
# ACCURATE ROVIBRATIONAL ENERGIES FOR THE FIRST EXCITED TORSIONAL STATE OF METHYLAMINE

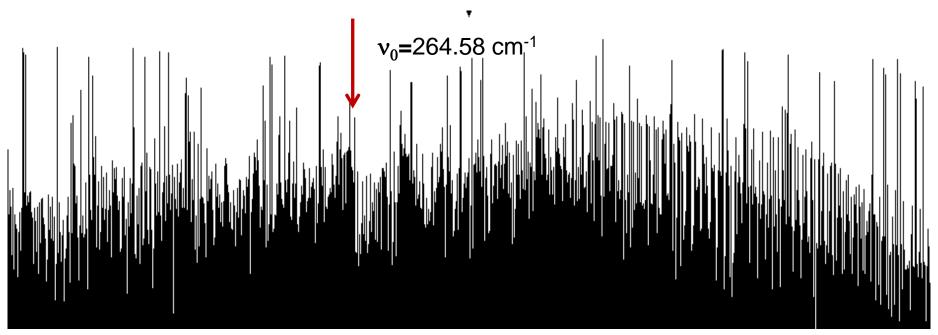
Iwona Gulaczyk, Marek Kręglewski

Faculty of Chemistry, Adam Mickiewicz University, Poznań, Poland



# Energies of the inversion-torsional states of CH<sub>3</sub>NH<sub>2</sub>





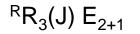

### Goal of the study

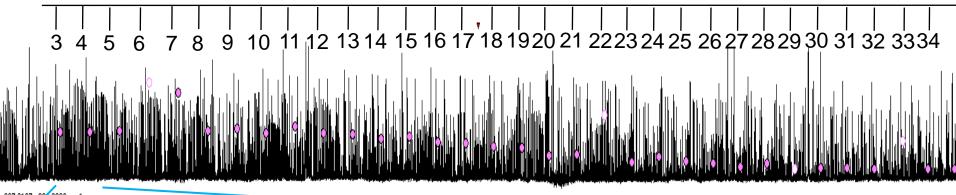
- Assignment and analysis of the hot bands  $v_{15} \rightarrow 2v_{15}$ ,  $v_{15} \rightarrow 3v_{15}$ ,  $v_{15} \rightarrow 4v_{15}$  on the basis of the energies of the first excited torsional state  $(v_{15})$
- Accurate rovibrational energies for the second and third torsional states  $(2v_{15}, 3v_{15})$
- Resonances between inversion  $(v_9)$  and the third and fourth excited torsional states  $(3v_{15}, 4v_{15})$



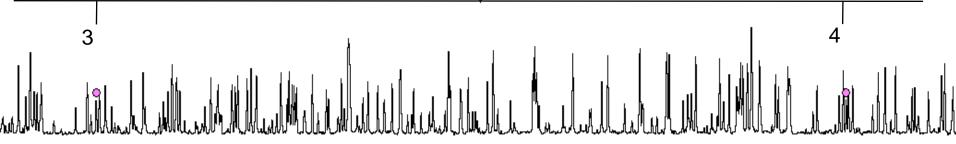
# The torsional band spectrum of methylamine




Spectrum: Veli-Matti Horneman, University of Oulu Bruker IFS-120HR Range 40 cm<sup>-1</sup> to 360 cm<sup>-1</sup> Number of peaks = 67522


0.36 Torr, 3.2 m
The operating temperature of the bolometer 1.4 -2 K
Resolution due to MOPD = 0.00125
Registration time 37.9 h.




### Fragment of the IR $v_{15}$ band

The structure of the  ${}^{R}R_{3}(E_{2+1})$  branch











# The first torsional band of methylamine ( $v_{15}$ )

- 1) A near prolate asymmetric rotor
- 2) Internal rotation and inversion splittings in the ground state: ≤0.3 cm<sup>-1</sup> and ≤0.2 cm<sup>-1</sup>, respectively.
- 3) B-type band (selection rules:  $\Delta K = \pm 1$ ,  $\Delta J = 0, \pm 1$ ).
- 4) At higher K each symmetric rotor transition split into 6 components: one  $A_1 \leftrightarrow A_2$ , one  $B_1 \leftrightarrow B_2$ , two  $E_1 \leftarrow E_1$ , two  $E_2 \leftarrow E_2$  with statistical weights of 2, 6, 3, 1, respectively.
- 5) At lower K doubled splittings for A and B components (asymmetric rotor effects).
- 6) The high-frequency side dominated by strong resolved Q branches and R-branch series.
- 7) Near the band center 264.5825(60) cm<sup>-1</sup>, the Q branches spread over a large spectrum region make many weak lines obscure.



