INFLUENCE OF HALOGEN VARIATION ON STRUCTURE AND INTERACTIONS IN VINYL HALIDE $(H_2C=CHX)\cdots CO_2$ (X = F, Cl, Br) COMPLEXES

ASHLEY M. ANDERTON, CORI L. CHRISTENHOLZ, RACHEL E. DORRIS, <u>REBECCA A. PEEBLES</u>, SEAN A. PEEBLES, *Department of Chemistry, Eastern Illinois University, Charleston, IL, USA*.

Chirped-pulse and resonant cavity Fourier-transform microwave spectroscopy have been used to investigate dimers of CO_2 with vinyl fluoride (VF), vinyl chloride (VCl) and vinyl bromide (VBr). For all three complexes, CO_2 is aligned adjacent to the X–C–H end (X = F, Cl, Br) of the ethylene subunit, with C–X···C and C–H···O contacts. For VF···CO₂, a second isomer is also observed, with CO_2 roughly parallel to the H–C=C–F side of VF; however, there is no spectroscopic indication that similar structures are present for $VCl···CO_2$ or $VBr···CO_2$.

For vinyl fluoride \cdots CO₂, a full structural analysis has previously been published,^a while for the Cl- and Br-containing species, insufficient data are presently available for complete structure determinations. However, structural information from ab initio calculations, 35 Cl/ 37 Cl and 79 Br/ 81 Br isotopic substitution, and analysis of chlorine and bromine nuclear quadrupole coupling constants will be presented. In addition, for this series of dimers containing C–H···O contacts, further insight into the nature of the weak interactions may be obtained from Quantum Theory of Atoms in Molecules (QTAIM) and other *ab initio* analyses that are presently in progress.

^aC. L. Christenholz, R. E. Dorris, R. A. Peebles, S. A. Peebles, J. Phys. Chem. A, 118, (2014), 8765-8772.