FAR INFRARED SYNCHROTRON SPECTRUM OF TRIMETHLYENE OXIDE

OMAR MAHASSNEH, <u>JENNIFER VAN WIJNGAARDEN</u>, Department of Chemistry, University of Manitoba, Winnipeg, MB, Canada.

Rotationally-resolved vibrational spectra of trimethlyene oxide (c-C₃H6O) from 650 through 1200 cm⁻¹were recorded using far infrared synchrotron radiation at the Canadian Light Source with better than 0.001 cm⁻¹resolution. The observed bands correspond to at least eight different fundamental vibrations in this region. Due to the low frequency ring puckering motion,^a the observed rovibrational pattern of each band is congested with hot-combination bands that originate in the first two excited ring puckering states (52.9 cm⁻¹, 142.6 cm⁻¹). The ongoing analysis of the strong *b-type* bands corresponding to asymmetric in-plane CO stretching (ν_{10} :1008 cm⁻¹)^b will be discussed along with the identification of allowed Coriolis interactions arising from nearby energy levels related to in-plane CC stretching (ν_{9} : 940 cm⁻¹, ν_{3} : 1033 cm⁻¹).

^aG. Moruzzi et al., J. Mol. Spectrosc. **219**, **152** (**2003**).

^bBánhegyi et al. Spectrochim. Acta. **39A, 761 (1983).**