g lactose [manuscript under review]. With the introduction of the 

ldhA gene into our EJ4 yeast strain, the EJ4L strain can efficiently produce lactic acid from 

lactose. From 41 g/L of lactose, the EJ4L strain could produce 23.77 g/L of lactic acid in 143 

hours, resulting in a yield of 0.58 g lactic acid/g lactose and a productivity of 0.17 g/L-h (Fig. 

4.2). No ethanol production was detected during the fermentation. The pH of the medium 

maintained above 5.0 throughout the fermentation (data note shown) despite significant lactic 

acid production due to our addition of 35 g/L CaCO3 which acted as a neutralizing agent. As a 

major result, this is the first record of direct conversion of lactose to lactic acid by an engineered 

S. cerevisiae strain.
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 After confirming the successful conversion of lactose to lactic acid by the engineered 

EJ4L strain, we assessed whether the lactose in cow’s milk could be efficiently converted to 

lactic acid. One difficulty in the dairy industry is finding an efficient use for waste milk from 

sick cattle [168]. Obviously, milk from contaminated cows cannot be fed to humans or even 

other livestock without significant risk for spreading disease. However, using modern 

biotechnology tools, it may eventually become viable to convert the lactose present in cow’s 

milk from contaminated cows into value-added products, such as lactic acid. Therefore, we 

tested this concept using shelf-stable cow’s milk without any other supplements or 

modifications, such as the addition YP medium or CaCO3, as a proof-of-concept (Fig. 4.3). From 

~52 g/L of lactose present in the milk, by 121 h, the EJ4L strain consumed ~42 g/L of lactose, 

producing ~10.3 g/L of lactic acid, resulting in a yield of ~24.4 g lactic acid/g lactose and a 

productivity of 0.085 g/L-h (Fig. 4.3). Through 71 h, no ethanol production was detected, but by 

140 h, the rate of ethanol production began to exceed the rate of lactic acid production, 

suggesting that as the lactic acid concentration increased, the metabolic flux shifted away from 

lactic acid production towards ethanol production. The parental EJ4 strain, which does not 

express ldhA, produced no lactic acid, as expected (data not shown). As a major result, this 

experiment serves as an initial proof-of-concept that cow’s milk can be converted into other 

value-added products, which may be a useful process for industrial-scale dairy farms after further 

scaled-up tests and optimizations. 

 Finally, we tested whether our EJ4L strain could efficiently ferment whey from bovine 

milk to produce lactic acid. Initially, we used whey powder which was not autoclaved, but 

observed bacterial contamination in each of our attempted fermentations as indicated by rapid 

production of acetic acid (data not shown). To alleviate this contamination issue, we autoclaved 
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the medium to destroy native bacteria before inoculating with the EJ4L strain. As a result, we 

were able to conduct our whey fermentations without any microbial contaminants. The EJ4L 

strain could produce ~15.6 g/L of lactic acid in 110 hours, resulting in a yield of 0.356 g lactic 

acid/g lactose and a productivity of 0.142 g/L-h (Fig. 4.4). No ethanol was detected during the 

fermentation. The parental EJ4 strain, which does not express ldhA, produced no lactic acid, as 

expected (data not shown). As a major result, this experiment provides initial insight into the 

potential for using waste whey, such as acid whey, into a value-added product. 

 Here, we have demonstrated some initial steps necessary for converting dairy farm waste 

into value-added products. Still, several barriers must be crossed before engineered yeast could 

be used for industrial-scale production of value-added products, such as lactic acid, from lactose, 

waste milk, or acid whey. First, the engineered strain would need to have no antibiotic resistance. 

Large-scale production of fuels and chemicals using any engineered microbe with an inherent 

antibiotic resistance is generally not supported by the United States’ Food and Drug 

Administration (FDA) due to the risk for spreading antibiotic resistance [169]. In this proof-of-

concept study, our engineered EJ4L yeast strain possesses G418 (geneticin) resistance via the 

integrated pITy3-ldhA-G418 cassette. However, using auxotrophic markers or the modern 

CRISPR/Cas9 [27] engineering protocol, it is possible to develop an ldhA-expressing yeast strain 

without the need for an antibiotic marker. 

 Second, the lactic acid productivity (g/L-h) would need to be increased to produce an 

economically viable fermentation process. This could be achieved by improving the lactose 

fermentation pathway (CDT-1 and GH1-1) through increased copy number of the genes. Perhaps 

more simply, the fermentation rate could be increased by starting with a significantly higher 

initial yeast cell density at 10-fold or 100-fold higher than used in this study. By improving the 
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lactose fermentation pathway and increasing the initial cell density, a higher lactic acid 

productivity could be achieved. 

 Finally, a rapid and cost-effective purification process to separate spent whey media and 

yeast cells from the produced lactic acid is a necessity. At least two separation steps will be 

needed, including a filtration method to remove solids and then a method to isolate lactic acid 

from the liquid media. Many purification methods already exist and are sometimes applied to 

industrial-scale lactic acid fermentations, but these methods may need to be modified specifically 

for the purification of lactic acid from whey media [170, 171]. 

 

4.3 Conclusions 

In conclusion, we demonstrate that introduction of a heterologous lactose fermentation 

pathway consisting of a lactose transporter (CDT-1) and an intracellular β-galactosidase (GH1-1) 

and a heterologous lactate dehydrogenase (ldhA) into a laboratory S. cerevisiae yeast allows for 

production of lactic acid from lactose, cow’s milk, or bovine milk whey with minimal to no 

ethanol accumulation. The yield of 0.358 g lactic acid/g lactose from a 25 g/L whey medium was 

achieved with no detectable ethanol production, suggesting that homolactic acid production from 

lactose can be achieved in engineered S. cerevisiae even without deletion of the native ethanol 

pathway. 
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4.4 Figures 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.1 A broad schematic showing the process for the production of yogurt and whey. a Milk is 

harvested from cows and most often pasteurized. b A starter culture, often lactic acid bacteria, is 

inoculated into the milk. c The milk is fermented and thickens, a process caused by the lactic 

acid bacteria consuming lactose naturally present in milk and producing lactic acid, which lowers 

the pH of the milk causing protein degradation and coagulation. d The thickened mixture is 

centrifuged to separate the solid yogurt (sold as Greek yogurt) and the liquid fraction  (whey), 

which still contains significant lactose and often has an acidic pH. 
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Fig. 4.2 Fermentation profile of the EJ4L strain grown in YP medium containing 40 g/L of 

lactose and 35 g/L of CaCO3 as the sole carbon source. Symbols: lactose (closed circle), lactic 

acid (closed square), and ethanol (closed triangle). Results are the averages of duplicate 

experiments with standard deviation indicated by error bars. 
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Fig. 4.3 Fermentation profile of the EJ4L strain grown in shelf-stable cow’s milk with no 

additional supplements. Symbols: lactose (closed circle), lactic acid (closed square), and ethanol 

(closed triangle). Results are the averages of duplicate experiments with standard deviation 

indicated by error bars. 
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Fig. 4.4 Lactic acid and ethanol yields (g product/g lactose) and productivities (g/L-h) of the 

EJ4L strain grown for 100 h in YP medium containing 25 g/L of whey. No measureable ethanol 

was detected. Results are the averages of duplicate experiments with standard deviation indicated 

by error bars.
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The content of this chapter is in preparation for submission, with some modification to include additional results 

specifically related to lactic acid added for the purposes of this dissertation. In Iok Kong and I will be co-first 

authors, with help from Dr. Guochang Zhang, and Dr. Yong-Su Jin was the director of the research. 
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CHAPTER V  CHARACTERIZATION AND SCREENING OF INDUSTRIAL 

YEAST STRAINS FOR IMPROVED LACTIC ACID TOLERANCE AND 

PRODUCTION 

 

5.1 Introduction 

 Yeast have served many important industrial purposes for humans over thousands of 

years. Specifically, the Saccharomyces cerevisiae species has acted as the primary species for the 

production of wine, beer, and bread [172]. Although the production of baked goods and 

fermented foods or beverages has historically been the major industrial application for S. 

cerevisiae, many new avenues by which yeast fermentation capabilities are harnessed have 

developed in recent decades. These new usages are due in part to rapid and significant advances 

in our understanding of yeast genetics and physiology [173]. Through our improved 

understanding of yeast hardiness and functions, we have exploited the natural low pH and acid 

tolerance of S. cerevisiae to produce various organic acids. 

 Generally, organic acids are defined as organic chemicals containing a carboxylic acid 

group which does not completely dissociate in water in most circumstances, often being 

described as “weak acids”. Lactic acid, succinic acid, glycolic acid, and malic acid are perhaps 

the most notable of organic acids which have been overproduced by engineered S. cerevisiae. 

Table 5.1 lists several organic acids which have been produced by engineered yeast, the major 

uses of these acids, and relevant references. 

 Although several microbial species are used for industrial production of value-added 
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products, yeast are perhaps the most well-studied. Yeast can natively ferment glucose for the 

production of ethanol and this capability has been used for wine production for thousands of 

years [174, 175]. In recent decades, the yeast Saccharomyces cerevisiae has been extensively 

utilized for biofuel production [176]. The majority of ethanol produced by S. cerevisiae is from 

fermentation of sugarcane- or corn-derived glucose [177]. Although industrial yeast fermentation 

has resulted in more than 50 billion liters of annual ethanol production in the US alone, the 

availability of corn and sugarcane is a limiting step in using biofuels as a replacement for fossil 

fuels [178]. Therefore, abundant lignocellulosic crops may be viable alternative feedstocks for 

production of bio-based fuels and chemicals [179]. Although S. cerevisiae is well-studied with 

many available genetic manipulation tools available, it does not efficiently produce fuels and 

chemicals from processed lignocellulosic hydrolysates due to the harsh environment present in 

the hydrolysate. Specifically, the low pH of lignocellulosic hydrolysates coupled with the 

presence of many known and unknown fermentation inhibitors act as the major limitations for 

efficient production of fuels and chemicals by engineered S. cerevisiae from lignocellulosic 

hydrolysates [180, 181]. Although this problem is fairly-well understood, attempts to overcome 

lignocellulosic hydrolysate toxicity have failed to yield S. cerevisiae strains that are fully-

resistant to hydrolysate toxicity without otherwise hindered phenotypes [182]. Furthermore, 

modifying lignocellulosic hydrolysate to remove inhibitors or balance the pH can result in 

reduced sugar availability [183] or increased production costs [184]. Owed to these hurdles, 

developing an engineered microbe to efficiently ferment lignocellulosic hydrolysates may be 

easiest if the parental strain is natively resistant to the many inhibitors present in hydrolysates 

[185]. In particular, laboratory strains are generally regarded as possessing lowered tolerance to 

fermentation inhibitors as compared to industrial yeast strains and therefore industrial strains 
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may be ideal for producing fuels and chemicals from lignocellulosic hydrolysates [186]. Because 

numerous strains of yeast exist, it is difficult and time-consuming to screen all known strains for 

their resistances to common fermentation inhibitors present in lignocellulosic hydrolysates such 

as hydroxymethylfurfural (HMF), furfural, and acetate. With this in mind, we have selected 24 

Saccharomyces spp. yeast strain which are publically available from the American Type Culture 

Collection (ATCC) and screened each strain to assess their fermentation phenotypes in a variety 

of conditions. Here, we report our findings.  

