On Logistic Regression Approach to Survival Data and Power Divergence Statistics for Life Tables
Lai, Kunjung
This item is only available for download by members of the University of Illinois community. Students, faculty, and staff at the U of I may log in with your NetID and password to view the item. If you are trying to access an Illinois-restricted dissertation or thesis, you can request a copy through your library's Inter-Library Loan office or purchase a copy directly from ProQuest.
Permalink
https://hdl.handle.net/2142/72583
Description
Title
On Logistic Regression Approach to Survival Data and Power Divergence Statistics for Life Tables
Author(s)
Lai, Kunjung
Issue Date
1993
Doctoral Committee Chair(s)
Ying, Ziliang
Department of Study
Statistics
Discipline
Statistics
Degree Granting Institution
University of Illinois at Urbana-Champaign
Degree Name
Ph.D.
Degree Level
Dissertation
Keyword(s)
Statistics
Abstract
Efron (1988) proposes the use of standard logistic regression techniques to estimate hazard rates and survival curves from survival data. These techniques allow statisticians to use parametric regression modeling on survival data in a flexible way that provides both estimates and standard errors. In the first part of this thesis, large sample properties of this logistic regression method are developed. It is shown that under some regularity conditions the hazard rate and survival function estimators are consistent and their corresponding asymptotic normality results also hold. Extension of Efron's method to regression model is proposed and their asymptotic properties again are examined.
The second part of the thesis introduces two classes of power divergence statistics for life tables. The first class of statistics is similar to the power divergence family of Cressie and Read's (1984) for the analysis of contingency tables. The second type of statistics is easier to be interpreted geometrically than the first one. However, these two classes of statistics are asymptotically equivalent. A relatively complete large sample theory, including consistency and asymptotic normality, is provided.
Use this login method if you
don't
have an
@illinois.edu
email address.
(Oops, I do have one)
IDEALS migrated to a new platform on June 23, 2022. If you created
your account prior to this date, you will have to reset your password
using the forgot-password link below.