Efficient and Privacy-Preserving Binary Dot Product via Multi-Party Computation
Author(s)
Dehkordi, Fatemeh Jafarian
Vedadi, Elahe
Feizbakhsh, Alireza
Keshtkarjahromi, Yasaman
Seferoglu, Hulya
Issue Date
2025-09-17
Keyword(s)
Binary dot product
Multi-party computation
Information theoretic security
Abstract
Striking a balance between protecting data privacy and enabling collaborative computation is a critical challenge for distributed machine learning. While privacy-preserving techniques for federated learning have been extensively developed, methods for scenarios involving bitwise operations, such as tree-based vertical federated learning (VFL), are still underexplored. Traditional mechanisms, including Shamir’s secret sharing and multi-party computation (MPC), are not optimized for bitwise operations over binary data, particularly in settings where each participant holds a different part of the binary vector. This paper addresses the limitations of existing methods by proposing a novel binary multi-party computation (BiMPC) framework. The BiMPC mechanism facilitates privacy-preserving bitwise operations, with a particular focus on dot product computations of binary vectors, ensuring the privacy of each individual bit. The core of BiMPC is a novel approach called Dot Product via Modular Addition (DoMA), which uses regular and modular additions for efficient binary dot product calculation. To ensure privacy, BiMPC uses random masking in a higher field for linear computations and a three-party oblivious transfer (triOT) protocol for non-linear binary operations. The privacy guarantees of the BiMPC framework are rigorously analyzed, demonstrating its efficiency and scalability in distributed settings.
Publisher
Allerton Conference on Communication, Control, and Computing
Series/Report Name or Number
2025 61st Allerton Conference on Communication, Control, and Computing Proceedings
Use this login method if you
don't
have an
@illinois.edu
email address.
(Oops, I do have one)
IDEALS migrated to a new platform on June 23, 2022. If you created
your account prior to this date, you will have to reset your password
using the forgot-password link below.