 

5.2 Materials and Methods 

 

5.2.1 Industrial strain backgrounds 

 All Saccharomyces spp. strains were obtained from the American Type Culture 

Collection (ATCC). In total, 24 strains were selected. A list containing the ATCC nomenclature 

for each strain, the original isolation source of the strain, and a representative literature citation 

for each strain is shown in Table 5.2. 

 

5.2.2 General flask fermentations 

 Yeast cells were cultured in YP medium (10 g/L yeast extract and 20 g/L peptone) 

containing glucose (YPD), xylose (YPX), cellobiose (YPC), maltose, mannose, or sucrose. 

Concentrations of the sugars were displayed as numbers following their initials (e.g., YPD160, 

YP medium containing 160 g/L of glucose). Stock cultures were maintained on YPD agar (20 

g/L agar) plates in 4 °C. Yeast precultures were grown in YP medium containing 40 g/L of 

glucose in 5 mL total volume and harvested at mid-exponential phase. Calcium carbonate 
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(CaCO3) was used as a neutralizing agent for lactic acid fermentations where indicated. 

Fermentations were conducted with an initial volume of 50 mL in 250 mL Erlenmeyer Pyrex
® 

flasks (Corning, MA). Flasks were shaken at 100 RPM on an Innova 2300 shaker (New 

Brunswick Scientific, CT) in a 30 °C incubation room. Cell optical density (OD) was measured 

via NanoDrop 200C (Thermo Fisher Scientific, MA) or BioMate 3 UV-visible 

spectrophotometer (Thermo Fisher Scientific, MA) and the initial OD was adjusted to ~1. 

Glucose, xylose, cellobiose, glycerol, acetate, ethanol, and lactic acid concentrations were 

determined by use of a 1200 Infinity series HPLC system (Agilent Technologies, CA) equipped 

with a refractive index detector using a Rezex ROA-Organic Acid H
+ 

(8%) column (Phenomenex 

Inc., CA). The column was eluted with 0.005 N H2SO4 at a flow rate of 0.6 mL/min at 50 °C.  

 

5.2.3 Xylose-fermenting strain construction and evaluation 

 The pSR6-X123 plasmid [87] containing Scheffersomyces stipitis XYL1, XYL2, and XYL3 

genes was linearized by XcmI digestion and introduced into the URA3 locus of all industrial 

yeast strains to allow for xylose utilization. A standard high-efficiency lithium acetate 

transformation method was used for chromosomal introduction of the linearized plasmid [103]. 

Eight transformants of each strain were screened in 5 mL of YP medium containing 40 g/L of 

xylose at 30 °C. The transformant from each strain with the highest xylose uptake rate and 

ethanol productivity was selected for further study. Comparisons between selected transformants 

of each strain were conducted following protocol as listed in Section 5.2.2 with the exception 

that xylose was used as the carbon source in place of glucose. Strains were named using the 

following system: ATCC 2360 (JIN 01) was renamed J1X, ATCC 4098 (JIN 02) was renamed 

J2X, and so forth.  
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5.2.4 Cellobiose-fermenting strain construction and evaluation 

 The pRS425-BTT plasmid [88] containing Neurospora crassa β-glucosidase (gh1-1) and 

cellodextrin transporter (cdt-1) genes was linearized and introduced into all industrial yeast 

strains to allow for cellobiose utilization. A standard high-efficiency lithium acetate 

transformation method was used for chromosomal introduction of the linearized plasmid [103]. 

Several transformants of each strain were screened in 5 mL of YP medium containing 40 g/L of 

cellobiose at 30 °C. The transformant from each strain with the highest cellobiose uptake rate 

and ethanol productivity was selected for further study. The transformant from each strain with 

the highest cellobiose uptake rate and ethanol productivity was selected for further study. 

Comparisons between selected transformants of each strain were conducted following protocol 

as listed in Section 5.2.2 with the exception that cellobiose was used as the carbon source in 

place of glucose. Strains were named using the following system: ATCC 2360 (JIN 01) was 

renamed J1C, ATCC 4098 (JIN 02) was renamed J2C, and so forth. 

 

5.2.5 Gas pressure analysis 

 Strains were evaluated for their gas pressure production in sealed glass bottles, with a 

higher gas pressure indicative of higher CO2 production and in-turn higher ethanol production. 

Jars with a maximum volume of 100 mL were filled with 20 mL of either YP medium containing 

20 g/L of glucose, YP medium containing 20 g/L of glucose and 25% hydrolysate, or Verduyn’s 

[187] medium with 20 g/L of glucose and 0.628 g/L of complete supplement mixture (MP 

Biomedicals). The initial pH value of each medium was adjusted to 6. The fermentation bottles 

were shaken at 100 RPM on an Innova 2300 shaker (New Brunswick Scientific, CT) in a 30 °C 

incubation room. Cell optical density (OD) was measured as discussed in Section 5.2.2 and the 
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initial cell density was 1 (OD600). Gas pressure was monitored with RF gas production modules 

(ANKOM Technology, NY) as pounds per square inch every 5 minutes. 

 

5.2.6 Micro well plate fermentations 

 The cell growth rate and density was determined for growth in YP medium containing 20 

g/L of glucose with an initial pH adjusted to 4.5, 5.0, 5.5, 6.0, or 6.5. A 200 µL initial volume of 

medium was placed into individual wells of Costar 96-well flat-bottom polystyrene plates with 

lids placed on top (Corning, MA). The initial cell density was 1 (OD600) and microplates were 

incubated at 30 °C and 200 RPM in a Symphony incubating microplate shaker (VWR, PA). An 

aliquot of 50 µL of mineral oil was placed on top of each well to prevent evaporation. 

 

5.2.7 Inhibitor resistance plating 

 Precultures of S. cerevisiae strains were grown at 30 °C in YP medium containing 20 g/L 

of glucose. Cells were harvested at mid-exponential phase and adjusted to an initial cell density 

of 1 (OD600) for further use. Prior to plating, 10
1
 to 10

6
 dilutions of cells were made in Costar 96-

well flat-bottom polystyrene plates (Corning, MA). Cells were picked from the 96-well plate 

using a sterile metal stamper and inoculated onto the top of sterile agar-containing petri dishes. 

The agar media included the following: YP medium containing 20 g/L of glucose incubated at 30 

°C, 37 °C, 42 °C and 45 °C, YP medium containing 20 g/L of glucose with 2 g/L of 

hydroxymethylfurfural (HMF) at 30 °C, YP medium containing 20 g/L of glucose with 1 g/L of 

furfural at 30 °C, and YP medium containing 20 g/L of 1 g/L, 2 g/L, or 3 g/L of acetate at 30 °C. 
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5.2.8 Flow cytometry 

 Precultures of S. cerevisiae strains were grown at 30 °C in YP medium containing 20 g/L 

of glucose and harvested at mid-exponential phase. Cell density was adjusted to 1 (OD600), then 

fixed and permeabilized with cold ethanol (70%), which allowed SYTOX green dye to penetrate 

the cells to stain the nucleic acid. The DNA contents of stained cells were analyzed and detected 

by the excitation and emission spectra of the SYTOX green/DNA complex using a LSR II Flow 

Cytometry Analyzer (BD Biosciences, CA). Strain ploidy was determined by comparison with 

strains that contain 1n, 2n, 3n, or 4n ploidy. 

 

5.2.9 Mating-type test 

 A halo assay based on yeast pheromone response was used to determine strain mating-

type [188].  Mating type tester strains (DBY7730 for MATα and DBY7442 for MATa) [189] 

were first spread on YPD 20 g/L agar plates. Each ATCC 4124 spore clone was then spotted on 

the lawn of each tester strain, and the plates were incubated overnight. The presence of a halo 

around a spore spot was used to score its mating type. For the mating type PCR method, colony 

PCR of spore cells was performed with a mixture of three primers, Jin419, Jin420, and Jin421 

(Table 1.4). Cells with a single band of 0.49 kb (MATa) or 0.37 kb (MATα) were selected as 

mating-competent cells with a respective mating type. Cells with two bands, indicating the 

presence of both MATa and MATα genes, were excluded. 

 

5.2.10 Sporulation efficiency determination 

 Single colonies of each strain were obtained from YPD plates during the ascospore 

germination stage. Colonies were cultured in sporulation medium (1% potassium acetate, 0.1% 
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yeast extract, 0.05% glucose, and 2% agar). Cell division and sporulation occurred within 3 – 7 

days and measured for their sporulation efficiency. 

 

5.2.11 Lactic acid tolerance screening experiments 

 Precultures of S. cerevisiae strains were grown at 30 °C in YP medium containing 20 g/L 

of glucose. Cells were harvested at mid-exponential phase and adjusted to an initial cell density 

of 0.1 (OD600) for further use. For fermentation performance assessment, strains were inoculated 

into 200 µL of sterile YPD40 medium containing 0, 10, 40, or 60 g/L of lactic acid in a 

honeycomb well plate. The well plate and cultures were incubated at 30 °C with constant shaking 

in a Bioscreen C automated growth curve analysis system (Growth Curves USA, NJ). Results are 

shown as cell optical density after 48 hours of growth. 

 

5.2.12 Construction of a lactic acid-producing, industrial S. cerevisiae strain (J17XL) 

 Construction of an integration cassette and subsequent transformations followed the 

unmodified protocol listed in Section 2.2.1. 

 

5.3 Results 

 

5.3.1 Industrial strain screening overview 

 An exhaustive review and analysis of 24 industrial Saccharomyces spp. yeast strains was 

conducted (Table 5.3). Compared to the control strain JIN 03 (ATCC 4124), several strains 

appeared to be excel in two conditions amenable to lactic acid production from lignocellulosic 

feedstocks: a rapid xylose fermentation rate and a strong tolerance in low pH conditions. 
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 Several interesting trends appeared at the end of the screening process. We observed that 

only five strains were able to match the fermentation rate of the ATCC 4124 control strain in 

high concentrations of glucose (160 g/L) and no strain significantly exceeded the control. This 

suggests that the ATCC 4124 strain is considerably tolerant to high osmotic stress, whereas 

many industrial yeast do not seem to possess this tolerance. We also observed that few strains 

seemed to be impacted by high temperature (37 °C) fermentation beyond that of the control. 

When expression a heterologous xylose fermentation pathway consisting of XYL1, XYL2, and 

XYL3, strains named as J1X (ATCC 2360), J2X (ATCC 4098), and so forth, the majority of 

transformed industrials trains performed comparably to the control ATCC 4124 strain. However, 

J5X (ATCC 4127), J18X (ATCC 56069), and J24X (ATCC 66348) were found to more rapidly 

ferment xylose and produce ethanol than the ATCC 4124 control. 

 Regarding the fermentation inhibitors acetic acid, furfural, and hydroxymethylfurfural 

(HMF), which are common in lignocellulosic hydrolysates, most strains were as tolerant as the 

ATCC 4124 control. However, JIN 09 (ATCC 9763), JIN 13 (ATCC 24858), and JIN 17 (ATCC 

46523) were able to grow more rapidly than the control in the presence of these inhibitors, 

suggesting that they may be preferential strains for industrial lignocellulosic hydrolysate 

fermentations. In addition, several strains were comparable to or outperformed the ATCC 4124 

control strain in fermentation media containing actual hydrolysate: JIN 16 (ATCC 38554), JIN 

21 (ATCC 60493), and JIN 23 (ATCC 62914) were found to outperform the ATCC 4124 control 

while JIN 05 (ATCC 4127), JIN 06 (ATCC 4921), JIN 18 (ATCC 56069), JIN 24 (ATCC 

66348), and JIN 26 (ATCC 96581) performed comparably. 

