Withdraw
Loading…
Selective oxidation of aluminum-bearing III-V semiconductors: Properties and applications to quantum well heterostructure lasers and transistor devices
Chen, Eugene I-Chun
Content Files

Loading…
Download Files
Loading…
Download Counts (All Files)
Loading…
Edit File
Loading…
Permalink
https://hdl.handle.net/2142/23442
Description
- Title
- Selective oxidation of aluminum-bearing III-V semiconductors: Properties and applications to quantum well heterostructure lasers and transistor devices
- Author(s)
- Chen, Eugene I-Chun
- Issue Date
- 1996
- Doctoral Committee Chair(s)
- Holonyak, Nick, Jr.
- Department of Study
- Electrical Engineering
- Discipline
- Electrical Engineering
- Degree Granting Institution
- University of Illinois at Urbana-Champaign
- Degree Name
- Ph.D.
- Degree Level
- Dissertation
- Date of Ingest
- 2011-05-07T14:14:19Z
- Keyword(s)
- Engineering, Electronics and Electrical
- Physics, Condensed Matter
- Engineering, Materials Science
- Language
- eng
- Abstract
- In this work, the water vapor oxidation of Al-bearing III-V compound semiconductors is used to fabricate light-emitting and electronic devices. High Al-composition heterostructure crystals such as Al$\sb{\rm x}$Ga$\sb{\rm 1-x}$As (x $\sbsp{\sim}{>}$ 0.5) are converted into a stable native oxide at moderately elevated temperatures ($\sbsp{\sim}{>}400\ \sp\circ$C) in a water vapor saturated ambient. Dependence of the oxidation process on Al composition makes possible the formation of embedded oxide layers in between semiconductor crystal using selective (lateral) oxidation. Data are presented showing how various growth parameters, crystal layering, and oxidation times and temperatures affect the lateral oxidation process. Etch studies of superlattice structures that are Zn-diffused and oxidized are also presented showing that the water vapor oxidation process behaves similarly to chemical wet etches.
- Native oxide-based AlGaAs-GaAs metal-oxide-semiconductor field-effect transistor devices are fabricated via lateral oxidation of a thin AlAs layer. Data are presented demonstrating depletion-mode transistor operation. This shows that the native oxide is of sufficient quality to allow modulation of an underlying GaAs channel.
- "Impurity-induced layer disordering (IILD) and water vapor oxidation are also used to define a planar minidisk cavity in a superlattice (70 A AlAs + 30 A GaAs) crystal. Data are presented showing photopumped ""whispering gallery mode"" laser operation of $\sim$37 $\mu$m minidisks lasers. Finally, the IILD and oxidation process is extended to the formation of a microdisk photonic lattice. Data are presented showing that the microdisks ($\sim$9 $\mu$m diameter) are sufficiently coupled to form ""bands"" in the photopumped recombination radiation spectra."
- Type of Resource
- text
- Permalink
- http://hdl.handle.net/2142/23442
- Copyright and License Information
- Copyright 1996 Chen, Eugene I-Chun
Owning Collections
Graduate Dissertations and Theses at Illinois PRIMARY
Graduate Theses and Dissertations at IllinoisDissertations and Theses - Electrical and Computer Engineering
Dissertations and Theses in Electrical and Computer EngineeringManage Files
Loading…
Edit Collection Membership
Loading…
Edit Metadata
Loading…
Edit Properties
Loading…
Embargoes
Loading…