Director of Research (if dissertation) or Advisor (if thesis)
Lazebnik, Svetlana
Department of Study
Computer Science
Discipline
Computer Science
Degree Granting Institution
University of Illinois at Urbana-Champaign
Degree Name
M.S.
Degree Level
Thesis
Keyword(s)
Painting
Classification
Styles
Artist
Multi-task
Visual Geometry Group (VGG)
Abstract
A lot of progress has been made in the domain of image classification in the deep learning era, however, not so much for paintings. Even though paintings are images they are very different from photographs and classification of paintings requires in-depth domain knowledge compared to classifying an object. This makes the task of fine-grained classification of paintings even harder. In this thesis, we evaluate the classification of paintings into its various styles, genres, artists and formulate the problem of dating paintings as a classification problem. We experiment with the standard networks available as baselines and then improve the classification models via multi-task learning. We also propose a novel architectural addition to the VGG network to do fine-grained classification. Our models beat the existing state-of-the-art classifiers by a big margin.
Use this login method if you
don't
have an
@illinois.edu
email address.
(Oops, I do have one)
IDEALS migrated to a new platform on June 23, 2022. If you created
your account prior to this date, you will have to reset your password
using the forgot-password link below.