 Taking into account the relative performances of the strains in terms of low pH tolerance, 

fermentation inhibitor resistance, and xylose fermentation rates, we identified JIN 05 (ATCC 
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4127), JIN 17 (ATCC 46523), JIN 18 (ATCC 56069), and JIN 24 (ATCC 66348) as four strains 

to conduct further tests regarding lactic acid resistance and production.  

 After the initial large-scale screening, the four selected strains, hereby referred to as J5 

(ATCC 4127), J17 (ATCC 46523), J18 (ATCC 56069), and J24 (ATCC 66348), were subjected 

to several additional screening tests to assess their tolerance specifically to lactic acid. These 

tests were conducted based on the hypothesis that strains with an initially higher tolerance to 

lactic acid would potentially produce higher lactic acid yields when expressing a heterologous 

ldhA, such as the ldhA gene and cassette used in Chapters II, III, and IV. 

 

5.3.2 Lactic acid tolerance of ATCC 4127, ATCC 46523, ATCC 56069, and ATCC 66348 

 To produce high concentrations of lactic acid using an engineered S. cerevisiae strain, it 

would be amenable to have a strain which is capable of growing even in the presence of high 

extracellular lactic acid concentrations even without the use of buffers or neutralizing agents. By 

obtaining a lactic acid-tolerant parental strain, the associated high costs of using excess buffers 

and neutralizing agents could potentially be eliminated. This cost reduction is especially 

important for high-volume/low-value industrial chemicals such as lactic acid. Therefore, the four 

selected ATCC strains were grown in YPD medium containing 0, 10, 40, or 60 g/L of lactic acid 

(Fig. 5.4). In addition, the engineered EJ4L yeast strain, expressing a heterologous ldhA from 

Rhizopus oryzae, was used as a control. Because the EJ4L strain produces lactic acid, it was 

expected that it would grow significantly worse than the other four strains, which was readily 

apparent. All four industrials trains grew well in 0 g/L of lactic acid. However, J5 grew 

significantly worse when grow in 10 g/L of lactic acid compared to the other industrial yeast 

strains and none of the strains could grow in the presence of 60 g/L of lactic acid. Overall, it 
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seemed that J17 (ATCC 56069) appeared to have the most rapid growth in liquid YPD40 

medium with 10 g/L or 40 g/L of lactic acid. 

 As a further test of the lactic acid tolerance of the strains, the four industrial strains and 

the non-ldhA expressing EJ4 engineered yeast strain were screened on agar plates containing 

YPD40 medium with 0 g/L or 40 g/L of lactic acid (Fig. 5.5). Surprisingly, the relative growth of 

the industrial strains on solid agar plates containing 40 g/L of lactic acid was not precisely the 

same as when grown in liquid medium containing 40 g/L of lactic acid. The largest difference 

was the performance of the J17 industrial yeast strain. Although the strain seemed to relatively 

perform the best in liquid medium, it displayed the smallest amount of cell growth on 40 g/L 

lactic acid in agar. However, compared to the EJ4 strain, all four industrial strains, and especially 

J18 and J24, grew significantly better. The EJ4 strain was in fact unable to grow at all in the 

presence of 40 g/L of lactic acid. This indicates that the screened industrial yeast strains may be 

better lactic acid producers when expressing the pITy3-ldhA cassette. 

 

5.3.3 Construction of a lactic acid-producing, industrial S. cerevisiae strain (J17XL) 

 We constructed an industrial S. cerevisiae strain capable of producing lactic acid from 

xylose by introducing a fungal ldhA from R. oryzae into a xylose-fermenting S. cerevisiae using 

the materials and methods listed in Section 2.2.1. The integration of the pITy3 plasmid relies on 

the availability of a δ sequence of a Ty element of the yeast chromosome. However, the presence 

of δ sequences in the industrial yeast strains (specifically J5, J17, J18, and J24) has not yet been 

elucidated via sequencing. After repeated transformation attempts, we were only able to confirm 

successful integration of the pITy3-ldhA cassette into the genome of the J17 strain. Therefore, we 

suspect, that J5, J18, and J24 may lack the necessary δ sites required for successful integration of 
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the pITy3-ldhA plasmid. For the successful integration of ldhA into the J17 strain, we chose 

specifically used J17X, a J17 strain expressing a heterologous xylose pathway (following the 

materials and methods listed in Section 5.2.3.) for introduction of the pITy3-ldhA cassette in 

order to produce lactic acid from xylose by an engineered industrial yeast strain. The resulting 

strain, named J17XL, was used in further fermentation experiments. The lactate dehydrogenase 

enzymatic activity of J17XL grown in glucose or xylose was measured following protocol in 

Section 2.2.4 and found to be not significantly different from the EJ4L strain (data not shown). 

 

5.3.4 Lactic acid production from xylose by an engineered industrial yeast strain (J17XL) 

 After construction of the xylose-fermenting, lactic acid-producing industrial yeast strain 

J17XL (ATCC 46523 background), we assessed the ability of the strain to produce lactic acid 

from glucose and xylose. In YPD40 medium, there was no significant difference in lactic acid 

production or ethanol production compared to the EJ4L control strain (data not shown). 

However, when grown on YPX40 medium without the use of buffers or neutralizing agents, the 

J17XL strain produced significantly less ethanol than the EJ4L control strain (Fig. 5.6). The 

EJ4L strain reached peak lactic acid and ethanol titers of 12.4 g/L and 4.1 g/L, respectively, with 

yields of 0.41 g lactic acid/g xylose and 0.12 g ethanol/g xylose at 40 h. Comparatively, the 

J17XL strain reached its peak lactic acid titer of 13 g/L with a yield of 0.37 g lactic acid/g xylose 

at 70 h. 

 

5.4 Discussion 

 In broad terms, Saccharomyces spp. can be divided up into two major categories: 1) 

industrial or 2) laboratory.  As the name implies, industrial yeast strains are considered as such 



 

92 
 

due to their ability to resist harsh industrial fermentation conditions, which includes fermentation 

inhibitor-laden lignocellulosic hydrolysates. In many cases, industrial yeast are polyploid strains, 

whereas laboratory yeast are most commonly haploid strains [173, 190]. While the increased 

ploidy can aid the resistance of the yeast strain to fermentation conditions, polyploid can also 

increase the difficulty of introducing targeted genetic perturbations. However, with the 

CRISPR/Cas9 gene editing system, engineering polyploid yeast strains has become increasingly 

easy [191]. With the CRISPR/Cas9 system in mind, new studies to identify the phenotypic 

characteristics of industrial yeast strains would be beneficial. 

 Of the 22 industrial yeast strains in this study, six (ATCC numbers 4127, 4921, 56069, 

6022, 60223, and 62914) have no peer-reviewed literature citing the ATCC nomenclature, and to 

our knowledge, have not been used in any major laboratory- or industrial-scale studies. Despite 

this, these six strains also did not have any significantly improved phenotypes compared to the 

highly-studied ATCC 4124 control strain (Table 5.3). With this in mind, we selected industrial 

yeast strains ATCC 4127, ATCC 46523, ATCC 56069, and ATCC 66348 for integration of the 

pITy3-ldhA-G418 cassette. However, after several attempted transformations, we were only able 

to confirm successful integration of ldhA in the ATCC 46523 strain (J17XL). Two connected 

possibilities exist for the failed integration into the three other industrial strains. 

 First, the absence or low occurrence rate of retrotransposon Ty elements could be a 

limiting factor. Because the pITy3 cassette integrates into δ sequences of the Ty element on a 

chromosome, it is a necessity that one or more of the loci exist in the target transformant strain. 

The yeast retrotransposon Ty has been measured as occurring roughly 35 times in the yeast 

genome [192]. It is well established that each Ty element contains roughly two long terminal 

repeats (LTR), known as δ sequences [193]. As such, it was first estimated that at least 80 δ 
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sequences exist within the yeast genome [192]. More recently, the occurrence of δ sequences has 

been estimated to be as high as 150-200 copies [194, 195]. However, until complete genome 

sequencing or other methods of quantifying the Ty δ sequences is conducted on ATCC 4127, 

ATCC 46523, and ATCC 66348 the possibility exists that the these strains lack the necessary 

integration sites, which would explain why integration using the pITy3-ldhA cassette was 

unsuccessful. 

 Second, the three strains we could not successfully transform may have an increased 

sensitivity to the antibiotic gentamicin G (G418). Peptide synthesis is inhibited in eukaryotic 

cells by G418 through disruption of cellular elongation [196]. Integration of the pITy3 vector 

confers a resistance to G418 by integration of the NEO kanamycin resistance gene of transposon 

Tn903 [150, 197]. It is also known that G418 resistance increases proportionately to δ vector 

copy number, which relies on the presence of Ty δ sequences [150]. Together, this suggests that 

the industrial strains could have a low Ty δ sequence count, limiting integration of the G418 

resistance supplied by the pITy3 cassette, resulting in no cell viability in the presence of G418 

and ultimately a failed transformation. 

 As ATCC 46523 was the only successful pITy3-ldhA-G418 transformant (J17XL), it was 

the only strain grown in glucose and xylose media for comparison to the previously-constructed 

xylose-fermenting, lactic acid-producing EJ4L strain. We initially expected that J17XL would 

produce more lactic acid and less ethanol than the EJ4L strain for several reasons. First, the J17 

parental strain was found to have a strong resistance to acetate and low pH conditions based on 

our agar plating assay (Table 5.3). Secondly, the xylose consumption rate and cell growth rate of 

J17X were found to be at least comparable to the ATCC 4124 laboratory strain (Table 5.3). Most 
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importantly,  J17 seemed to have an increased lactic acid tolerance compared to EJ4 or EJ4L 

when grown or plated on media containing lactic acid (Figs. 5.4 and 5.5). 

 However, despite the apparent organic acid and low pH resistance of the J17 strain, when 

engineered to ferment xylose (J17X) and produce lactic acid (J17XL), it was unable to produce 

significantly more lactic acid than the EJ4L strain (Fig. 5.6). The J17XL strain did have the 

important benefit of producing no measureable ethanol, resulting in a homolactic fermentation, 

which is valuable for reducing industrial purification costs by removing the need to distill 

ethanol. As a final result, the J17XL strain produced a 0.5 g/L greater titer than the EJ4L strain, 

but as no ethanol was produced, the net theoretical yield of all products (lactic acid and ethanol) 

from consumed xylose was 53 % from the EJ4L control strain, but only 37 % from the J17XL 

industrial strain. Overall, these results provide some insight that introduction of the same pITy3-

ldhA-G418 cassette into two different S. cerevisiae strains can provide two different phenotypes: 

one strain producing no ethanol (J17XL) and one strain producing substantial ethanol (EJ4L). 

