NITROGEN MOLECULE-DIMETHYL SULFIDE COMPLEX INVESTIGATED BY FOURIER TRANSFORM MICROWAVE SPECTROSCOPY AND AB INITIO CALCULATION

YOSHIYUKI KAWASHIMA, SAKAE IWANO, Applied Chemistry, Kanagawa Institute of Technology, Atsugi, Japan; EIZI HIROTA, The Central Office, The Graduate University for Advanced Studies, Hayama, Kanagawa, Japan.

This paper presents an extension of the preceding talk on the FTMW spectroscopy of N_2 -ES (ethylene sulfide), namely the results on N_2 -DMS (dimethyl sulfide). We have previously investigated two N_2 complexes: N_2 -DME (dimethyl ether), for which we reported a prelimanary result,^a and N_2 -EO (ethylene oxide).^b We have observed the ground-state rotational spectrum of the N_2 -DMS complex, i.e. c-type transitions in the frequency region from 5 to 24 GHz, which we assigned to the normal, $^{15}N_2$ -DMS, and ^{15}NN -DMS species of the N_2 -DMS. We have found both the ortho and para states for the $^{14}N_2$ -DMS and $^{15}N_2$ -DMS species. In the case of the $^{15}N_2$ -DMS, some transitions with K_a = 2 and 3 were observed slightly split by the internal rotation of the two methyl tops of the DMS. The observed spectra of the $^{15}N_2$ -DMS were analyzed by using the XIAM program. In the case of the para state of the $^{15}N_2$ -DMS, three rotational and five centrifugal distortion constants with the V_3 barrier to the methyl group internal rotation, whereas, in the case of the ortho state of the $^{15}N_2$ -DMS, two more centrifugal distortion constants, Φ_{JK} and Φ_{KJ} , were needed to reproduce the observed spectra. For the N_2 -DMS complex, we concluded that the N_2 moiety was located in a plane perpendicular to the C-S-C plane and bisecting the CSC angle of the DMS.

We have carried out ab initio molecular orbital calculations at the level of MP2 with basis sets 6-311++G(d, p), aug-cc-pVDZ, and aug-cc-pVTZ, to complement the information on the intracomplex motions obtained from the observed rotational spectra. We have applied a natural bond orbital (NBO) analysis to the N₂-DMS and N₂-ES to calculate the stabilization energy CT (= $\Delta E_{\sigma\sigma*}$), which was closely correlated with the binding energy E_B , as found for other related complexes.

^aY. Kawashima, Y. Tatamitani, Y. Morita, and E. Hirota, 61stInternationalSymposiumonMolecularSpectroscopy, TE10 (2006)

^bY. Kawashima and E. Hirota, J.Phys.Chem.A 2013 117 13855