Connectome-based predictive modeling of fluid intelligence: Evidence for a global system of functionally integrated brain networks
Wilcox, Ramsey
This item is only available for download by members of the University of Illinois community. Students, faculty, and staff at the U of I may log in with your NetID and password to view the item. If you are trying to access an Illinois-restricted dissertation or thesis, you can request a copy through your library's Inter-Library Loan office or purchase a copy directly from ProQuest.
Permalink
https://hdl.handle.net/2142/120469
Description
Title
Connectome-based predictive modeling of fluid intelligence: Evidence for a global system of functionally integrated brain networks
Author(s)
Wilcox, Ramsey
Issue Date
2023-05-05
Director of Research (if dissertation) or Advisor (if thesis)
Barbey, Aron
Committee Member(s)
Sadaghiani, Sepideh
Department of Study
Psychology
Discipline
Psychology
Degree Granting Institution
University of Illinois at Urbana-Champaign
Degree Name
M.S.
Degree Level
Thesis
Keyword(s)
Neuroscience
Intelligence, fMRI
Abstract
Cognitive neuroscience continues to advance our understanding of the neural foundations of human intelligence, with significant progress elucidating the role of the frontoparietal network in cognitive control mechanisms for flexible, intelligent behavior. Recent evidence in network neuroscience further suggests that this finding may represent the tip of the iceberg and that fluid intelligence may depend on the collective interaction of multiple brain networks. However, the global brain mechanisms underlying fluid intelligence and the nature of multi-network interactions remain to be well established. We therefore conducted a large-scale connectome-based predictive modeling study, administering resting-state fMRI to 159 healthy college students and examining the contributions of seven intrinsic connectivity networks to the prediction of fluid intelligence, as measured by a state-of-the-art cognitive task (the BOMAT). Specifically, we aimed to: (i) identify whether fluid intelligence relies on a primary brain network or instead engages multiple brain networks; and (ii) elucidate the nature of brain network interactions by assessing network allegiance (within- versus between-network connections) and network topology (strong versus weak connections) in the prediction of fluid intelligence. Our results demonstrate that whole-brain predictive models account for a large and significant proportion of variance in fluid intelligence (18%) and illustrate that the contribution of individual networks is relatively modest by comparison. In addition, we provide novel evidence that the global architecture of fluid intelligence prioritizes between-network connections and flexibility through weak ties. Our findings support a network neuroscience approach to understanding the collective role of brain networks in fluid intelligence and elucidate the system-wide network mechanisms from which flexible, adaptive behavior is constructed.
Use this login method if you
don't
have an
@illinois.edu
email address.
(Oops, I do have one)
IDEALS migrated to a new platform on June 23, 2022. If you created
your account prior to this date, you will have to reset your password
using the forgot-password link below.