 

5.5 Conclusions 

 Collectively, this study has provided a useful dataset (Table 5.3) for other researchers to 

refer to when choosing an industrial Saccharomyces spp. for their unique purpose. This study 

builds on previous studies which have also aimed to evaluate a variety of industrial yeast strains 

with the intent to improve the available dataset of industrial yeast phenotypes [198, 199]. 

Furthermore, we demonstrate that, although lactic acid titer did not increase in our engineered 

industrial strain, phenotypes can vary significantly (no ethanol produced compared to significant 

ethanol production) simply by changing the choice of parental strain (Fig. 5.6).Further studies 

are underway to elucidate why the J17XL strain produces no ethanol and to determine why the 
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other attempted ATCC transformants (ATCC 4127, ATCC 56069, and ATCC 66348) were 

unable to integrate the pITy3-ldhA-G418 cassette. 
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5.6 Figures 

 

 

 

 

 

 

 

 

 

Table 5.1 A list of organic acids which can be overproduced by engineered Saccharomyces spp. 

The acid name, major industrial uses, and relevant references are shown. 

 

 

 

 

 

 

 

 

 

Organic acid Major industrial uses Reference(s) 

Lactic acid Polylactide precursor, food preservative [49, 50, 80, 81, 112, 138, 159] 

Succinic acid Polyester precursor, 1,4-butanediol precursor [51-53, 201] 

Glycolic acid Dyes, flavoring agent, skin care [55] 

Malic acid Flavoring agent, pH modifier in cosmetics [202-204] 
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Code name ATCC Number Isolation Origin Reference(s) 

JIN 01 or J1 ATCC 2360 Kefir [205] 

JIN 02 or J2 ATCC 4098 German white wine [206] 

JIN 03 or J3 ATCC 4124 Molasses distillery [207] 

JIN 04 or J4 ATCC 4126 Amylo process [208] 

JIN 05 or J5 ATCC 4127 
American Concord 

grapes 
N/A 

JIN 06 or J6 ATCC 4921 French wine N/A 

JIN 08 or J8 ATCC 7754 
Fleischmann bakers’ 

yeast 
[209] 

JIN 09 or J9 ATCC 9763 Distillery [210] 

JIN 10 or J10 ATCC 20597 
Mutant derived from 

ATCC 20598 
[211] 

JIN 11 or J11 ATCC 20598 N/A [211] 

JIN 12 or J12 ATCC 24855 Egyptian distillery [212] 

JIN 13 or J13 ATCC 24858 N/A [212] 

JIN 14 or J14 ATCC 24860 N/A [213] 

JIN 15 or J15 ATCC 26422 Sake [214] 

JIN 16 or J16 ATCC 38554 Canned cherries [215] 

JIN 17 or J17 ATCC 46523 Baker’s yeast [216] 

JIN 18 or J18 ATCC 56069 Fermented banana N/A 

JIN 19 or J19 ATCC 60222 
Egyptian baker’s 

yeast 
N/A 

JIN 20 or J20 ATCC 60223 
Alsa Briochin bakers’ 

yeast 
N/A 

JIN 21 or J21 ATCC 60493 Canned strawberries [215] 

JIN 23 or J23 ATCC 62914 
Frozen unbaked bread 

dough 
N/A 

JIN 24 or J24 ATCC 66348 Japanese soil [217] 

JIN 25 or J25 ATCC 66349 Candied apple [217] 

JIN 26 or J26 ATCC 96581 
Spent sulfite liquor 

fermentation 
[218] 

 

 

Table 5.2 Listing of all 24 industrial S. cerevisiae strains which were screened in this study, 

along with their associated ATCC number, their origin of isolation, and a relevant reference if 

available. 
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 1 2 3 4 5 6 8 9 10 11 12 13 
 2360 4098 4124 4126 4127 4921 7754 9763 20597 20598 24855 24858 

YPD 160 

g/L 
            

30 °C             

37 °C             
1 g/L 

acetate 
            

2 g/L 

acetate 
            

3 g/L 

acetate 
            

1 g/l 

furfural 
            

2 g/l 

HMF 
            

20% H             
FC             

SE             

XCR             

EPRx             
ODx             
CCR             
EPc             

ODc             

YPDga             

Hga             
VDga             
4.5pr             
5.0pr             

5.5pr             

6.0pr             

6.5pr             

SMga             
SCDga             
ODman             

EPRman             

ODmal             

EPRmal             

ODsuc             
EPRsuc             

Table 5.3 (cont.)           
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  Table 5.3 (cont.) 

 

 

 14 15 16 17 18 19 20 21 23 24 25 26 
 24860 26422 38554 46523 56069 6022 60223 60493 62914 66348 66349 96581 

YPD 160 

g/L 
            

30 °C             

37 °C             
1 g/L 

acetate 
            

2 g/L 

acetate 
            

3 g/L 

acetate 
            

1 g/l 

furfural 
            

2 g/l 

HMF 
            

20% H             

FC             

SE             

XCR             
EPRx             
ODx             
CCR             

EPc             

ODc             

YPDga             

Hga             
VDga             

4.5pH pr             
5.0pH pr             

5.5pH pr             

6.0pH pr             

6.5pH pr             
SMga             

SCDga             
ODman             

EPRman             

ODmal             

EPRmal             
ODsuc             
EPRsuc             
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Table 5.3 A heat map indicating the relative performance of our industrial strain screening 

experiments. Our internal code name for each strain (JIN01, JIN02, etc.) is listed along the top 

row. The ATCC strain name is listed along the second row. The first column indicates the 

specific test with detailed experimental conditions shown in Sections 5.2.1 through 5.2.10. The 

control strain, JIN03 (ATCC 4124) is shown in the third results column from which all other 

strains were compared. Performance for a specific test that was greater than 10% lower than the 

ATCC 4124 control strain is indicated by a dark orange color. Performance 5-10% lower is 

indicated in light orange, performance within 5% lower or higher is indicated by no color, 

performance 5% higher is indicated by light purple, and performance greater than 10% higher is 

indicated by dark purple. Black boxes indicate the specific strain was not studied in the given 

test. Abbreviations: HMF, hydroxymethylfurfural; FC, flow cytometry; SE, sporulation 

efficiency; XCR, xylose consumption rate; EPRx, ethanol production rate from xylose; ODx, 

optical density production rate from xylose; CCR, cellobiose consumption rate; EPc, ethanol 

production rate from cellobiose; YPDga, yeast extract peptone dextrose medium monitored by 

gas analysis; Hga, 25% hydrolysate mixture monitored by gas analysis; VDga, Verduyn’s minimal 

medium with complete supplement mixture monitored by gas analysis; pr, plate reader 

fermentation; SMga, synthetic complete medium with complete supplement mixture monitored 

by gas analysis; SCDga synthetic complete medium without complete supplement mixture 

monitored by gas analysis; ODman, optical density production rate from mannose; EPRman, 

ethanol production rate from mannose; ODmal, optical density production rate from maltose; 

EPRmal, ethanol production rate from maltose; ODsuc, optical density production rate from 

sucrose; EPRsuc, ethanol production rate from sucrose. 
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Fig. 5.4 Increase in optical density (OD600 nm) at 48 h relative to 0 h optical density of four 

industrial S. cerevisiae strains and the engineered EJ4L strain in YPD medium containing 0, 10, 

40, or 60 g/L of lactic acid. Black bars indicate 0 g/L lactic acid, dark grey bars indicate 10 g/L 

of lactic acid, light grey bars indicate 40 g/L of lactic acid, and white bars indicate 60 g/L of 

lactic acid. Error bars indicate standard deviation (n=2). Abbreviations: OD, optical density; LA, 

lactic acid. 
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Fig. 5.5 Serial diluted single colonies of the engineered EJ4 strain and four industrial yeast 

strains were plated onto YPD40 agar plates containing a 0 g/L or b 40 g/L of lactic acid. 
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Fig. 5.6 Fermentation profile, over time, of two ldhA-expressing engineered S. cerevisiae strains. 

a Recombinant laboratory strain EJ4L grown in YPX medium. At 40 h, EJ4L fermented ~30 g/L 

of xylose (closed circle) producing 12.4 g/L of lactic acid (closed square). b Recombinant 

industrial strain JIN17XL grown in YPX medium. At 71 h, JIN17XL converted ~35 g/L of 

xylose (closed circle) into ~13 g/L of lactic acid (closed square). Ethanol (closed triangle) is also 

shown. The values are the mean of two independent experiments and the error bars indicate the 

standard errors.
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CHAPTER VI PHENOTYPIC AND GENOTYPIC ANALYSIS OF ENGINEERED 

LACTIC ACID-PRODUCING YEAST TO ELUCIDATE UNDERLYING 

MECHANISMS 

 

6.1 Introduction 

 The production of lactic acid at the industrial scale has increased dramatically in recent 

years, with global production levels estimated at between 260,000 metric tons [93] to as high as 

367,000 metric tons [219] or even 726,000 metric tons [220]. Most lactic acid is currently 

produced through microbial fermentation of edible feedstocks containing glucose. To alleviate 

the concerns of disrupting the food supply by producing fuels and chemicals, such as lactic acid, 

from edible sugars, many studies have been conducted to convert inedible lignocellulosic sugars 

into these value-added products [221, 222]. Recently, our lab has developed several 

Saccharomyces cerevisiae yeast strains capable of efficiently fermenting xylose and cellobiose, 

two major lignocellulosic sugars, into lactic acid [49, 50]. A heterologous xylose assimilation 

pathway consisting of XYL1, XYL2, and XYL3 allowed for fermentation of xylose [85], while a 

heterologous pathway of cdt-1 and gh1-1 allowed for assimilation and cleavage of the 

disaccharide cellobiose [148, 166]. A gene (ldhA) encoding for lactate dehydrogenase (LDH) 

from the fungus Rhizopus oryzae was then integrated into the genome of the xylose- and 

cellobiose-fermenting engineered yeast. In each case, the engineered strain had no genotypic 

disruption to the native ethanol pathway, consisting of pyruvate decarboxylase (PDC) and 

alcohol dehydrogenase (ADH), allowing the strains to freely produce ethanol. 
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 Expectedly, we found that when fermenting glucose, both strains produced primarily 

ethanol [49, 50]. Conversely, we observed that when fermenting xylose, cellobiose, or a mixture 

of xylose and cellobiose, lactic acid was not only the major product, but the ethanol yield was 

generally negligible. The underlying mechanisms and biological basis for this phenotype was not 

understood at the time, but here, we disclose additional experiments and discussion which 

provides initial evidence to explain these results. Primarily, these experiments focus on 

overexpression and deletion of JEN1 and ADY2, carboxylic acid transporters which naturally 

occur in S. cerevisiae yeast. Using the modern clustered regularly-interspaced short palindromic 

repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) engineering methodology, here, we 

provide evidence that the JEN1 and ADY2 genes are at least partially essential for efficient lactic 

acid production from lignocellulosic sugars by engineered S. cerevisiae. In addition, we will 

investigate the impacts of JEN1 and ADY2 deletions on intracellular metabolite concentrations, 

based on the hypothesis that deletion of these carboxylate transporters will cause an increase of 

intracellular lactic acid, resulting in feedback inhibition of LDH, and ultimately slowing the 

overall fermentation and reducing the final lactic acid titer. 

 

6.2 Materials and Methods 

 

6.2.1 Flask fermentations and analysis 

 Yeast cells were cultured in YP medium (10 g/L yeast extract and 20 g/L peptone) 

containing glucose (YPD), xylose (YPX), cellobiose (YPC), maltose, mannose, or sucrose. 

