FOURIER TRANSFORM MICROWAVE SPECTROSCOPY OF $Sc^{13}C_2$ AND $Sc^{12}C^{13}C$: ESTABLISHING AN ACCURATE STRUCTURE OF ScC_2 (\tilde{X}^2A_1)

MARK BURTON, Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, USA; De-WAYNE T HALFEN, Steward Observatory, University of Arizona, Tucson, AZ, USA; JIE MIN, Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, USA; LUCY M. ZIURYS, Department of Chemistry and Biochemistry; Department of Astronomy, Arizona Radio Observatory, University of Arizona, Tuscon, AZ, USA.

Pure rotational spectra of $\mathrm{Sc^{13}C_2}$ and $\mathrm{Sc^{12}C^{13}C}$ ($\tilde{\mathrm{X}}^2\mathrm{A_1}$) have been obtained using Fourier Transform Microwave methods. These molecules were created from scandium vapor in combination with $^{13}\mathrm{CH_4}$ and/or $^{12}\mathrm{CH_4}$, diluted in argon, using a Discharge Assisted Laser Ablation Source (DALAS). Transitions in the frequency range of 14-30 GHz were observed for both species including hyperfine splitting due to the nuclear spin of Sc (I=7/2) and $^{13}\mathrm{C}$ (I=1/2). Rotational, spin-rotational, and hyperfine constants have been determined for $\mathrm{Sc^{13}C_2}$ and $\mathrm{Sc^{12}C^{13}C}$, as well as a refined structure for $\mathrm{ScC_2}$. In agreement with theoretical calculations and previous $\mathrm{Sc^{12}C_2}$ results, these data confirm a cyclic (or T-shaped) structure for this molecule.

Scandium carbides have been shown to form endohedral-doped fullerenes, which have unique electrical and magnetic properties due to electron transfer between the metal and the carbon-cage. Spectroscopy of ScC_2 provides data on model systems for comparison with theory.