## Analysis of the first excited torsional band $(v_{15})$ of methylamine

- The LWW for LAV molecules software [1] used extensively for assignment, which is confirmed through the ground state combination differences (Loomis – Wood schemes).
- 2) The global fit carried out using a Hougen-Ohashi effective Hamiltonian [2] (the  $v_{15}$  state-an isolated state split into several sublevels of A, B,  $E_1$  and  $E_2$  symmetry) including infrared (over 11000 transitions assigned), pure rotational and microwave data (from literature)

[1] W.Łodyga, M.Kręglewski, P.Pracna, Š. Urban, J.Mol.Spectrosc. 243, 182-188 (2007)

[2] N. Ohashi and J. T. Hougen, J.Mol.Spectrosc. 121, 474-501 (1987)



# Analysis of the first excited torsional band $(v_{15})$ of methylamine

- 3) Ground state constants were fixed to the values determined by Ilyushin et al. [3].
- 4) Over 11000 lines of the first torsional state with 0≤K≤16 and K ≤J≤40 were fit to 58 molecular parameters.
- 5) Weighting inversely proportionate to the square of precision: IR data (precision 0.0004 cm<sup>-1</sup>) and MW (precision 0.1 MHz), the number of IR data much higher than that of MW data the weighting of IR data artificially lowered
- 6) Results of global fitting for the first torsional state:
  - IR data:  $\sigma$ =0.0039 cm<sup>-1</sup>, number of transitions=11300
  - IR of pure rotational data:  $\sigma$ = 0.0038 cm<sup>-1</sup>, number of transitions=88
  - MW data:  $\sigma$ = 0.69 MHz, number of transitions=218

[3] V.V. Ilyushin, E. A.Alekseev, S.F.Dyubko, R.A.Motiyenko, J.T.Hougen, *J.Mol.Spectrosc.* **229**, 170-187 (2005)



### Present versus previous analyses

#### Present work ( $J \le 40$ ):

- MW lines from earlier measurements [4,5]
- Complete assignment of over 11000 IR lines for all symmetry species
- Standard deviation 0.0039 cm<sup>-1</sup>

#### Previous works (J≤30) [4,5]:

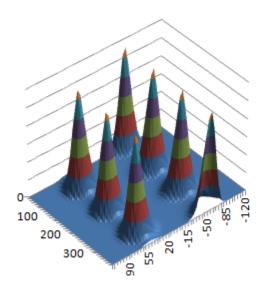
- Assignment of IR transitions of B and E<sub>1+1</sub> symmetry
- Incomplete assignment for IR lines of A and E<sub>1-1</sub> symmetry
- Lack of IR lines of E<sub>2</sub> symmetry
- Standard deviations for over 700 IR and MW transitions: 0.00095 cm<sup>-1</sup>
- [4] N.Ohashi, K.Takagi, J.T.Hougen, W.B.Olson, and W.J.Lafferty, *J.Mol.Spectrosc.* **132**, 242-260 (1988)
- [5] N.Ohashi, S.Tsunekawa, K.Takagi and J.T.Hougen, *J.Mol.Spectrosc.* **137**, 33-46 (1989)

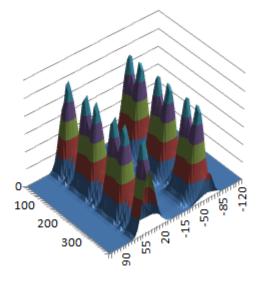


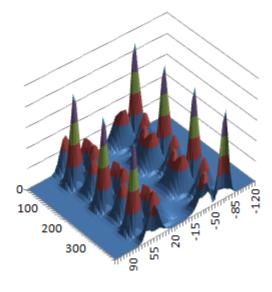
### The group theoretical effective Hamiltonian



Inversion-torsion potential function of methylamine


#### Basic assumptions of the model:


- Equivalent minima occur in the potential surface separated by inversion and torsional barriers
- 2) In each minimum a rotationinversion-torsion function is localized which is attributed to a single configuration
- 3) The barriers are low enough to allow tunneling between minima, thus, splittings are produced.




## The probability density of the inversion-torsion functions from explicit Hamiltonian

The probability density of the inversion torsion functions for J=K=0 rotational states of A<sub>1</sub> symmetry in different torsional states of methylamine







the ground torsional state

the first excited torsional state

the second excited torsional state



### Convergence of the effective Hamiltonian

#### **Ground state**

Number of molecular parameters: 55

Number of IR lines (including upper

state combination differences): 14544

Number of MW lines: 673

 $\sigma_{IR}$ : 0.0003 cm<sup>-1</sup>

 $\sigma_{MW}$ : 0.21 MHz

#### First excited torsional state

Number of molecular parameters: 58

Number of IR lines: 11388

Number of MW lines: 218

 $\sigma_{IR}$ : 0.0039 cm<sup>-1</sup>

 $\sigma_{MW} \!\!: 0.69 \; MHz$ 



### Summary and prospects

- 1) Available list of rotational frequencies for the first excited torsional state of methylamine up to J=40 and K=20 for all symmetry species.
- 2) Although the precision of the energies of the excited torsional state is not satisfactory, the energies can be used as references and source for further assignments of hot bands  $v_{15} \rightarrow 2v_{15}$ ,  $v_{15} \rightarrow 3v_{15}$ ,  $v_{15} \rightarrow 4v_{15}$ , which are quite intense in the spectrum recorded at room temperature.
- 3) The formalism appeared to be less successful in the first excited torsional state comparing to the ground state.