Lactic acid (30 % in H2O stock) used for YP fermentations only containing 10 g/L of lactic acid 

as a carbon source was obtain from Sigma-Aldrich (product number L1875). Concentrations of 
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the sugars were displayed as numbers following their initials (e.g., YPD160, YP medium 

containing 160 g/L of glucose). Stock cultures were maintained on YPD agar (20 g/L agar) plates 

in 4 °C. Yeast precultures were grown in YP medium containing 40 g/L of glucose in 5 mL total 

volume and harvested at mid-exponential phase. Fermentations were conducted with an initial 

volume of 50 mL in 250 mL Erlenmeyer Pyrex
® 

flasks (Corning, MA). Flasks were shaken at 

100 RPM on an Innova 2300 shaker (New Brunswick Scientific, CT) in a 30 °C incubation 

room. Cell optical density (OD) was measured via NanoDrop 200C (Thermo Fisher Scientific, 

MA) or BioMate 3 UV-visible spectrophotometer (Thermo Fisher Scientific, MA) and the initial 

OD was adjusted to ~1. Glucose, xylose, cellobiose, glycerol, acetate, ethanol, and lactic acid 

concentrations were determined by use of a 1200 Infinity series HPLC system (Agilent 

Technologies, CA) equipped with a refractive index detector using a Rezex ROA-Organic Acid 

H
+ 

(8%) column (Phenomenex Inc., CA). The column was eluted with 0.005 N H2SO4 at a flow 

rate of 0.6 mL/min at 50 °C. 

 Intracellular metabolites were prepared as discussed in Section 6.2.7. Prepared samples 

were analyzed by a GC/MS system (Agilent Technologies Inc., CA) consisting of a 7,890 gas 

chromatograph; a 5,975 MSD was used to analyze the presence of 21 intracellular metabolites by 

comparing sample chromatographs to an internal library. GC was performed on a 30-m HP-5MS 

column with 0.25 mm inner diameter and 0.25 μm film thickness (Agilent Technologies Inc. CA) 

with an injection temperature of 250 °C, the interface set to 250 °C, and the ion source adjusted 

to 230 °C. The nitrogen carrier gas was set at a constant flow rate of 0.8 ml min
−1

. The 

temperature program was initially 5 min at 40 °C followed by an oven temperature increase of 

40 °C min
−1

 to 280 °C for the final 1 min. The mass spectrometer was operated in positive 

electron impact mode at 69.9 eV ionization energy in m/z 30–800 scan range. The spectra of all  
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chromatogram peaks were evaluated using the HP Chemstation (Agilent Technologies Inc., CA). 

 

6.2.2 Construction of a multicopy, δ-integration vector containing ldhA with a Hygromycin 

B selection and expression in a xylose-fermenting S. cerevisiae 

 An integration cassette (pITy3-ldhA-HygB) was designed with a Hygromycin B 

antibiotic selection marker based on the previously reported pITy3-ldhA-G418 cassette [49, 50]. 

The G418 encoding region was cut and a Hygromycin B encoding region was ligated into the 

plasmid in place of the G418 region. The Hygromycin B template was obtained through PCR 

cloning of the Hygromycin B encoding region of the well-known pAG32 episomal plasmids. 

Escherichia coli TOP10 were used for gene cloning and manipulation and were grown in Luria-

Bertani medium; 100 µg/mL of Hygromycin B was added to the medium when required. The 

pITy3-ldhA-HygB plasmid was transformed into the SR8 strain using a high-efficiency lithium 

acetate transformation method [103]. Yeast transformants were selected on YPD20 plates 

containing 250 µg/mL Hygromycin B. The resulting strain, SR8HL (SR8 with Hygromycin B 

resistance and lactate dehydrogenase encoded by ldhA), was used for JEN1 and ADY2 

overexpression experiments. Lactate dehydrogenase activity of several SR8HL transformants 

was measured as previously described [49, 50] as a secondary methods to confirm successful 

ldhA integration and expression. 

 

6.2.3 Overexpression of JEN1 and ADY2 in lactic acid-producing S. cerevisiae 

 Yeast cells were cultured in yeast extract peptone medium (10 g/L yeast extract and 20 

g/L peptone, YP) containing glucose (YPD), In order to construct an S. cerevisiae strain capable 

of converting glucose or xylose to lactic acid with additional copies of JEN1 and ADY2, an 
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engineered yeast strain (SR8HL) capable of fermenting xylose was transformed with an episomal 

expression pRS42-series plasmid harboring the appropriate JEN1 or ADY2 sequence cloned from 

a D452-2 yeast template sequence of JEN1 and ADY2. The final pRS42K (Kanamycin/G418) 

plasmid contained the ADY2 (pRS42k-ADY2) or JEN1 (pRS42K-JEN1) sequences with a GPD 

promotor and CYC terminator. Escherichia coli TOP10 were used for gene cloning and 

manipulation and were grown in Luria-Bertani medium; 50 µg/mL of kanamycin was added to 

the medium when required. The pRS42K, pRS42K-JEN1, and pRS42K-ADY2 plasmids were 

transformed into the SR8HL strain using a high-efficiency lithium acetate transformation method 

[103]. Yeast transformants were selected on YPD20 plates containing 300 µg/mL G418. To 

maintain pRS42K-series plasmid stability in the yeast cell, 250 µg/mL of G418 was added to all 

precultures and fermentations. Successful integration was confirmed by phenotypic resistance to 

G418 and colony PCR of the transformed yeast colonies. 

 

6.2.4 Incubation of lactic acid-producing S. cerevisiae with α-Cyano-4-hydroxycinnamic 

acid 

 α-Cyano-4-hydroxycinnamic acid (CHC, Sigma-Aldrich, MO) was stored as a powder in 

a 4 °C refrigerator. Due to low solubility in water, the CHC was dissolved into 100 % methanol 

at a concentration of 5 mM and added to fermentation media to a final concentration of 100 µM. 

For experiments using CHC, two controls were used: 1) containing autoclaved nanopure water at 

a volume equal to the CHC solution added to the experimental fermentations and 2) containing 

100 % methanol without CHC at a volume equal to the CHC solution added to the experimental 

fermentations. Fermentation protocol followed methods listed in Section 6.2.1 unless otherwise 

noted. 
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6.2.5 Construction of ΔJEN1, ΔADY2, and ΔADY2ΔJEN1 lactic acid-producing S. cerevisiae 

strains using CRISPR/Cas9 

 The pRS42N-Cas9 plasmid providing nourseothricin (NAT) resistance was introduced 

into the desired strains (EJ4 and EJ4L) for JEN1 and ADY2 deletion following a standard lithium 

acetate transformation protocol as listed in Section 6.2.2, except 120 µg/mL NAT was used for 

selection in place of Hygromycin B in YP medium. A FastCloning method was employed to 

generate gRNA expression plasmids for JEN1 and ADY2 deletion: JEN1 and ADY2 sequences 

+/- 1 kb were obtained from the Saccharomyces Genome Database [223]. The Broad Institute 

sgRNA Designer [224] was used to obtain two optimal 20-bp sgRNA recognition sequences 

targeting JEN1 and ADY2 open reading frames, respectively. Finally, the 20-bp URA3 

recognition sequence from a previously reported gRNA expression plasmid (gRNA-ura-HYB, 

[90]) was replaced with JEN1 and ADY2 recognition sequences using the PCR-based 

FastCloning [225]. The resulting plasmids were designated as pRS42H-∆JEN1gRNA and 

pRS42H-∆ADY2gRNA.  Two double-stranded 90 mer oligonucleotide donor DNA for 

disrupting JEN1 and ADY2 were PCR amplified using primer pairs T102-JdDNA-U/T103-

JdDNA-D and T104-AdDNA-U/T105-AdDNA-D, respectively. The sgRNA plasmids along 

with donor DNA primers and confirmation PCR primers are listed in Table 1.4. The pRS42H-

∆ADY2gRNA plasmid was then transformed together with the donor DNA into the Cas9 

expressing EJ4 and EJ4L strains. Cells were plated on a YPD-HygB-NAT plate and allowed to 

grow for 2-3 days until transformants were ready to pick. Transformants were then examined by 

colony PCR using primer pair T108/T109 to screen for ADY2 mutants. JEN1 was deleted in EJ4 

and EJ4L strains following the same procedures using primer pair T106/T107 for colony PCR.  
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For deletion of both ∆ADY2∆JEN1, the Hygromycin B resistance was dropped out in ADY2-

deleted EJ4 and EJ4L strains by culturing them in NAT liquid media for 24-36 hours. An 

appropriate amount of the cell cultures were taken and plated onto a YPD-NAT plate to isolate 

single colonies, which were then replica plated onto a YPD-HygB plate to confirm the drop-out 

of the Hygromycin B resistance. The resulting colony was picked for subsequent deletion of 

∆JEN1 following the same procedure. 

 

6.2.6 Construction of an ADY2 complement strain from EJ4LΔADY2ΔJEN1 

 First, yeast genomic DNA from the parental EJ4 strain was prepared from YPD40 grown 

cells harvested at mid-log phase using the YeaStar Genomic DNA Kit (Zymo Research, CA) 

without modification to the manufacturer’s protocol. Approximately 60 ng of genomic DNA was 

amplified via three cycles of PCR with Phusion High-Fidelity PCR Master Mix with HF Buffer 

(NEB, MA) using primers Ady2OE-F: gtacgtacggatccACCTTGGGATATCGTTGGA and 

Ady2OE-R: gtacgtacccgcggGGCAAACGATAGACCTTTC providing BamHI and SacII 

cutsites, respectively, for an insert of the native ADY2 gene with approximately 1 kb upstream 

and 650 bp downstream to include the native promotor and terminator. Fragment size of the 

amplified region was confirmed by gel electrophoresis. The pRS42N plasmid, conferring NAT 

resistance, was used as the host cassette and was digested at single cut sites with restriction 

enzymes BamHI and SacII, the plasmid was treated with calf intestinal alkaline phosphatase 

(CIP) to reduce self-annealing, and annealed with the ADY2 cloned fragment. The resulting 

pRS42N-Ady2 plasmid was transformed into TOP10 E. coli grown in Luria-Bertani medium 

containing appropriate selection antibiotics and used for gene cloning and manipulation. The 

empty pRS42N plasmid and the pRS42N-Ady2 plasmid were individually transformed into the 
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EJ4L and EJ4LΔADY2ΔJEN1 strains using a high-efficiency lithium acetate transformation 

method [103]. Yeast transformants were selected on YPD20 plates containing 300 µg/mL NAT. 

Successful integration was confirmed by phenotypic resistance to NAT and colony PCR of the 

transformed yeast colonies. 

