TWO-CENTER THREE-ELECTRON BONDING IN CINH₃ REVEALED VIA HELIUM DROPLET INFRARED SPECTROSCOPY: ENTRANCE CHANNEL COMPLEX ALONG THE CI + NH₃ \rightarrow CINH₂ + H REACTION

PETER R. FRANKE, CHRISTOPHER P. MORADI, Department of Chemistry, University of Georgia, Athens, GA, USA; MATIN KAUFMANN, Physikalische Chemie II, Ruhr University Bochum, Bochum, Germany; CHANGJIAN XIE, HUA GUO, Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM, USA; GARY E. DOUBERLY, Department of Chemistry, University of Georgia, Athens, GA, USA.

Pyrolytic dissociation of Cl_2 is employed to dope helium droplets with single Cl atoms. Sequential addition of NH_3 to Cl-doped droplets leads to the formation of a complex residing in the entry valley to the substitution reaction, $Cl + NH_3 \rightarrow ClNH_2 + H$. Infrared Stark spectroscopy in the NH stretching region reveals symmetric and antisymmetric vibrations of a C_{3v} symmetric top. Frequency shifts from NH_3 and dipole moment measurements are consistent with a $ClNH_3$ complex containing a relatively strong two-center three-electron (2c-3e) bond. The nature of the 2c-3e bonding in $ClNH_3$ is explored computationally and found to be consistent with the complexation-induced blue shifts observed experimentally. Computations of interconversion pathways reveal nearly barrierless routes to the formation of this complex, consistent with the absence of two other complexes, NH_3Cl and Cl- HNH_2 , which are predicted in the entry valley to the hydrogen abstraction reaction, $Cl + NH_3 \rightarrow HCl + NH_2$