2C-R4WM SPECTROSCOPY OF JET COOLED NO₃

<u>MASARU FUKUSHIMA</u>, TAKASHI ISHIWATA, *Information Sciences, Hiroshima City University, Hi-roshima, Japan*; EIZI HIROTA, *The Central Office, The Graduate University for Advanced Studies, Hayama, Kanagawa, Japan*.

We have generated NO₃ from pyrolysis of N₂O₅ following supersonic free jet expansion, and carried out two color resonant four wave mixing (2C-R4WM) spectroscopy of the $\tilde{B}^2E'-\tilde{X}^2A_2'$ electronic transition. One laser was fixed to pump NO_3 to a ro-vibronic level of the \tilde{B} state, and the other laser (probe) was scanned across two levels of the \tilde{X} $^2A_2'$ state lying at 1051 and 1492 cm⁻¹, the ν_1 (a_1') and ν_3 (e') fundamentals, respectively. The 2C-R4WM spectra have unexpected back-ground signal of NO₃ (stray signal due to experimental set-up is also detected) similar to laser induced fluorescence (LIF) excitation spectrum of the 0-0 band, although the back-ground signal was not expected in considering the 2C-R4WM scheme. Despite the back-ground interference, we have observed two peaks at 1051.61 and 1055.29 cm⁻¹ in the ν_1 region of the spectrum, and the frequencies agree with the two bands, 1051.2 and 1055.3 cm⁻¹, of our relatively higher resolution dispersed fluorescence spectrum, the former of which has been assigned to the ν_1 fundamental. Band width of both peaks, $\sim 0.2~{\rm cm^{-1}}$, is broader than twice the experimental spectral-resolution, $0.04~{\rm cm^{-1}}$ (because this experiment is double resonance spectroscopy), and the 1051.61 cm^{-1} peak is attributed to a Q branch band head (a line-like Q branch) of the u_1 fundamental. The other branches are suspected to be hidden in noise of the back-ground signal. The 1055.29 cm⁻¹ peak is also attributed to a Q band head. The $\tilde{B}^2 E_1'$ ($J' = \frac{3}{2}$, K' = 1) $-\tilde{X}^2 A_2'$ (N'' = 1, K''=0) ro-vibronic transition was used as the pump transition. The dump (probe) transition to both a'_1 and e' vibronic levels are then allowed as perpendicular transition. Accordingly, it cannot be determined from present results whether the 1055.29 cm^{-1} band is attributed to a'_1 or $e'(\nu_3)$, unfortunately. The 2C-R4WM spectrum of the 1492 cm⁻¹ band region shows one Q head at 1499.79 cm⁻¹, which is consistent with our dispersed fluorescence spectrum. By considering with the $\nu_3 + \nu_4 - \nu_4$ hot band^a, the present results suggest that both 1055.29 and 1499.79 cm⁻¹ levels are a_1^{\prime} level.

^aK. Kawaguchi et al., J. Phys. Chem. A 117, 13732 (2013) and E. Hirota, J. Mol. Spectrosco. 310, 99 (2015).