 

6.2.7 Analysis of intracellular lactic acid and other metabolites and cell preparation 

 Yeast cells were grown in YP medium containing appropriate concentrations of carbon 

sources as indicated and harvested at mid-log phase. Cells were rapidly quenched using a fast 

filtration method as follows: 1) Cell cultures were standardized to OD 1 and centrifuged with the 

removal of supernatant, then washed twice with autoclaved nanopure water, centrifuging and 

removing the water between each wash; 2) Cells were resuspended in 1 mL of water and filtered 

onto a nylon membrane using a vacuum manifold; 3) Cells were washed while on the nylon 

membrane/vacuum manifold with 1 mL of water; 4) Filtered cells and the nylon membrane were 

placed into a 1.5 mL microcentrifuge tube containing 1 mL of 75% ethanol and vortexed briefly; 

5) The 1.5 mL microcentrifuge tube was incubated in an 80 °C water bath for 3 minutes; 6) The 

1.5 mL microcentrifuge tube was centrifuged for 1 minute at 15,000 RPM; 7) 500 µL of 

supernatant was transferred into a new 1.5 mL microcentrifuge tube without disturbing the debris 

pellet; 8) The 500 µL solution was vacuum dried on low heat for 3 hours; 9) One triplicate of 

samples were set aside for immediate measurement of intracellular lactic acid using the Lactate 

Assay Kit MAK064 (Sigma-Aldrich, MO) or pyruvic acid using the Pyruvate Assay Kit 

MAK071 (Sigma-Aldrich, MO) without modification to the manufacturer’s protocols and 

another triplicate of samples were immediately derivatized to prepare for gas chromatography-

mass spectrometry analysis. 
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 To increase the volatility and detectability of the intracellular metabolites by GC-MS, 

dried samples from step 9 above were derivatized as follows: 1) 40 mg of 

methoxyaminehydrochloride was dissolved in 1 mL pyridine and vortexed to fully dissolve; 2) 5 

µL of the methoxyaminehydrochloride in pyridine solution was added to each dried sample and 

briefly centrifuged; 3) Samples were incubated at 30 °C for 90 minutes at 400 RPM in a 

Thermomixer R (Eppendorf, Germany) and then briefly centrifuged; 4) 45 µL of Trifluor-N-

methyl-N-(trimethylsilyl)acetamide was added to each microcentrifuge tube and briefly 

centrifuged; 5) Samples were incubated at 37 °C for 30 minutes at 400 RPM in a Thermomixer R 

(Eppendorf, Germany) and then briefly centrifuged; 8) Samples were transferred to an HPLC 

vial with a 250 µL spring-bottom insert and tightly capped before being injected into the GC-

MS. 

 

6.2.8 Bioreactor fermentations 

 Yeast precultures were grown in YPD40X40 medium and harvested at mid-log phase, 

then washed twice with sterilized water to prepare inoculums for fermentations. The bioreactor 

fermentations were conducted in YP medium containing 10 g/L of glucose, 40 g/L of xylose, and 

80 g/L of cellobiose using a BioFlo/CelliGen 115 bioreactor (New Brunswick Scientific Co., 

USA). An initial yeast cell concentration of ~1 (0.47 mg DCW/mL, OD600) was used. Working 

volume was set at 1 L inside of a 2 L glass vessel. Aeration was maintained at a flow rate of 1.5 

L/min of microfiltered (0.22 μm) ambient air and an impeller rotation of 200 RPM. Temperature 

was maintained at 30 °C. NaOH (10 N) was added as needed to maintain a pH value of 4, 5, or 6 

as indicated. 

 



 

113 
 

6.3 Results 

 

6.3.1 Low extracellular pH slows lactic acid production by engineered yeast expressing 

ldhA in a simulated hydrolysate 

 Three individual 1L bioreactor fermentations inoculated with the ldhA-expressing EJ4L 

yeast strain were established with YP medium containing 10 g/L glucose, 40 g/L xylose, and 80 

g/L cellobiose to simulate the sugar composition of a common lignocellulosic hydrolysate. The 

pH value for each bioreactor was constantly maintained at 4, 5, or 6 using automated addition of 

10 N NaOH as needed. At pH 6, the EJ4L strain was able to efficiently consume all available 

sugars and produce 81.6 g/L of lactic acid with no ethanol accumulation (data not shown). 

However, the rate of fermentation and especially the lactic acid productivity was significantly 

slower in the pH 5 condition and the slowest in the pH 4 condition (Fig. 6.1). The specific lactic 

acid productivity for each condition was 0.45 g/L-h in pH 4, 0.52 g/L-h in pH 5, and 0.67 g/L-h 

in pH 6, representing a 49 % increased lactic acid productivity in the pH 6 condition as compared 

to the pH 4 condition. In addition, the cellobiose consumption rate was significantly slower as 

the pH decreased (Fig. 6.2), which could explain the decreased lactic acid productivity. In the pH 

6 condition, cellobiose was consumed at a rate of 0.64 g/L-h compared to a rate of 0.13 g/L-h in 

the pH 4 condition, representing a nearly 4-fold increase from pH 4 to pH 6. 

 

6.3.2 JEN1 and ADY2 overexpression provides no significant improvement to lactic acid 

production by the SR8HL strain 

 The JEN1 and ADY2 genes, which natively encode for carboxylate transporters in S. 

cerevisiae, were overexpressed in the ldhA-expressing engineered S. cerevisiae strain SR8HL. 
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The pRS42K, pRS42K-JEN1 and pRS42K-ADY2 plasmids were transformed into SR8HL, 

yielding three strains: SR8HL-Emp, SR8HL-J1, and SR8HL-A2 and used for YPD fermentations 

without the addition of buffers or neutralizing agents such as CaCO3. When fermenting glucose, 

no significant difference was observed in the entire fermentation profile, with lactic acid and 

ethanol yields shown in Fig. 6.3. All three strains displayed ethanol yields between 0.27 to 0.29 

g ethanol/g glucose and lactic acid yields between 0.08 and 0.10 g lactic acid/g glucose, 

indicating no significant differences. 

 The previous experiment was repeated with xylose used in-place of glucose. However, 

none of the three strains could finish the fermentation likely due to the decrease in pH and 

increase in lactic acid because no CaCO3 was added (data not shown), which is expected based 

on previous reports of a similar ldhA-expressing, xylose-fermenting strain (Fig. 2.2b) [49]. 

Therefore, the YPX40 experiment was repeated with the addition of 35 g/L CaCO3 to ensure 

saturation of a neutralizing agent and assure complete xylose utilization. The overexpression of 

JEN1 and ADY2 on the SR8HL lactic acid-producing strain resulted in no significant change in 

the fermentation profile from xylose with CaCO3 (Fig. 6.4). Consistently, no measureable 

ethanol was produced from xylose and a lactic acid yield of ~0.64 g lactic acid/g xylose was 

produced for both overexpression strains and the empty plasmid control, indicating that the 

overexpression of the JEN1 or ADY2 carboxylate transporters had no significant impact on lactic 

acid production. 

6.3.3 Using α-cyano-4-hydroxycinnamic acid as a chemical inhibitor of lactic acid 

transporters in ldhA-expressing S. cerevisiae 

 Although overexpression of JEN1 and ADY2 had no significant impact on the production 

of lactic acid in the ldhA-expressing strain in either glucose or xylose, we hypothesized that 
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inactivation of one or both of these genes could impair lactic acid transport out of the cell, 

resulting in a decreased overall lactic acid production profile. As a preliminary test of this 

hypothesis, the EJ4L strain, expressing an ldhA from Rhizopus oryzae, was grown in YPX40 

medium containing α-cyano-4-hydroxycinnamic acid (CHC, dissolved in methanol), a known 

inhibitor of several yeast transporters including JEN1 and ADY2 [226, 227]. 

 The water and methanol control fermentations generated ethanol yields of 0.05 g 

ethanol/g xylose and 0.08 g ethanol/g xylose, respectively (Fig. 6.5). In comparison, the CHC 

fermentation ethanol production was significantly higher, with a yield of 0.15 g ethanol/g xylose, 

representing a yield 312 % and 185 % higher than the water and methanol control fermentations, 

respectively. Regarding lactic acid production, the water and methanol control fermentations 

generated lactic acid yields of 0.41 g lactic acid/g xylose and 0.43 g lactic acid/g xylose, 

respectively. Comparatively, the CHC fermentation produced significantly less lactic acid, with a 

yield of 0.26 g lactic acid/g xylose, a reduction in lactic acid production of 38 % and 41 % 

compared to the water and methanol control fermentations, respectively. 

 

6.3.4 Lactic acid production from ldhA-expressing S. cerevisiae with ΔJEN1, ΔADY2, and 

ΔADY2ΔJEN1 

 The CHC fermentation indicated that loss of function of carboxylate transporters, such as 

Jen1 and/or Ady2, by chemical disruption, reduced lactic acid production in the EJ4L strain (Fig. 

6.5). However, because CHC is a non-specific inhibitor, it is difficult to ensure that only the Jen1 

and/or Ady2 transporters were inhibited rather than a wide-range of proteins. To precisely assess 

the impact of inactive Jen1 and/or Ady2 proteins, the six new strains were engineered, three 

based on the EJ4 parental strain and three based on the ldhA-expressing EJ4L strain: 1) 
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EJ4ΔJEN1, 2) EJ4ΔADY2, 3) EJ4ΔADY2ΔJEN1, 4) EJ4LΔJEN1, 5) EJ4LΔADY2, and 6) 

EJ4LΔADY2ΔJEN1. The newly constructed strains were then tested in YPX medium without 

CaCO3 and no significant differences were observed between the EJ4 control strain and the 

EJ4ΔJEN1, EJ4ΔADY2, or EJ4ΔADY2ΔJEN1strains (data not shown). 

 When the EJ4L transporter deleted strains were grown in YPX medium, a significant 

difference in lactic acid production was observed in the EJ4LΔADY2ΔJEN1strain compared to 

the parental EJ4L control (Table 6.6). The lactic acid yields of the EJ4L, EJ4LΔJEN1, and 

EJ4LΔADY2 strains were similar with yields of 0.45, 0.42, and 0.41 g lactic acid/g xylose, 

respectively. However, the EJ4LΔADY2ΔJEN1 strain displayed a significantly lower lactic acid 

yield, generation only 0.29 g lactic acid/g xylose, a ~36 % reduction compared to the EJ4L 

parental strain. The ethanol yield among all strains with ΔJEN1 was also slightly increased, to 

yields between 0.13 to 0.15 g ethanol/g xylose compared to a yield of 0.08 g ethanol/g xylose 

from the parental EJ4L strain or an ethanol yield of 0.04 g ethanol/g xylose from the 

EJ4LΔADY2 strain.  

 

6.3.5 Lactic acid uptake rate of ΔJEN1 and ΔADY2 S. cerevisiae strains 

 The parental EJ4, EJ4ΔJEN1, EJ4ΔADY2, and EJ4ΔADY2ΔJEN1 strains, were grown in 

YP medium containing ~10 g/L of lactic acid and no other carbon source. The parental, control 

EJ4 strain consumed approximately 9.8 g/L of lactic acid over 50 hours which was similar to the 

EJ4ΔADY2 strain, which consumed 10.2 g/L of lactic acid in the same time (Fig. 6.7). However, 

a clear split is apparent in the two strains lacking the JEN1 gene. EJ4ΔJEN1 and 

EJ4ΔADY2ΔJEN1 consumed only 6.4 g/L and 5.9 g/L of lactic acid in 50 hours. Although the 

lactic acid uptake rate was the lowest in the EJ4ΔADY2ΔJEN1 strain, this experiment suggests 
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that Jen1 plays a more significant role in import of lactic acid than Ady2, as evidenced by the 

significantly lower lactic acid uptake rate in the EJ4ΔJEN1 strain as compared to the EJ4ΔADY2 

strain. 

 

6.3.6 Analysis of intracellular lactic acid and other metabolites of ΔJEN1 and ΔADY2, 

ldhA-expressing S. cerevisiae strains 

 Although the JEN1and ADY2 deletion experiment results shown in Table 6.6 indicate the 

importance of these two monocarboxylate transporters in lactic acid production, the specific 

mechanism of the impact of their deletions was unclear. To assess the impact, the intracellular 

lactic acid concentrations of EJ4L and EJ4LΔADY2ΔJEN1 were measured from the quenched 

crude cell extracts of YPX-grown yeast cells harvested during phase. Samples were collected and 

measured at 39 h and 48 h and results are presented as relative abundance of intracellular lactic 

acid as compared to extracellular lactic acid, with the EJ4L control strain set as a value of 1 Fig. 

6.8. The ratio of intracellular lactic acid to extracellular lactic acid in the EJ4LΔADY2ΔJEN1 

was approximately 250% of the EJ4L parental strain, indicating that the deletion of the ADY2 

and JEN1 monocarboxylate transporters measurably inhibits the rate at which lactic acid can be 

expelled from the intracellular mixture. 

 As a control for Fig. 6.8, EJ4 and EJ4ΔADY2ΔJEN1 samples from Fig. 6.7 were also 

assessed for their intracellular lactic acid concentrations. This test was designed to verify that the 

intracellular lactic acid measurements of Fig. 6.8 were not merely the upper limit of intracellular 

lactic acid accumulation by the engineered S. cerevisiae strains. Predictably, the 

EJ4ΔADY2ΔJEN1strain, which consumed 39 % less lactic acid at 50 h than the parental EJ4 

strain (Fig. 6.7), displayed a similarly lower intracellular lactic acid concentration of ~70 % of 



 

118 
 

the parental EJ4 strain (data not shown). As a final control experiment, the non-ldhA-expressing 

EJ4 strain was grown in YPX medium and the measurement of intracellular lactic acid resulted 

in error-range measurements, indicating that the intracellular lactic acid test was not providing a 

false-positive lactic acid measurement (data not shown). 

 Similarly, intracellular pyruvate concentrations of the EJ4L strain and the 

EJ4LΔADY2ΔJEN1 grown in YPX medium and harvested at mid-log phase were assessed (Fig. 

6.9). However, no significant difference in the concentration of intracellular pyruvate was 

observed between the parental EJ4 strain and EJ4ΔADY2ΔJEN1strain or the lactic acid-

producing EJ4L and EJ4LΔADY2ΔJEN1 strains. This suggests that the lactic acid-producing 

strains expressing ldhA or the ΔADY2ΔJEN1 strains maintain consistent intracellular pyruvate 

concentrations in-line with their respective parental strains. 

 A wider range of intracellular metabolites was assessed through GC-MS analysis (Fig. 

6.10) to determine if the deletion of the carboxylate transporters could impact the relative 

abundance of intracellular metabolites. However, no significant differences were observed, 

suggesting that the double-deletion of JEN1 and ADY2 did not greatly impact the transport or 

synthesis of these metabolites. 

 

6.4 Discussion 

 We have presented several experiments to improve our understanding of lactic acid 

production from lignocellulosic sugars. Our previous reports [49, 50] displayed that the 

production of lactic acid from S. cerevisiae strains expressing a R. oryzae ldhA without 

disruption to the native ethanol pathway would produce lactic acid as the major product from 

xylose and cellobiose, but ethanol would be the major product from glucose. Because the 
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fermentation rate was significantly slower in xylose and cellobiose than in glucose, we first 

assumed that the rate of the fermentation caused the carbon flux to shift away from ethanol 

towards lactic acid. To support this idea, previous reports indicate that the KM of R. oryzae LDH 

on pyruvate is ~0.55 mM [113], which is lower than the KM of the S. cerevisiae PDC, which has 

been measured between 2.29 and 3 mM [114]. This suggested that slower uptake of xylose and 

cellobiose compared to that of glucose resulted in lower intracellular pyruvate concentrations, 

providing LDH an opportunity to convert pyruvate into lactic acid before the pyruvate 

concentration is high enough for the lower affinity PDC to take action. To assess this, we 

conducted glucose fermentations with the SR8L strain at 30 °C, 23 °C, and 16 °C. However, the 

lactic acid yields from all three fermentations were similar despite reduced rates of glucose 

consumption and product formation [49]. Although this was a relatively simplistic design to 

assess the effect of the fermentation rate on lactic acid yields, it suggested that other aspects of 

yeast genetics or physiology must have a greater impact on lactic acid production from 

lignocellulosic sugars. 

 Based on internal RNA-sequencing data of glucose and xylose-grown S. cerevisiae, we 

noted that the relative RNA levels of JEN1 and ADY2 were ~55 times and ~10 times higher in 

xylose-grown cells than in glucose-grown cells (data not shown). Similarly, Lin et al. reported 

that the transcription levels of JEN1 and ADY2 were ~5 times and ~2 times higher in cellobiose-

grown yeast than in glucose-grown yeast [228]. Jen1 and Ady2 are of particular interest because 

they have previously been reported as monocarboxylate transporters which transport several 

molecules, including lactic acid [118, 229, 230]. However, all prior lactic acid-related studies of 

the JEN1 and ADY2 genes have been limited to their expression in glucose-grown yeast and have 

therefore been eluded by the seemingly native upregulation of both genes in non-repressing 
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sugars [231], such as the lignocellulosic sugars xylose and cellobiose. With this upregulation in 

mind, overexpression of JEN1 and ADY2 looked promising to improve lactic acid production in 

glucose medium. 

 However, overexpression of JEN1 and ADY2 did not improve lactic acid yield when the 

SR8HL strain fermented glucose (Fig. 6.3) or xylose (Fig. 6.4). At least two possibilities exist to 

explain this result. In the case of xylose fermentations, because JEN1 and ADY2 are highly 

upregulated, based on RNA-sequencing results, Jen1 and Ady2 may already be saturated, 

resulting in no benefit from further expression of the encoding genes. However, when fermenting 

glucose, JEN1 and ADY2 are significantly downregulated, so overexpression of these genes 

should improve lactic acid transport out of the cell. Beyond the catabolic repression of JEN1 and 

ADY2 that occurs at the transcriptional level, even post-translational levels are rapidly degraded 

in the presence of glucose [232, 233]. Together, these results indicate that overexpression of 

JEN1 and ADY2 may be futile in terms of significantly improving the Jen1 and Ady2 activity in 

most conditions. 

 Although upregulation of JEN1 and ADY2 may have limited benefits, the present study 

provides evidence that inhibition or deletion of these genes will disrupt lactic acid production by 

engineered S. cerevisiae from xylose. First, CHC was used as a chemical inhibitor, reducing the 

yield of lactic acid from xylose by approximately 41 %. Although CHC has been reported to 

inhibit yeast monocarboxylate transporters [226, 227], it is non-specific, and therefore it is 

difficult to assess the molecular basis for the reduced lactic acid production from CHC-incubated 

yeast. 

 Because CHC is non-specific, a targeted deletion of JEN1 and ADY2 was then utilized. 

The CRISPR/Cas9 method [32] for gene deletion was used to create single deletion strains and 
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an ADY2 and JEN1 double-deletion strain. With the EJ4L∆ADY2∆JEN1 strain, lactic acid yields 

from xylose were reduced by ~36 % (Table 6.6). However, no significant difference was 

observed with only single deletions of JEN1 or ADY2. The failure of the single deletions to 

drastically impact lactic acid production may simply be a compensatory effect: when JEN1 or 

ADY2 are individually deleted, the other remaining gene may be upregulated in part because of 

their similar overall functions. Importantly, Jen1 and Ady2 have a closely-linked protein-protein 

interaction (Fig. 6.11). In part, the reduced lactic acid yield from the double-deletion strain is 

likely due to a reduced rate at which lactic acid can be exported from the intracellular cytoplasm. 

In turn, this reduced export results in feedback inhibition of LDH by the accumulated lactic acid. 

Evidence for this is shown by the relatively increased intracellular lactic acid concentration of 

the double-deleted strain compared to the parental strain (Fig. 6.8). Essentially, rapid and 

efficient export of lactic acid is necessary to maintain a stable intracellular pH and to reduce 

feedback inhibition of lactic acid on LDH. However, the double-deletion of JEN1 and ADY2 

only reduced the lactic acid yield by 36 % rather than reducing it by 100 %. This could be due to 

numerous reasons, but most likely, other lactic acid transporters exist, as others have speculated 

[230].  

 Finally, because all of the lactic acid-producing strains displayed decreased xylose uptake 

rates (Fig. 2.3) compared to the non-lactic acid-producing strains, the increased lactic acid 

production and decreased ethanol production from xylose could be attributed to a slowed 

production and accumulation of pyruvate. Pyruvate serves as a major substrate in the lactic acid 

and ethanol pathways. In addition, the reported KM value (binding affinity of the enzyme to the 

substrate) for R. oryzae lactate dehydrogenase (LDH) and S. cerevisiae pyruvate decarboxylase 

(PDC) differ. Whereas LDH has a KM of 0.55 mM [113], PDC has a KM value of 2.29 to 3 mM 
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[114]. This indicates that a slower xylose uptake by LDH-expressing strains compared to the 

non-LDH-expressing strains may result in reduced intracellular pyruvate concentrations, 

allowing the higher binding affinity LDH to overtake PDC, thus producing more lactic acid than 

ethanol on the xylose condition. This hypothesis could also explain why the EJ4L∆JEN1∆ADY2 

strain produces less lactic acid than the parental strain, as the EJ4L∆JEN1∆ADY2 strain has a 

slightly increased xylose uptake rate as compared to the parental EJ4L strain.  

 To asses this hypothesis, we measured the intracellular pyruvate concentrations of xylose 

grown cells of EJ4, EJ4ΔADY2ΔJEN1, EJ4L, and EJ4LΔADY2ΔJEN1 (Fig. 6.9). Although minor 

variations in intracellular pyruvate were observed, a t-test of the results indicated that there was 

no statistically significant difference between the four strains (Fig. 6.9) in terms of intracellular 

pyruvate concentrations.  

 This result indicates that the intracellular pyruvate concentration among the parental and 

LDH-expressing strains, with or without JEN1 and ADY2 deletions, is relatively similar. 

Importantly, this provides evidence that decreased production of lactic acid by the double-

deletion of JEN1 and ADY2 is likely not due to differences in intracellular pyruvate 

concentrations. Instead, the difference may be due to the relative increase of intracellular lactic 

acid in the EJ4L∆JEN1∆ADY2 strain (Fig. 6.8). Specifically, this increased intracellular lactic 

acid likely acts as a feedback inhibitor of LDH, diminishing lactic acid production and allowing 

for PDC to provide the primary outlet for NAD
+
 regeneration. 

 

6.5 Conclusions 

 Together, these experiments have elucidated the following results: 1) low extracellular 

pH is specifically inhibitory to lactic acid production from cellobiose using the cdt-1/gh1-1 
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cellobiose fermentation pathway, 2) overexpression of JEN1 and ADY2 is unlikely to improve 

lactic acid production from glucose due to the rapid transcriptional and post-translational 

degradation, but also is unlikely to improve lactic acid production from xylose or cellobiose due 

to the natively highly upregulated status of both genes in the presence of these sugars, 3) JEN1 

and ADY2 deletion significantly inhibits lactic acid production from lignocellulosic sugars likely 

due to an increased intracellular lactic acid concentration relative to the extracellular 

concentration. Moving forward, future studies will focus on identifying other native lactic acid 

transporters and generating mutant Jen1 and Ady2 proteins which are less susceptible to the 

glucose-signaled endocytosis, with the intent of improving lactic acid production from 

lignocellulosic hydrolysate mixtures which contain small, but significant, concentrations of 

glucose. 

 

 

 

 

 

 

 

 

 

 

 

 



 

124 
 

6.6 Figures 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

Fig. 6.1 Individual bioreactor fermentations containing YP medium with 10 g/L glucose, 40 g/L 

xylose, and 80 g/L cellobiose with pH maintained at 4, 5, or 6 via 10 N NaOH addition 

displaying the lactic acid productivity (g/L-h) at ~74 h. 
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Fig. 6.2 Individual bioreactor fermentations containing YP medium with 10 g/L glucose, 40 g/L 

xylose, and 80 g/L cellobiose with pH maintained at 4, 5, or 6 via 10 N NaOH addition 

displaying the rate of cellobiose consumption (g/L-h) at ~74 h. 
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Fig. 6.3 Flask fermentations of the SR8HL strain overexpressing ADY2, JEN1, or an empty 

pRS42K plasmid grown in YP glucose medium. The yields of lactic acid and ethanol (g 

product/g glucose) are shown at ~6 h. The values are the means of two independent experiments 

and the errors indicate the standard deviation. 
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Fig. 6.4 Flask fermentations of the SR8HL strain overexpressing ADY2, JEN1, or an empty 

pRS42K plasmid grown in YP xylose medium. The yields of lactic acid and ethanol (g product/g 

glucose) are shown at ~70 h; no ethanol production was observed. The values are the means of 

two independent experiments and the errors indicate the standard deviation. 
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Fig. 6.5 Flask fermentations of the EJ4L strain grown in YP xylose medium containing water 

(control), methanol (control), or α-cyano-4-hydroxycinnamic acid (CHC) dissolved in methanol. 

The yields of lactic acid and ethanol (g product/g xylose) are shown at ~45 h. The values are the 

means of two independent experiments and the errors indicate the standard deviation. 

Abbreviations: MeOH, methanol; CHC, α-cyano-4-hydroxycinnamic acid. 
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 Ethanol Lactic acid 

EJ4L 0.08 ±0.02 0.45 ±0.02 

EJ4LΔJEN1 0.13 ±0.02 0.42 ±0.01 

EJ4LΔADY2 0.04 ±0.01 0.41 ±0.01 

EJ4LΔADY2ΔJEN1 0.15 ±0.01 0.29 ±0.02 

EJ4LΔADY2ΔJEN1-empty 0.15 ±0.04 0.30 ±0.01 

EJ4LΔADY2ΔJEN1/ADY2 0.13 ±0.03 0.39 ±0.02 

 

 

Table 6.6 Ethanol and lactic acid yields from ΔJEN1 and ΔADY2 strains, control strains, and a 

ΔADY2 strain with a recovered ADY2 expression. Values are the average of duplicate 

experiments with error ranges shown as +/- values; p ≤ 0.05. 
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Fig. 6.7 Fermentation profile showing the change in lactic acid concentration (g/L) overtime in 

YP medium containing ~10 g/L of lactic acid and no other carbon source. Four strains are 

shown: EJ4 (closed square), EJ4ΔJEN1 (closed triangle), EJ4ΔADY2 (closed diamond), and 

EJ4ΔADY2ΔJEN1 (closed circle). The values are the mean of two independent experiments and 

the error bars indicate the standard errors. 
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Fig. 6.8 Intracellular lactic acid measurement of YPX-grown EJ4L and EJ4LΔADY2ΔJEN1 

strains harvested at 39 h and 48 h. Results are shown as fold-increase of intracellular lactic acid 

concentration relative to extracellular lactic acid compared to the EJ4L control (standardized to 

1). The values are the mean of three independent experiments and the error bars indicate the 

standard errors. 
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Fig. 6.9 Intracellular pyruvate concentrations (mM/g DCW) of YPX-grown yeast harvested at 

mid-log phase. EJ4 serves as the control for the EJ4ΔADY2ΔJEN1 strain and EJ4L serves as the 

control for the EJ4LΔADY2ΔJEN1 strain. A t-test was applied for each pair of 

control/experimental strains, indicating no statistically significant difference (*) in intracellular 

pyruvate concentrations was detected in ΔADY2ΔJEN1 strains. The values are the mean of three 

independent experiments and the error bars indicate the standard errors. 
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Fig. 6.10 Intracellular metabolite analyses by GC-MS of YPX-grown EJ4L and 

EJ4LΔADY2ΔJEN1 strains harvested at 48 h. The relative abundance of each metabolite is 

shown. The values are the mean of three independent experiments and the error bars indicate the 

standard errors. The metabolites are associated to the X-axis numbers as follow: 1) phosphoric 

acid, 2) diterbutylphenol, 3) glutamic acid, 4) phenylalanine, 5) lyxose, 6) arabitol, 7) 

glucopyranose, 8) ornithine, 9) tetradecanoic acid, 10) lysine, 11) mannitol, 12) tyrosine, 13) 

hexadecenoic acid, 14) inositol, 15) n-ocadecan-1-ol, 16) octadecanoic acid, 17) trehalose, 18) 

ergocalciferol, 19) mannitol. 
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Fig. 6.11 Predicted protein-protein interaction of Jen1 and Ady2. Currently, the 3D protein 

structures of both proteins are unknown. The brown, light green, and pink interaction lines 

indicate co-expression, data obtained from text-mining abstracts, and experimentally determined 

data, respectively. This figure was obtained from www.string-db.org [234]. 
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CHAPTER VII SUMMARY AND FUTURE STUDIES 

 

7.1 Summary 

 Efficient and cost-effective production of lactic acid from inedible lignocellulosic 

feedstocks would help to push our global economy towards a renewable future with less reliance 

on finite fossil fuels. In particular, this is due to the ability for lactic acid to be formed into a 

biodegradable polyester known as polylactide (PLA), which can serve as a replacement for some 

petroleum-derived plastics. The focus of this dissertation was to elucidate mechanisms necessary 

for improving lactic acid production from lignocellulosic sugars by an engineered 

Saccharomyces cerevisiae yeast.  

 In Chapter II, the first known S. cerevisiae strain capable of fermenting xylose into 

lactic acid was constructed. This was achieved by expressing a heterologous xylose pathway 

(XYL1, XYL2, and XYL3) from Pichia stipitis into a D452-2 background S. cerevisiae strain. 

Deletions of PHO13 and ALD6 further improved the xylose fermentation profile. Then, a 

heterologous lactate dehydrogenase (ldhA) from Rhizopus oryzae was integrated into the yeast 

genome, allowing for the conversion of pyruvate to lactic acid. Surprisingly, lactic acid was the 

major product when xylose was fermented, but glucose was the major product when ethanol was 

fermented. A yield of ~0.69 g lactic acid/g xylose was achieved as a final result. 

 In Chapter III, a mixture of glucose, xylose, and cellobiose was co-consumed by an 

engineered S. cerevisiae to produce primarily lactic acid. This was achieved by using the same 

cassettes for xylose metabolism and lactic acid production, but in addition, multiple copies of a 

cellodextrin transporter (cdt-1) and a β-glucosidase (gh1-1) were expressed in the strain. As in 

Chapter II, it was observed that almost no ethanol was produced when xylose was fermented. 
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Similarly, when cellobiose was fermented, almost no ethanol was produced. When fermentation 

a mixture of glucose (10 g/L), xylose (40 g/L), and cellobiose (80 g/L), a lactic acid yield of 0.65 

g lactic acid/g sugar was achieved. As a final result, we were able to achieve a titer of over 120 

g/L lactic acid by maintaining pH 6 and feeding additional lignocellulosic sugars. 

 In Chapter IV, we applied the cellobiose-fermenting, lactic acid-producing strain from 

Chapter III to dairy products, such as lactose, shelf-stable milk, and cheese whey in order to 

produce lactic acid. This study served as a proof of concept for the application of engineered 

yeast to produce value-added products from dairy industry byproducts, such as contaminated 

milk or, through further improvements, highly acid whey from Greek yogurt production. 

 In Chapter V, we investigated numerous industrial Saccharomyces spp. strains to assess 

their tolerance in a variety of industrially-relevant conditions, especially conditions related to 

lignocellulosic hydrolysate fermentations. Four industrial strains (ATCC 4127, ATCC 46523, 

ATCC 56069, and ATCC 66348) were selected as the overall top-performing strains in terms of 

resistance to low pH, xylose-fermentation capability, and resistance to commonly-occurring 

lignocellulosic hydrolysate fermentation inhibitors. An ldhA cassette and the xylose fermentation 

cassettes from Chapter II were integrated into the ATCC 46523 genome. As a result, the 

engineered strain did not produce significantly more lactic acid than the control strain despite the 

ATCC 46523 strain displaying increased tolerance in low pH and high extracellular lactic acid 

concentration conditions. However, ethanol production by the ATCC 46523 transformant was 

lower than the control. This suggests that selection of an ideal starting strain when seeking to 

maximize lactic acid production from xylose or cellobiose could be beneficial, but further 

screening for strain selection is necessary. 
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 In Chapter VI, several genetic perturbations related to JEN1 and ADY2 were undertaken 

to elucidate underlying mechanisms of lactic acid production from lignocellulosic sugars. Most 

importantly, we provided evidence that JEN1 and ADY2 are upregulated in the presence of 

xylose, or more accurately, are not downregulated as is the case when in the presence of glucose. 

This aligns with other reports of upregulation when fermenting cellobiose and also of rapid 

proteolytic degradation of Jen1 and Ady2 when in the presence of glucose. Through double 

deletion of JEN1 and ADY2, lactic acid production from xylose was reduced by ~36 % compared 

to the control strain, indicating the importance of JEN1 and ADY2 for lignocellulosic sugar 

conversion to lactic acid. 

 

7.2 Future studies 

 Although these studies have made a considerable effort to improve the production of 

lactic acid from lignocellulosic feedstocks, still, several major barriers must be overcome before 

industrial-scale production can ensue. Importantly, development of lactic acid-producing S. 

cerevisiae which can grow without severe hindrance in lignocellulosic hydrolysate is a necessity 

for cost-effective industrial fermentations. As a rule of thumb, industrial-scale fermentations 

should also reach productivity of at least 2 g/L-h, of which the strains developed in the present 

studies are unable to do so from xylose and cellobiose, although higher initial cell inoculums 

may alleviate this issue. Finally, continued investigation of the underlying mechanisms for lactic 

acid production from engineered yeast would be beneficial, especially for identifying new lactic 

acid transporters in addition to creating mutant Jen1 and Ady2 transporters which are not as 

susceptible to degradation in the presence of glucose. With these and other goals reached, 
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efficient industrial-scale lactic acid production from lignocellulosic feedstocks could one day be 

achieved. 
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